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1 Introduction

Hobbesian anarchy is a societal state prior to the formation of a government that ensures

property rights. Without a governmental organization, no individuals are safe to secure their

wealth. Individuals could be tempted to pillage others whenever possible and bene�cial.

Although a coalition could be formed to secure their wealth, some members of the coalition

may still be tempted to betray others and to take their wealth. Consequently, in Hobbesian

anarchy, the possibility of the stable distribution of wealth is questionable.

A substantial amount of literature on allocation by force has been devoted to this pos-

sibility. Skaperdas (1992) showed that a cooperative outcome is possible in equilibrium if

the probability of winning in con�ict is su¢ciently robust against each individual�s action.

Hirshleifer (1995) found the conditions under which Hobbesian anarchy is stable. Also, Hir-

shleifer (1991), Konrad and Skaperdas (1998), and Muthoo (1991) studied the situations in

which property right is partially secured. These studies analyzed noncooperative models in

which the formation of coalitions is limited or not allowed.

In contrast to the previous models, Piccione and Rubinstein (2007) and Jordan (2006)

developed models of Hobbesian anarchy that allow the formation of coalitions. Piccione

and Rubinstein introduced the jungle in which coercion governs economic transactions and

they compared the equilibrium allocation of the jungle with the equilibrium allocation of an

exchange economy. Jordan introduced pillage games and examined stable sets of allocations

in which the power of pillaging balances endogenously.

The spatial pillage game is an extended version of a pillage game. In most literature on
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�allocation by force� including the studies above, there is no restrictions on the use of power.

Thus, any individual or coalitions can pillage another individual or other coalitions if one

is more powerful than others. However, the acts of pillaging and defending are inevitably

conditioned under spatial restriction. Members of a coalition, if they move together, can-

not simultaneously pillage two less powerful coalitions that are far apart from each other.

Likewise, two coalitions cannot combine their power to defend themselves together against

another powerful coalition unless they are close enough to each other. The spatial pillage

game introduces a space feature, which conditions power usage based on location, into a

Hobbesian anarchy model that allows the formation of coalitions, in the hope of understand-

ing how spatial restriction a¤ects stable distributions of wealth.

The spatial pillage game internalizes the space feature through the following assumptions.

There are regions and each player can stay in only one of the regions. Players can change

their regions to pillage others. The regions are connected with one another, and thus players

can travel from a region to another in one move. Players can form a coalition and combine

their power only after getting together in a common region. If coalitions are in di¤erent

regions, they cannot combine their power. The in�uence of the power of each coalition

is limited within its region. Therefore, a coalition cannot pillage two other coalitions in

di¤erent regions simultaneously.

The other assumptions in this spatial pillage game are the same as in the original pillage

games. A �xed amount of wealth is allocated among a �nite number of players. Some

players can form a coalition under the spatial restriction. A coalition can pillage less powerful
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coalitions within its region without any cost. An increase in the wealth of a coalition causes

an increase in its power. Since the power of each coalition is endogenously determined, the

spatial pillage game cannot have a characteristic function, which exogenously determines the

power of each coalition.

The pillage games are characterized by power functions that determine the feasibility of

pillages between coalitions. Jordan (2006) presented three power functions classi�ed by the

degree of their dependence on the sizes of coalitions. Wealth is power is one of the power

functions and speci�es the power of each coalition as its total wealth. Therefore, �wealth is

power� is characterized as independent of the sizes of coalitions. Only the pillage game with

this power function has a stable set in every possible case. Therefore, the spatial pillage

game adopts �wealth is power� as a power function so that if there exist solutions in this

spatial pillage game, then we can compare it with the solutions in the original pillage game

and can �nd out how the spatial restriction a¤ects a stable distribution of wealth.

As criteria for stable distributions of wealth and players, three solution concepts are

explored; core, stable set, and farsighted core. First, the core is the collection of states at

which pillage is not possible, thus it is one of the most persuasive solution concepts. However,

due to its strong requirement, the core is too small to represent stable states as shown in

Theorem 1. Second, the stable set is much bigger than the core if it exists, as shown in

Proposition 1 and Example 1. A stable set is a collection of states that is both internally

stable and externally stable. Internal stability requires that pillage not be possible between

states in the collection and external stability requires that pillage at a state outside the
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collection result in another state inside the collection. In some cases, however, no stable set

exists and even when they do exist, they contain implausible states. Third, the farsighted

core, which was introduced by Jordan (2006), solves these problems with stable sets, as

shown in Theorem 2. A farsighted core admits the assumption that a player has forecasting

ability and is de�ned as a collection of states at which pillage in expectation is not possible in

the sense that some members of the pillage would end up being worse o¤, and consequently

they would not join the pillage.

In section 2, we search for the core and stable sets. The core is not a¤ected by the

spatial restriction since allocations in the core does not change under the spatial restriction.

A stable set, on the other hand, is a¤ected by the spatial restriction. Thus, the stable set,

if it exists, is much bigger than a stable set in Jordan�s model. In section 3, we study the

farsighted core. There exists the unique farsighted core and it is similar to the farsighted core

in Jordan�s model. Since Jordan�s model, without the spatial concept, induces similar result

to the one in this spatial pillage game, we conclude that if the players have the forecasting

ability, the assumption that the farsighted core bases on, then the stable distributions of

wealth do not change with or without the spatial restriction.

2 Core and stable set

The environment of the spatial pillage game is de�ned in De�nitions 1 and 2. We normalize

the total wealth to unity.
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De�nition 1 1 The �nite set I is the set of players. A coalition is a subset of I. The set

A = fw 2 R#I : wi � 0 for all i 2 I and
P

z2I wz = 1g is the set of allocations.

The de�nitions below concern the spatial environment.

De�nition 2 The �nite set R is the set of regions and the Cartesian product R#I is the

set of distributions. Given a distribution p 2 R#I , the coalition pr = fi 2 I : pi = rg is

the population at region r.

A distribution is short for a population distribution and denotes how players are distrib-

uted over the regions. For example, the distribution p = (1; 1; 2) expresses that players 1

and 2 are at region 1 and player 3 is at region 2. Also, it means p1 = f1; 2g and p2 = f3g.

A state denotes both the allocation and distribution of the status quo.

De�nition 3 The Cartesian product X = A�R#I is the set of states.

For instance, the ordered pair (w; p) = ((1
2
; 1
4
; 1
4
); (1; 1; 2)) is a state in a three-player and

two-region model. The state (w; p) expresses that player 1 has 1
2
and player 2 has 1

4
while

staying at region 1 and player 3 has 1
4
while staying at region 2.

The dominance relation between states is de�ned as follows;

De�nition 4 Given states (w; p) and (w0; p0), de�ne W = fi : w0i > wig and L = fi : w
0
i <

wig. Suppose that for some r 2 R, i) fi : w
0
i 6= wig � p

r; ii) for all q 6= r; p0q = pq nW ; and

iii)
P

i2W wi >
P

i2Lwi. Then, the state (w
0; p0) dominates the state (w; p).

1 We follow notations in Jordan (2006).
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The dominance relation shows the states to which the status quo can move. It must

satisfy both physical and spatial conditions. The physical condition requires that the winning

coalition W have enough power to pillage the losing coalition L. De�nition 4 presents this

condition at iii). Jordan (2006) introduced a variety of physical conditions. The condition

iii) above accords with the physical condition of the wealth is power in Jordan (2006). The

spatial condition requires that the acts of pillaging satisfy spatial restriction. This condition

is expressed at i) and ii) in the de�nition above. The condition i) means that transfers of

wealth happen only in the destination region r where the pillage happens. The condition ii)

denotes that only the winners travel. That is, the spatial restriction in dominance relation is

that W can gather into a common region and can combine their power in order to pillage L.

Note that if there is only one region, then this de�nition of dominance relation coincides with

the de�nition of the wealth is power in Jordan (2006). So, this de�nition can be considered

as a spatial version of the wealth is power.

In this section, we adopt the solution concepts of core and stable set. The de�nition

stated below follows Lucas (1992) and Jordan (2006).

De�nition 5 The set of undominated states is the core C. For any set E of states, let the

set U(E) be the set of states that are not dominated by any state in E. A set S of states is

a stable set if it satis�es both S � U(S), which means internal stability, and S � U(S),

which means external stability.

Theorem 1 embodies the core.

Theorem 1 The set C = f(w; p) 2 X : for each i 2 I, wi = 1;
1
2
; or 0g is the core.
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Proof. Suppose (w; p) 2 C. For any i 2 I, if wi > 0 then wi �
1
2
and

P
j 6=iwj �

1
2
.

Therefore, any player can prevent others from pillaging itself. This means that (w; p) is

not dominated. Since (w; p) is arbitrary, every state in C is not dominated. Suppose

(w; p) =2 C. Then, there exists i such that wi 2 (0;
1
2
) [ (1

2
; 1). If wi 2 (0;

1
2
), then the

coalition W = fj : j 6= ig can pillage player i since
P

j 6=iwj >
1
2
> wi. If wi 2 (

1
2
; 1), then

wi >
1
2
>
P

j 6=iwj and thus player i can pillage others. This means that (w; p) is dominated

by some state in X. Since (w; p) is arbitrary, every state in X n C is dominated.

Theorem 1 shows the core does not change under the spatial restriction since allocations

in C does not change under the spatial restriction. This result is natural in that the core is

the set of states that are not dominated by another state. Without the spatial restriction,

if a state is not dominated by another state, then it must be undominated under the spatial

restriction. Also, if a state is dominated by some state without the spatial restriction, then

it can be dominated under the spatial restriction by pillaging only one player in the losing

coalition. So, it cannot be in the core under the spatial restriction. Therefore, core allocations

do not change under the spatial restriction.

Stable set is more involved than the core. First, we start with the trivial case in which

there is only one region. De�nition 6 introduces a dyadic state and the set of dyadic states

D. Proposition 1 establishes that the set D is the unique stable set in an one-region model.

Note that De�nition 6 and Proposition 1 are adapted from Jordan (2006) for the spatial

pillage game.

De�nition 6 An allocation w 2 A is dyadic if for each i, wi = 0 or (1
2
)ki for some non-
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negative integer ki. A state (w; p) is dyadic if w is dyadic. The set D denotes the set of

dyadic states.

Proposition 1 (Theorem 3.3 in Jordan, 2006) In an one-region model, the unique sta-

ble set is D.

Next, under the spatial restriction, an example is shown to illustrate some features about

the stable set.

Example 1 (Existence of a stable set in three-player models) De�ne the set of states

S 0 � f(w; p) 2 X : for distinct players i; j; k 2 I, i) wi �
1
2
, ii) wj = wk =

1�wi
2
, and iii)

pj 6= pkg. Then, the set of states D [ S
0 is a stable set in three-player models1.

Proposition 2 states nonexistence of the stable set in the four-player and two-region

model.

Proposition 2 No stable set exists in the four-player and two-region model.

Proof. A proof is omitted but is available from the author.

These results on the stable sets show that the stable sets are a¤ected by the spatial

restriction. Without the spatial restriction, the stable set is the set of dyadic states D.

However, under the spatial restriction, the stable sets change so that it includes more states

than D because of the limited feasibility of the dominance relation. Moreover, in four-player

and two-region model, a stable set does not exist.

1 Complete characterization of stable sets in three-player models is available from the author.
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As shown in Example 1 and Proposition 2, the stable set with respect to the dominance

relation is not regarded as a plausible solution to the spatial pillage game. In the four-player

and two-region model, no stable set exists. In the three-player models, there exist stable

sets. However, they contain implausible states, such as some states in the set of states

X#I = f(w; p) : for some player i, 1 > wi >
1
2
g. According to the interpretation about a

stable set in Harsanyi (1974), no state in X#I can be a plausible prediction because one of

the players has enough power to pillage the others, so eventually the player will pillage the

rest of the wealth. That is, any state in X#I is directly or indirectly dominated by the core

and thus cannot be a stable state.

These problems with the stable set with respect to the dominance relation are caused

by the limited feasibility of dominance relation under the spatial restriction. This limited

feasibility of dominance relation, in turn, makes the conditions of the stable set, both internal

stability and external stability, improper to be requirements for a proper solution to the

spatial pillage game. The external stability requires that any state outside a stable set be

directly dominated by some state in the stable set. With respect to this limited dominance

relation, some states in X#I are directly dominated only by other states in X#I , thus a

stable set must contain some states in X#I to satisfy external stability. Also, with respect

to this limited dominance relation, the core cannot directly dominate every state in X#I ,

and thus an internally stable set can include both the core and some states in X#I . This

explains why stable sets in three-player models contain some states in X#I .
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In the four-player and two-region model, if an internally stable set S 00 includes a set, of

states, that dominates every state in X#I n S
00, then due to the limited feasibility of the

dominance relation, S 00 contains improperly many states so that there exists some state

(w; p) =2 S 00 such that S 00 inevitably dominates every state that dominates (w; p). Thus, by

the internal stability of S 00, S 00 cannot dominate (w; p), which is not in S 00. That is, there

is no set of states that satis�es both internal stability and external stability. This explains

why no stable set exists in these models.

Jordan (2006) introduced a new solution concept, farsighted core. This farsighted core

is de�ned based on an advanced concept of dominance relation, Dominance in Expecta-

tion. In this dominance in expectation, players make an expectation about how each state

proceeds, and they pillage or defend according to their expectation. Naturally, this advanced

concept of dominance relation allows broader feasibility of dominance relation while satis-

fying the spatial restriction. As a result, this solution concept based on the dominance in

expectation solves the problems with the stable set and provides the unique solution which

represents �an endogenous balance of power,� as Jordan (2006) mentioned.

3 Core in expectation

The farsighted core solution concept is de�ned as follows. An expectation is a belief that all

players have in common and indicates how each state proceeds.

De�nition 7 An expectation is a function f : X �! X satisfying, for some integer

k � 2, fk = fk�1 where fk = f � fk�1. Let fw(w; p) and fp(w; p) denote the allocation and
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the distribution at f(w; p), respectively.

Jordan (2006) considered only one-step expectation where every state reaches its stable

state within one step, i.e. f = f 2. Here, the expectation is extended as a �nite-step expecta-

tion where some states take �nite steps, possibly more than one step, to reach their stable

states. Based on this extended expectation, this study shows the same result, Corollary 1,

as the result in Jordan (2006).

Dominance in Expectation between states indicates possible states into which the present

state can change, provided that players follow the expectation after the changes. Just like

in the previous dominance relation, both physical and spatial conditions should be satis�ed

in order for a winning coalition in expectation, who end up being better o¤, to change its

present state through defeating a losing coalition in expectation, who end up being worse

o¤. Physical condition is re�ected on the conditions iii) and iv) in De�nition 8 and spatial

condition is re�ected on the conditions i) and ii).

De�nition 8 Let an expectation f satisfy fk = fk+1. Given states ( �w; �p) and (w(n); p(n)),

for each n 2 N, de�ne W
(n)
f = fi : fkw( �w; �p)i > w(n)ig and L

(n)
f = fi : fkw( �w; �p)i < w(n)ig.

Then, a state ( �w; �p) dominates (w; p) in expectation if there exists a sequence of states

f(w(n); p(n))gNn=1 that has (w(1); p(1)) = (w; p) and (w(N); p(N)) = ( �w; �p) such that for each

1 � n � N � 1 and for some r 2 R, i) fi : w(n+1)i 6= w(n)ig � p(n+1)
r; ii) for all q 6= r,

p(n + 1)q = p(n)q n (W
(n)
f \ p(n + 1)r); iii)

P
i2W

(n)
f

\p(n+1)r
w(n)i >

P
i2L

(n)
f
\p(n+1)r

w(n)i;

and iv)
P

i2W
(n)
f

w(n)i >
P

i2L
(n)
f

w(n)i.
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This dominance relation concept considers players� ability to forecast how each state

proceeds. When the players have forecasting ability, they maximize their allocations in a

�nal state. Thus, if some players expect that they belong to a losing coalition in expectation,

L
(n)
f , who will be pillaged and so will be worse o¤ in the �nal state, then they might have an

incentive to get together in a common region and combine their powers in order to defend

themselves against a winning coalition in expectation, W
(n)
f , who will be better o¤ in the

�nal state. However, under the condition iv), L
(n)
f basically has no power to deter W

(n)
f

from pillaging L
(n)
f even when all members of L

(n)
f gather and combine their powers. This is

becauseW
(n)
f can also gather and combine their powers to pillage L

(n)
f . As a result, under the

condition iv), L
(n)
f has no incentive to take any defensive action and therefore, this condition

is necessary thatW
(n)
f successfully pillages L

(n)
f when the players have the forecasting ability.

The condition iv), however, is not su¢cient that W
(n)
f practically executes its plan to

pillage L
(n)
f . This is because W

(n)
f can exert its power only under the spatial restriction.

Together with the condition iv), the conditions i), ii), and iii) represent su¢cient conditions

that W
(n)
f executes its plan to pillage L

(n)
f under the spatial restriction. These conditions

are similar to the conditions in De�nition 4. So, the condition i) means that in each step of

the pillaging process, transfers of wealth happen only in one region r where pillage actually

happens. The condition ii) states that only members of W
(n)
f travel. Finally, the condition

iii) denotes that members of W
(n)
f in the region r have enough power to pillage members of

L
(n)
f in r. So, this pillage by the members of W

(n)
f is feasible within r.
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This de�nition di¤ers from the de�nition of dominance in expectation in Jordan (2006)

in that this de�nition generalizes the number of steps that the dominance relation can

take. Jordan (2006) introduced one-step dominance in expectation in which every plan to

change a state can be completed within one step, i.e. (w(1); p(1)) = (w; p) and (w(2); p(2))

= ( �w; �p). This Jordan�s de�nition is suitable for the one-step expectation since it can be

organized according to a binary relation derived from the one-step dominance in expectation.

However, the �nite-step expectations, except one-step expectations, cannot be organized

according to the binary relation. Since the present study extends the expectation as the

�nite-step expectation, the dominance in expectation must also be generalized as the �nite-

step dominance in expectation in which plans to change a state can take more than one steps

before it ends, i.e. (w(N); p(N)) = ( �w; �p) for some N � 2. If an expectation is organized

in accord with a relation derived from the dominance in expectation, it is called a consistent

expectation. Jordan (2006) interpreted consistency as �a rational expectation property.� He

said that �an expectation is consistent if only rational acts of pillage are expected, and an

allocation is expected to persist only if no rational pillage is possible.�

De�nition 9 An expectation f is consistent if f(w; p) dominates (w; p) in expectation

whenever f(w; p) 6= (w; p) and if (w; p) is undominated in expectation whenever f(w; p) =

(w; p).

Farsighted core and farsighted supercore2 are de�ned as follows.

2 Farsighted supercore is named after Roth�s (1976) supercore.
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De�nition 10 Given a consistent expectation f , the farsighted core under the expectation
f is the set of states Kf = f(w; p) 2 X : under the expectation f , no state in X dominates
(w; p) in expectationg. The farsighted supercore CS is the intersection of all farsighted
cores.

A farsighted core is a set of stable states under some consistent expectation. The far-

sighted supercore is the set of stable states for all consistent expectations. Theorem 2 states

that for any consistent expectation, the set of dyadic states D is the unique farsighted core

and therefore is the farsighted supercore.

Theorem 2 A consistent expectation f exists and the farsighted core Kf under f is the set
of dyadic states, D. Therefore, the farsighted supercore CS is also D.

The proof of Theorem 2 uses the following lemmas.

Lemma 1 For any state (w; p), if an allocation w0 satis�es
P

i2fi:w0i>wig
wi >

P
i2fi:w0i<wig

wi
and f(w0; p�) = (w0; p�) for every distribution p�, then there exists a distribution p0 such that
(w0; p0) dominates (w; p) in expectation.

Proof. Suppose that a state (w; p) and an allocation w0 satisfy the premise of this lemma.

To prove this lemma, it su¢ces to construct a sequence of states f(w(n); p(n))gNn=1 that can

make (w0; p0) dominate (w; p) in expectation for some p0.

LetW 0
f = fi : w

0
i > wig and L

0
f = fi : w

0
i < wig. Select (w(2); p(2)) such that (w(2); p(2))

results from W 0
f �s pillaging all members of L

0
f in the region minfpi : i 2 L

0
fg and also from

W 0
f �s proportioning their wealth to w

0. Similarly, select states (w(n); p(n)) for n 2 N until

w(N) = w0 for some N . Then, the sequence of the states f(w(n); p(n))gNn=1 makes (w
0; p0)

dominate (w; p) in expectation for some p0.

Lemma 2 (Lemma 3.10 in Jordan, 2006) For some positive integer k, let w be a dyadic
allocation such that for each i, if wi > 0 then wi � 2�(k+1). If an allocation w0 satis�es
that

P
z2fi:w0i>wig

wz >
P

z2fi:w0i<wig
wz, then there exists a dyadic allocation w

00 such that
P

z2fi:w00i >w
0

ig
w0z >

P
z2fi:w00i <w

0

ig
w0z and for each i, if w

00
i > 0 then w

00
i � 2

k.
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Proof of Theorem 2. First, we are going to construct a consistent expectation that has

a farsighted core D and then will prove the uniqueness of the farsighted core.

Construct an expectation f as follows. If (w; p) 2 D, then f(w; p) = (w; p). If (w; p) =2 D,

then select a dyadic allocation w0 such that
P

i2fi:w0i>wig
wi >

P
i2fi:w0i<wig

wi. Proposition

1 assures the existence of w0. Let W 0
f = fi : w

0
i > wig and L

0
f = fi : w

0
i < wig. Construct

f(w; p) such that f(w; p) results fromW 0
f �s pillaging all members of L

0
f in the region minfpi :

i 2 L0fg and also from W 0
f �s proportioning their wealth to w

0. Similarly, construct fn(w; p)

for n 2 N until fNw (w; p) = w
0 for some N .

Now, we need to show the expectation f constructed above is consistent. If (w; p) =2 D,

then for each n � N � 1, we have that
P

i2W
(n)
f

fnw(w; p)i >
P

i2L
(n)
f

fnw(w; p)i where W
(n)
f =

fi : w0i > fnw(w; p)ig and L
(n)
f = fi : w0i < fnw(w; p)ig. That is, the fourth condition in

De�nition 8 is satis�ed. Also, it is easily seen that the expectation f is designed to satisfy

the other three conditions in De�nition 8. Consequently, for each n � N , a state fn(w; p)

dominates fn�1(w; p) in expectation where f 0(w; p) = (w; p). In addition, no state (w; p)

in D is dominated in expectation by another state (w0; p0) in D because
P

i2fi:w0i>wig
wi

�
P

i2fi:w0i<wig
wi by Proposition 1. That is, if (w; p) 2 D and thus f(w; p) = (w; p), then

(w; p) is not dominated in expectation. Therefore, the expectation f is consistent.

To prove the uniqueness of a farsighted core, let f be a consistent expectation with the

farsighted core Kf . Also, for each non-negative integer n, de�ne Dn = f(w; p) 2 D : wi = 0

or � (1
2
)ng. Then, we have D0 � Kf . Suppose, by way of induction, that for some n, we

have Dn � Kf . Note that if (w; p) 2 Dn, then (w; p
0) 2 Dn for any distribution p

0. Thus, by
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Lemmas 1 and 2, any state (w0; p0) that dominates some state (w; p) 2 Dn+1 in expectation

is dominated in expectation by some state (w00; p00) in Dn because the allocation w
0 satis�es

that
P

i2fi:w0i>wig
wi >

P
i2fi:w0i<wig

wi. Since f is consistent, we have that Dn+1 � Kf . By

induction, we have D � Kf . In addition, D dominates all states outside D by Proposition

1 and by Lemma 1. Again, since f is consistent, if (w; p) =2 D, then (w; p) =2 Kf , that is,

Kf � D. Therefore, we have Kf = D, and since f is an arbitrary consistent expectation,

we have CS = D.

This result is similar to the result in Jordan (2006), which stated thatD is the unique far-

sighted core in one region models, which, in turn, do not have the spatial restriction. Clearly,

dominance relation with respect to dominance in expectation changes if we introduce the

spatial restriction. For example, let�s consider the dominance relation between the following

two states; ( �w; �p) = ((1; 0); (1; 1)) and (w; p) = ((3
4
; 1
4
); (2; 2)). Then, ( �w; �p) and (w; p) satisfy

the physical condition for the dominance relation because
P

i2fi: �wi>wig
wi >

P
i2fi: �wi<wig

wi.

So, if there is no spatial restriction, then ( �w; �p) dominates (w; p) in expectation. But, if we

introduce the spatial restriction, then ( �w; �p) does not dominate (w; p) in expectation because

any possible pillaging movement from (w; p) will results in the distribution (2; 2). That is,

in this example, dominance relation with respect to dominance in expectation has changed

under the spatial restriction.

Nevertheless, Theorem 2 shows that if the players have the forecasting ability, then only

states in D are expected to persist even when there is the spatial restriction. This is because

the forecasting ability enhances players� ability to pillage. As a result, the forecasting ability
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complements the limited feasibility of pillages under the spatial restriction so that this limited

feasibility does not a¤ect the set of stable states that represents an endogenous balance of

power. Therefore, under the farsighted-player assumption, the set of stable states

does not change under the spatial restriction.

Theorem 2 also shows that the dominance in expectation selectively re�ects the concept

of �indirect dominance� which was introduced by Harsanyi (1974) and formalized by Chwe

(1994). The indirect dominance concept means that if (w; p) dominates (w0; p0) with respect

to, for example, the dominance relation in De�nition 4 and (w0; p0) dominates (w00; p00), then if

(w; p) is a stable, (w00; p00) cannot be a stable state since (w; p) indirectly dominates (w00; p00).

To see how the dominance in expectation selectively re�ects this indirect dominance concept,

let (w; p) only indirectly dominate (w00; p00), that is, (w; p) cannot dominate (w00; p00) at once,

and there exists a state that is dominated by (w; p) and dominates (w00; p00) simultaneously.

If there exists a route that connects from (w00; p00) to (w; p) and through which a winning

coalition who prefers (w; p) to (w00; p00) can achieve (w; p) by pillaging a losing coalition who

prefers (w00; p00) to (w; p), then (w; p) dominate (w00; p00) in expectation. Otherwise, (w; p) does

not dominate (w00; p00) in expectation. Here, the route is a sequence of states in De�nition

8 that satis�es four conditions above, and the four conditions are su¢cient conditions to

change a state when the players have the forecasting ability. Therefore, the dominance

in expectation re�ects the indirect dominance concept only if a dominance relation can be

actualized by the players who have the forecasting ability. As a result, this dominance in

expectation designates the set of dyadic states D as the unique set of stable states.
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In addition, the set D can be considered as a self-enforcing �standard of behavior,� as

interpreted by von Neumann and Morgenstern (1947). This is because no state inside D is

dominated in expectation by another state in D whereas every state outside D is dominated

in expectation by some state in D. Therefore, we conclude that the concept of dominance

in expectation in this spatial pillage game captures the combined concept from Harsanyi�s

indirect dominance and von Neumann and Morgenstern�s self-enforcing standard of behavior

according to the spatial restriction.

We conclude that the concept of dominance in expectation in this spatial pillage game

captures the combined concept from Harsanyi�s indirect dominance and von Neumann and

Morgenstern�s self-enforcing standard of behavior according to the spatial restriction.

Xue (1998) and Konishi and Ray (2003) also introduced solution concepts for a coalitional

game. Their solution concepts, similar to the farsighted core, are de�ned based on a progress

of states that shows how the status quo proceeds to a stable state under the farsighted-player

assumption. However, in contrast to the farsighted core, their solution concepts focus mainly

on the forecasting ability of a winning coalition, and thus their solution concepts might not

capture the fact that a losing coalition also has the forecasting ability and so they can de-

fend themselves according to their expectation. As a result, their solution concepts might

not designate some states that would be regarded as stable states if all players� forecast-

ing abilities are considered. For example, in their solution concepts, the progress of states

((1
2
; 1
4
; 1
4
); (1; 1; 1)) �! ((3

4
; 0; 1

4
); (1; 1; 1)) �! ((1; 0; 0); (1; 1; 1)) is possible. Thus, the state

((1
2
; 1
4
; 1
4
); (1; 1; 1)) might not be a stable state according to their solution concepts. However,
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since a losing coalition has the forecasting ability, at the state ((1
2
; 1
4
; 1
4
); (1; 1; 1)), player 3

will help player 2 in order to deter player 1 from pillaging player 2 in expectation that the

second state ((3
4
; 0; 1

4
); (1; 1; 1)) will proceed to the third state ((1; 0; 0); (1; 1; 1)). Accord-

ingly, the state ((1
2
; 1
4
; 1
4
); (1; 1; 1)) shows balanced power among the players and therefore

must be regarded as a stable state under the farsighted-player assumption as it is under the

farsighted core solution concept.

Finally, Corollary 1 states that de�nitions about the farsighted core in Jordan (2006) can

be extended to the de�nitions in this study.

Corollary 1 In one region models, a consistent expectation exists, and it has Kf = D.
Therefore, CS is also D.

Jordan (2006) used the one-step expectation and the one-step dominance in expectation

and showed the same result as Corollary 1. Therefore, the de�nitions in Jordan (2006) can

be extended as the �nite-step expectation and the �nite-step dominance in expectation.
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