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Abstract

A new goodness-of-fit test of copulas is proposed. It is based on restrictions on certain

elements of the information matrix and so relates to the White (1982) specification test.

The test avoids the need to correctly specify and consistently estimate a parametric

model for the marginal distributions. It does not involve kernel weighting and bandwidth

selection or parametric bootstrap and is relatively simple compared to other available

tests.
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1 Introduction

Copulas are useful because they allow to model dependence between random variables sepa-

rately from their marginal distributions. Consider two continuous random variables X1 and

X2 with cdf’s F1 and F2 and pdf’s f1 and f2, respectively. Suppose the joint cdf of (X1, X2)

is H and the joint pdf is h. A copula is a function C(u, v) such that H = C(F1, F2) or, in

densities, h = c(F1, F2)f1f2. The marginal densities f1 and f2 are now “extracted” from the

joint density and the copula density c captures the entire dependence between X1 and X2.

Sklar (1959) showed that given H, F1, F2 there exists a unique C. So, given F1 and F2, the

choice is which copula C to use.

If the chosen copula is correct, C(F1, F2) is the correct joint distribution of (X1, X2).

Then one may base an estimation of the dependence parameters (parameters of the copula

function) on the correctly specified joint likelihood without worrying about modeling the

marginal distributions (they can be estimated nonparameterically). Such likelihood-based

estimators are consistent. They have been used extensively in applications in finance (e.g.,

Patton, 2006; Breymann et al., 2003), in risk management (e.g., Embrechts et al., 2003, 2002)

and in health and labor economics (Smith, 2003; Cameron et al., 2004).

However, if the copula function is incorrect, the joint distribution is misspecified. This

generally means that estimators based on the joint likelihood will be inconsistent. In particu-

lar, the copula dependence parameter will be inconsistent whether the marginal distributions

are estimated parametrically or nonparametrically. Moreover, copula misspecification may

affect consistency of marginal parameter estimates. Suppose interest is in efficient estimation

of the marginal distribution parameters using copula-based likelihood. Under copula misspec-

ification, such estimators are generally inconsistent (see Prokhorov and Schmidt, 2008).

It is therefore important to have a simple and reliable test of copula correctness.

There exist several copula goodness-of-fit tests. Panchenko (2005) proposes a test based

on a V-statistic. His test has an unknown asymptotic distribution and depends on the choice

of bandwidth. Nikoloulopoulos and Karlis (2008) propose a test based on the Mahalanobis

squared distance between the original and the simulated likelihoods. Their test uses paramet-

ric bootstrap. Fermanian (2005) proposes two tests based on a kernel estimation of the copula

function. Dobric and Schmid (2007) propose a test based on Rosenblatt’s transform. Their

test procedure is not directly applicable if the marginal distributions are unknown. Prokhorov

and Schmidt (2008) propose a conditional moment test, which tests if the copula-based score

function has zero mean. Their test does not distinguish between the correct copula and any
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other copula that has a zero mean score function.

The test proposed in this paper is based on the information matrix equality which in-

volves the copula-based Hessian and outer-product of the score. The statistic has a standard

distribution and accounts for the use of empirical marginal distributions in place of the true

ones. The test is proposed in Section 3. Section 2 discusses the connection between copulas

and the information matrix equality. As an illustration, Section 4 tests goodness-of-fit of the

Gaussian copula in a model with two stock indices.

2 Copulas and Information Matrix Equivalence

Consider an N -dimensional copula C(u1, . . . , un) and N univariate marginals Fn(xn), n =

1, . . . , N . Then, by Sklar’s theorem, the joint distribution of (X1, . . . , XN) is given by

H(x1, . . . , xN) = C(F1(x1), . . . , FN(xN)). (1)

Assume Fn are continuous, so C(u1, . . . , un) is unique.

The joint density of (X1, . . . , XN) is

h(x1, . . . , xN) =
∂NC(u1, . . . , uN)

∂u1 . . . ∂uN

∣

∣

∣

∣

un=Fn(xn),n=1,...,N

N
∏

n=1

fn(xn) (2)

= c(F1(x1), . . . , FN(xN))
N
∏

n=1

fn(xn),

where c(u1, . . . , uN) is the copula density.

Copula functions usually include parameters. For example, the N -variate Gaussian copula

includes N(N − 1)/2 parameters. This copula has the form

ΦN(Φ−1(u1), . . . , Φ
−1(uN)), (3)

where ΦN is the joint distribution function of N standard normal covariates with a given

correlation matrix and Φ−1 is the inverse of the standard normal cdf. For the Gaussian

copula, the copula parameters are simply the distinct elements of the correlation matrix used

to construct the multivariate normal distribution ΦN . (See Nelsen, 2006; Joe, 1997, for other

examples).

3



Let subscript θ denote the dependence parameter vector of a copula function and let p

denote its dimension. It is well known that if there exists a value θo such that H(x1, . . . , xN) =

Cθo
(F1(x1), . . . , FN(x)) then we have a correctly specified likelihood model and, under regular-

ity conditions, the MLE is consistent for θo. Moreover, in this case White (1982)’s information

matrix equivalence theorem holds: the Fisher information matrix can be equivalently calcu-

lated as minus the expected Hessian or as the expected outer product of the score function.

More notation is needed. Assume that the likelihood is (three times) continuously differ-

entiable and the relevant expectations exist. Let Hθ denote the expected Hessian matrix of

ln cθ and let Cθ denote the expected outer product of the corresponding score function. Then,

Hθ = E∇2
θ ln cθ(F1(x1), . . . , FN(xN))

Cθ = E∇θ ln cθ(F1(x1), . . . , FN(xN))∇′

θ ln cθ(F1(x1), . . . , FN(xN)),

where “∇” denotes partial derivative with respect to θ.

The White (1982) information matrix equivalence theorem essentially says that, under

correct specification of the copula,

−Hθo
= Cθo

. (4)

The copula misspecification test we propose uses this equality.

3 Testing Procedure

In practice we do not observe θo. Moreover the matrices Hθ and Cθ contain the marginals Fn

which are often unknown. We can, however, easily estimate these quantities. In particular, it

is common to use the empirical distribution function F̂n in place of Fn, a consistent estimate

θ̂ in place of θo, the sample averages Ĥ and Ĉ in place of the expectations H and C.

Given T observations on (x1, . . . , xN), the empirical distribution function is given by

F̂n(s) = T−1

T
∑

t=1

I{xnt ≤ s}, (5)

where I{·} is the indicator function and s takes values in the observed set of xn. Then, θ̂ – a

consistent estimator of θo sometimes called the Canonical Maximum Likelihood estimator –

is the solution to

max
T

∑

t=1

ln cθ(F̂1(x1t), . . . , F̂N(xNt)).
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To introduce the sample versions of H and C, we define new notation. Let

Ht(θ) = ∇2
θ ln cθ(F̂1(x1t), . . . , F̂N(xNt)),

Ct(θ) = ∇θ ln cθ(F̂1(x1t), . . . , F̂N(xNt))∇′

θ ln cθ(F̂1(x1t), . . . , F̂N(xNt)).

Then, we can write the sample equivalents of Hθ and Cθ as

Ĥθ = T−1

T
∑

t=1

Ht(θ),

Ĉθ = T−1

T
∑

t=1

Ct(θ).

We can now base the test on the distinct elements of the testing matrix Ĥθ̂ + Ĉθ̂. Given

that the dimension of θ is p, there are p(p + 1)/2 such elements. Under correctness of copula

they are all zero. This is in essence the likelihood misspecification test of White (1982).

However, he deals with the full but possibly incorrect parametric log-density. So the elements

of his testing matrix (he calls them “indicators”) do not contain empirical estimates of the

marginal distributions. It turns out that this difference precludes a direct application of his

test statistic in our setting.

White (1982) points out that it is sometimes appropriate to drop some of the indicators

because they are identically zero or represent a linear combination of the others. When p = 1

– the case of a bivariate one-parameter copula – this problem does not arise. Whether it

arises in higher dimensional models is a copula-specific question that is not addressed in this

paper. Assume that no indicators need be dropped.

Following White (1982) define

dt(θ) = vech(Ht(θ) + Ct(θ))

so that the indicators of interest are

D̂(θ) = T−1

T
∑

t=1

dt(θ).

Let Dθ = Edt(θ).

What differs our setting from White (1982) is that nonparametric estimates of the marginals

are used to construct the joint density. It is well known that the empirical distribution con-

verges to the true distribution at the rate
√

T so the CMLE estimate θ̂ that uses empirical

distributions F̂n is still
√

T -consistent.
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However, the asymptotic variance matrix of
√

T θ̂ will be affected by the nonparametric

estimation of the marginals. Therefore, the asymptotic variance of
√

TD̂θ̂ will also be affected.

The proper adjustments of the variance matrix for the general two-step semiparametric esti-

mation are given in Newey (1994); Chen and Fan (2004). Specifically, we will use the variance

formula derived by Chen and Fan (2004) for the case when empirical marginal distributions

are used in the parametric estimation of copulas.

Proposition 1 Under the correct copula specification, the information matrix test statistic

I = TD̂′

θ̂
V −1

θo

D̂θ̂, (6)

where Vθo
is defined in the appendix, is distributed asymptotically as χ2

p(p+1)/2.

In practice, a consistent estimate of Vθo
will be used.

4 An application of the test

To demonstrate how the test procedure of the previous section can be applied in practice

we test whether the Gaussian copula is appropriate for modeling dependence between an

American and an European stock index.

We use the FTSE100 and DJIA close from June 26, 2000 to June 28, 2008. We have

1972 pairs of returns after eliminating holidays. Table 1 contains descriptive statistics of the

returns.

An AR-GARCH filter that we apply to the return data accounts for most of the observed

autocorrelation in the level and squared returns. The preferred models contain Normal in-

novations – allowing for Student-t innovations resulted in a relatively high estimate of the

degrees of freedom (over 9) and did not improve the fit substantially. Table 2 reports the

results of AR-GARCH modeling.

Table 3 contains the results of the testing procedure. The estimated parameter θ, which is

just the correlation coefficient in the case of the Gaussian copula in (3), is high, positive and

significant. There are two test statistics. One is called unadjusted. It is incorrect because it

ignores the fact that the cdf’s were estimated semiparametrically in the first step. The other

is called adjusted. This is the statistic that uses the correct variance formula. Note that

adjusting for estimation of cdf’s makes the statistic larger. At 5%, we reject the hypothesis

that the Gaussian copula is appropriate to model dependence between the two time series.
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Table 1: Summary statistics of returns series

FTSE DJIA

mean 0.0001 -.0001

st.d. 0.107 0.103

m3 0.104 0.020

m4 6.101 6.590

Q(20) 52.97 33.29

5 Concluding remarks

Unlike many available alternatives, the test proposed in this paper is simple and easy to

implement. Essentially it is a special case of White’s information equivalence test with the

complication of a first-step empirical density estimation. However, as such, it also inherits a

number of drawbacks.

Horowitz (1994), for example, points out to large deviations of the finite-sample size of

the White test from its nominal size based on asymptotic critical values and suggests using

bootstrapped critical values instead.

Another complication is the need to evaluate the third derivative of the log-copula density

function. Lancaster (1984) shows how one can construct the test statistic without using the

third order derivatives.

Clearly all these considerations apply to our test statistic.

6 Appendix

Sketch of proof of Proposition 1. Provided that the derivatives and expectation exist,

let

∇Dθ = E∇θdt(θ)

and

∇D̂θ = T−1

T
∑

t=1

∇θdt(θ).

Start by MVT for
√

TD̂θ̂

√
TD̂θ̂ =

√
TD̂θo

+ ∇D̂θ̄

√
T (θ̂ − θo), (7)
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Table 2: AR-GARCH estimates and standard errors

FTSE DJIA

µ -0.0004(0.0002) -0.0004(0.0002)

AR(1) -0.0703(0.0230) -

ω 0.0000(0.0000) 0.0000(0.0000)

α 0.1154(0.0176) 0.0738(0.0170)

β 0.8743(0.0199) 0.9191(0.0199)

ll 6393.6 6433.21

m3 -0.0138 -0.098

m4 3.343 3.736

Q(20) 23.69 26.71

Q2(20) 15.44 31.05

Table 3: Testing the Gaussian copula

θ̂ 0.4785(0.0188)

I unadjusted 2.751

I adjusted 3.528

p − value for Ia 0.0603
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for θ̄ between θo and θ̂. Then,

√
TD̂θ̂ =

√
TD̂θo

+ ∇Dθo

√
T (θ̂ − θo) + op(1). (8)

Now, Chen and Fan (2004) show that

√
T (θ̂ − θo) → N(0, B−1ΣB−1), (9)

where

B = −Hθo

Σ = lim
T→∞

V ar(
√

TA∗

T )

A∗

T =
1

T

T
∑

t=1

(∇ ln c(Ut, Vt, θo) + W1(Ut) + W2(Vt)) (10)

Here terms W1(Ut) and W2(Vt) are the adjustments needed to account for the empirical

distributions used in place of the true distributions. These terms are calculated as follows:

W1(Ut) =

∫ 1

0

∫ 1

0

[I{Ut ≤ u} − u]∇2
θ,u ln c(u, v; θo) c(u, v; θo)dvdu

W1(Vt) =

∫ 1

0

∫ 1

0

[I{Vt ≤ v} − v]∇2
θ,v ln c(u, v; θo) c(u, v; θo)dvdu

So,

√
T (θ̂ − θo) = B−1

√
TA∗

T + op(1). (11)

Then,

√
TD̂θ̂ =

√
TD̂θo

+ ∇Dθo
B−1

√
TA∗

T + op(1), (12)

and we have the asymptotic distribution of
√

TD̂θ̂:

√
TD̂θ̂ → N(0, V (θo)), (13)

where

Vθo
= E[dt(θo) + ∇Dθo

B−1(∇ ln c(Ut, Vt, θo) + W1(Ut) + W2(Vt))]

×[dt(θo) + ∇Dθo
B−1(∇ ln c(Ut, Vt, θo) + W1(Ut) + W2(Vt))]

′.
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