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Abstract

In characterizing the existence of general equilibrium, existing studies mainly
draw on Brouwer and Kakutani fixed point theorems and, to some extent, Gale-
Nikaido-Debreu lemma. In this paper, we show that Sperner lemma can play a
role as an alternative powerful tool for the same purpose. Specifically, Sperner
lemma can be used to prove those theorems as well as the lemma. Addition-
ally, Kakutani theorem is shown as a corollary of Gale-Nikaido-Debreu lemma.
For a demonstration of the use of Sperner lemma to prove general equilibrium
existence, we consider two competitive economies marked either by production
goods or financial assets. In each case, we successfully provide another proof on
the existence of a general equilibrium using only Sperner lemma and without a
need to call on the fixed point theorems or the lemma.
JEL Classification: C60, C62, D5.
Keywords: Sperner lemma, Simplex, Subdivision, Fixed Point Theorem,
Gale-Nikaido-Debreu Lemma, General Equilibrium.

1 Introduction

In economics, general equilibrium models have been one of the most powerful tools
for analyzing the dynamics of the economy. They also help evaluate and quantify
the economic impact of different policies. While the theory goes as far back as the
19th Century with Walras (1877), the mathematical and computational modeling
has its foundation in the 1950s with pioneering works of Arrow and Debreu (1954)
and Debreu (1959). This school of thought focuses on gaining an insight into the
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interactions between markets and agents as well as the determination of prices and
quantities through the market mechanism. Studying the economy as a whole, general
equilibrium models encompass a multitude of different goods markets in which a
change in one market may have a follow-on impact on other markets.

For any general equilibrium model, having a thorough examination of the existence
of an equilibrium is obviously of the first-order importance. In doing so, existing stud-
ies make use of several fixed point theorems, including Brouwer and Kakutani fixed
point theorems (from now and henceforth Brouwer and Kakutani theorems for short).1

Looking back to history, Arrow and Debreu (1954) use Eilenberg-Montgomery fixed
point theorem which is more general than Kakutani Theorem. In the Theory of Value
of Debreu (1959), he uses Gale-Nikaido-Debreu (GND) lemma to prove the existence
of general equilibrium. It is noteworthy that there are several versions of GND lemma
and those proofs require Kakutani theorem or Knaster-Kuratowski-Mazurkiewicz the-
orem.2 McKenzie (1959) uses the Brouwer fixed point theorem to prove the existence
of a competitive equilibrium.3

The above summary indicates that Kakutani and Brouwer theorems as well as
GND lemma have played a central role in establishing the existence of general equi-
librium in competitive economies.4 While the continued usage of the fixed point
theorem for this particular purpose is certainly fine, this high path dependence raises
the need for an alternative innovative approach to the issue. In this paper, we at-
tempt to answer the following question: Is there another direct way of proving the
existence of a general equilibrium that is equally as good as the conventional method
used by the literature? In working out for the answer, we arrive at Sperner lemma,
obtained by Sperner (1928), as a dispensable toolkit. Notice that Sperner lemma is a
purely combinatorial result concerning with labeling the vertices of subsimplices. Our
main contribution to the existing literature is to present a new method of proving the
existence of a general equilibrium in competitive economies where Sperner lemma is
a useful tool instead of the fixed point theorems.

As a demonstration, we consider two hypothetical cases: an economy with pro-
duction and a two-period stochastic economy with incomplete financial markets. In
each case, we establish the existence of general equilibrium by only using Sperner

1Brouwer theorem simply states that every continuous mapping f of an n-dimensional ball to
itself has a fixed point x, i.e., f(x) = x. It was separately proved by Brouwer and Hadamard
in 1910 (Hadamard, 1910; Brouwer, 1911). Kakutani theorem obtained by Kakutani (1941) is a
generalization of Brouwer theorem to the case of correspondence.

2When proving this lemma, Debreu (1959) and Nikaido (1956) use Kakutani theorem while Gale
(1955) uses Knaster-Kuratowski-Mazurkiewicz and Kakutani theorems. See Florenzano (2009) for
an excellent review of this issue.

3Note that McKenzie assumes the total production set is a cone. This assumption is crucial to
prove this fixed point actually corresponds to an equilibrium price.

4Another important lemma in the general equilibrium theory is Gale and Mas-Colell’s lemma
introduced and proved by Gale and Mas-Colell (1975, 1979). Their proof makes use of Kakutani
theorem and Michael (1956)’s selection theorem.
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lemma. Moreover, we also prove Brouwer and Kakutani theorems as well as different
versions of GND lemma by using Sperner lemma. Upon these results, we additionally
emphasize that Kakutani theorem can be obtained as a corollary of GND lemma.
This is proved by adapting the argument of Uzawa (1962) for continuous mapping.5

Some authors have attempted to prove Kakutani Theorem by using Sperner
lemma. Indeed, Sondjaja (2008) provides a proof by using Sperner lemma but he
needs to make use of von Neumann (1937)’s approximation lemma. This makes the
proof a bit more cumbersome. Tanaka (2012) proves the so-called hyperplane labeling
lemma, generalizing Sperner’s original lemma. He then combines this result and the
approximate minimax theorem to prove Kakutani Theorem. Our proof seems to be
more straightforward and direct as it only uses the core notions of combinatorial
topology.6

The paper proceeds as follows. In Section 2, we review some basic concepts such
as the notion of subsimplex, simplicial subdivision, Sperner lemma, and the maximum
theorem. In Section 3, we use Sperner lemma to prove Brouwer and Kakutani fixed
point theorems as well as GND lemma. We then separately consider two economies
with either production goods or financial assets. In each case, we demonstrate that
using Sperner lemma is sufficient for characterizing equilibrium existence. Finally,
Section 4 concludes the paper.

2 Preliminaries

In this section, we introduce basic terminologies and necessary background for our
work. First, we present definitions from combinatorial topology based on which we
state the Sperner lemma. After that, we provide a brief overview of correspondences
and the maximum theorem which are extensively used for proving the existence of a
general equilibrium.

2.1 On Sperner lemma

Consider the Euclidean space R
n. Let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . .,

and en = (0, 0, . . . , 0, 1) denote the n unit vectors of Rn. The unit-simplex ∆ of Rn

is the convex hull of {e1, e2, . . . , en}. A simplex of ∆, denoted by [[x1, x2, . . . , xn]],
is the convex hull of {x1, x2, . . . , xn} where xi ∈ ∆ for any i = 1, . . . , n, and the

5Recall that Uzawa (1962) only proves the equivalence between Brouwer theorem and Walras’ ex-
istence theorem.

6In comparison, the Sperner lemma and the stated fixed points theorems are roughly equivalent.
For instance, Knaster, Kuratowski, and Mazurkiewicz (1929) use Sperner lemma to prove Knaster-
Kuratowski-Mazurkiewicz theorem which implies Brouwer theorem. Meanwhile, Yoseloff (1974) and
Park and Jeong (2003) prove Sperner lemma by using Brouwer theorem. See Park (1999) for an
excellent survey about fixed point theorems.
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vectors (x1 − x2, x1 − x3, . . . , x1 − xn) are linearly independent.7 Given a simplex
[[x1, x2, . . . , xn]], a face of this simplex is the convex hull [[xi1 , xi2 , . . . , xim ]] with m <
n, and {i1, i2, . . . , im} ⊂ {1, 2, . . . , n}.

We now define the notions of simplicial subdivision (or triangulation) and labeling
(see Border (1985) and Su (1999) for a general treatment) before stating the Sperner
lemma.

Definition 1. T is a simplicial subdivision of ∆ if it is a finite collection of simplices
and their faces ∆i, i = 1, . . . , p such that

• ∆ = ∪p
i=1∆i,

• ri(∆i) ∩ ri(∆j) = ∅, ∀i 6= j.

Recall that if ∆i = [[xi1 , xi2 , . . . , xim ]], then ri(∆i) ≡ {x | x =
∑m

k=1 αkx
k(i);

∑
k αk =

1; and ∀k : α(k) > 0}.
Simplicial subdivision simply partitions an n-dimensional simplex into small sim-

plices such that any two simplices are either disjoint or share a full face of a certain
dimension.

Remark 1. For any positive integer K, there is a simplicial subdivision TK =
{∆K

1 , . . . ,∆
K
p(K)} of ∆ such that Mesh(TK) ≡ maxi∈{1,...,p(K)} supx,y{‖x− y‖ : x, y ∈

∆K
i } < 1/K. For example, we can take equilateral subdivisions or barycentric subdi-

visions.

We focus on the labeling of these subdivisions with certain restrictions.

Definition 2. Consider a simplicial subdivision of ∆. Let V denote the set of vertices
of all the subsimplices of ∆. A labeling R is a function from V into {1, 2, . . . , n}. A
labeling R satisfies the Sperner condition if:

x ∈ ri[[ei1 , ei2 , . . . , eim ]] ⇒ R(x) ∈ {i1, i2, . . . , im}.

In particular, R(ei) = i, ∀i.
Note that Sperner condition implies that all vertices of the simplex are labeled

distinctly. Moreover, the label of any vertex on the edge between the vertices of the
original simplex matches with another label of these vertices. With these in mind,
we can now state Sperner lemma.

Lemma 1. (Sperner) Let T = {∆1, . . . ,∆p} be a simplicial subdivision of ∆. Let
R be a labeling which satisfies the Sperner condition. Then there exists a subsimplex
∆i ∈ T which is completely labeled, i.e. ∆i = [[x1(i), . . . , xn(i)]] with R(xl(i)) =
l, ∀l = 1, . . . , n.

7We can verify that the vectors (x1 − x2, x1 − x3, . . . , x1 − xn) are linearly independent if and
only if the vectors (x1, x2, . . . , xn) are affinely independent (i.e., if

∑n

i=1 λixi = 0 and
∑n

i=1 λi = 0
imply that λi = 0 ∀i).
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Sperner lemma guarantees the existence of a completely labeled subsimplex for
any simplicially subdivided simplex in accordance with the Sperner condition. A
proof of this lemma can be found in several text books or papers such as Sperner
(1928), Berge (1959), Scarf and Hansen (1973), Le Van (1982). In particular, the
original proof uses an inductive argument based on a complete enumeration of all
completely labeled simplices for a series of lower dimensional problems. Meanwhile,
proofs using constructive arguments date back to Cohen (1967) and Kuhn (1968) (see
Scarf (1982) for a demonstration of the constructive proof).

2.2 On correspondences and the maximum theorem

Let X ⊂ R
l, Y ⊂ R

m. A correspondence Γ from X into Y is a mapping from X into
the set of subsets of Y . The graph of Γ is the set graphΓ = {(x, y) ∈ X×Y : y ∈ Γ(x)}.
A correspondence Γ : X → Y is closed if its graph is closed.

Definition 3. A correspondence Γ : X → Y is lower semicontinuous at point x
if for any y ∈ Γ(x) and for any sequence {xn} ⊂ X converging to x, there exists
a subsequence {ynk} with ynk ∈ Γ(xnk), ∀k, such that {ynk} converges to y when k
converges to +∞. Γ is lower semicontinuous on X if it is lower semicontinuous
everywhere on X.

Definition 4. A correspondence Γ : X → Y is upper semicontinuous at point x if (i)
Γ(x) is compact, non-empty, and (ii) for any sequence {xn} converging to x, for any
sequence {yn} with yn ∈ Γ(xn), ∀n, there exists a subsequence {ynk

} which converges
to y ∈ Γ(x).

A correspondence is continuous if it is both lower semicontinuous and upper semi-
continuous. Note that if X is compact then Γ is upper semicontinuous if and only if
Γ is closed. It is also clear that if Γ is upper semicontinuous and K ⊂ X is compact,
then Γ(K) is compact. Recall that if Γ is single valued, the notions of continuity,
upper semicontinuity, and the lower semicontinuity turn out to be equivalent.

We can now state the Theorem of the Maximum, the proof of which was first
given by Berge (1959).

Theorem 1. (Berge, 1959) Let X ⊂ R
l, Y ⊂ R

m, Γ : X → Y , and φ : Y → R.
Assume φ is continuous and Γ is also a continuous correspondence. Then the function
h defined by

h(x) = max{φ(y) : y ∈ Γ(x)}
is continuous. Moreover, the correspondence, called argmax, ζ defined by

ζ(x) = {y ∈ Γ(x) : h(x) = φ(y)}

is upper semicontinuous.
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3 Main results

3.1 Using Sperner lemma to prove fixed point theorems

Brouwer fixed point theorem is considered as one of the most fundamental results in
topology. Kakutani fixed point theorem is a generalization of Brouwer theorem for
the case of set-valued functions. These two theorems have a wide application across
different fields of mathematics and economics

We now formally state Kakutani theorem and use Sperner lemma to prove it.

Theorem 2. (Kakutani) Let ζ be an upper semi continuous correspondence, with non
empty convex compact values from a non-empty convex, compact set V ⊂ R

N into
itself. Then there exists a fixed point x, i.e. x ∈ ζ(x).

Proof. Since any convex compact set in R
N is homeomorphic to a simplex, we present

here a proof for the case where the set V is the unit-simplex ∆ of RN .
Let ǫ > 0 be given. Since ∆ is compact, there exists a finite covering of ∆

with a finite family of open balls
(
B̃ (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

. Take a partition of unity

subordinate to the family
(
B̃ (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

, i.e. a family of continuous non-

negative real functions (αi)i=1,...,I(ǫ) from ∆ in R+ such that Supp(αi) ⊂ B (xi(ǫ), ǫ) , ∀i
and

∑I(ǫ)
i=1 αi(x) = 1, ∀x ∈ ∆.8

Take yi(ǫ) ∈ ζ(xi(ǫ)), ∀i and define the function f ǫ : ∆ → ∆ by f ǫ(x) =∑I(ǫ)
i=1 αi(x)y

i(ǫ). This function is continuous.
Let K > 0 be an integer and consider a simplicial subdivision TK such that

Mesh(TK) < 1/K (see Remark 1). We define a labeling R as follows:9

for x ∈ ∆, R(x) = l, if xl ≥ f ǫ
l (x). (1)

Such a labeling is well defined because
∑

l xl =
∑

l f
ǫ
l (x) = 1. Moreover, this labeling

satisfies the Sperner condition. Indeed, take x ∈ ri[[ei1 , . . . , eir ]] (recall that (ei)i are
the unit-vectors of RN .) We claim that R(x) ∈ {i1, . . . , ir}. If not, xl < f ǫ

l (x), ∀l ∈
{i1, . . . , ir} and we get a contradiction:

1 =
∑

l∈{i1,...,ir}

xl <
∑

l∈{i1,...,ir}

f ǫ
l (x) ≤ 1.

According to Sperner lemma, there exists a completely labeled subsimplex SK =
[[xK,1, . . . , xK,N ]], with xK,l

l ≥ f ǫ
l (x

K,l) ∀l = 1, . . . , N .
LetK → +∞, there exists a subsequence (Kt)t≥1 such that xKt,l converges to xl for

any l = 1, . . . , N . Since Mesh(TK) tends to zero, we must have x1 = x2 = · · · = xN .

8For the notion of partition of unity, see, for instance, Aliprantis and Border (2006)’s Section
2.19.

9This labeling is the same as in Scarf (1967) and Border (1985).

6



Let x∗(ǫ) be this point. By continuity, we have f ǫ(xKt,l) → f ǫ(x∗(ǫ)) ∀l. Since
x∗l (ǫ) ≥ f ǫ

l (x
∗(ǫ)) ∀l, we get x∗(ǫ) = f ǫ(x∗(ǫ)).

Since
(
B̃ (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

is a covering of ∆, we have x∗(ǫ) ∈ ∩i∈J(ǫ)B̃ (xi(ǫ), ǫ),

where J(ǫ) ⊂ {1, . . . , I(ǫ)}. Hence

x∗(ǫ) = f ǫ(x∗(ǫ)) =
∑

i∈J(ǫ)

αi(x∗(ǫ))yi(ǫ) (2a)

with
∑

i∈J(ǫ)

αi(x∗(ǫ)) = 1, yi(ǫ) ∈ ζ(xi(ǫ)), ∀i ∈ J(ǫ). (2b)

Observe that ∀i ∈ J(ǫ), xi(ǫ) ∈ B(x∗(ǫ), ǫ) ⊂ R
N . Therefore, yi(ǫ) ∈ ζ

(
B(x∗(ǫ), ǫ)

)

and f ǫ(x∗(ǫ)) ∈ co
(
ζ
(
B(x∗(ǫ), ǫ)

))
.

From Carathéodory’s convexity theorem,10 we have a decomposition

f ǫ(x∗(ǫ)) =
N+1∑

i=1

βi(x
∗(ǫ))ỹi(x∗(ǫ)) (3)

with ỹi(x∗(ǫ)) ∈ ζ
(
B(x∗(ǫ), ǫ)

)
, βi(x

∗(ǫ)) ≥ 0,
∑N+1

i=1 βi(x
∗(ǫ)) = 1.

Let ǫ→ 0. Without loss of generality, we can assume x∗(ǫ) → x̄ ∈ ∆, βi(x
∗(ǫ)) →

β̄i ≥ 0,
∑N+1

i=1 β̄i = 1, and ỹi(x∗(ǫ)) → ȳi ∈ ζ(x̄), ∀i = 1, . . . , N + 1. This implies

x̄ =
∑N+1

i=1 β̄iȳ
i. Since ζ(x̄) is convex, we get x̄ ∈ ζ(x̄). The proof of Kakutani

theorem is, therefore, over.

Brouwer fixed point theorem, stated below, is a corollary of Kakutani fixed point
theorem when ζ is a single valued mapping.

Corollary 1. (Brouwer) Let φ be a continuous mapping from a non-empty convex
compact set into itself. Then there exists a fixed point x, i.e. x = φ(x).

Remark 2. In the literature, Brouwer theorem has been used to prove Kakutani
theorem. Indeed, the original proof of Kakutani theorem in Kakutani (1941) relies
on the application of Brouwer theorem to single-valued mappings approximating the
given set-valued mapping.11

10Carathéodory (1907)’s convexity Theorem states that: In an n-dimensional vector space, every
vector in the convex hull of a nonempty set can be written as a convex combination using no more
than n+1 vectors from the set. For a simple proof, see Florenzano and Le Van (2001)’s Proposition
1.1.2 or Aliprantis and Border (2006)’s Theorem 5.32.

11For a pedagogical purpose, we summarize here the proof of Kakutani. Let Sn be the n-th
barycentric simplicial subdivision of ∆. For each vertex xn of Sn, take an arbitrary point yn ∈ ζ(xn).
This mapping can be extended linearly to a continuous point-to-point mapping x → φn(x) of ∆ to
itself. Applying Brouwer theorem, there exists xn ∈ ∆ such that xn = φn(xn). Let n tend to infinity,
there is a subsequence of (xn) converging to a point x∗ which is actually a fixed-point of ζ.
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Florenzano (1981) also makes use Brouwer theorem to prove Kakutani theorem.12

More precisely, for any ǫ > 0, Florenzano considers a covering of ∆ by a finite family
of open balls and defines the function f ǫ as in our above proof. By applying Brouwer
theorem, f ǫ has a fixed point xǫ. Let ǫ → 0, then xǫ → x̄. To prove that x̄ ∈ ζ(x̄),
assume that this is not a case, then apply the Separation Theorem to the sets {x̄} and
ζ(x̄) to get a contradiction.

We proceed as in Florenzano (1981) but use Sperner lemma to get a fixed point
xǫ of the function f ǫ. Let ǫ → 0, then xǫ → x̄. To prove that x̄ ∈ ζ(x̄), we proceed
differently. More precisely, we apply Carathéodory’s convexity theorem to get a decom-
position (3) of f ǫ(x∗(ǫ)). When ǫ → 0, x can be expressed as a convex combination
of elements which belong ζ(x̄). So, x̄ ∈ ζ(x̄).

3.2 Using Sperner lemma to prove Gale-Nikaido-Debreu lemma

The customary proofs of the existence of a general equilibrium also make use of either
GND lemma (Debreu, 1959; Gale, 1955; Nikaido, 1956) or Gale and Mas-Colell lemma
(Gale and Mas-Colell, 1975, 1979) whose proofs, in turn, require Kakutani or Brouwer
theorems.13 In what follows, we show that GND lemma can be proven by using only
Sperner lemma.

Lemma 2. (Gale-Nikaido-Debreu lemma) Let ∆ be the unit-simplex of RN . Let ζ be
a continuous mapping from ∆ into R

L. Suppose ζ satisfies the condition

∀p ∈ ∆, p · ζ(p) ≤ 0.

Then there exists p̄ ∈ ∆ such that ζ(p̄) ≤ 0.

Proof. Let K > 0 be an integer and consider a simplicial subdivision TK of the
unit-simplex ∆ of RN such that Mesh(TK) < 1/K. With any vertex pi of TK , we
associate ζ(pi). We have pi · ζ(pi) ≤ 0. We consider the following labeling:

For p ∈ ∆, R(p) = i if ζi(p) ≤ 0.

Such a labeling is well defined. Indeed, if not, ζi(p) > 0 for all i and

0 ≥
∑

i

piζi(p) > 0

leads to a contradiction. Note that this labeling satisfies the Sperner condition.
Indeed, take p ∈ ri[[ei1 , . . . , eim ]],m < N . Then R(p) ∈ {i1, . . . , im}. If not, ζi(p) >
0, ∀i ∈ {i1, . . . , im} and 0 ≥ p·ζ(p) = ∑

i∈{i1,...,im} piζi(p) > 0. That is a contradiction.
Now, from Sperner lemma, for anyK, there exists a completely labeled subsimplex

[[pi1 , . . . , piN ]] which satisfies for any l = 1, . . . , N , ζl(p
il) ≤ 0. Let K → +∞. Then,

∀l, pil → p̄ and ζ(pil) → ζ(p̄). Obviously, ζl(p̄) ≤ 0, ∀l = 1, . . . , N . In other words,
ζ(p̄) ≤ 0.

12See Proposition 2 in Florenzano (1981).
13See Florenzano (1982), Florenzano and Le Van (1986) for other versions of GND lemma.
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We can also consider GND lemma in its strong and alternative formulations.
Importantly, we are able to show that Sperner lemma can be used for an effective
proof of each formulation.

Lemma 3. (Gale-Nikaido-Debreu lemma: strong version) Let ∆ be the unit-simplex
of RN . Let ζ be an upper semi-continuous correspondence with non-empty, compact,
convex values from ∆ into R

N . Suppose ζ satisfies the following condition:

∀p ∈ ∆, ∀z ∈ ζ(p), p · z ≤ 0. (4)

Then there exists p̄ ∈ ∆ such that ζ(p̄) ∩ R
N
− 6= ∅.

Proof. Let A = max{‖z‖1 : z ∈ ζ(∆)}. Let ǫ ∈ (0, 1). Since ∆ is compact, there

exists a finite covering of ∆ with a finite family of open balls
(
B̃ (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

.

Take a partition of unity subordinate to the family
(
B̃ (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

, i.e. a family

of continuous non negative real functions (αi)i=1,...,I(ǫ) from ∆ in R+ such that Supp

αi ⊂ B (xi(ǫ), ǫ) , ∀i and ∑I(ǫ)
i=1 αi(x) = 1, ∀x ∈ ∆. Take yi(ǫ) ∈ ζ(xi(ǫ)), ∀i and define

the function f ǫ(x) =
∑I(ǫ)

i=1 αi(x)y
i(ǫ) ∈ ∆. This function is continuous.

Given x ∈ ∆, there exists a set J(x) ⊂ {1, . . . , I(ǫ)} such that x ∈ ∩i∈J(x)B̃ (xi(ǫ), ǫ) .
We have f ǫ(x) =

∑
i∈J(x) αi(x)y

i(ǫ) with
∑

i∈J(x) αi(x) = 1. We have

∀i ∈ J(x), xi(ǫ) = x+ ǫui(x), with some ui(x) ∈ B(0, 1)

which implies that: ∀i ∈ J(x), yi(ǫ) ∈ ζ(xi(ǫ)) = ζ(x+ ǫui(x)) ⊂ ζ
(
B(x, ǫ)

)
. By con-

sequence, f ǫ(x) ∈ co
(
ζ
(
B(x, ǫ)

))
. According to Carathéodory’s convexity theorem,

we have a decomposition

f ǫ(x) =
N+1∑

i=1

βi(x, ǫ)ỹ
i(x, ǫ)

with ỹi(x, ǫ) ∈ ζ(x + ǫui) where ui ∈ B(0, 1), βi(x, ǫ) ≥ 0,
∑N+1

i=1 βi(x, ǫ) = 1. From
this, we have

x · f ǫ(x) =
N+1∑

i=1

βi(x, ǫ)(x+ ǫui) · ỹi(x, ǫ)− ǫ

N+1∑

i=1

βi(x, ǫ)u
i · ỹi

≤ ǫ

N+1∑

i=1

βi(x, ǫ)‖ui‖ · ‖ỹi‖ ≤ ǫA

N+1∑

i=1

βi(x, ǫ) = ǫA

since (x + ǫui) · ỹi(x, ǫ) ≤ 0 (see condition (4)), ‖ui‖ ≤ 1 and ‖ỹi‖ ≤ A. Therefore,
we get that

∀x ∈ ∆, ∃i, f ǫ
i (x) ≤ ǫA. (5)
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Indeed, if ∀i, f ǫ
i (x) > ǫA, then ǫA <

∑
i xif

ǫ
i (x) ≤ ǫA which is a contradiction.

Let K > 0 be an integer and consider a simplicial subdivision TK of the unit-
simplex ∆ of RN such that Mesh(TK) < 1/K and define the labeling R as follows:

∀x ∈ ∆, R(x) = i, if f ǫ
i (x) ≤ ǫA.

According to (5), this labeling is well-defined. It also satisfies the Sperner condition

x ∈ [[ei1 , . . . , eim ]] ⇒ R(x) = i ∈ {i1, . . . , im}

Indeed, if f ǫ
i (x) > ǫA, ∀i ∈ {i1, . . . , im}, then ǫA ≥ x · f ǫ(x) =

∑
i∈{i1,...,im} xif

ǫ
i (x) >

ǫ
∑

i∈{i1,...,im} xi = Aǫ, which is a contradiction.

Sperner lemma implies that there exists a completely labeled subsimplex [[xK,1, . . . , xK,N ]]
with R(xK,l) = l, ∀l = 1, . . . , N , i.e., f ǫ

l (x
K,l) ≤ ǫA, ∀l = 1, . . . , N .

Let K → +∞, there is a subsequence (Kt) such that

∀l, xKt,l → xǫ ∈ ∆, f ǫ(xKt,l) → f ǫ(xǫ)

and, therefore, f ǫ
l (x

ǫ) ≤ ǫA, ∀l = 1, . . . , N.

Since
(
B̃ (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

is a covering of ∆, there exists a set J(xǫ) ⊂ {1, . . . , I(ǫ)}
such that x ∈ ∩i∈J(xǫ)B̃ (xi(ǫ), ǫ) .We have f ǫ(xǫ) =

∑
i∈J(xǫ) αi(x

ǫ)yi(xǫ) with
∑

i∈J(xǫ) αi(x
ǫ) =

1. Use the same argument as in our proof of Kakutani theorem, we get

f ǫ(xǫ) =
N+1∑

i=1

βi(x
ǫ)ỹi(xǫ)

with ỹi(xǫ) ∈ ζ
(
B(xǫ, ǫ)

)
.

Let ǫ→ 0, we get that

xǫ → x̄ ∈ ∆, βi(x
ǫ) → β̄i ≥ 0,

N+1∑

i=1

β̄i = 1,

ỹi(xǫ) → ȳi ∈ ζ(x̄), ∀i = 1, . . . , N + 1,

f ǫ(xǫ) → z̄ =
N+1∑

i=1

β̄iȳ
i ∈ ζ(x̄), since ζ(x̄) is convex

f ǫ
l (x

ǫ) ≤ ǫA, ∀l = 1, . . . , N ⇒ z̄l ≤ 0, ∀l = 1, . . . , N.

This means that z̄ ∈ ζ(x̄) ∩ R
N
− . The proof is over.

From Lemma 3, we can additionally derive two stronger versions of GND lemma.
Each of them is stated and proved below.
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Lemma 4. Let ∆ be the unit-simplex of R
N . Let ζ be an upper semicontinuous

correspondence with non-empty, compact, convex values from ∆ into R
N . Suppose ζ

satisfies the condition
∀p ∈ ∆, ∀z ∈ ζ(p), p · z = 0.

Then there exist p̄, z̄ ∈ ζ(p̄) such that (1) z̄ ≤ 0, and (2) ∀i = 1, . . . , N, p̄i 6= 0 ⇒
z̄i = 0.

Proof. Since ”∀p ∈ ∆, ∀z ∈ ζ(p), p · z = 0” ⇒ ”∀p ∈ ∆, ∀z ∈ ζ(p), p · z ≤ 0”, from
Lemma 3, there exist p̄ and z̄ ∈ ζ(p̄) such that z̄ ≤ 0. Since p̄ · z̄ = 0, the conclusion
is immediate.

Lemma 5. Let ∆ be the unit-simplex of R
N . Let ζ be an upper semicontinuous

correspondence with non-empty, compact, convex values from ∆ into R
N . Suppose ζ

satisfies the condition
∀p ∈ ∆, ∃z ∈ ζ(p), p · z ≤ 0.

Then there exists p̄ ∈ ∆ such that ζ(p̄) ∩ R
N
− 6= ∅.

Proof. For p ∈ ∆, let ζ̃(p) = {z ∈ ζ(p) : z · p ≤ 0}. The correspondence ζ̃ is
upper semicontinuous, convex, and compact valued from ∆ into R

N . It satisfies
the assumptions of Lemma 3. Hence there exist p̄ and z̄ ∈ ζ̃(p̄) ⊂ ζ(p̄), such that
z̄ ≤ 0.

We now consider an alternative statement of GND lemma, the proof of which
directly follows from Lemma 2.

Lemma 6. (Gale-Nikaido-Debreu) Let S denote the unit-sphere, for the norm ‖ · ‖2
of RN . Let ζ be an upper semicontinuous correspondence from S ∩ R

N
+ in R

N which
satisfies

∀q ∈ S ∩ R
N
+ , ∀z ∈ ζ(q), q · z ≤ 0.

Then,
∃q̄ ∈ S ∩ R

N
+ , such that ζ(q̄) ∩ R

N
− 6= ∅.

Proof. For p ∈ ∆ define µ(p) = 1√
p2
1
+...+p2

N

, and for q ∈ S ∩R
N
+ define λ(q) =

∑N

i=1 qi.

We have, if q ∈ S ∩ R
N
+ then p = q

λ(q)
∈ ∆ and if p ∈ ∆ then q = µ(p)p ∈ S ∩ R

N
+ .

Define also for p ∈ ∆, η(p) = ζ(µ(p)p). Obviously, η is upper semicontinuous with
convex and compact values. We have

∀p ∈ ∆, ∀z ∈ η(p) = ζ (µ(p)p) , µ(p)p · z ≤ 0 ⇔ p · z ≤ 0.

From Lemma 2, there exist p̄ ∈ ∆ and z̄ ∈ η(p̄) such that z̄ ≤ 0 or, equivalently, there
exist q̄ = µ(p̄)p̄, z̄ ∈ η(p̄) = ζ(µ(p̄)p̄) = ζ(q̄) such that z̄ ≤ 0.
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Remark 3 (Kakutani theorem and Gale-Nikaido-Debreu lemma). We emphasize that
Kakutani theorem can be obtained as a corollary of GND lemma. We prove this by
adapting the argument of Uzawa (1962) for continuous mapping.14 Let ζ be an upper
semicontinuous correspondence, with non-empty convex compact values from ∆ into
itself. Define, for p ∈ ∆,

ψ(p) =
{
y : y = z − p · z

∑N

i=1 p
2
i

p, with z ∈ ζ(p)
}

One can check that ψ is upper semicontinuous and convex valued. Moreover, for any
p ∈ ∆, any y ∈ ψ(p), we have p · y = 0. Hence, from Lemma 4, there exist p̄ ∈ ∆ and
ȳ ∈ ψ(p̄) which satisfy ȳ ≤ 0, and ∀i = 1, . . . , N, p̄i 6= 0 ⇒ ȳi = 0. In other words,
there exist p̄ ∈ ∆ and z̄ ∈ ζ(p̄) satisfying two conditions:

∀i = 1, . . . , N, z̄i ≤
p̄ · z̄

∑N

i=1 p̄
2
i

p̄i

∀i = 1, . . . , N, p̄i 6= 0 ⇒ z̄i =
p̄ · z̄

∑N

i=1 p̄
2
i

p̄i.

Hence, if p̄i = 0, we have 0 ≤ z̄i ≤ 0 which in turn implies that z̄i = 0. Let µ = p̄·z̄
∑N

i=1
p̄2i
.

We obtain that z̄i = µp̄i for any i = 1, . . . , N . Since z̄ ∈ ∆, p̄ ∈ ∆, we have µ = 1.
Hence, p̄ = z̄ ∈ ζ(p̄).

3.3 Using Sperner lemma to prove the existence of general

equilibrium

We consider two hypothetical cases: an economy with production and an two-period
stochastic economy with incomplete financial markets. Without recourse to the fixed-
point theorems or GND lemma, we are successful in establishing the results. Our
proofs are novel as they only make use of Sperner lemma.

3.3.1 Equilibrium existence in an economy with production

Consider an economy with L consumption goods, K input goods which may be capital
or labor, I consumers, and J firms. Each consumer i has an initial endowment
of consumption goods ωi ∈ R

L
+, an initial endowment of inputs yi0 ∈ R

K
+ , and a

utility function ui depending on her/his consumptions xi ∈ R
L
+. The firms produce

consumption goods. Firm j has production functions F j = (F j
1 , . . . , F

j
L) and uses a

vector of inputs (yj1, . . . , y
j
K) ∈ R

K
+ . The production functions satisfy F j

l ≥ 0, and

F j 6= 0. We do not exclude that F j
l = 0 for some l (e.g., firm j does not produce

good l).

14Florenzano (1982) also proves Kakutani theorem from GND lemma but she considers for the
unit ball instead of the simplex ∆.
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We adopt the following set of standard assumptions concerning the specifications
of an economy with production.

Assumption 1. (i) Each utility function is strictly concave, continuous, and strictly
increasing.
(ii) The endowments of consumption goods satisfy ∀i, ωi ∈ R

L
++.

(iii) The endowments of inputs satisfy ∀i, yi0 ∈ R
K
++.

(iv) For any l, F j
l (0) = 0, and if F j

l 6= 0 then it is strictly concave, strictly increasing.
(v) The firms distribute their profits among consumers. The share coefficients θij,
i = 1, . . . , I and j = 1, . . . , J are positive and satisfy

∑
i θ

ij = 1, ∀j.

In this economy, each firm j maximizes its profit given the prices p of outputs and
the prices q of inputs. Let

Πj(p, q) = max
y∈RK

+

{p · F j(y)− q · y}.

We observe that for any (p, q), Πj(p, q) ≥ p · F j(0)− q · 0 = 0.
On the other hand, given the prices p of outputs and the prices q of inputs, each

consumer i solves the problem

max ui(xi) subject to xi ∈ R
L
+ and p · xi ≤ p · ωi +

∑

j

θijΠj(p, q) + q · yi0.

We now introduce the definitions of equilibrium and feasible allocation for such an
economy with production.

Definition 5. An equilibrium is a list ((xi∗)i=1,...,I , (y
j∗)j=1,...,J , p

∗, q∗) satisfying (i)
p∗ ≫ 0, q∗ ≫ 0,15 (ii) given prices, households and firms maximize their utility and
profit respectively, (iii) all markets clear.

Definition 6. An allocation ((xi)i, (y
j)j) is feasible if

(i) xi ∈ R
L
+ for any i = 1, . . . , I, yj ∈ R

K
+ , for any j = 1, . . . , J ,

(ii)
∑I

i=1 x
i ≤ ∑I

i=1 ω
i +

∑J

j=1 F
j(yj),

(iii)
∑J

j=1 y
j ≤ ∑I

i=1 y
i
0.

The set of feasible allocations is denoted by F . It is convex and compact. We
denote by X i the set of allocations xi such that there exist (x−i) ∈ (RL

+)
I−1 and (yj)

which satisfy ((xi, x−i), (yj)) ∈ F . We denote by Y j the set of inputs (yj) such that
there exist allocations (xi) which satisfy ((xi), (yj)) ∈ F . Note that all of these sets
are convex, compact, and nonempty.

15For x ∈ R
L
+, x ≫ 0 means that xl > 0 ∀l = 1, . . . , L.
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Let X be a closed ball of RL
+ that contains all the X i in its interior. Also, let Y

be a closed ball of RK
+ that contains all the sets Y j in its interior.

We will consider an intermediate economy in which the consumption sets equal to
X and the inputs sets equal to Y . In this economy, given prices p and q, the behavior
of each firm j can be recast as: maxyj∈Y {p ·F j(yj)−q ·yj}. Accordingly, the behavior
of each consumer i can be recast as

max ui(xi) subject to xi ∈ X and p · xi ≤ p · ωi +
∑

j

θijΠj(p, q) + q · yi0.

Definition 7. An equilibrium of the intermediate economy is a list ((xi∗)i=1,...,I , (y
j∗)j=1,...,J , p

∗, q∗)
that satisfies

(i) p∗ ≫ 0, q∗ ≫ 0,

(ii) For any i, xi∗ ∈ X and p∗ · xi∗ = p∗ · ωi +
∑

j θ
ijΠj(p∗, q∗) + q∗ · yi0,

(iii) For any i, xi ∈ X, p∗ ·xi ≤ p∗ ·ωi+
∑

j θ
ijΠj(p∗, q∗)+ q∗ · yi0 ⇒ ui(xi) ≤ ui(xi∗),

(iv) For any j, yj∗ ∈ Y and Πj(p∗, q∗) = p∗ · F j(yj∗)− q∗ · yj∗,

(v)
∑I

i=1 x
i∗ =

∑I

i=1 ω
i +

∑J

j=1 F
j(yj∗) and

∑J

j=1 y
j∗ =

∑I

i=1 y
i
0.

Since the utility functions and the production functions are strictly increasing, an
equivalent definition can be reached by refining condition (v) in Definition 7. More
precisely, an equilibrium in this intermediate economy is a list ((xi∗)i=1,...,I , (y

j∗)j=1,...,J , p
∗, q∗)

that satisfies the conditions (i-iv) in Definition 7 together with

(vi’) For any l = 1, . . . , L,
∑I

i=1 x
i∗
l −

(∑I

i=1 ω
i
l +

∑J

j=1 F
j
l (y

j∗)
)
≤ 0,

(vii’) For any k = 1, . . . , K,
∑J

j=1 y
j∗
k −∑I

i=1 y
i
0,k ≤ 0,

(viii’) For any l = 1, . . . , L, p∗l

(∑I

i=1 x
i∗
l −

(∑I

i=1 ω
i
l +

∑J

j=1 F
j
l (y

j∗)
))

= 0,

(viv’) For any k = 1, . . . , K, q∗k

(∑J

j=1 y
j∗
k −∑I

i=1 y
i
0,k

)
= 0.

The following remark is important for the analysis of the equilibrium existence.

Remark 4. If (x∗, y∗) solves the problems of the consumers and the firms, then
(x∗, y∗) satisfies Weak Walras Law:

p ·
(∑

i

(x∗i − ωi)−
∑

j

F j(y∗)
)
+ q ·

(∑

j

y∗j −
∑

i

yi0

)
≤ 0. (6)
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However, if
∑

i(x
∗i−ωi)−∑

j F
j(y∗) ≤ 0 and

∑
j y

∗j −∑
i y

i
0 ≤ 0, i.e., (x∗, y∗) ∈

F , since the utility functions are strictly increasing and the feasible set F is in the
interior of X × Y , the allocation (x∗, y∗) satisfies Walras Law:

p ·
(∑

i

(x∗i − ωi)−
∑

j

F j(y∗)
)
+ q ·

(∑

j

y∗j −
∑

i

yi0

)
= 0. (7)

We now use Sperner lemma to prove the existence of an equilibrium for the in-
termediate economy. We will show that it is actually an equilibrium for the initial
economy.

Proposition 1. Under above assumptions, there exists an equilibrium in the inter-
mediate economy.

Proof. Let α > 0 and consider the following transformed problem of the producer:

Πj,α(p, q) = max{p · F j(yj)− q · yj : yj ∈ Y and q · yj − p · F j(yj) ≤ α}.

It is obvious that the set Cj,α(p, q) = {y ∈ Y : q · yj − p · F j(yj) ≤ α} is convex,
compact, nonempty, and has a nonempty interior. Therefore, the correspondence Cj,α

is continuous.
Let ηj,α(p, q) = {yj ∈ Y : Πj,α(p, q) = p · F j(yj)− q · yj}. It can be deduced from

the theorem of the maximum (see Theorem 1) that Πj,α is a continuous function and,
since the production function is strictly concave, ηj,α is a continuous mapping.

Consider also the transformed problem of the consumer:

max ui(xi) subject to xi ∈ X, p · xi ≤ p · ωi +
∑

j

θijΠj,α(p, q) + q · yi0.

It is easy to see that the set Di,α(p, q) = {xi : xi ∈ X, p ·xi ≤ p ·ωi+
∑

j θ
ijΠj,α(p, q)+

q · yi0} is convex, compact. Moreover, it has a nonempty interior.16 Hence, Di,α is a
continuous correspondence.

Denote ∆ = {(x1, . . . , xL+K) ≥ 0 :
∑L+K

i=1 xi = 1}.
For (p, q) ∈ ∆ and i = 1, . . . , I, we define

ξi(p, q) = {xi ∈ X : ui(xi) ≥ ui(x′), if p · x′ ≤ p · ωi +
∑

j

θijΠj,α(p, q) + q · yi0}.

Since the correspondence Dj,α is continuous and the utility functions are strictly
concave, the Maximum Theorem implies that ξi is continuous for any i.

16Indeed, observe that Πj,α(p, q) ≥ 0. If p = 0 then q > 0 and q · yi0 > 0. We have 0 <∑
j θ

ijΠj,α(p, q) + q · yi0. If p 6= 0, choose xi close to ωi and xi ≪ ωi. Then p · (xi − ωi) < 0 ≤∑
j θ

ijΠj,α(p, q) + q · yi0.
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We adopt that N = L+K, π = (p, q) ∈ ∆ and define the excess demand mappings

ξ(π) =
I∑

i=1

(ξi(π)− ωi)−
J∑

j=1

F j(ηj,α(π))

ηα(π) =
J∑

j=1

ηj,α(π)−
I∑

i=1

yi0

ζ(π) = (ξ(π), ηα(π)).

Note that the mapping ζ is continuous.
Let K > 0 be an integer and consider a simplicial subdivision TK of the unit-

simplex ∆ of RN such that Mesh(TK) < 1/K. We define a labeling R as follows:

For π ∈ ∆, R(π) = i, where i satisfies ζi(π) ≤ 0.

This labeling is well-defined since, by Weak Walras Law, for any π ∈ ∆, we have∑N

i=1 πiζi(π) ≤ 0, there must be some i with ζi(π) ≤ 0 (if not, π · ζ(π) > 0). Observe
that ζ(ei) ≤ 0, where ei is i-vertex of ∆. Indeed, 0 ≥ ei · ζ(ei) = ζi(e

i). We label
R(ei) = i.

We now verify that this labeling satisfies the Sperner condition. Let π be in a face
[[ei1 , . . . , eim ]] with m < n. We have in this case πj = 0, ∀j /∈ {i1, . . . , im}. We have

0 ≥
N∑

j=1

πjζj(π) =
∑

j∈{i1,...,im}

πjζj(π).

Hence, there must be j ∈ {i1, . . . , im} with ζj(π) ≤ 0. We define R(x) = j. We have
proved that our labeling satisfies the Sperner condition.

From Sperner lemma, for any K, there exists a completely labeled subsimplex
[[π̄K,1, π̄K,2, . . . , π̄K,n]] such that R(π̄K,j) = j, i.e., ζj(π̄

K,j) ≤ 0, ∀j = 1, . . . , N .
WhenK tends to +∞, we can suppose that the sequence of subsimplices

{
[[π̄K,1, π̄K,2, . . . , π̄K,N ]]

}
K

converges. Since Mesh(TK) < 1/K tends to zero, the vertices {π̄K,j} converge to the
same point π∗ ∈ ∆. Recall that, for any K, any j, ζj(π̄

K,j) ≤ 0, by the continuity of
ζ, we have

ζj(π
∗) ≤ 0, ∀j.

From Remark 4, Walras Law holds. Hence,
∑

j π
∗
j ζj(π

∗) = 0 and we have actually
π∗
j ζj(π

∗) = 0, ∀j.
Finally, we claim that Πj,α(p∗, q∗) = max{p∗ · F j(yj)− q∗ · yj : yj ∈ Y }. Indeed, if

there exists y ∈ Y such that p∗ ·F j(y)−q∗ ·y > Πj,α(p∗, q∗) ≥ 0, then q∗ ·y−p∗F j(y) <
0 < α and that is a contradiction. We have proved that there exists an equilibrium
in the intermediate economy.

The following proposition allows us to move from an equilibrium in the interme-
diate economy to an equilibrium in the initial economy.
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Proposition 2. ((xi∗)i=1,...,I , (y
j∗)j=1,...,J , p

∗, q∗) is an equilibrium for the initial econ-
omy.

Proof. First observe that if there exists y ∈ R
K
+ such that

p∗ · F j(y)− q∗ · y > p∗ · F j(y∗)− q∗ · y∗ = Πj,α(p∗, q∗) ≥ 0

then q∗ · y − p∗F j(y) < 0 < α and that is a contradiction. By consequence, we get
that

p∗ · F j(y∗)− q∗ · y∗ = Πj(p∗, q∗) = max{p∗ · F j(yj)− q∗ · yj : yj ∈ R
K
+}.

Now fix some i and take x ∈ R
L
+ satisfying ui(x) > ui(xi∗). We have to prove that

p∗ ·x > p∗ ·ωi+
∑

j θ
ijΠj(p∗, q∗)+ q∗ ·yi0. Of course, this is the case if x ∈ X. We now

consider the case where x /∈ X. Since xi∗ is in the interior of X, there exists λ ∈ (0, 1)
such that λx+(1−λ)xi∗ ∈ X. We have ui(λx+(1−λ)xi∗) ≥ λui(x)+(1−λ)ui(xi∗) >
ui(xi∗). Hence, we have

p∗ · (λx+ (1− λ)xi∗) > p∗ · ωi +
∑

j

θijΠj(p∗, q∗) + q∗ · yi0 = p∗ · xi∗

⇔ λp∗ · x > λp∗ · xi∗ ⇔ p∗ · x > p∗ · xi∗ = p∗ · ωi +
∑

j

θijΠj(p∗, q∗) + q∗ · yi0.

3.3.2 Equilibrium existence in an economy with financial assets

In this section, we use Sperner lemma to prove the existence of an equilibrium in an
economy with nominal assets. We briefly present here some essential notions. For a
full exposition, see Florenzano (1999).

Consider a pure exchange economy with two periods (t = 0 and t = 1), L con-
sumption goods, J financial assets, and I agents. There is no uncertainty in period 0
while there are S possible states of nature in period 1. In period 0, each agent i ≤ I
consumes and purchases assets. The consumption prices are denoted by p0 ∈ R

L
+ in

the first period, ps ∈ R
L
+ in the state s of period 1. Let π ≡ (p0, p1, . . . , pS). Each

consumer has endowments of consumption good ωi
0 ∈ R

L
+ in period 0 and ωi

s ∈ R
L
+ in

state s of period 1. Any agent i has a utility function U i(xi0, x
i
1, . . . x

i
S) where xis is

her consumption at state s. There is a matrix of returns depending on π of financial
assets which is the same for any agent. Typically, if agent i ≤ I purchases zi quantity
of assets in period 0, in period 1, at state s, she/he will obtain an income (positive
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or negative)
∑J

j=1Rs,j(π)z
j. The returns R(π) can be represented by a matrix

R =




R1,1(π) R1,2(π) . . . R1,J(π)
R2,1(π) R2,2(π) . . . R2,J(π)

. . . . .

. . . . .

. . . . .
RS,1(π) RS,2(π) . . . RS,J(π)




We denote by Rs(π) = (Rs,1(π), Rs,2(π), . . . , Rs,J(π)), the s
th row of R(π). Typically,

the constraints faced by agent i are

p0 · (xi0 − ωi
0) + q · zi ≤ 0,

ps · (xis − ωi
s) ≤ Rs(π) · zi ∀s = 1, . . . , S.

We make use of the following set of standard assumptions.

Assumption 2. (i) For any i = 1, . . . , I, the consumption set is R
L
+ the assets set

Zi = R
J .

(ii) For any i = 1, . . . , I, ωi
0 ∈ R

L
++, ω

i
s ∈ R

L
+ for any state s in period 1.

(iii) Rs,j(π) > 0, for any s, any j, any π.
(iv) rank R(π) = J , for any π and the map π → R(π) is continuous.
(v) For any i = 1, . . . , I, U i is strictly increasing, continuous, and strictly concave.

We now introduce the definitions of complete and incomplete asset markets, fea-
sible allocations, and the notion of equilibrium in an economy with financial assets.

Definition 8. The assets market is called complete if S = J and incomplete if S > J .

Definition 9. An equilibrium of this economy is a list
(
xi∗, zi∗)Ii=1, x

I+1∗, (p∗, q∗)
)

where (xi∗, zi∗)Ii=1 ∈ (X i)I × (Zi)J , (p∗, q∗) ∈ R
L
++ × R

J
++ such that

(i) For any i, (xi∗, zi∗) solve the problem

maxU i(xi0, x
i
1, . . . , x

i
S)

subject to: p∗0 · (xi0 − ωi
0) + q∗ · zi ≤ 0 (8a)

p∗s · (xis − ωi
s) ≤ Rs(π) · zi, s = 1, . . . , S (8b)

(ii)
∑I

i=1(x
∗i
s − ωi

s) = 0 for any s = 0, 1, . . . , S and
∑I

i=1 z
∗i = 0.

Definition 10. The allocations ((xi, zi)i) ∈ (X i)I × (ZI)I are feasible if
(i)

∑I

i=1(x
i−ωi) ≤ 0 and (ii)

∑I

i=1 z
i = 0. Accordingly, take α > 0 and define the sets

F c = {(xi)i ∈ (X i)I :
∑I

i=1(x
i − ωi) ≤ α} and F f = {(zi)i ∈ (Zi)I :

∑
i z

i
j = 0, ∀j}.

Moreover, denote the projection of F c on X i by X̂ i.
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The following lemma will be useful in proving the existence of equilibrium.

Lemma 7. Let (zi) ∈ R
J×I satisfy that: for all i, there exists (xi) ∈ F c such that

∀s = 1, . . . , S, ps · (xis − ωi
s) = Rs(π) · zi

where ‖ps‖ ≤ 1, ∀s. Then there exists β > 0 such that ‖zi‖ ≤ β, ∀i.17

Let Bc be a ball of RL, centered at the origin, which contains any X̂ i in its interior.
Let us consider an intermediate economy in which the consumption set is X̃ i = Bc

for any i.

Definition 11. An equilibrium of this intermediate economy is a list
(
(xi∗, zi∗)Ii=1, (p

∗, q∗)
)

where (xi∗, zi∗)Ii=1 ∈ (X̃ i)I × (Z̃i)J , (p∗, q∗) ∈ R
L
++ × R

J
++ such that

(i) For any i, xi∗ solve the problem

maxU i(xi0, x
i
1, . . . , x

i
S) (9a)

subject to: ∃zi ∈ R
J , p∗0 · (xi0 − ωi

0) + q∗ · zi ≤ 0, (9b)

p∗s · (xis − ωi
s) ≤ Rs(π) · zi, s = 1, . . . , S (9c)

xi ∈ X̃ i ∀s = 0, 1, . . . , S. (9d)

(ii)
∑I

i=1(x
∗i
s − ωi

s) = 0 for any s = 0, 1, . . . , S and
∑I

i=1 z
∗i = 0.

We aim to provide a new proof (by using Sperner lemma) of the following result
which corresponds to Theorem 1 in Cass (2006) or Theorem 7.1 in Florenzano (1999).

Proposition 3. Under above assumptions, there exists an equilibrium
(
(xi∗, zi∗)Ii=1, (p

∗, q∗)
)

with q∗ =
∑S

s=1Rs(π).

Proof. Observe that, by using the same argument in the proof of Proposition 2 in
Section 3.3.1, we can prove that an equilibrium of the intermediate economy is indeed
an equilibrium for the initial economy. As such, it remains to prove the existence of
equilibrium in the intermediate economy. To do so, we proceed in two steps. First, we
use Sperner lemma to prove that there exists actually a Cass equilibrium. Second, we
show that this equilibrium constitutes an equilibrium of the intermediate economy.

Following Cass (2006) and Florenzano (1999), we define Cass equilibrium.

Definition 12. Cass equilibrium is a list
(
(x̄i)Ii=1, (z̄

i)Ii=2, (p̄, q̄)
)
such that (x̄i)Ii=1, (z̄

i)Ii=2 ∈
(Bc)I × (Bf )I−1, (p̄, q̄)) ∈ R

L
++ × R

J
++, and π̄ = (p̄, q̄) where

17Indeed, assume that there exists a sequence (zi(n))n with ‖zi(n)‖ → +∞ when n → +∞.
We have, for any n, ∀s = 1, . . . , S, ps(n) · (xi

s(n) − ωi
s) = Rs(π(n)) · zi(n). We can assume that

π(n) → π ∈ ∆. We obtain that, ∀s = 1, . . . , S,
ps(n)·(x

i

s
(n)−ωi

s
)

‖zi(n)‖ = Rs(π(n)) · zi(n)
‖zi(n)‖ . We can suppose

zi(n)
‖zi(n)‖ → ζ 6= 0. Let n → +∞. We get 0 = Rs(π) · ζ. Since rank R(π) = J , we have ζ = 0: a

contradiction.
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(i) x̄1 solves the consumer 1 problem under the constraint x1 ∈ Bc, π̄·(x1−ω1) ≤ 0.

(ii) For i = 2, . . . , I, x̄i solves the consumer i’s problem

maxU i(xi0, x
i
1, . . . , x

i
S) subject to: ∃zi ∈ R

J , p̄0 · (xi0 − ωi
0) + q̄ · zi ≤ 0,

p̄s · (xis − ωi
s) ≤ Rs(π) · zi ∀s ≥ 1

xi ∈ Bc ∀i.

(iii) q̄ =
∑

sRs(π) and
∑I

i=1(x̄
i − ωi) = 0.

Lemma 8. There exists a Cass equilibrium.

Proof. Let π = (p0, p1, . . . , pS) ∈ ∆ where ∆ denotes the unit-simplex of RL(S+1).
Assume that ǫ satisfies 0 < ǫ < α

(I−1)
.

Agent 1 solves the following problem

maxU1(x1) subject to x1 ∈ X̃1, π · (x1 − ω1) ≤ 0.

Any agent i (i ≥ 2) solves the following problem

maxU i(xi) subject to: xi ∈ X̃ i, zi ∈ Z̃i,

∃zi ∈ R
J , p0 · (xi0 − ωi

0) + (
∑

s

Rs(π)) · zi ≤ ǫ,

ps · (xis − ωi
s) ≤ Rs(π) · zi ∀s ≥ 1.

The budget set of agent 1 has a nonempty interior since π ∈ ∆. To prove the
budget sets of the agents i ≥ 2 have nonempty interiors, we observe that xis = ωi

s,
s = 0, 1, . . . , S and zi > 0 such that

∑
sRs(π)z

i < ǫ are in the interior of these budget
sets. Therefore, the optimal value (x∗1, x∗2ǫ . . . , x∗Iǫ ), (z∗2ǫ , . . . , z

∗I
ǫ ) are continuous

mappings with respect to π . For any π, we have

π ·
I∑

i=1

(x∗i(π)− ωi) ≤ (I − 1)ǫ.

Define the excess demand mapping ξ by

ξ(π) =
I∑

i=1

(x∗i(π)− ωi).

It is obvious that ∀π ∈ ∆, π · ξ(π) ≤ (I − 1)ǫ.
Denote N = (S + 1)L. Let K > 0 be an integer and consider a simplicial subdi-

vision TK of the unit-simplex ∆ of RN such that Mesh(TK) < 1/K. We define the
following labeling r. For any π ∈ ∆, r(π) = t if ξt(π) ≤ (I − 1)ǫ. Such a labeling is
well defined. Moreover, it satisfies Sperner condition. Indeed, we see that:
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• For t ∈ {1, . . . , N}. If π = et (recall that et is a unit-vector of R
N), then

(I − 1)ǫ ≥ et · ξ(et) = ξt(e
t). We label r(et) = t.

• If π ∈ [[ei1 , . . . , eim ]] withm < N , then (I−1)ǫ ≥ π ·ξ(π) = ∑
q∈{i1,...,im} πqξj(π).

There must exists q ∈ {i1, . . . , im} with ξq(π) ≤ (I − 1)ǫ. We label r(π) = q
with some q ∈ {i1, . . . , im}.

So, the labeling r satisfies Sperner condition. Hence, there exists a completely labeled
subsimplex [[π̄1(K), . . . , π̄N(K)]], i.e., ξt(π̄

t(K)) ≤ (I − 1)ǫ ∀t = 1, . . . , N . Observe
that

∀t = 1, . . . , N,
I∑

i=1

(
x∗i(π̄t(K))− ωi

)
≤ (I − 1)ǫ < α. (10)

Let K → +∞. Then, for any t ∈ {1, . . . , N}, π̄t(K) → π∗(ǫ) ∈ ∆. We have
ξq(π

∗(ǫ)) ≤ (I − 1)ǫ < α, for all q. It follows from (10) that

I∑

i=1

(
x∗i(π∗(ǫ))− ωi

)
≤ (I − 1)ǫ < α. (11)

Write π∗(ǫ) = (p∗0(ǫ), p
∗
1(ǫ), . . . , p

∗
S(ǫ)). Because of (11) and the fact that utility func-

tions are strictly increasing, we obtain

π∗(ǫ) · (x∗1(π∗(ǫ))− ω1) = 0 (12)

that implies π∗(ǫ) ≫ 0. Hence, for any i ≥ 2,

p∗0(ǫ) · (x∗i0 (π∗(ǫ))− ωi
s) + (

∑

s

Rs(π
∗(ǫ))z∗i(π∗(ǫ)) = ǫ,

p∗s(x
∗i(π∗(ǫ))− ωi

s) = Rs(π
∗(ǫ)) · z∗i(π∗(ǫ)), s = 1, . . . , S.

From Lemma 7, we have ‖z∗i(π∗(ǫ))‖ ≤ β.
Let ǫ→ 0, we have that

• π∗(ǫ) → π̄,

• x∗1(π∗(ǫ)) → x̄1 = x∗1(π̄) ⇒ π̄ ≫ 0,

• π̄ ≫ 0 ⇒ ∀i ≥ 2, x∗i(π∗(ǫ)) → x̄i = x∗i(π̄), z∗i(π∗(ǫ)) → z̄i = z∗i(π̄), i.e., for
i ≥ 2, (x̄i, z̄i) solves the problem of agent i for given prices π̄.

Note from (11) that
∑I

i=1(x̄
i − ωi) ≤ 0 and from (12) that π̄ · (∑I

i=1(x̄
i − ωi) = 0 ⇒

π̄p
∑

i(x̄
i
p − ωi

p) = 0, p = 1, . . . , N.

Since π̄ ≫ 0, we deduce that
∑I

i=1(x̄
i
p − ωi

p) = 0, ∀p = 1, . . . , N , or equivalently∑I

i=1(x̄
i − ωi) = 0. We have proved the existence of a Cass equilibrium.
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We move from Cass equilibrium to an equilibrium in the intermediate economy.

Lemma 9. There exists an equilibrium in the intermediate economy with q̄ =
∑

sRs(π).

Proof. Since
∑I

i=1(x̄
i
s − ωi

s) = 0 ∀s ≥ 1, we get that

∀s ≥ 1 , 0 = p̄s ·
I∑

i=1

(x̄is − ωi
s) = p̄s · (x̄1s − ωi

s) + p̄s ·
I∑

i=2

(x̄is − ωi
s).

Denote z̄1 = −∑
i≥2 z̄

i. We have p̄s ·
∑I

i=2(x̄
i
s − ωi

s) = Rs(π̄) · z̄1 which implies that

∑

s≥1

p̄s · (x̄1s − ωi
s) =

(∑

s

Rs(π̄)
)
· z̄1 = q̄ · z̄1.

By combining this with the fact that p̄0 · (x̄10 − ω1
0) +

∑
s≥1 p̄s · (x̄1s − ω1

s) = 0, we get
that p̄0 · (x̄10 − ω1

0) + q̄ · z̄1 = 0.
It is easy to prove that x̄1 solves the problem (9a-9d).

Remark 5 (equilibrium price versus no-arbitrage price). Our above proof of the
existence of competitive equilibrium leads to a conclusion that: an equilibrium exists
if and only if there exists a no-arbitrage assets price. Indeed, any no-arbitrage price
is the strictly positive convex combination of financial returns. Accordingly, take a
no-arbitrage price. Using the Cass trick we obtain an equilibrium. Conversely, for
any financial equilibrium, under the assumption that the utility functions are strictly
increasing, the first order conditions show that an equilibrium asset price is a no-
arbitrage price.

Remark 6. When we use the utility functions and production functions, we can skip
the use of Kakutani Theorem. This theorem is required when the utility functions
or the production functions are not strictly concave, or instead of utility functions
and production functions we have preference orders for the consumers and production
sets. In these cases, the demands of the consumers or of the firms are not necessarily
single valued. They are upper semicontinuous correspondences with convex compact
values. However, if the utility functions and the production are only concave, we
can approximate them by a family of strictly concave utility functions and production
functions as follows

For ε > 0, define uiε(x) = ui(x) + εv(x) , F j
ε (k) = F j(k) + εG(k)

where ε > 0, v and G are strictly concave.
For any ε > 0 we get an equilibrium

(
(xi∗(ε))i=1,...,I , (y

j∗(ε))j=1,...,J , p
∗(ε), q∗(ε)

)
. Let

ε go to zero. It is easy to prove that the limit of this list constitutes an equilibrium
for the initial economy.
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4 Conclusion

In this paper, we have established that Sperner lemma can be used as a powerful tool
for studying the existence of a general equilibrium. This allow us to skip the use of
either Brouwer and Kakutani fixed point theorems or Gale-Nikaido-Debreu lemma.
In doing so, we first pointed out these theorems and lemma can be proved using solely
Sperner lemma. For a demonstration of possible applications of this new approach in
general equilibrium models, we have separately studied competitive economies with
either production or financial assets respectively. We have successfully provided novel
proofs for the existence of competitive equilibrium using Sperner lemma for each case.
Since Brouwer theorem was proved in 1910, Sperner lemma in 1928, from our paper,
may we say that Kakutani theorem might be proved before 1941 (Kakutani, 1941),
and the existence of general equilibrium before the years of 1950? In any case, one
cannot change History.

We hope that our paper provides an important first step towards strengthening
mathematical background for the analysis of general equilibrium models.
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Brouwer, L.E.J. (1911), Über Abbildung von Mannigfaltigkeiten, Mathematische An-
nalen 71, pp. 97–115.

Border, K. C. (1985), Fixed point theorems with applications to economics and game
theory, Cambridge University Press.
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