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Summary

As the amount of economic and other data generated worldwide increases vastly,
a challenge for future generations of econometricians will be to master efficient
algorithms for inference in empirical models with large information sets. This
Chapter provides a review of popular estimation algorithms for Bayesian inference
in econometrics and surveys alternative algorithms developed in machine learning
and computing science that allow for efficient computation in high-dimensional
settings. The focus is on scalability and parallelizability of each algorithm, as
well as their ability to be adopted in various empirical settings in economics and
finance.
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1. Introduction and background

The purpose of this review is two-fold. The first aim is for this to be an accessible

reference of various algorithms that economists can use for inference problems in the Big

Data era. The second aim is to introduce methods and algorithms developed outside

economics (e.g. computing science, machine learning, engineering) and discuss how

economists can benefit from this wealth of work done by other scientists. The primary

focus is on Bayesian algorithms, even though in many cases the algorithms analyzed are

appropriate for maximum likelihood inference. Bayesian methods have been traditionally

used in econometric problems that either involve complex likelihood structures or a

large number of variables relative to observations. Such examples are the class of

dynamic stochastic general equilibrium (DSGE) models, panel data with fixed effects

or cross-sectional data with many predictors (e.g. growth regressions). In particular,

Monte Carlo methods have allowed to simplify even the toughest of inference problems.

However, existing Monte Carlo techniques such as the Gibbs sampler or Metropolis-

Hastings algorithms are inherently demanding and can quickly hit a computational

bottleneck. Therefore, a major question that this review attempts to answer is the

following: what other options are there for speeding up Bayesian inference when faced

with high-dimensional models and data?

The starting point for Bayesian estimation and computation is Bayes rule

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

, (1)

where θ represents the parameters of our chosen model we want to estimate, p(y|θ) is

the likelihood function of the specified model, p(θ) is the function of parameters before

seeing the data (prior), and p(θ|y) the distribution of the parameters after observing the

data (posterior). The quantity
∫
p(y|θ)p(θ)dθ is called the marginal likelihood and is a

constant that ensures that the posterior has a density that integrates to one.1 The idea

here is that parameters are random variables, despite the fact that Bayesian consistency

requires that in the limit (infinite observations) θ should converge to the true point

parameter θ0.

Maximum likelihood (ML) inference would require us to work only with p(y|θ),

1When one wants to calculate the posterior analytically this integral needs to be evaluated
numerically. Otherwise when sampling methods are used we might only need to know the kernel
of the posterior, in which case we simply use the expression p(θ|y) ∝ p(y|θ)p(θ).

3



however, maximizing complex functions (e.g. a high-dimensional, nonlinear likelihood)

is not a computationally trivial task. Instead, as Angelino et al. (2016) observe, the

Bayesian paradigm is about integration. The Bayesian needs integration in order to

compute marginal and conditional posteriors, prior predictive distributions (marginal

likelihoods) for model comparison and averaging, and posterior predictive distributions

for making predictions.

Needless to stress that in high dimensions integration doesn’t become

computationally more desirable than maximization used in the ML approach! So

what are the relevant Bayesian tools that a modern economist could and should

have in her toolbox in order to perform Bayesian inference in high-dimensions?

Some key estimation algorithms that econometricians and economists have been using

already for decades, are reviewed in the next Section. Subsequently, Section 3 covers

several algorithms developed in fields such as computer vision, signal processing, and

compressive sensing, among other fields that rely on analysis of high-dimensional data.

Finally, recommendations are provided on specific ways of speeding up Bayesian inference

by simplifying an econometric model in such a way that one can get “more mileage”

from Bayesian algorithms.

2. A review of Bayesian computation

2.1. Exact and approximate analytical results

2.1.1. Uniform and conjugate priors

There are only a handful of cases of prior distributions that, when multiplied by a

likelihood function, allow for analytical derivation of the posterior distribution and all

its moments. In standard linear regression settings, uniform and natural conjugate

priors allow for working with posterior distributions that belong to well known classes

(Normal, Gamma, Wishart). The uniform prior collapses to multiplying the likelihood

by a constant, such that the posterior is proportional to the likelihood, and the posterior

mode becomes identical to the maximum likelihood estimate. The natural conjugate

prior for regression models with coefficients β and variance parameter σ2 has the form

p (θ) ≡ p
(
β, σ2

)
= p(β|σ2)p(σ2). (2)
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The “unnatural” feature of the natural conjugate prior formulation is that we need

specify our prior for σ independently, but our prior opinion about β is conditional on the

values of σ. Nevertheless, such priors lead to an analytical expression for the parameter

posteriors, that is, posterior means, variances, and other moments are readily available in

closed form. This is the reason why such priors were widespread many decades ago, well

before cheap and strong computing became available. Interestingly, recent econometric

papers have revived interest in using such simple priors, by exploiting their simplicity

in order to estimate effortlessly large vector autoregressions (VARs) with hundreds of

thousands of coefficients; see the discussion in Korobilis and Pettenuzzo (2019).

2.1.2. Normal and Laplace approximations

In more complex settings where conjugate priors cannot be defined, the posterior can

sometimes be approximated by a Normal distribution. According to the Bayesian

central limit theorem, under certain conditions, the posterior distribution p (θ|y) is

asymptotically Normal. The Bernstein-von Mises theorem states that the posterior

distribution is asymptotically independent of the prior distribution, thus, giving further

justification to a Normal approximation of the posterior distribution.

Laplace (1774) was the first to argue that for any continuous posterior that is smooth

and well-peaked around its point of maxima (mode), a Normal approximation is a

sensible choice. First, note that if θ⋆ = arg max
θ∈Θ

p (θ|y) is the maximum of the posterior

function, then this will also be the maximum of the log-posterior h (θ) = log (p (θ|y)).

Then a second-order Taylor series expansion of the log-posterior around θ⋆ gives

h (θ) ≈ h (θ⋆) + ḣ (θ⋆) (θ − θ⋆) − 1

2
(θ − θ⋆)′ ḧ (θ⋆) (θ − θ⋆) ,

≈ const− 1

2
(θ − θ⋆)′ ḧ (θ⋆) (θ − θ⋆) ,

(3)

where ḣ (θ⋆) and ḧ (θ⋆) are the first and second derivatives of the log-posterior function.

Given that θ⋆ is a maximum, it follows that ḣ (θ⋆) = 0, which justifies the simplification

in the second row of equation (3). Similarly, ḧ (θ⋆) is positive definite, which implies

that the log-posterior is proportional to a Normal kernel. Equivalently, by taking the

exponential function on both sides of the expression in equation (3) we have

p (θ|y) = exp (h (θ)) ∼ N
(
θ⋆, ḧ (θ⋆)

)
, (4)
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which provides a justification for a Normal approximation to the posterior. Therefore,

instead of integrating to find the posterior, the Bayesian inference problem becomes

an optimization one: once we find θ⋆ and ḧ (θ⋆), we have everything we need in

order to describe the (approximate) posterior analytically.2 The approximation error

of the Laplace approach is O
(
N−1/2

)
. If the posterior is asymmetric or skewed, then

including higher-order derivatives of h (θ) in the Taylor series expansion can improve

the approximation (Lindley, 1980). However, evaluating numerically such terms for the

log-posterior function can be impractical computationally. Laplace approximations are

fast, accurate and easy to implement. Nevertheless, in high-dimensional problems it

becomes difficult, if not impossible, to numerically evaluate the joint posterior mode

because the posterior function could be too complex and multi-modal.

2.1.3. Bayesian Quadrature and Monte Carlo

Assuming that the parameter vector θ has K elements, Naylor and Smith (1982) note

that the marginal posterior of θi, i = 1, ..., K, is of the form

p (θi|y) =

∫
p(y|θ)p(θ)dθj 6=i, (5)

where dθj 6=i denotes integration over the K − 1 terms θj, j = 1, ..., K for j 6= i. As

discussed later in this review, many modern Bayesian machine learning algorithms

exploit this result and work with the marginal posterior distribution. This is because

the K marginals p (θi|y) can be trivially processed in parallel using modern multi-core

systems. Of course, this was not the initial intention of the early work of Naylor and

Smith (1982). Rather their focus on the marginal posterior in equation (5) was driven by

their desire to use iterative quadrature methods for estimating such integral. Naylor and

Smith (1982) in particular suggest an adaptive Gauss-Hermite quadrature, while others

have proposed Gaussian process (GP) priors3 leading to the “Bayesian quadrature”

algorithm. Alternatively, the integral in equation (5) can be evaluated using Monte

Carlo Integration. Rasmussen and Ghahramani (2003) argue that classical Monte Carlo

estimators violate the Likelihood Principle and instead propose a Bayesian Monte Carlo

procedure.

2As with maximum likelihood or maximum a-posteriori (MAP) inference (see subsection 3.4) one
can use a range of well-known numerical optimization routines to find the posterior mode θ⋆ (e.g.
quasi-Newton methods).

3GP priors are priors over functions and their values.
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2.2. Importance sampling

A natural question is what should a Bayesian do if she derives an expression for the

posterior distribution that is not in a form that she recognizes or can easily be sampled

from (e.g. Normal, Bernoulli, Gamma or any other distribution that we can sample

from easily). Under this scenario, importance sampling offers a very intuitive and simple

solution: if you do not recognize p(θ|y), choose instead a “proposal distribution” q(θ)

that is easy to sample from and convert its samples into samples from the desired

density p(θ|y). Assume we collect n such draws, θ̂(1), ..., θ̂(n) ∼ q. Next, estimate weights

w(i) = p(θ̂(i)|y)
q(θ̂(i))

,4 for i = 1, ..., n, and use them to obtain the importance weighted estimator

θ̃ =

∑n
i=1 w

(i)θ̂(i)∑n
i=1 w

(i)
. (6)

As long as the support of q contains the support of p(θ|y), it can be shown that θ̃

converges to E (θ|y); see Geweke (1989) for detailed results. Unfortunately, when θ

is high-dimensional it can be very hard to find a q that meets this condition, hence

importance sampling becomes harder to implement in very large models.

2.3. Metropolis-Hastings algorithm

Metropolis-Hastings is a class of Monte Carlo algorithms based on accept/reject

sampling, that extends ideas in importance sampling. Assume we have obtained S

samples from a proposal distribution q and further assume that the (i− 1)th sample we

generated, denoted by θ̂(i−1), is indeed a sample from p(θ|y). Finally, denote with θ̂⋆ the

i-th candidate sample from q. Then θ̂⋆ is accepted with probability

α
(
θ̂⋆, θ̂(i−1)

)
= min

{
1,

p(θ̂⋆|y)q(θ̂(i−1)|θ̂⋆)
p(θ̂(i−1)|y)q(θ̂⋆|θ̂(i−1))

.

}
(7)

If the acceptance ratio α is larger than a random draw u from a Uniform(0, 1) then we

accept the draw and set θ̂(i) = θ⋆, otherwise we discard it and set θ̂(i) = θ̂(i−1).

In order to guarantee that draws θ̂(i) are samples from the target posterior p(θ|y) we

4It is important to note that, henceforth, p(x) denotes a distribution function for random variable x,
and p(x̂) denotes the same distribution p evaluated at the value x̂. The latter is going to be a number
(probability), and the difference between the two expressions stems from the fact that once values x̂ are
sampled (observed), these are not random variables any more.
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aim to approximate, we need several desirable features for this chain such as irreducibility

and aperiodicity. Chib and Greenberg (1995) offers an early, accessible reference to

Metropolis-Hastings. Applications of the MH algorithm are numerous in economics, with

most notably its use in nonlinear state-space formulations for the purpose of estimating

dynamic stochastic general equilibrium (DSGE) models. As with importance sampling,

the Metropolis-Hastings algorithm can become inefficient in very large dimensions, with

low rates of acceptance, poor mixing of the chain and highly correlated draws.

2.4. Gibbs sampler

With the Gibbs sampler the aim is to sample from the conditional posterior, that is, the

posterior of each parameter conditional on all other model parameters being fixed to a

known value. Assume that θ has n elements or blocks, θ1, ..., θn, e.g. in the most plain

univariate regression with one regressor this would be θ1 = β and θ2 = σ2. Thanks to a

straightforward application of Bayes Theorem, it holds that samples from the conditional

posteriors are also samples from the joint parameter posterior

p(θj|θ1, ..., θj−1, θj+1, ..., θn, y) =
p(θ1, ..., θn|y)

p(θ1, ..., θj−1, θj+1, ..., θn|y)
∝ p(θ1, ..., θn|y) ≡ p(θ|y).

(8)

The conditional posterior for each θj is proportional to the joint posterior simply

because the denominator is a constant (all θk for k 6= j are conditioned upon and

are known/fixed, hence, p(θ1, ..., θj−1, θj+1, ..., θn|y) is the value of the p.d.f.). The Gibbs

sampler can be viewed as a special case of Metropolis-Hastings algorithms where every

draw is accepted with probability one: if we assume that the conditional posterior

p(θj|θ1, ..., θj−1, θj+1, ..., θn, y) ∀ j is the proposal density q, then it is trivial to show

via equation (7) that α = min {1, 1}.

The Gibbs sampler is probably the most user-friendly among the class of MCMC

algorithms. It simplifies computation of some complex econometric and statistical

models that would otherwise be extremely hard to estimate with maximum likelihood.

Deriving a conditional posterior involves an expression for a parameter θj by keeping

other parameters fixed (to their last sampled values), an idea that is most useful in

nonlinear and latent parameter models. For instance, consider the example a Markov

switching autoregression (AR) for measuring business cycles: conditional on knowing

the indicator variables indexing the Markov states, Gibbs sampler inference on the

autoregressive coefficients and the variance parameter is identical to that of the standard

8



AR model. Furthermore, more complex nonlinear problems can be easily transformed

to linear, Gaussian problems that can be approximated trivially by the Gibbs sampler;

see, among others, the well-known estimator for stochastic volatility models of Kim et

al. (1998).
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3. Bayesian methods in the Big Data Era

As we adjust to the new reality of having larger amounts of data available, the Bayesian

computation methods that we have briefly reviewed in the previous section also need to

be adapted and improved. In particular, as the data size, number of features, size of the

models, and model space all growth, it becomes computationally harder to evaluate the

likelihood function, visiting all the parameters in the model, while at the same time using

all the data. At the same time, the algorithms that we discussed previously also start

to experience slower mixing rates. One may therefore be sceptical about the possibility

of adapting Bayesian methods to keep up with this trend. However, it is worth noting

that Bayesian methods features a number of important advantages that make them

particularly appealing even in the Big Data Era. First and foremost, Bayesian methods

offer the flexibility and adaptivity required to deal with a reality in which the volume of

the data grows. The updating rule which is at the core of Bayesian methods is sequential

in nature and suitable for dealing with constantly growing data streams.

The main complication of applying Bayesian methods to big data problems has to do

with the computational bottlenecks that the previously described algorithms face, and

for that reason existing literature has been hard at work developing new (approximate)

methods to deal with this evolving reality. In this Section, these issues are discussed in

more detail and some of the solutions that have been proposed in the literature to deal

with the increasing amounts of data and the larger computational costs that researchers

face when implementing Bayesian methods, are reviewed.

3.1. Speeding up MCMC

The first step towards making Bayesian computation feasible in a high-dimensional

setting, is to use approximations that replace computationally intensive steps of MCMC

algorithms. One solution proposed in the literature is to use approximate samplers that

use data sub-samples (minibatches) rather than the full data set. Examples include

subsampling Markov chain Monte Carlo (MCMC) implementations; see Bardenet,

Doucet, and Holmes (2017) for an excellent review of these approaches. The basic

idea is to to estimate the likelihood function for n observations from a random subset of

m observations, where m ≪ n. With conditionally independent observations, one can
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rewrite the log-likelihood l(θ) = log p (y| θ) as follows

l(θ) =
n∑

i=1

li (θ) (9)

where li (θ) = log p (yi| θ) denotes the log-likelihood contribution of the i-th observation

in the sample.5 As it turns out, estimating (9) using simple random sampling where

any li (θ) is included with the same probability, generally results in a very large

variance. This problem could be eliminated if one were to re-weight the draws using

so called probability proportional-to-size sampling, but unfortunately computing these

weights can be computationally very expensive. One way to sidestep this computational

bottleneck is to make the {li (θ)}ni=1 more homogeneous by using control variates so

that the population elements are roughly of the same size. In this way, a simple random

sampling would then expected to be efficient. This is the approach taken by Quiroz et

al (2019), who use control variates to obtain a highly efficient unbiased estimator of the

log-likelihood, with a total computing cost that is much smaller than that of the full

log-likelihood in standard MCMC. They show that the asymptotic error of the resulting

log-likelihood estimate is negligible even for a very small number of random samples

m (m ≪ n), and demonstrate that (i) sub-sampling MCMC is substantially more

efficient than standard MCMC in terms of sampling efficiency; and (ii) their approach

outperforms other subsampling methods for MCMC proposed in the literature, including

those listed at the beginning of this section.

Sub-sampling has important implications for MCMC inference. For example, in the

standard MH sampler we accept a proposal draw with probability u ∼ Uniform(0, 1) if

and only if

α =
p(θ⋆|y)q(θ̂(i−1)|θ̂⋆)

p(θ̂(i−1)|y)q(θ̂⋆|θ̂(i−1))
> u, (10)

where we remind θ̂(i−1) is the draw we have accepted in the previous iteration, and θ̂⋆

the candidate draw in the current iteration, which will be accepted with probability

α. Evaluating repeatedly (in a Monte Carlo fashion) the expression in equation (10)

using high-dimensional posterior densities, is quite cumbersome. By rearranging terms

in this equation, taking logarithms, and splitting the likelihood function over the N

5The assumption that the total log-likelihood can be decomposed into a sum of terms where each
term depends on a unique piece of information is not overly restrictive. It applies to longitudinal
problems but also to certain time series problems such as AR(p) processes.
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observations in the data y we have

log

{
p(y|θ̂⋆)
p(y|θ̂(i−1)

}
> log

{
u
q(θ̂⋆|θ̂(i−1))

q(θ̂(i−1)|θ̂⋆)

}
⇒ (11)

1

N

N∑

n=1

log

{
p(yn|θ̂⋆)
p(yn|θ̂(i−1)

}
>

1

N
log

{
u
q(θ̂⋆|θ̂(i−1))

q(θ̂(i−1)|θ̂⋆)

}
⇒ (12)

1

N

N∑

n=1

λn(θ̂⋆, θ̂(i−1)) > c(u, θ̂⋆, θ̂(i−1)). (13)

Therefore, instead of sampling the full MH step in (10), one can subsample the log-

likelihood ratio quantity λn(θ̂⋆, θ̂(i−1)) and subsequently perform the approximate test

λ⋆
n(θ̂⋆, θ̂(i−1)) > c(u, θ⋆, θ̂(i−1)) in order to decide whether to accept θ̂⋆ or not.

3.2. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) methods offer an alternative solution to the limitation

of Metropolis-Hastings algorithm in exploring efficient high-dimensional posterior

distributions. In particular, by carefully exploiting the differential structure of the target

probability density, HMC provides an automatic procedure that yields a more efficient

exploration of the probability space in such high dimensions. More specifically, HMC

uses an approximate Hamiltonian dynamics simulation based on numerical integration

which is then corrected by performing a Metropolis acceptance step.

In order to sample from the K-dimensional posterior distribution p(θ|y), HMC

introduces an independent K-dimensional auxiliary variable δ with density p(δ|θ), which

leads to the joint density

p(θ, δ) = p(δ|θ)p(θ) (14)

In most applications, including Stan, p(δ|θ) is specified to be independent from the

parameter vector θ, for example using a multivariate normal distribution, i.e. δ ∼
N(0,M), which leads to

p(θ, δ) = p(θ)N(0,M) (15)

Let H(θ, δ) denote the Hamiltonian function, i.e. the negative joint log-probability,
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H(θ, δ) = − log p(θ, δ), and similarly let L(θ) denote the logarithm of the target density

p(θ). It can be shown (see Girolami and Calderhead, 2011) that

H(θ, δ) = −L(θ) +
1

2
log

{
(2π)K |M |

}
+

1

2
δ′M−1δ (16)

In practice, given a candidate draw δ(i) from the N(0,M) auxiliary density and the

current draw θ(i), the derivatives of H(θ, δ) with respect to θ and δ,

∂H

∂θ
= −L

′(θ)

∂H

∂δ
= M−1δ

(17)

give rise to the transition θ(i) → θ∗ and δ(i) → δ∗. Next, the proposed θ∗ (and δ∗) are

retained with probability

min
{

1, exp
(
H

(
θ(i), δ(i)

)
−H (θ∗, δ∗)

)}
(18)

If the proposal is not accepted, the previous parameter value is returned for the next

draw and used to initialize the next iteration.

3.3. Parallelizing MCMC

MCMC methods are characterized by the Markov property, that is, the fact that we

need to first assess the current sample θ̂(i) in order to decide whether θ̂(i+1) is a possible

sample from the target posterior. Therefore, due to this sequential dependence between

iterations, it seems an oxymoron to attempt to parallelize across MCMC iterations. As

a consequence, a natural first step toward parallelization – assuming we have a high-

dimensional parameter θ that can be split into r independent blocks θr, r = 1, ..., R –

would be to parallelize within each iteration. That way we can compute each p(θr|y)

in a separate worker. Malewicz et al. (2010) demonstrate such an algorithm in what is

known as Google Pregel. However, Scott et al. (2016) note that not only such algorithms

have very bad convergence rates, they are also extremely inefficient once one factors in

computing costs and the marginal reductions in computing times.6 Similarly, Gonzalez

et al. (2011) propose two parallel versions of the Gibbs sampler with good convergence

6For the Pregel environment in particular, a ten-fold increase in computing capacity only reduces
computation time by a factor of two.
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guarantees, namely the Chromatic sampler and the Splash sampler. However, such

parallel samplers are limited by the fact that there must be frequent (i.e. at each

MCMC iteration) communication between the workers.

Instead of breaking a high-dimensional vector of parameters θ into smaller sub-

vectors, Scott et al. (2016) propose to break the data y into R smaller blocks that can be

distributed to an equivalent number of workers. This means that the high-dimensional

posterior can be written as

p(θ|y) =
R∏

r=1

p(θ|yr) ∝
R∏

r=1

p(yr|θ)p(θ)1/R, (19)

where the prior is broken into R independent components, p(θ) =
∏

R p(θ)1/R such that

the total amount of prior information in the system is not affected by our decision to

break y in R blocks.7 Assuming for simplicity that all workers each produce S draws of

θ, then the consensus posterior will comprise S draws that are weighted combinations of

the R×S draws from all workers. Angelino et al. (2016, Section 4.2.1) provide citations

to further studies that implement similar ideas towards the design of parallel MCMC.

An alternative way to exploit the idea of partitioning the data into R non-overlapping

subsets yr, r = 1, ..., R, is to use the Weierstrass transform. For a function f(θ) the

Weierstrass transform is a convolution of a Gaussian density with standard deviation h

and f(θ), and is of the form

Whf(θ) =

∫ +∞

−∞

1√
2πh

exp

{
−(θ − µ)2

2h2

}
f(µ)dµ. (20)

Whf(θ) can be thought of as a smooth approximation to f(θ).8 Applying this transform

7One critique of this approach is that the prior may not provide enough regularization for each
separate computation.

8When h → 0, the transformation Whf(θ) converges to f(θ).
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to the posterior density, we get

p(θ|y) =
R∏

r=1

p(θ|yr) ≈
R∏

r=1

Whp(θ|yr) (21)

=
R∏

r=1

∫ +∞

−∞

1√
2πh

exp

{
−(θ − µr)

2

2h2

}
p(µr|yr)dµr (22)

∝
∫ +∞

−∞

R∏

r=1

exp

{
−(θ − µr)

2

2h2

}
p(µr|yr)dµr. (23)

This last expression shows that after applying the Weirstrass transform, the posterior

of θ can be viewed as the outcome of marginalizing latent parameters µ1, ...., µR from

an augmented posterior p(θ, µ1, ...., µR|y). This enables a subset-based Gibbs sampling,

that is highly parallelizable, where we can first sample θ|µr, y ∼ N(µ̂, h2) and then

µr|θ, y ∼ 1√
2πh

exp
{
− (θ−µr)2

2h2

}
p(µr|yr), see Wang and Dunson (2013) for more details

on this scheme.

Other avenues of parallelizing MCMC do exist and their success depends on the

inference problem at hand. For example, in problems with nonlinear coefficients whose

posterior does not have a closed form expression, the Griddy Gibbs sampler of Ritter

and Tanner (1992) can be used in order to evaluate such parameters in a grid (instead

of sampling from their highly complex conditional posterior). The approximation in

the Griddy-Gibbs sampler can be trivially parallelized, although the full algorithm

itself can become very inefficient in high-dimensional models. Other examples include

the Adaptive Griddy-Gibbs (AGG) and the Multiple-Try Metropolis (MTM) of Liu et

al. (2000). Another related issue in MCMC methods is that of whether one needs

to run a very long chain with as many iterations as (computationally) possible, or

follow the advice of Gelman and Rubin (1992) and run several chains in parallel.

Assuming random starting points, running chains in parallel allows to assess and speed

up convergence by combining their output. Of course, when such chains run in parallel

but are independent, the gains in efficiency are low. The Interchain Adaptive MCMC

algorithm (Craiu et al., 2009) allows for parallel chains to interact within an adaptive

Metropolis setting, such that substantial speed up in convergence is achieved. The

adaptive element in this algorithm relies on the fact that each chain learns from its

past, but also from the past iterations of other chains. Using this algorithm, Solonen et

al. (2012) quote dramatic speed up in convergence by using only 10 chains in parallel.
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The “Affine-Invariant” Ensemble MCMC sampler of Goodman and Weare (2010) also

involves parallel processing of chains in batches with efficiency gains in high dimensions.

However, such samplers processing non-independent chains in parallel are restricted by

the fact that communication between workers in a cluster must be frequent. Therefore,

such samplers are slower than respective single-core MCMC samplers per iteration, and

computational gains from processing parallel chains only come from the fact that total

convergence is achieved using a lower number of iterations.

3.4. Maximum a posteriori estimation and the EM algorithm

Despite the increased availability of methods for making MCMC faster, there are cases

where sampling from the full posterior might not be feasible or desired. As long

as parameter uncertainty is not important for a specific empirical problem, one can

work with point estimates that summarize some important features of the posterior

distribution. In order to proceed with a point estimate θ̂ of the unknown parameters θ,

we can introduce a cost function C that we aim to minimize. Therefore, the Bayesian

equivalent of classical point estimation takes the following form

arg min
θ∗

∫
C(θ − θ∗)p(θ|y)dθ. (24)

It is trivial to show that when using the quadratic cost function C(θ − θ∗) = (θ − θ∗)2,

equation (24) is minimized for θ̂ =
∫
θp(θ|y)dθ, which is the posterior mean and is also

known as the minimum mean square error (MMSE) estimator. Similarly, the absolute

cost function C(θ − θ∗) = |θ − θ∗| leads to the posterior median as the optimal point

estimate.

An alternative point estimate can be obtained using the hit-and-miss cost function

of the form

C(θ − θ∗) =

{
1, if |θ − θ∗| ≥ δ

0, if |θ − θ∗| < δ
(25)

for δ very small. Inserting this cost function in equation (24) we obtain the solution

θ̂ = arg max
θ∗

p(θ|y), (26)

which is the posterior mode, also known as the maximum a posteriori (MAP) estimator.

Given (from Bayes rule) that p(θ|y) = p(y|θ)p(θ), it becomes apparent that Maximum
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Likelihood inference is a special case of MAP estimation with the uniform prior p(θ) ∝ 1.

MAP methods have been used in Bayesian inference for several decades. In a

seminal paper, Tipping (2001) derives a MAP estimate of the parameters of a support

vector machine model under a “sparse Bayesian learning (SBL)” prior. This prior for a

parameter θ is a special case of a hierarchical Bayes structure where θ depends one some

unknown hyperparameters ξ that are random variables and have their own prior. Such

hierarchical priors are used extensively nowadays in Bayesian analysis as a means of

imposing shrinkage and computation is typically tackled by means of the Gibbs sampler

(see Korobilis, 2013, for more details). In high-dimensional settings, however, sampling

is not always feasible and Tipping (2001) derives a MAP estimator for the SBL prior

using type-II maximum likelihood methods.9

Of course there are numerous ways one can solve the convex optimization problem

in equation (26), and we can’t review all of them in such a short review. For example,

Green et al. (2015) review proximal algorithms for obtaining the MAP estimate in

high-dimensional settings; see also Parikh and Boyd (2013). Nevertheless, among all

possible algorithms here we distinguish the EM algorithm. One reason for doing so is

because the EM algorithm can be thought of as the optimization equivalent of the Gibbs

sampler. Another important reason is that the EM algorithm is a unifying inference tool

that nest several other approximating algorithms, such variational Bayes and message

passing algorithms. There are several examples of high-dimensional MAP inference using

the EM algorithm, and most notably we mention Rockova and George (2014).

3.5. Variational Bayes and Expectation Propagation

3.5.1. Variational Bayes

As in MAP inference, the main idea behind variational Bayes is to use optimization

instead of sampling. First we introduce a family of densities q(θ) and subsequently we

try to find a certain density q⋆(θ) that minimizes the Kullback-Leibler (KL) divergence

9The name “type-II maximum likelihood” is a bit deceiving, as this method finds the value of the
hyperparameter ξ that maximizes the data marginal likelihood and not the likelihood function; see
Berger (1985).
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to the exact posterior p(θ|y). Mathematically we want to minimize the following function

q⋆(θ) = arg min
q(θ)

KL(q‖p) (27)

= arg min
q(θ)

∫
q(θ) log

{
q(θ)

p(θ|y)

}
dθ, (28)

where it holds that KL(q‖p) ≥ 0, with value equal zero only when q(θ) is identical to the

true posterior p(θ|y). It can be shown that this minimization problem is equivalent to

finding a q(θ) that maximizes the marginal likelihood. This is because for the logarithm

of the marginal likelihood holds

log (p(y)) = log (p(y))

∫
q(θ)dθ =

∫
q(θ) log(p(y))dθ (29)

=

∫
q(θ) log

{
p(y, θ)/q(θ)

p(θ|y)/q(θ)

}
dθ (30)

= KL +

∫
q(θ) log

{
p(y, θ)

q(θ)

}
dθ, (31)

which, given that KL ≥ 0, gives

p(y) ≥ exp

(∫
q(θ) log

{
p(y, θ)

q(θ)

}
dθ

)
. (32)

Therefore, the VB optimization problem becomes that of maximizing the lower bound

for the marginal likelihood. Note that this problem is different from MAP because here

we are looking to optimize with respect to a function q(θ) and not just the random

variable θ. For that specific reason, this optimization problem for the functional q(•)

can be solved iteratively using calculus of variations. Before we do so, it is convenient

to split θ into J independent blocks, i.e. q(θ) =
∏J

j=1 q(θj).
10 Then we can show that

p(y) can be maximized by iterating sequentially through

q⋆(θ1) ∝ exp

(∫
log p(y, θ)p(θ(−1))dθ(−1)

)
, (33)

...

q⋆(θJ) ∝ exp

(∫
log p(y, θ)p(θ(−J))dθ(−J)

)
, (34)

10This decomposition is called the mean-field approximation, a term originating from Physics.
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where θ(−j) denotes θ with its jth element removed. It turns out that this iterative

scheme is very similar to the EM algorithm. Each integral provides the expectation

of the joint posterior with respect to the density p(θ(−j)) for all j = 1, ..., J . Loosely

speaking, this scheme also resembles a Gibbs sampler. However, instead of sampling, we

fix θ(−j) to their posterior mean values.

3.5.2. Expectation Propagation

Expectation propagation (EP) is related to variational Bayes, but it can be considered

as a separate class of algorithms. In contrast to VB, EP attempts to minimize the

“reverse” KL divergence measure

KL =

∫
p(θ|y) log

{
p(θ|y)

q(θ)

}
dθ. (35)

We showed previously that the variational Bayes optimization problem leads to

calculating expectations with respect to the proposal density q(θ) (after we split θ into

independent blocks). In contrast, the EP optimization problem shown in equation (35)

can be thought of as requiring to take expectation with respect to the unknown posterior

p(θ|y). For that reason the EP optimization approach is different to VB.

First, we assume that the joint distribution can be decomposed into N “factors” of

the form

p(θ, y) =
N∏

n=1

fn(θ). (36)

Next we need to choose q(•) based on the exponential family of distributions, and assume

that this is also decomposed into N factors of the form

q(θ) =
1

Z

N∏

n=1

f̃n(θ), (37)

where Z is a normalizing constant that makes the distribution integrate to one. The

idea is to process the EP optimization problem for each of the N factors separately.11

Each factor f̃n(θ) is refined iteratively by making q⋆(θ) ∝ f̃n(θ)
∏N

j=1,j 6=n f̃j(θ) a closer

approximation to p⋆(θ) ∝ fn(θ)
∏N

j=1,j 6=n f̃j(θ). Then f̃n(θ) is removed from the

11By splitting the problem into N factors/batches, it should become apparent that EP algorithms
can be trivially parallelized.
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approximating distribution by calculating q⋆⋆(θ) = q(θ)/f̃n(θ) and we define p⋆⋆(θ) =
1
Z⋆fn(θ)q⋆⋆(θ). In the final step of the iterative scheme, the factor f̃n(θ) is updated such

that the sufficient statistics of q(θ) match those of p⋆⋆(θ).

While the description provided is very generic, implementations of expectation

propagation can take several interesting forms depending on the application. The loopy

belief propagation algorithm that is used to compute marginal posterior distributions

in Bayesian networks is a special case of EP, as are other cases of the general class of

message passing algorithms.12 Such algorithms are at the forefront of statistical and

machine learning research in the Big Data era.

3.6. Approximate Bayesian Computation

In high-dimensional applications, with high complexity and volume of available data,

calculation of the likelihood or the posterior might be computationally intractable or

closed-form expressions might not be available. There are also cases in fields such

as image analysis or epidemiology where the normalizing constant of the likelihood is

unknown. Approximate Bayesian Computation (ABC) is specifically appropriate for

use in such cases. Therefore, the argument in favor of ABC is not only that it is more

computationally efficient than MCMC methods, rather it can be used in many complex

problem when application of MCMC is infeasible.

A basic version of ABC, that provides n samples of the parameter of interest θ, can

be summarized with the following pseudo-algorithm

Basic ABC rejection sampler

for i = 1 : n

repeat

✯ Generate a θ̂⋆ randomly from the prior p(θ)

✯ Generate randomly data z using the specified econometric model, with θ

fixed to the generated value θ̂⋆

until ρ (z, y) ≤ ǫ

12In computing science message passing is the concept of depicting graphically, typically using
graphical models, how the parameters and the factors (functionals) interact with each other. The
resulting class of algorithms can be extremely powerful and trivially parallelizable; see Korobilis (2020)
for more details.
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set θ̂(i) = θ̂⋆

end for

In this algorithm, ρ (z, y) is a distance function (e.g. Euclidean) measuring how close

the generated data z are relative to the observed data y, and ǫ → 0. In the case

of high-dimensional data, the probability of generating a z that is close to y goes to

zero. Therefore, in practice ABC algorithms evaluate the distance between summary

statistics of z and y. In this case we would evaluate instead the distance function

ρ (η (z) , η (y)) ≤ ǫ, where η(•) is a function defining a statistic which most often is not

sufficient. Using summary statistics may result in loss of accuracy, especially in cases

where not many summary statistics of a dataset are available.

The above scheme samples θ from the approximate posterior

pǫ (θ|y) =

∫
pǫ (θ, z|y) dz (38)

=

∫
p(θ) × p (z|θ) I (ρ (η (z) , η (y)) ≤ ǫ)

p(z)I (ρ (η (z) , η (y)) ≤ ǫ)
dz (39)

≈ p(θ)p(y|θ)

p(y)
≡ p(θ|y), (40)

where I (A) is a function that takes the value one if expression A holds, and it is zero

otherwise.

An obvious problem with this scheme is that it heavily relies on the choice of prior.

Particularly in high-dimensional settings, using simulated values from the prior p(θ) is

inefficient and results in proposals that are located in low probability regions of the true

posterior we want to approximate. In this case we can define the following MCMC-ABC

algorithm, which is a likelihood free MCMC sampler

MCMC-ABC algorithm

for i = 1 : n

repeat

✯ Generate θ̂⋆ from a proposal distribution q
(
θ|θ(i−1)

)

✯ Generate z from the likelihood p
(
y|θ̂⋆

)
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✯ Generate u from U[0,1] and compute the acceptance probability

α
(
θ̂⋆, θ̂(i−1)

)
= min



1,

p(θ̂⋆)q
(
θ̂(i−1)|θ̂⋆

)

p(θ̂(i−1))q
(
θ̂⋆|θ̂(i−1)

)





if

u ≤ α
(
θ̂⋆, θ̂(i−1)

)
and ρ (z, y) ≤ ǫ, set θ̂(i) = θ̂⋆

else

set θ̂(i) = θ̂(i−1)

end if

end for

The algorithm is not literally speaking “likelihood-free” as the likelihood is used in order

to generate z. However, the likelihood is not used in order to calculate the acceptance

probability α
(
θ̂⋆, θ̂(i−1)

)
.

ABC can be extended in several interesting ways, for example combined with

sequential Monte Carlo, or they can incorporate model selection in a trivial way.13 As

with variational Bayes, ABC has experienced immense growth in mainstream statistics

over the past two decades, and our prediction is that it will also soon be embraced by

economists in order to solve complex problems.14

13The posterior probability of a given model can be approximated by the proportion of accepted
simulations given the model.

14See for example Frazier, Maneesoonthorn, Martin and McCabe (2019) for an application of ABC
algorithms in producing financial forecasts in computationally efficient ways.
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4. Non-algorithmic ways of speeding up Bayesian inference

The purpose of this Section is to build further intuition by demonstrating various

ways to approximate a high-dimensional inference problem simply by re-writing the

likelihood and facilitating computation.15 There are specific problems where just by

simply re-writing the likelihood in an equivalent form we can gain a lot in computation

– especially when Bayesian sampling methods are used to approximate the posterior

(such as traditional MCMC methods). Of course there are numerous examples of

such approaches in the literature, and we only selectively quote some tools we have

favored ourselves while trying to develop new estimation algorithms. We provide a few

examples from some popular classes of models in economics, namely regressions with

many predictors and large vector autoregressions.

4.1. Random projection methods

Random projection methods have been used in fields such as machine learning and image

recognition as a way of projecting the information in data sets with a huge number of

variables into a much lower dimensional set of variables. To fix the basic ideas of random

projections, let X be a T × k data matrix involving T observations on k variables where

k ≫ T . Xt is a 1 × k vector denoting the tth row of X. Define the projection matrix,

Φ, which is m × k with m ≪ k and X̃ ′
t = ΦX ′

t. Then X̃t is the 1 ×m vector denoting

the tth row of the compressed data matrix, X̃. Since X̃ has m columns and X has k,

the former is much smaller and is much easier to work with. To see how this works in a

regression context, let yt be a scalar dependent variable and consider the relationship:

yt = Xtβ + εt. (41)

If k ≫ T , then working directly with (41) is impossible with some statistical methods

(e.g. maximum likelihood estimation) and computationally demanding with others

(e.g. Bayesian approaches which require the use of MCMC methods). Some of the

computational burden can arise simply due to the need to store in memory huge data

matrices. For instance, calculation of the Bayesian posterior mean under a natural

conjugate prior requires, among other manipulations, inversion of a k×k matrix involving

15Another factor that affects computation is the choice of programming language and the way one
interacts with it. However, discussing such details is beyond the scope of our review.
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the data. This can be difficult if k is huge. In order to deal with a large number of

predictors, one can specify a compressed regression variant of (41)

yt = X̃tβ
c + εt. (42)

Once the explanatory variables have been compressed (i.e. conditional on Φ), standard

Bayesian regression methods can be used for the regression of yt on X̃t. If a natural

conjugate prior is used, then analytical formulae exist for the posterior, marginal

likelihood, and predictive density, and computation is trivial.

Note that the model in (42) has the same structure as a reduced-rank regression,

as the k explanatory variables in the original regression model are squeezed into a

small number of explanatory variables given by the vector X̃ ′
t = ΦX ′

t. The crucial

assumption is that Φ is not estimated from the data, rather it is treated as a random

matrix with its elements sampled using random number generation schemes.16 The

underlying motivation for random compression arises from the Johnson-Lindenstrauss

lemma. This states that any k point subset of the Euclidean space can be embedded

in m = O (log (k) /ǫ2) dimensions without distorting the distances between any pair of

points by more than a factor of 1±ǫ, where 0 < ǫ < 1. There are various ways to draw Φ;

most obviously we can generate this matrix from N(0,1) or a Uniform(0,1) distributions.

Alternatively we can draw Φij, the ijth element of Φ, (where i = 1, ..,m and j = 1, .., k)

from the following scheme that generates a sparse random projection

Pr
(

Φij = 1√
ϕ

)
= ϕ2

Pr (Φij = 0) = 2 (1 − ϕ)ϕ

Pr
(

Φij = − 1√
ϕ

)
= (1 − ϕ)2

, (43)

where ϕ and m are unknown parameters.17 While the remarkable properties of random

compression hold even for a single, data oblivious, random draw of Φ, in practical

situations (e.g. forecasting) we would like to ensure that we work with random

projections that are optimal in a data-rigorous sense. As long as each compressed model

projected with the matrix Φ can be estimated very quickly (e.g. using natural conjugate

16For that reason, random projection methods are referred to as data oblivious, since Φ is drawn
without reference to the data.

17The Johnson-Lindenstrauss lemma suggests that Φ should be a random matrix whose columns have
unit lengths and, hence, Gram-Schmidt orthonormalization is done on the rows of the matrix Φ.
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priors), then one should be able to generate many random projections and estimate

simultaneously many small models. Then goodness-of-fit measures can be used to assess

which compressed models (corresponding to different random projections) fits the data

better.

In summary, huge dimensional data matrices (that are too large to insert to

standard econometric models) can be compressed quickly into a much lower dimension

by generating random projections, without the cost of solving some computationally

expensive optimization problem. The resulting compressed data matrix can then be

used in a statistical model such as a regression or a vector autoregression, that can

be estimated easily with traditional estimation tools. This very general approach has

excellent potential applications in numerous problems in economics. For an application

in large vector autoregressions and for further references, see Koop et al. (2019).

4.2. Variable elimination in regression

Variable elimination or marginalization is a machine learning procedure used in graphical

models that, loosely speaking, allows (via certain rules) to break a high-dimensional

inference problem into a series of smaller problems. We can use similar ideas in a

standard regression setting in order to facilitate high-dimensional inference. Assume

that we work again with a regression model setting with p predictors, but this time

interest lies in the j-th predictor and its coefficient. We can rewrite the regression as

y = xjβj + x(−j)β(−j) + ε, (44)

where y, xj and ε are all T × 1 vectors and x(−j) is a T × (p − 1) predictor matrix

with predictor j removed. It might be the case that we are interested only in parameter

βj because this is a policy parameter. A first useful result is the one of partitioned

regression: defining the T × T annihilator matrix Mj = IT − xj

(
x′
jxj

)−1
x′
j, it is easy to

show using the algebra of partitioned matrices that β̂j, the OLS estimates of βj can be

obtained as the solution of

β̂j =
(
x′
jxj

)−1
x′
j

(
y − x(−j)β̂(−j)

)
(45)
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where the sub-vector β̂(−j) is the solution of the following regression

β̂(−j) =
(
x†′
(−j)x

†
(−j)

)−1

x†′
(−j)y

† (46)

with x†
(−j) = Mjx(−j) and y† = Mjy denoting the projections of x(−j) and y on a space

that is orthogonal to xj.

This result provides very useful intuition about the relationships between our

variables and coefficients in the OLS regression. Most importantly they can be

generalized to efficient procedures for high-dimensional inference. Consider for example

combining partitioned regression results with a penalized estimator instead of OLS. To

demonstrate this point, we consider an alternative partition of the regression. Define

the T × 1 vector qj = xj/‖xj‖, and generate randomly a matrix Qj that is normalized

as QjQ
′
j = I − qjq

′
j. This means that the matrix Q = [qj, Qj] is orthogonal, such that

multiplying both sides of (44) by Q′ gives

Q′y = Q′xjβj + Q′x(−j)β(−j) + Q′ε ⇒ (47)[
q′jy

Q′
jy

]
=

[
q′jxj

Q′
jxj

]
βj +

[
q′jx(−j)

Q′
jx(−j)

]
β(−j) + Q′ε ⇒ (48)

[
y∗

y+

]
=

[
‖xj‖

0

]
βj +

[
x∗
(−j)

x+
(−j)

]
β(−j) + ε̃, (49)

where y∗ = q′jy, y+ = Q′
jy, x∗

(−j) = q′jx(−j), x+
(−j) = Q′

jx(−j) and ε̃ = Q′ε. In this

derivation we have used the fact that Q′
jxj = Q′

jqj‖xj‖ = 0 because Qj and qj are

orthogonal. Additionally, var(ε̃) = σ2Q′Q = σ2 = var(ε) because by construction

Q′Q = I. The likelihood of the transformed regression model in equation (49) is

multivariate Normal, which means we can use standard results for conditional Normal

distributions to show that we can first estimate β(−j), σ
2 by regressing y+ to x+

(−j), and

then at a second stage obtain βj by regressing y∗ on ‖xj‖ conditional on β(−j), σ
2 being

known. This is a very useful result since now, conditional on obtaining in a first step

some estimates of β(−j), σ
2, we can estimate βj in a regression with known variance.18

Korobilis and Pettenuzzo (2019) apply these ideas to a high-dimensional VARs under a

wider class of hierarchical shrinkage priors. Considering that the exact way of calculating

marginal posteriors would involve solving numerically a p − 1-dimensional integral for

18Most importantly, we can do so in parallel for all predictors j = 1, ..., p.
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each j, doing a rotation of the form shown above, and deriving the marginal posteriors

analytically, means large gains in computation can be achieved.

4.3. Multivariate estimation equation-by-equation

Some of the most important quantitative exercises that policy-makers are interested in,

involve the vector autoregressive (VAR) model and its variants. Economic theories can

be tested reliably only in a multivariate econometric setting, and the same holds to a

large degree for measuring the impact of shocks to the wider economy. While a large

part of empirical analysis is done using VARs of say three or five variables, there is an

expanding literature that acknowledges the benefits of large VARs. In particular, small

structural VARs might not be invertible meaning that their residuals will not span the

same space as the structural shocks that macroeconomists want to identify. Therefore,

it comes to no surprise that there is an expanding and lively literature on methods for

estimating large VARs.

A vector autoregression for an 1 × n vector of variables of interest yt can be written

in the following form

yt = B0 +

p∑

i=1

yt−iBi + εt, (50)

but we can write it in familiar multivariate regression form as

yt = XtB + εt, (51)

where Xt = (1, yt−1, ..., yt−p), A = [B0, B1, ..., Bp] and εt ∼ N (0,Σ) with Σ and n × n

covariance matrix. Accumulation of parameters in VARs is quite different compared to

univariate models. A VAR with n = 3 variables, intercept terms and p = 1 lag has 18

parameters. The same VAR with n = 50 variables has 3825 parameters. The last VAR

with p = 12 has 31,325 parameters. This gives an idea of the polynomial rate at which

the number of parameters increases as n and/or p increase. The problem with VARs

proliferates if we want to use independent priors on the coefficients Bi that would allow

to shrink each of their elements independently. Doing so implies that we need to write

the VAR in seemingly unrelated regression (SUR) form, where in this form the right

hand side matrix of predictors is Z = In⊗X. For large VARs this T ×n(np+ 1) matrix

becomes so large that handling it eventually becomes computationally infeasible, despite

the fact that it is sparse and one can rely on more efficient sparse matrix calculations.
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Nevertheless, there are still simple ways to use independent priors. Koop et al. (2019)

in the context of developing random projection algorithms for large VARs, proposed to

break the VAR into a collection of n univariate equations. Using ideas from estimation

of simultaneous equation models we can transform the VAR in triangular form. Consider

the Cholesky-like decomposition of the covariance matrix, Σ = A−1D (A−1)
′

where D is

a diagonal matrix for variances, and A−1 is a uni-triangular matrix of the form

A−1 =




1 0 ... 0 0

α2,1 1
. . .

...
...

...
. . . . . . 0 0

αn−1,1 ... αn−1,n−2 1 0

αn,1 ... αn,n−2 αn,n−1 1




. (52)

Under this decomposition we can rewrite the VAR in equation (51) as

yt = XtB + ut

(
A−1D

1
2

)′
⇒ (53)

ytA = XtBA + ut, D
1
2 ⇒ (54)

yt + ytÃ = XtΓ + ut, D
1
2 ⇒ (55)

yt = XtΓ − ytÃ + ut, D
1
2 , (56)

where ut ∼ N(0, I), Γ = B × A and Ã = A− I is a lower diagonal matrix created from

A after we remove its unit diagonal elements. This is a so-called triangular VAR system

due to the fact that Ã has a lower triangular structure. It cannot be estimated as a

multivariate regression using standard linear estimators because yt shows up both on

the left-hand side and the right-hand side of the equation. However, due to the lower

triangular structure of Ã and the fact that D is diagonal the system can be estimated

equation-by-equation using simple OLS. This means that in high dimensions we can

essentially write the VAR in this form and apply any univariate regression estimator

and algorithm we like.19 More importantly, note that the last equation shows that

all contemporaneous covariances among the n VAR equations can be written as RHS

predictors −yt. This is an important implication because it shows that Ã can be treated

as a regression parameter and (given that we can estimate these equations recursively)

19Of course, note that this flexibility comes at the cost of shrinkage or variable selection being
dependent on the ordering of the variables in the VAR; see Koop et al. (2019) for a discussion.
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we can readily apply methods of the previous section to impose shrinkage also on the

VAR covariance matrix.

Finally, we can derive a similar triangular VAR that has slightly different

representation and implications for estimation. Begin with equation (51) but now rewrite

it in the form

yt = XtB + ut

(
A−1D

1
2

)′
⇒ (57)

yt = XtB + ut

((
Ã−1 + I

)
D

1
2

)′
⇒ (58)

yt = XtB + utÃ
−1D

1
2 + utD

1
2 ⇒ (59)

yt = XtB + vtÃ
−1 + vt, (60)

where vt ∼ N(0, D) and Ã−1 = A−1 − I is a triangular matrix created by removing

the identity diagonal of A−1. This system can also be estimated equation by equation,

where in equation i we use residuals from the previous i − 1 equations. This form has

different implications for designing estimation algorithms compared to the one in (56),

even though they are observationally equivalent. Equation (60) allows direct estimation

of the VAR matrices B and A−1, while equation (56) estimates functions of those, i.e.

Γ and A. Such examples show that high-dimensional inference can be approximated

by efficient transformations of the VAR model that allow to readily apply univariate

estimators which are simpler and possibly algorithmically faster.

5. Conclusions

We have attempted to provide a wide review of algorithms and methods for speeding

Bayesian inference to cope with high-dimensional data and models. Our review is very

high-level and should be seen as a first-step introduction to the various tools that a

modern econometricians need to have in their toolbox. As always, there are several

pros and cons with the various algorithms, and the choice of the “right’ ’ algorithm

is application specific. There are some excellent and in-depth recent reviews of some

of these algorithms that demonstrate their use in various interesting contexts. For

example, Angelino et al. (2016) and Green et al. (2015) provide some excellent detailed

reviews of various algorithms. Blei et al. (2010) provide an accessible introduction to

variational Bayes methods. Sisson et al. (2018) provide a recent review and references

of Approximate Bayesian Computation (ABC) methods. The review paper by Zhu et
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al. (2017) focuses on scalability and distributed computation of Monte Carlo methods,

as well as regularized Bayesian inference. Bayesian machine learning is a very lively

literature, as is the case with non-Bayesian machine learning approaches that are also

expanding rapidly. We have tried to provide a gentle introduction to this literature and

bridge the gap between the expanding computing needs of economists and computational

advances proposed in various other literatures such as comprehensive sensing, computer

vision and AI.
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