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Sustainable growth: compatibility between

criterion and the initial state

Andrei V. Bazhanov

Abstract

There is a large body of research devoted to our understanding of sustainable growth
in resource based economies. Some of this research is inapplicable to the real econ-
omy. This is a result of inconsistency between the commonly used criteria and
the initial state of the real economy. The inconsistency can lead to either inferior,
unsustainable, or nonexistent optimal paths of consumption per capita if the cri-
terion is not linked to the initial state. We demonstrate this in a model of the
Dasgupta-Heal-Solow-Stiglitz variety with the constant consumption per capita as
a benchmark criterion. Our results show that the inconsistency in this case can
imply Pareto inferior paths of consumption per capita.

Key words: essential nonrenewable resource, sustainable extraction, criterion
inconsistency, Hartwick Rule
JEL : O13; Q32; Q38

1 Introduction

Koopmans (1965) argued that “Ignoring realities in adopting ‘principles’ may
lead one to search for a nonexistent optimum, or to adopt an ‘optimum’ that is
open to unanticipated objections” (p. 229). Koopmans showed for the simple
model that depending on the formulation of the criterion, the optimal path
could not exist. Unfortunately, the problem of consistency of a criterion with
the opportunities of the specific economy to realize the optimum has not been
adequately addressed in the subsequent literature. 1

1 There are studies that show that sustainability of consumption level and time-
consistency of intertemporal consumption paths depend on the initial value of capi-
tal for the maximin programs (e.g. Leininger, 1985). A recent example of incompat-
ibility of a criterion with the specific economy can be found by analyzing Stollery
(1998). He examined the problem of a resource-extracting economy causing global
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We claim in this paper that either the unsustainable 2 or the Pareto inferior
path of per capita consumption can be obtained in the real (“non-optimal”)
economy, if the economy follows a criterion that is not linked to the initial
state of the economy 3 or, in other words, if “preferences are not adjusted to
opportunities” (Koopmans, 1965, p. 253). We use here a conventional model
in order to construct an example showing that a “non-optimal” resource-based
economy enters a Pareto inferior path of development when it tries to follow a
criterion that is not linked to the initial state (implies an initial state different
from the given state of the economy). Besides theoretical goals, the paper
contains a “technical” result of the methodology of transition of the non-
optimal economy from the given initial conditions to the initial state implied
by the criterion.

We use for simplicity the constant consumption criterion. Solow (1974) used
this criterion as a result of application of the maximin (Rawls, 1971) to the
question of just intertemporal allocation of an essential nonrenewable re-
source. The constant consumption over time for the Dasgupta-Heal-Solow-
Stiglitz model (DHSS) (Dasgupta and Heal, 1974; Solow, 1974; Stiglitz, 1974)
is implied by the Hartwick Investment Rule (Hartwick, 1977). This result
is obtained under the standard Hotelling Rule. The Rule implies that the
rate of extraction r(t) must always be declining, including the starting point
(dr(0)/dt = ṙ(0) < 0). Moreover, the optimal initial value of ṙ(0) is strictly
defined in the framework of the DHSS model for the maximin-optimal paths. 4

But what if we want to apply this criterion to the specific economy, whose
technology and (or) the initial state are not compatible with the requirements
of the criterion? 5 For example, if the elasticity of factor substitution is less
than unity then the economy with a nonrenewable resource will collapse re-
gardless of any efforts in saving (Dasgupta and Heal, 1979) and therefore this

warming and following the constant-utility optimal path. One can easily check that
this criterion is not compatible with the Cobb-Douglas technology for plausible ini-
tial states by assuming constant extraction during some period. The plausible initial
states imply in this framework unsustainable extraction, fast growth of temperature
and collapse of the economy.
2 We consider weak sustainability in a sense of non-decreasing per capita consump-
tion over time.
3 By linking a criterion to the initial state we imply that a criterion must be specified
for the given technology and the given set of initial conditions. We think that a
methodology of criterion specification deserves separate attention.
4 This value depends on the initial rate of extraction r(0), amount of reserve s0
and technological parameters of the economy (formula (5)).
5 We assume here that stickiness of both the extraction and saving prevents the
economy from changing the initial conditions instantly (see Section 3) implying the
necessity of a transition period for switching to the “optimal” path in a smooth
way.
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economy is not compatible with the criteria implying nondecreasing consump-
tion. The unit-elasticity Cobb-Douglas economy can exhibit various patterns
of declining, growing, and constant per capita consumption depending on the
initial conditions and on the paths of saving and extraction. Therefore it is
natural to expect that a sustainable and optimal consumption path implied
by a plausible criterion can be Pareto inferior to some feasible path in this
economy (combined with the specific initial conditions) if this criterion is not
“linked” parametrically to the “opportunities” of the economy.

Assume that there are some phenomena in the economy (simple externalities
and government interventions), whose combined effect can be expressed in
terms of the tax/subsidy on the resource extraction. Due to these phenomena
the resource price does not already satisfy the standard Hotelling Rule and the
Rule is formulated in a modified form. 6 Assume that at the initial moment
the modified Hotelling Rule implies growing rate of extraction (ṙ(0) > 0)
that is consistent with the historical world oil extraction data for the last
25 years (Fig. 1a). The growing extraction is unsustainable since the limited
reserve of the essential resource will eventually cause the resource exhaustion
in finite time and decline of consumption to zero. In the general case of the
DHSS model the economic unsustainability can be two-dimensional when an
economy follows an unsustainable pattern of saving (e.g. decreasing capital to
zero) in addition to unsustainable extraction. For simplicity we assume that
the economy invests in the optimal way for the standard DHSS model with
respect to the constant-consumption criterion, namely it follows the Hartwick
Saving Rule. 7

In our numerical examples we show that there is a sustainable path of extrac-
tion linked to the initial conditions and implying the consumption path that
is Pareto superior to the one along the “optimal” path after the moment of
switching. Namely, the consumption along this path follows quasi-arithmetic
growth under the standard Hartwick Rule. This looks more attractive than the
same pattern of growth with the positive net saving (Hamilton et al., 2006),
since it does not require decreased consumption from the present generation.

6 The most recent analysis of the reasons of distortion in the Hotelling Rule in
its original form and alternative formulations of the Rule, reconciling it with the
observed patterns of price and extraction, can be found in (Gaudet 2007).
7 It is known that the world’s patterns of saving are rather persistent over time
despite changes in government policies. The share of saving oscillates around 20-24
percent of GDP (see e.g. IMF data). There is also evidence (e.g. Pearce and Atkinson
1993) showing that net investment, which takes into account natural capital, is
around zero for some countries (Mexico, Philippines) and is mixed positive and
negative for some others. Hamilton et al (2006) also obtained mixed result examining
the satisfaction of the Hartwick Rule for 70 countries. Therefore our assumption
about Hartwick Rule as given and independent on government policy has some
justification.
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We describe the model in Section 2; discuss the nature of stickiness of extrac-
tion and saving (that imply the necessity of the transition period) in Section
3; formulate the problem of smooth transition to the “optimal” path in finite
time in Section 4; describe an economy-linked path in Section 5 and the tran-
sition extraction paths in Section 6; Section 7 provides theoretical results on
the impossibility of switching in finite time to the “optimal” path along the
“optimal” transition path; Section 8 examines the paths of consumption along
the different paths of extraction; Section 9 concludes.

2 The model

We use the DHSS model with the Cobb-Douglas technology. For simplicity
we consider the case with zero population growth 8 , zero cost of extraction
and technological progress compensating for capital depreciation. The last
assumption allows us to consider the basic DHSS model for the cases with
a growing economy that is important for our numerical examples. Plausible
patterns of technological progress compensating for capital depreciation were
examined in (Bazhanov, 2007b). All the paths such as output q(t), consump-
tion c(t), produced capital k(t) and so on are defined below in per capita
units. Namely, output is q = f(k, r) = kαrβ, where r - current resource use,
r = −ṡ, s - per capita resource stock (ṡ = ds/dt), α, β ∈ (0, 1) are con-
stants. Prices of capital and the resource are fk = αq/k and fr = βq/r, where
fx = ∂f/∂x. Per capita consumption is c = q− k̇. The Hartwick Rule implies
c = q − rfr or, substituting for fr, we have c = q(1 − β) that means that
instead of ċ = 0 we can check q̇ = 0. Hence, in the standard DHSS model of
a decentralized economy the path of extraction can be derived from the asset
equilibrium condition (the standard Hotelling Rule) ḟr/fr = fk

9 that implies
αβq/k + ṙ(β − 1)/r = fk = αq/k or

ṙ/r = −αq/k. (1)

Then

q̇/q = αk̇/k + βṙ/r = β(αq/k + ṙ/r) = 0 (2)

8 In fact, numerous literature on sustainable development starting T. Malthus work
in 1798 and some recent papers, e.g., (Brander 2007) consider the population growth
as the main threat to sustainability. The debates on this problem are concentrating
around the estimate of the constant that could be the limit to the population growth.
Hence, we can assume that the population is already stabilized on this limit.
9 Assume that all the derivatives exist and the change of price ḟr is continuous in
time that is consistent with historical data (e.g. Gaudet, 2007) if we neglect the
short-run oscillations.
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Fig. 1. World oil a) extraction (mln t/year); b) extraction changes: historical data
(before 2006); “optimal” path (dotted); transition curve (solid).

that means that we really have q̇ = ċ = 0 or q = const (equilibrium coincides
with optimum for k̇ = βq). Then rfr = βq = const and we have k̇ = βq =
const for deriving k(t) and equation (1) for deriving r(t) together with the
initial conditions r(0) = r0 and s(0) = s0 to find constants of integration.
Here s0 is the given resource stock that must be extracted over infinite time:
s0 =

U∞
0 r(t)dt. Then we have

rH(t) = r0 [1 + r0βt/s0(α− β)]−α/β , (3)

where α > β (Solow condition) and

ṙH(t) = −s̈(t) = −αr20/s0(α− β) [1 + r0βt/s0(α− β)]−(α+β)/β . (4)

Since the resource is essential, the equilibrium path (3) asymptotically ap-
proaches zero (dotted line in Fig. 1a) under the optimal path of saving and
the path of extraction changes ṙH(t) (dotted line in Fig. 1 b)) also approaches
zero, but starting from negative value

ṙ0H = −αr20/s0(α− β). (5)

The conventional approach (e.g. Solow, 1974; Hartwick, 1977; Stollery, 1998;
Asheim et al., 2007) seeks in the DHSS model the optimal pattern of saving
given the initial values s0 and k0; the pattern of extraction is derived as the
equilibrium path from the corresponding formulation of the Hotelling Rule.
We assume here that the pattern of saving is optimal with respect to our
criterion and it does not change over time. However, there are phenomena
(including some externalities) expressed in terms of tax and modifying the
Hotelling Rule. These phenomena cause the corresponding deviations in the
path of extraction. We assume that there exists a one-to-one correspondence
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between the equilibrium path of extraction and the government’s policy that
is also expressed in terms of tax. Then, for simplicity, we can consider the path
of extraction as a control variable implying that actually it is the equilibrium
path that is controlled by the corresponding government’s policy. Therefore,
we will consider the resource extraction data as given instead of the given
initial capital. 10

We assume that the Hotelling Rule is modified by phenomena that cause de-
viation of equilibrium paths from the optimal ones. Some of these phenomena
(e.g. insecure property rights, market structure etc., see (Gaudet, 2007)) can-
not be changed immediately. Hence, it supports the assumption about stick-
iness of extraction and prevents the economy from realizing the path (3) at
t = 0 and so we must switch to this path along some “smooth continuation”
(solid line in Fig. 1a) after 2006). 11 The definitions in the following section
reflect these restrictions.

3 Stickiness in the DHSS model

The constant consumption in the standard DHSS model is the result of 1)
total investment of oil rent in capital (k̇ = rfr) and 2) fulfillment of the
standard Hotelling Rule (ḟr/fr = fk). For simplicity we have assumed that
our specific economy deviates from the optimal one only in one “dimension
of sustainability”, namely, in an unsustainable pattern of extraction. This
extraction is the result of influence of various phenomena (including exter-
nalities and government policy), which can be expressed in terms of tax T (t)
and which result in modification of the Hotelling Rule. This implies that if
p(t) is the “equilibrium Hotelling price” without distorting phenomena and
fr(t) ≡ fr [p(t), T (t)] = p(t) + T (t) is the observable price with distortions,
then the ratio ḟr/fr is not already equal to the rate of interest. We can write
it in the general form of a dynamically changing equilibrium condition:

ḟr/fr = fk + τ(t), (6)

10 There is a relationship between k0 and r0 in the DHSS model with the given
saving rule (formula (13)) that involves the initial values for extraction. The data
for the oil extraction and GDP growth are more available than that for the amount
of capital. Therefore, it is more convenient in our case to express k0 in terms of
extraction data.
11We assume that the government can use all the instruments such as taxes (Karp
and Livernois, 1992), regulations (Davis and Cairns, 1999), and education (Caillaud
et al., 1988; Pezzey 2002; Grimaud and Rouge 2005) that can influence the external-
ities in the economy and the corresponding rate of extraction. So we will concentrate
on some normative and technical problems that arise during the switching in finite
time to the path with desirable properties.
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where τ(0) 9= 0 in general case and τ = 0 when T = 0 (standard Hotelling
Rule). Assuming the existence of the derivatives and continuity of p(t) implies
that T (t) is continuous. Also by assumption, ḟr is continuous. Then (6) implies
that τ(t) is continuous given that fk is continuous in the DHSS model. We can
rewrite (6) as follows: ḟr = fr(fk+τ) or fr(fk+τ) = (∂fr/∂k) · k̇+(∂fr/∂r) · ṙ.
Since frk = αfr/k, we have fr(fk + τ − αk̇/k) = −frr · s̈ that gives us

fr [p(t), T (t)] = m(t) · s̈(t), (7)

where m(t) = −frr/(fk + τ −αk̇/k). One can see that in this formulation the
Hotelling Rule is equivalent to the Second Law introduced by Newton in 1687
to account for inertial effects. Here the reason for changes in the amount of
s (extraction) is the price fr,

12 the acceleration is s̈, and the coefficient m
shows how much effort in terms of taxes must be applied in order to change
the acceleration by one unit. In other words, the Hotelling Rule gives us the
exact expression for the coefficient of inertia or stickiness of extraction that
equals the ratio of the negative slope of the demand curve (−frr > 0) 13 over
the rate of change of the observable resource price (fk + τ) less the product
of the price elasticity of capital α and the rate of capital growth k̇/k. The
U.S. price data for the period 1870-2004 (Gaudet, 2007) shows that the rates
of change of price for a number of nonrenewable resources including oil were
oscillating around zero. The product αk̇/k is also close to zero at t = 0 and
asymptotically approaches zero with t→∞ 14 that implies rather high values
of m. This means, that the government should make a serious effort in terms
of taxes in order to change significantly the pattern of extraction (ṙ). Another
question is if it can be changed in a discontinuous way? Our assumption about
continuous change of price in the long run (continuous trend), supported by
historical data, implies continuity of the Hotelling Rule modifier τ(t). From
this and from continuity of frr, fk, and k̇/k in the DHSS model, we obtain
that m(t) is also continuous. Then, from equation (7) and from the continuity
of fr, we have that s̈ must also be continuous that justifies our assumption
about the impossibility of changing ṙ instantly.

Hence, the combination of non-optimal initial conditions (ṙ > 0) with the
stickiness cause the path of extraction that is non-optimal, at least in the small
neighborhood of t = 0, in the sense of our criterion (constant consumption)
that we consider as an example of “preferences not adjusted to opportunities”.

12 It will be profit when the cost of extraction is not zero.
13We can express the slope via Ed(r) (the price elasticity of demand): −frr =
[fr/r] /Ed(r) that implies (the other values given) that the less is the elasticity the
greater is m. As is known, the price elasticity of demand for oil is significantly less
than unity.
14 For the standard DHSS model (Hartwick, 1977) k̇/k = βq0/(k0+βq0t) that equals
to βq0/k0 at t = 0 that is less than unity.
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Therefore, we will try to catch up to the “optimal” path in finite time along
a transition path in the first (transition) period and we will have to find this
path among non-optimal curves. We set down these assumptions below in
definitions 1 and 2.

Definition 1 An intertemporal program kf(t), c(t), k(t), r(t)l∞t=0 is a set of
paths f(t), c(t), k(t), r(t), t ≥ 0 such that f(t) = f [k(t), r(t)] and c(t) =
f(t)− k̇(t).

We use below the notation (x1, . . . xn) 0 if xi > 0 for all i = 1, n.

Definition 2 For positive initial stock of capital and resource (k0, s0) 0 the
set of the programs F = {kf(t), c(t), k(t), r(t)l∞t=0} is a feasible sheaf at t = 0
and each of the paths f(t), c(t), k(t), r(t) is a feasible path if any program
kf(t), c(t), k(t), r(t)l∞t=0 from F for all t ≥ 0 satisfies the conditions:

1) (f(t), c(t), k(t), r(t)) 0;

2) r(t), k(t), c(t) are continuously differentiable and

supt,∆t |(ṙ(t+∆t)− ṙ(t)) /∆t| ≤ ∆ṙmax <∞;

3) f(t) is twice continuously differentiable;

4)
U∞
t r(t)dt ≤ s(t);

5) s(0) = s0, r(0) = r0, ṙ(0) = ṙ0, q̇(0)/q(0) = q̇0/q0.

Our assumption about one-to-one correspondence between government policy
and the rates of extraction permits the use of the path of extraction r(t) as a
control variable, bearing in mind that this path is just a result of changes in
the equilibrium conditions. We use regular definition of the optimal path in
the problem of maximization of a welfare criterion W [r(t)] .

Definition 3 The feasible path r∗(t) is optimal if W [r∗(t)] ≥W [r(t)] for any
feasible path r(t).

In our example, the welfare criterion W [r(t)] = maxrmint c [r(t)] means con-
stant consumption over time (Solow, 1974) if a feasible set is not restricted.
In the case of the DHSS model and the given saving rule, the initial value of
consumption c0 is expressed via the initial values for extraction and for the
growth of output (section 8). Therefore, definition 2 implies that c0 is also
given and we cannot change it nonsmoothly due to conditions 2) and 3). This
follows nonuniqueness of the optimal path since we cannot already increase c0
by reallocating the resource among generations (or by changing the pattern of
saving as in (Solow, 1974)). Then optimal are all the paths (including unsus-
tainable) that fill the rectangle in Cartesian plane (t, c) with the left bottom
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corner (0, c0) and with the right upper corner (∞,∞) including lower side of
the rectangle and excluding all other sides. This nonuniqueness makes it possi-
ble to introduce another criterion connected with sustainability. Conventional
interpretation of the maximin is the constant-consumption path, therefore we
again assume that the government uses this criterion as a simple example of
ethical preferences that are not linked to the specific economy and that imply
a sustainable path. 15

In a normative sense, the restriction ∆ṙmax <∞ means that the change of the
rate of extraction can be reduced without losing consumption only in contin-
uous way with the rate not exceeding ∆ṙmax. This value is defined e.g. by the
rate of introducing substitute technology, which does not use the nonrenewable
resource (e.g. solar plants). It follows directly from the production function
q = kαrβ, since only an adequate instant increment of capital can compensate
for a sharp fall in the resource supply. However, in a closed economy the in-
stant additional investment means the same instant fall in consumption that
makes impossible a “fair” nonsmooth switch to sustainable development. We
estimate below the pattern of “additional” (foreign) investment, which can
compensate for a nonsmooth fall in extraction for a simple example with a
Cobb-Douglas technology. Suppose that extraction was changed at t = 0 in a
discontinuous way:

ṙ(t) =

⎧
⎪⎨
⎪⎩
ṙ0 > 0, t = 0,

ṙ1 < 0, t = dt,
(8)

where dt > 0 is small enough. The question is: which pattern of k̇ can maintain
a constant level of consumption during the period t ∈ [0, dt)? Assume that the
paths of extraction and current capital (k0+ k̇0t) are linear for any t ∈ [0, dt).
Looking for such a path of capital k0+k1(t) that k1(0) = 0 and∆c = c(t)−c0 =
0 for any t ∈ [0, dt), we obtain (Appendix C) that the instant increment in the
rate of growth of capital must be k̇1(0)/k0−k̇0/k0 = (β/α) (ṙ0/r0 − ṙ1/r0) > 0.

It is interesting to examine the behavior of the economy, depending on the
specific functions introducing substitute technology. However, we think that
this problem needs different specification of the model and deserves special
attention. For the purpose of the current paper we assume that the feasible
dynamics of introducing substitute technology affects the path of extraction
only at the point with maximum |∆ṙ| . Therefore, for the numerical examples
below it is enough to estimate ∆ṙmax = 0.1 from historical data (Fig. 1b).

15 In comparison, say, with the positively discounted utilitarian criterion that implies
the path of consumption declining to zero in the standard DHSS model for any
positive rate of discount (Dasgupta and Heal, 1974 & 1979).
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4 Formulation of the transition problem

For the economy q = kαrβ given the initial reserve s(0) = s0 and the initial
conditions r0, ṙ0, q̇0/q0,

16 we are going to find among the feasible paths (def-
inition 2, Section 3) such a path of extraction r(t) and such a finite moment
of time ht that r(0) = r0, ṙ(0) = ṙ0, and

ṙ(ht) = −αr2(ht)/
k
s(ht)(α− β)

l
.

In other words, a finite moment of time ht must be such that the change of the
rate of extraction along the transition path coincides with the initial change
of the rate of extraction (5) for the “optimal” path, given the current state
as the initial. Besides these conditions we can require the optimality of the
transition path rtrans(t) e.g. in a sense of minimum deviation from the optimal
path during the transition period. The transition paths must be such that they
can be used to describe the extraction with the specific initial conditions, they
must be feasible, and they must allow for sustainable consumption in the long
run. Then if we show that there is a feasible path of consumption, which is
Pareto superior to the path, optimal with respect to our criterion, then it will
mean that our criterion is inadequate to the “opportunities” of our specific
economy. An example of such a path we introduce in the following section.

5 Economy-linked growing consumption

We will consider an example of the program, which is linked to the initial set
of the specific economy and which implies sustainable quasi-arithmetic growth
of output and consumption under the standard Hartwick Rule. Existence of
growing consumption in the DHSS model with the modified Hotelling Rule
and the standard Hartwick Rule was shown e.g. in (Bazhanov, 2007c). 17

Assume that f(k, r) = q = q0(1 + tλ1/λ0)
1/λ1 , where q0 is the initial out-

put and λ0,λ1− parameters. Then q̇ = q̇0(1 + tλ1/λ0)
(1/λ1−1) that implies

λ0 = q0/q̇0. The Hartwick Rule k̇ = βq follows c = (1 − β)q and k =
k0 + βλ0 [q(1 + tλ1/λ0)− q0] /(1 + λ1). This gives us the path of extraction

r = (qk−α)1/β . Below we will conditionally call this path the economy-linked
extraction. Given r, the value of λ1 is defined by the condition s0 =

U∞
0 rdt.

16 These values imply the expressions for k0, q0, and k̇0 = βq0 (Section 8).
17We think that the questions about the properties of such kind of paths, about
the specific conditions of their existence, and about the path of tax require separate
attention.
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We will construct below the offered set of programs {kf(t), c(t), k(t), r(t)l∞t=0}
for an example with the world’s oil extraction data. It is important for the
goal of the paper that for some initial conditions (e.g. q̇ = 0) these paths do
not exist.

6 Transition curves

For the transition period, we use the curves offered in (Bazhanov, 2007c).
Assume that there exists a tax included in the term T (t) (equation (7)), which
can uniquely define any of these curves. The transition paths belong to the
same class of rational functions as the “optimal” curve (3). The difference is
in the numerator, which in the expression for the changes of extraction rate ṙ
depends on t with a negative coefficient to control “smooth breaking” in the
neighborhood of t = 0. Namely, ṙ(t) has the form of

ṙtrans(t, b, c, d) = (ṙ0 + bt)/(1 + ct)
d, (9)

where b < 0, c > 0, d > 1 (for convergence ṙ(t) → −0 with t →∞). We have
r0 = r(0) to express b and then r(t)has a dependence on c and d in

rtrans(t) = r0 (1 + brt) /(1 + ct)
d−1, (10)

where br = c(d−1)+ṙ0/r0. Coefficient c = c(s0) is expressed from the condition
s0 =

U∞
0 rdt.

Hence, we have a single independent parameter d that defines the shape of the
curve (including its peak) and we can use this parameter as a control variable
in some selected optimization problem

F [r(t, d)]→ max
d
.

These curves are of immediate interest for our transition problem since they
can imply a nonmonotonic path of consumption. This means that the con-
sumption along some of these paths can be growing at the initial moment and
constant at the moment of switching to the “optimal” path.

We have assumed that due to the phenomena modifying the Hotelling Rule,
our specific economy deviates from the “optimal” only in pattern of extrac-
tion while it is following the “invest resource rent” rule. It is known that
the Hartwick Rule is necessary and sufficient for keeping consumption con-
stant in the standard DHSS model under the standard Hotelling Rule. This
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implies that consumption in a non-optimal economy cannot be identically con-
stant under the standard Hartwick Rule. It can be either asymptotically con-
stant in the long run, declining to zero, or growing with no limit. This means
that we cannot use the constant consumption criterion for deriving the opti-
mal transition path since this path does not exist. However, we can consider
a generalized form of this criterion, namely, a criterion of minimum devia-
tion from the maximum asymptote for asymptotically constant consumption,
which can be obtained in the specific non-optimal economy. This criterion in-
cludes identically constant consumption for the optimal economy as a specific
case. This criterion for choosing the parameter d can be formulated as follows:
F (d) = mindmaxt |cmax − c(t, d)| , where cmax is the maximum asymptote for
the path with asymptotically constant consumption and c(t, d) is the path
of consumption along the transition curve r(t, d). This criterion implies the
only optimal solution in the class of transition curves, namely the curve with
d = α/β + 2 that is uniquely defined by the initial conditions. The optimum
is unique because the consumption is asymptotically constant only along this
curve while consumption along the curves with d < α/β+2 is infinitely grow-
ing and with d > α/β +2 is declining to zero (Corollary 1, (Bazhanov, 2007c,
p. 190)). Indeed, for any d1 and d3 such that d1 < d2 = α/β + 2 < d3 this
result implies that F (d1) = ∞ > F (d3) = cmax ≥ F (d2) = cmax − c0. We
proceed by finding the finite moment of time for switching to the “optimal”
path in the following section.

7 Switching to the “optimal” path

We define the moment of shifting to the second period ht0 (the period of “op-
timal” extraction) as a solution of the “smooth switching” problem. Namely,
the government introduces/changes a tax in a smooth way (the tax presum-
ably exists and equals to zero at the moment of switching). The tax modifies
the Hotelling Rule (6) and the corresponding path of extraction in such a way
that the economy enters the “optimal” path when the change of the rate of
extraction (acceleration) ṙ along the transition curve equals to the initial ac-
celeration of the “optimal” path that is being constructed at the each current
moment. In order to find ht0, the initial conditions hr0(t), ḣr0(t), hs0(t) for the “op-
timal” curve (3) are being dynamically calculated along the transition path
until accelerations coincide. Equations (5) and (9) for the accelerations imply
that ht0 must be a solution of the equation

(ṙ0 + bht0)/(1 + cht0)d = −αr(ht0)2/
k
hs0(ht0)(α− β)

l
, (11)

12



where r(ht0) = hr0trans(ht0) is defined by the equation (10) with d = α/β+2 and

the rest of the resource hs0 at ht0 is hs0(ht0) = s0 −
Uht0
0 r(t)dt.

The following propositions show that the finite solution of the equation (11)
does not exist.

Proposition 1 Equation (11) has real roots if and only if the parameter d of
the transition curve (10) is such that

d ≤ α/β + 2. (12)

There are two real roots if inequality (12) is strict and one real root if it holds
as an equality.

Proof (Appendix 1).

Proposition 2 Equation (11) has only one real finite positive root if and only
if d < α/β + 2.

Proof (Appendix 2).

Proposition 2 implies that the transition path, which is optimal with respect
to a generalized variant of the constant-consumption criterion, does not give
us the opportunity to switch to the “optimal” path in finite time. As an illus-
tration of Proposition 2 we consider an example with the world’s oil extraction
data. 18 The accelerations of the transition path (10) with d = α/β + 2 (left
hand side of equation (11)) and dynamically constructed initial accelerations
of the “optimal” curve (right hand side of equation (11)) are shown in Fig.
2 a). It can be seen that the residual of equation (11) approaches zero only
asymptotically that means that our problem of “smooth switching” in finite
time has no solution in this framework

However, according to Proposition 2, there is a set 19 of sub-optimal transi-
tion paths for “smooth switching” in sub-optimal finite time t. Then in order
to choose the unique path from this set we can apply another criterion e.g.
minimum of the time of switching t subject to the constraint on the changes
in the rates of extraction implied by the restricted rate of substitution be-
tween the resource and capital in the form of substitute technology. Assume,

18 Extraction: R0 = 72, 486.5 [1,000 bbl/day] ×365 = 26, 457, 572 [1,000 bbl/year]
(or 3.6243 bln t/year); reserve: S0 = 2×1, 317, 447, 415 [1,000 bbl] (or 2×180.47 bln
t) (Oil & Gas J 2006, 104(47): 20-23.). We use coefficient 1 ton of crude oil = 7.3
barrel and we use ṙ0 = 0.04 that is close to the average ṙ since 1984. Methodology
of estimation of historical values for ṙ is described in (XXXX, 2006).
19 The convergence of integral

U∞
0 rdt implies d > 3 therefore a set of solutions to

(11) exists iff α/β + 2 > 3.
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Fig. 2. Changes in extraction rates for the transition path (left hand side of equation
(11), dotted line) with a) d = α/β + 2 = 3.2; b) sub-optimal transition path with
d = 3.157; the solid line for both cases is a plot of the initial accelerations for the
“optimal” path (right hand side of equation (11)), constructed along the transition
path.

for the sake of argument, that there exists an interior solution of this problem
implying that the minimum duration time for the transition period equals,
say to 5 years (t = 5). This time corresponds to the transition curve with
d = α/β + 1.957 = 3.157 (given α = 0.3 and β = 0.25 (Nordhaus and Boyer,
2000) 20 ).

8 Comparison of consumption paths

The Hartwick Rule implies that the consumption path is c = q− k̇ = (1−β)q
= (1−β)kαrβ. In our problem r(t) is a known combination of the transition and
the “optimal” paths and k(t) is an unknown path of capital. We can calculate
k(t) from the equation for the saving rule k̇ = βkαrβ given the estimation of
k0. From (2) we have q̇/q = β(αq/k + ṙ/r) that implies the expression for k0,
given r0, ṙ0, and output percent change (q̇/q)0 :

k0 =
q
[(q̇/q)0 /β − ṙ0/r0] /

�
αrβ0

�r1/(α−1)
. (13)

20According to (Nordhaus and Boyer, 2000, p. 43) β is calibrated on the initial
interest rate that in our case equals to 0.065. Note that the obtained value of β =
0.25 is also consistent with the world’s average pattern of saving.
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Fig. 3. Switching the extraction from the transition path (dotted line) to the “opti-
mal” path (circles) in the short run (a) and in the long run (b); the economy-linked
optimal path is depicted as a solid line.

Using (q̇/q)0 = 0.01905 21 and the values of ṙ0 and r0 for the world’s oil
extraction, we have k0 = 14.029 and c0 = 2.285 that gives us the paths of
consumption along the transition and along the “optimal” paths after the
moment of switching. For the economy-linked paths we obtained numerically
λ1 = 60.11. The resulting paths of extraction are depicted in Fig. 3 and the
paths of consumption are in Fig. 4.

Note that consumption in the economy-linked program (solid line) is Pareto
superior to both consumption paths: the transition (dotted line) and the
“optimal” (circles). The economy-linked program follows the same standard
Hartwick Rule as is used along the other two paths. The source of unbounded
growth in this case and in the case with the transition path in the long run
(Fig. 4b) is the specific combination of the phenomena (including government
policies) modifying the Hotelling Rule and causing the “non-optimal” (in the
sense of constant consumption) pattern of the resource extraction. The tran-
sition path, by construction, is also adjusted to the economy but unlike the
economy-linked path it does not necessarily imply the quasi-arithmetic growth
of consumption. It makes the transition path more flexible with respect to the
initial conditions, e.g. it can be used for q̇0 ≤ 0, while the economy-linked

21 This value of the initial rate of growth of output implies coinciding values of
capital at the moment of switching. In an arbitrary economy the value of (q̇/q)0
cannot, of course, be that convenient. In this case we have two-dimensional transition
problem, where besides the path of extraction, the pattern of saving also must be
adjusted during the transition period in order to have “optimal” amount of capital
at the moment of switching. In the current paper, for the sake of argument, it is
enough to consider only one-dimensional transition problem.
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Fig. 4. Consumption along the transition path (dotted line), the “optimal” path
(circles), and the economy-linked path (solid line) a) in the short run; b) in the long
run.

path does not exist for q̇0 = 0 and implies unacceptable paths of consumption
for q̇0 < 0. However, the possibility of nonmonotonic consumption that we
used as a convenient property of the transition path is a sign of its disadvan-
tage in comparison with the economy-linked path in the case when sustainable
growth is possible. Both paths start from the same initial conditions and fol-
low the same saving rule. The only difference between them is that the paths
of the Hotelling Rule modifier are different, implying different paths of extrac-
tion (Fig. 3). This can be interpreted as less efficient government policy or
stronger influence of externalities in the case with the transition path.

The example implies the natural conclusion that the tool (criterion) should be
adequate to the specific problem or the preferences should be adjusted to the
opportunities. We cannot choose the policy implying the economy-linked path
for the transition period since the solution of this problem does not exist. In the
same way, we should not use the constant-consumption criterion or some other
“not-adjusted” criterion for the specific economy since we can enter a Pareto
inferior path. Both these consequences can be considered as unacceptable. The
conclusion, of course, does not relate to theoretical investigations developing a
general methodology. It means only that the realization of such a methodology
in the form of the government’s policy should be made consistent with the
specific situation.

9 Concluding remarks

A specific economy can enter a Pareto inferior path of consumption if the
criterion of its development is “not adjusted to opportunities”. In other words,
if the criterion has no connections with the initial state of the economy and
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with its technological properties.

We have illustrated this result for the Dasgupta-Heal-Solow-Stiglitz (DHSS)
model with the constant consumption over time as an example of plausible
criterion for sustainable development. We assumed that the initial state of
the economy was not consistent with our criterion due to some phenomena
expressed in tax/subsidy and modifying the Hotelling Rule in a general form.
Namely, the output and the rate of extraction were growing at the initial
moment. We also assumed stickiness of extraction and saving; in other words,
a restricted rate of substitution between the resource and man-made capital.
The expression for the coefficient of stickiness of extraction was obtained by
reformulating the Hotelling Rule into the form equivalent to the Newton’s
Second Law. We think that the assumption of stickiness is plausible when
the part of man-made capital, compensating for the shrinking resource, is
represented by new technologies (e.g. solar plants), rather than by financial
capital in a fund. The stickiness implies the necessity of a transition period in
order to adjust the initial state in accord with the criterion. We constructed
the transition paths of extraction in a specific class of functions, which allowed
the economy to switch to the “optimal” path in finite time. This “transition
methodology” is a separate important result of the paper.

We introduced an example of the economy-linked path of extraction that im-
plies sustainable quasi-arithmetic growth of consumption under the standard
Hartwick Rule. The path was calibrated on the world’s oil extraction data. As
a result, the level of consumption along this path was Pareto superior to the
consumption along the “optimal” path. Our “optimal” path, of course, can
be really optimal when the economy-linked path does not exist i.e. when the
specific economy is not growing at the initial moment (q̇0 = 0) and the initial
set coincides with the one implied by this criterion.

The result specifies for a resource-based economy the claim of Koopmans
(1965) that an economy can “adopt an ‘optimum’ that is open to unantic-
ipated objections” if the criterion (preferences) is not linked to the particular-
ity of the economy. The example, considered in the paper, and the patterns of
optimal but unsustainable growth that can be obtained e.g. in the framework
of (Stollery, 1998) raise a question of construction of such a criterion, which
is consistent with the initial state of the specific economy and which implies
corresponding pattern of sustainable consumption. For example, we can use
an approach of linking a criterion offered in (Bazhanov, 2007c) on the exam-
ple of the generalized maximin in a form of ċγc1−γ = U = const that implies

quasi-arithmetic growth c(t) = c0(1 + ϕt)γ, where ϕ =
�
U/c0

�1/γ
/γ. Para-

meters of this criterion should be consistent with the initial state and imply
optimal and sustainable pattern of growth for the specific economy. There is
also a question about technical possibility for an economy to adjust its initial
conditions in order to catch up to a criterion implying such a pattern of sus-
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tainable growth that the economy cannot “afford” at the current moment. We
think that these problems deserve a separate investigation.
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11 Appendix A (Proof of Proposition 1)

In order to proof the main statement of Proposition 1 we will state some
auxiliary facts that we will formulate as

Lemma 1 The rational curve of extraction (10) is such that

a) s0 =
r0p0
c(d−2) ;

b) the rest of the resource s(t) along this curve at t ≥ 0 is

s(t) = s0 −
t]

0

r(t)dt =
r0

c(d− 2)
p0 + p1t

(1 + ct)
d−2 = s0

1 + p1
p0
t

(1 + ct)
d−2 ,

where p0 = 1 +
br

c(d−3) , p1 =
br(d−2)
d−3 ;

r0 = r(0)− the initial rate of extraction, s0− the initial stock;

br = br(d), c = c(d), and d are the parameters of the curve (10).

Proof a) By the construction of r(t) and since d > 3 we have

s0
r0
=

∞]

0

(1 + ct)1−ddt+ br

∞]

0

t(1 + ct)1−ddt =
1

c(d− 2)

%
1 +

br
c(d− 3)

&

=
p0

c(d− 2) .

b) By direct calculations we have
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s(t)= s0 −
t]

0

r(t)dt (14)

= s0 − r0
%

1

c(d− 2)
q
1− (1 + ct)2−d

r
+ brI(t)

&
,

where

I(t)=
1

c2

�
1

d− 3
k
1− (1 + ct)3−d

l
− 1

d− 2
k
1− (1 + ct)2−d

l�

=
1

c2 (d− 2) (d− 3)
×
q
(d− 2)

k
1− (1 + ct) (1 + ct)2−d

l
− (d− 3)

k
1− (1 + ct)2−d

lr

=
1

c2 (d− 2) (d− 3)
×
q
(1 + ct)

2−d
[(d− 3)− (d− 2) (1 + ct)] + (d− 2)− (d− 3)

r

=
1

c2 (d− 2) (d− 3)

+
1− 1 + (d− 2) ct

(1 + ct)
d−2

,
.

Then the bracket [·] in (14) is

[·] =
1

c(d− 2)

×

⎧
⎨
⎩
(1 + ct)

d−2 − 1
(1 + ct)

d−2

⎫
⎬
⎭+

br
c2 (d− 2) (d− 3)

⎧
⎨
⎩
(1 + ct)

d−2 − 1− (d− 2) ct
(1 + ct)

d−2

⎫
⎬
⎭

=
1

c (d− 2) (1 + ct)d−2

×

+#
1 +

br
c (d− 3)

$
(1 + ct)

d−2 −
#
1 +

br
c (d− 3)

$
− br (d− 2)

(d− 3) t
,

=
1

c (d− 2)

+
p0 −

p0 + p1t

(1 + ct)
d−2

,
.

Then (14) can be rewritten as follows:

s(t) = s0 −
r0

c (d− 2)

+
p0 −

p0 + p1t

(1 + ct)
d−2

,
.

Using the result of case a) we have

s(t) =
r0

c (d− 2)
p0 + p1t

(1 + ct)
d−2 = s0

1 + p1
p0
t

(1 + ct)
d−2
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or the assertion of case b).

Proof of Proposition 1.Wewill show that the equation defining the moment
ht0 of “smooth switching” to the “optimal” curve

ṙ0 + bht0
(1 + cht0)d

= − αr2(ht0)
hs0(ht0)(α− β)

(A.1)

has real roots if and only if parameter d of the rational curve (10) is such that

d ≤ α

β
+ 2

and that there are two real roots if the last inequality is strict and one real
root if it holds as an equality.

Substituting for r(ht0) and multiplying both sides of (A.1) by
�
1 + cht0

�d
we

have

ṙ0 + bht0 = −
αr20

hs0(ht0)(α− β)

�
1 + brht0

�2

�
1 + cht0

�d−2 .

Applying assertion b) of Lemma 1 it can be written as

ṙ0 + bht0 = −
αr20

s0(α− β)

�
1 + brht0

�2
�
1 + p1

p0
ht0
�

that means that the moment of “smooth switching” ht0 is a solution of quadratic
equation

�
ṙ0 + bht0

�#
1 +

p1
p0
ht0

$
+

αr20
s0(α− β)

�
1 + brht0

�2
= 0

or

λ2ht20 + λ1ht0 + λ0 = 0, (A.2)

where λ2 = bp1
p0
+

b2
r
αr2

0

s0(α−β) , λ1 =
p1
p0
ṙ0 + b +

2brαr20
s0(α−β) , λ0 = ṙ0 +

αr2
0

s0(α−β) . This

equation has at least one real root (two if inequality is strict) if and only if
D = λ21 − 4λ2λ0 ≥ 0, where
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λ21=
1

s20(α− β)2

×

⎧
⎨
⎩

#
p1
p0
ṙ0 + b

$2
s20(α− β)2 + 4brαr

2
0

#
p1
p0
ṙ0 + b

$
s0(α− β) + 4b2rα

2r40

⎫
⎬
⎭ ,

λ2λ0=
1

s20(α− β)2

×

+
b
p1
p0
ṙ0s

2
0(α− β)2 + s0(α− β)

%
b2rαr

2
0ṙ0 + b

p1
p0

αr20

&
+ b2rα

2r40

,
.

Cancelling like terms and multiplying by s0(α − β) > 0 we can write our
condition as iD ≥ 0 where

iD= s0(α− β)

⎡
⎣
#
p1
p0
ṙ0 + b

$2
− 4bp1

p0
ṙ0

⎤
⎦

+4

%
brαr

2
0

#
p1
p0
ṙ0 + b

$
− b2rαr20a0 − b

p1
p0

αr20

&
.

Note that the first bracket [·] in this expression is

#
p1
p0
ṙ0 + b

$2
− 4bp1

p0
ṙ0 =

#
p1
p0
ṙ0 − b

$2

and the second bracket is

%
brαr

2
0

#
p1
p0
ṙ0 + b

$
− b2rαr20ṙ0 − b

p1
p0
αr20

&
= αr20

#
p1
p0
− br

$
(brṙ0 − b) .

Then the condition of the root existence is

iD = s0(α− β)

#
p1
p0
ṙ0 − b

$2
+ 4αr20

#
p1
p0
− br

$
(brṙ0 − b) ≥ 0 (A.3)

where

p1
p0
ṙ0 − b= c(d− 2)r0br + ṙ0

br(d− 2)
d− 3

c(d− 3)
c(d− 3) + br

=2brc(d− 2)r0
⎡
⎣ c(d− 2) +

ṙ0
r0

2c(d− 2) + ṙ0
r0

⎤
⎦ ,
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p1
p0
− br=

br(d− 2)
d− 3

c(d− 3)
c(d− 3) + br

− br = br
%

c(d− 2)
c(d− 3) + br

− 1
&

=−br
⎡
⎣ c(d− 2) +

ṙ0
r0

2c(d− 2) + ṙ0
r0

⎤
⎦ ,

brṙ0 − b = brṙ0 + brc(d− 2)r0 = brr0
�
c(d− 2) + ṙ0

r0

�
.

Substituting for these expressions in (A.3) we obtain

iD= s0(α− β)4b2rc
2(d− 2)2r20

⎡
⎣ c(d− 2) +

ṙ0
r0

2c(d− 2) + ṙ0
r0

⎤
⎦
2

≥ 4αr30b2r

⎡
⎣ c(d− 2) +

ṙ0
r0

2c(d− 2) + ṙ0
r0

⎤
⎦
�
c(d− 2) + ṙ0

r0

�

or

s0(α− β)c2(d− 2)2
2c(d− 2) + ṙ0

r0

≥ αr0.

Substituting for s0 (Lemma 1, a)) into the LHS we have

p0c(d− 2)
2c(d− 2) + ṙ0

r0

≥ α

α− β

and substituting for p0 we obtain

(d− 2)
(d− 3)

2c(d− 2) + ṙ0
r0

2c(d− 2) + ṙ0
r0

≥ α

α− β

or 1− β
α
≥ 1− 1

d−2 . The last expression gives us
1
d−2 ≥ β

α
or d ≤ α

β
+ 2.

12 Appendix B (Proof of Proposition 2)

We will show that the equation defining the moment ht0 of “smooth switching”
to the “optimal” curve

ṙ0 + bht0
(1 + cht0)d

= − αr2(ht0)
hs0(ht0)(α− β)

(B.1)
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has only one real finite positive root if and only if d < α
β
+ 2.

It was shown in Appendix A that equation (B.1) is equivalent to the quadratic
equation (A.2) that (see Lemma 1) is equivalent to equation

μ2ht
2
0 + μ1ht0 + μ0 = 0, (B.2)

where μ2 = bp1+
b2
r
r0αc(d−2)
α−β , μ1 = p1ṙ0+bp0+

2brr0αc(d−2)
α−β , μ0 = ṙ0p0+

r0αc(d−2)
α−β .

Substituting for b, p0, p1, and reorganizing, we have

μ2=−brc(d− 2)r0
br(d− 2)
d− 3 +

b2rr0αc(d− 2)
α− β

=
b2rr0c(d− 2)
(α− β)(d− 3) [β(d− 2)− α] .

Note that in our formulation of the problem the multiplier b2rr0c(d−2)/ [(α− β)(d− 3)]
in the last formula is always positive since d > 3, α > β, r0 > 0, ṙ0 > 0 and
it follows c > 0. Then the sign of μ2 is defined by the sign of β(d − 2) − α.
Namely, μ2 is negative when d <

α
β
+ 2, positive when d > α

β
+ 2, and zero

when d = α
β
+ 2.

Coefficient μ1 is

μ1 =
br(d− 2)
d− 3 ṙ0 − brc(d− 2)r0

#
1 +

br
c(d− 3)

$
+
2brr0αc(d− 2)

α− β

= br(d− 2)
%
ṙ0 − 2r0c(d− 2)− ṙ0

d− 3 +
2r0αc

α− β

&
.

Finally we have μ1 = 2brr0c(d−2)
k

α
α−β − d−2

d−3
l
. Note that br is also positive in

our formulation (because of the growing rate of extraction in the neighborhood
of t = 0). Then the sign of μ1 like the sign of μ2 is completely defined by the
same expression β(d − 2) − α. It can be shown that μ0 > 0 for a0 > 0. The
peak of parabola (B.2) is defined by equation

t∗ = − μ1
2μ2

= −2brr0c(d− 2) [β(d− 2)− α]

2b2rr0c(d− 2) [β(d− 2)− α]
= − 1

br
< 0.

Hence, our parabola is convex for d < α
β
+ 2 and has only one positive finite

root. With d → α
β
+ 2− 0 parabola degenerates into a positive constant and

the root goes to infinity.
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13 Appendix C

The condition of nonsmooth change in extraction (8) without losing consump-
tion implies for our production function

∆c = (1− β)
k�
k0 + k̇0t

�α
(r0 + ṙ0t)

β − (k0 + k1(t))α (r0 + ṙ1t)β
l
= 0.

It follows
k
(k0 + k1(t)) /

�
k0 + k̇0t

�lα
= [(r0 + ṙ0t) / (r0 + ṙ1t)]

β or

k
1 +

�
k1(t)− k̇0t

�
/
�
k0 + k̇0t

�lα
= [1 + (ṙ0 − ṙ1) t/ (r0 + ṙ1t)]β

that gives us k1(t) = k̇0t+
q
[1 + (ṙ0 − ṙ1) t/ (r0 + ṙ1t)]β/α − 1

r �
k0 + k̇0t

�
.

Note, that the path of “compensating” capital is already nonlinear: k(t) =�
k0 + k̇0t

�
[1 + (ṙ0 − ṙ1) t/ (r0 + ṙ1t)]β/α and it dominates the pattern of cap-

ital that was before the shift in extraction since the bracket [·] > 1 for
t ∈ (0, dt). The “new” investment rule must be

k̇(t)= k̇1(t)

= k̇0 [1 + (ṙ0 − ṙ1) t/ (r0 + ṙ1t)]β/α

+(β/α)
�
k0 + k̇0t

�
[1 + (ṙ0 − ṙ1) t/ (r0 + ṙ1t)]β/α−1 (ṙ0 − ṙ1) r0/ (r0 + ṙ1t)2

or

k̇1(t)= [1 + (ṙ0 − ṙ1) t/ (r0 + ṙ1t)]β/α−1

×
q
[1 + (ṙ0 − ṙ1) t/ (r0 + ṙ1t)] k̇0 + (β/α)

�
k0 + k̇0t

�
(ṙ0 − ṙ1) r0/ (r0 + ṙ1t)2

r
.

This gives us that k̇1(0) = k̇0+(β/α)k0 (ṙ0 − ṙ1) /r0 > k̇0 and then k̇1(0)/k0−
k̇0/k0 = (β/α) (ṙ0/r0 − ṙ1/r0) > 0 that is the “additional” rate of investment
at t = 0, which must compensate for the loss of consumption due to the
nonsmooth shift in extraction.
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