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Abstract

Workers generally commute on a daily basis, so we model commuting

as a repeated game. The folk theorem implies that for sufficiently large

discount factors the repeated commuting game has as a Nash equilib-

rium any strategy profile that is at least as good as the maximin strategy

for a commuter in the one shot game, including the efficient ones. This

result applies whether the game is static, in the sense that only routes

are chosen as a strategy by commuters, or dynamic, where both routes

and times of departure are chosen. Our conclusions pose a challenge

to congestion pricing. We examine evidence from St. Louis to deter-

mine what equilibrium strategies are actually played in the repeated

commuting game.
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1 Introduction

1.1 Motivation and Related Literature

What happens to commuting behavior when a commute is repeated daily?

Does behavior, namely route and departure time choice, differ dramatically

from that observed in the simple context where the commuters know that

they only have to commute once? One shot commuting is the exclusive focus

of the extant literature.
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Figure 1: Evening rush hour (5-6 PM) I-64 westbound weekdays .3 miles

west of Hampton Avenue

Empirical motivation for our work comes from Figure 1. The vertical axis rep-

resents speed in miles per hour, whereas the horizontal axis represents evening

rush hour dates in the latter half of 2007. A major commuting highway in St.

Louis was shut down on January 2, 2008. Why did rush hour traffic speed

on the highway decrease during the last three months before closure relative

to previous dates? We shall return to this in section 3.3 below. But first, we

discuss the basic literature on commuting.

Beckmann et al. (1956) introduced a model of rush hour without time,

but with commuter delay a function of the number of cars using a link. The

classical work of Vickrey (1963, 1969) analyzed congestion as an externality,

Pigouvian taxes, and infrastructure. Arnott et al (1993) examined exoge-

nous bottlenecks and Pigouvian taxes, whereas Sandholm (2001) models road

congestion as a potential game. Sandholm (2007) considers an evolutionary
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approach to setting optimal tolls in the case where commuters are identical (so

they have the same home and work locations) using an evolutionary process to

refine Nash equilibrium. Daniel et al (2009) implements the commuting model

experimentally. All of this literature considers only one shot commuting.

The main difference between our work and most of the literature is that

we address different questions. That is, our primary purpose is to study the

equilibria of the commuting game repeated daily rather than as a one shot game.

1.2 Outline

Our results and the outline of the balance of the paper are as follows. In

Section 2, we give our notation and outline the static and dynamic models of

one shot commuting. The static model has no time, as only route is a choice.

The dynamic model adds a time dimension where departure time is a commuter

choice in addition to route. In Section 3, we study Nash equilibria of each of

the two models when they are repeated daily. By applying the folk theorem,

we find that the set of equilibria is much larger than in the one shot game, be it

static or dynamic. It is important that researchers consider this expansion of

the equilibrium set when analyzing their models. The repeated game structure

yields many more equilibria, even when the folk theorem does not apply, than

the one shot game structure studied in the literature. Evidence relevant to

repeated game strategies used by commuters in St. Louis is examined. Finally,

Section 4 gives our conclusions.

2 The Commuting Game

The details and extensive analysis of the one shot commuting game, which is

the stage game for the commuting game repeated daily, can be found in Berliant

(2020). Both the static game, where only a route is chosen by commuters,

and the dynamic game, where both route and departure time are chosen by

commuters, are analyzed there. Here will shall be brief, so that the focus can

be on the new results derived from the repeated game.

The measure space of commuters is given by ([0, 1], C, µ) where [0, 1] is

the set of commuter types, C is the collection of Lebesgue measurable subsets

of [0, 1], and µ is a positive measure absolutely continuous with respect to

Lebesgue measure on [0, 1]. All references to measurability are to this measure

space.

3



There is a finite set of nodes, denoted by m,n = 1, 2, ...N , and a finite set

of links between nodes. The set of all nodes is denoted by N = {1, 2, ..., N}.

The capacity of a direct link between nodes m and n is given by xmn ∈ [0,∞],

where xnn = ∞; if a direct link between nodes m and n does not exist, then

xmn = 0.

We assume that commuters have an inelastic demand for one trip per day

to work.

To complete the game-theoretic structure, the strategies and payoffs of

the commuters must be specified. In the static game, there is no choice

of departure time; there is only route choice. Each commuter has a fixed

origin node and a fixed destination node. There is a measurable origin map

O : C → N assigning a departure node to each commuter, and a measurable

destination map D : C → N assigning a destination node to each commuter.

Let πk be the map that projects a vector onto its coordinate k. A route,

denoted by r, is a vector of integer length ℓ ≥ 2. The set of all routes is

denoted by R:

R
ℓ =

�
r ∈ N ℓ | for i = 1, 2, ..., ℓ− 1, xπi(r)πi+1(r) > 0

�

R ≡
∞�

ℓ=2

R
ℓ

We assume that there is some route between a pair of nodes if there is a positive

measure of commuters with that origin and that destination. A commuting

route structure is a pair (l, R) where l is a commuting length map, namely a

measurable map l : C → {2, 3, ...}, and R is a measurable map R : C → R,

such that for i = 1, 2, ..., l(c)− 1, xπ(i)π(i+1) > 0, and almost surely for c ∈ C,

π1(R(c)) = O(c) and πl(c)(R(c)) = D(c).

Given a commuting route structure (l, R), its flow f ∈ RN
2

+ is given by:

f(m,n) = µ({c ∈ C | ∃k ∈ {1, 2, ..., l(c)− 1} with πk(R(c)) = m and πk+1(R(c)) = n})

for m,n = 1, 2, ...N.

If the link is congested, then the travel time increases. For example, it could

increase in proportion to the flow of commuters, f(m,n). More specifically, if

the flow of commuters doubles, then travel time on the link is doubled. We

will use other examples below.

More generally, we can allow traffic to slow down according to any well-

behaved function of the number of commuters on a link and link capacity.

Therefore, we specify the function υ : R+ × R+ → R++ where υ (f, x) is the
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speed of traffic with flow f on a link with capacity x. We assume that for

fixed x, υ is continuous and non-increasing in f . Define the length of the link

(m,n) to be λ(m,n).

Although it is difficult to discuss travel time in a static model that is

inherently atemporal, the travel time is calculated in a sort of steady state.

Under this interpretation, f is the measure of commuters (repeatedly) passing

through the link on their route.

The time cost of a commuting structure (l, R) for commuter c is

θ(l, R, c) = (1)
�

{(m,n)∈N×N|πi(R(c))=m,πi+1(R(c))=n for some 0≤i≤l(c)−1}

λ(m,n)

υ (f(m,n)), xmn)

Thus, −θ is the objective or payoff function for each commuter.

A Nash equilibrium of the static model is a commuting structure (l, R) such

that almost surely for c ∈ C, there is no route r of length ℓ for commuter c

such that

θ(l, R, c) >
�

{(m,n)∈N×N|πi(r)=m,πi+1(r)=n for some 0≤i≤ℓ−1}

λ(m,n)

υ (f(m,n), xmn)

Rosenthal (1973), Sandholm (2001), and Konishi (2004) are excellent ref-

erences for existence and uniqueness of Nash equilibrium in this model.

Example 1: Please refer to Figure 1. Consider measure 4 commuters who

must transit from home at node A to work at node M .

· · · ·

ր B ց ր E ց ր H ց ր K ց

· · · · ·

A ց C ր D ց F ր G ց I ր J ց L ր M

· · · ·
Figure 1: Nash Equilibrium that is not Pareto Optimal

Everyone must pass through nodes D, G, and J on the way from node A

to node M . There are parallel routes in a series of four. The nodes B, C, E,

F , H, I, K, and L appear simply to distinguish among the links and routes.

For upper links ABD, DEG, GHJ , and JKM , the time a commuter spends

on a link is given by f , where f is the measure of commuters using the link.
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For lower links ACD, DFG, GIJ , and JLM , the time a commuter spends

on a link is given by 2, independent of the measure of commuters using the

link. Although it is unnecessary, if the length of each link is 1, speed can be

computed by taking the reciprocals of the time on a link. Nash equilibrium

has measure 2 using every link, for a total travel time of 8 independent of

route. The identity of the users of any route is irrelevant. Turn next to a

strict Pareto improvement. It will transfer measure 1 from each upper link

to each lower link. In other words, measure 1 uses an upper link whereas

measure 3 uses the corresponding lower link. However, the identity of the

users matters. The commuters who use link ABD will only use lower links

after travelling link ABD. Similarly, the commuters who use link DEG will

only use lower links, including link ACD, for the remainder of their trip. In

this way, use of upper links rotates among the commuters. The total travel

time of each commuter is 7. This is not a Nash equilibrium, because each

consumer would prefer to use upper links rather than the lower ones, for a

total travel time of 3.

The classical Braess (1968) paradox provides another class of examples.

That work shows that in a static model, adding new links to a network can

cause Nash equilibrium travel time to increase. For our purposes, the opposite

experiment works. If one begins with a network Nash equilibrium and then

allows a planner to prohibit travel on some links, a Pareto improvement can

be created. It is not a Nash equilibrium unless the prohibition is in place.

The dynamic model adds departure times to the static model. Departure

times and routes are strategic choices of the commuters, whereas arrival times

and arrival penalties are the consequences. Berliant (2020) provides examples

in dynamic models where Nash equilibria are strictly Pareto dominated by

strategy profiles that are not Nash equilibria. They have a flavor different

from the examples in the static model, as they rely on mis-coordination of

departure times in Nash equilibrium.

3 The Repeated Commuting Game

3.1 The Commuting Folk Theorem and the Commuting

Anti-Folk Theorem

In repeated games with a continuum of players, the commuting game is a very

nice special case. There are two important theories of equilibrium behavior,
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both quite famous, namely the Folk Theorem and the Anti-Folk Theorem.

The conclusions of the two theorems are in a sense opposites. The first says

that any individually rational, feasible payoffs can be supported by a Nash

equilibrium of the repeated game. Included in this set are the Pareto efficient

payoffs. The second theorem says that only Nash equilibria of the one shot

game are equilibria of the repeated game. The critical issue in the determining

which theorem applies is what players can observe about the strategies used

by other players in past plays of the stage game. The formalities can get

technical; see Kaneko (1982), Massó and Rosenthal (1989), and Massó (1993).

So we describe them in a relatively informal manner.

The crux of the matter is this: Fixing one particular individual, after fi-

nitely many plays of the stage game, can a positive measure of players observe

that individual player’s past behavior? If there is such a set of positive mea-

sure for each fixed individual, then the folk theorem applies. If no individual’s

behavior can be detected by a set of players of positive measure, then the anti-

folk theorem applies. Note that these two cases are not exhaustive. In the

end, which theorem might apply is an empirical matter. There is some ev-

idence that, in other contexts, the folk theorem is relevant; see, for instance,

Lee (1999).

With a finite number of strategies (routes and possibly departure times), it

is not far-fetched to think that any particular individual’s strategy is observable

by those who use the same departure node.1 In the next subsection, we give

a second reason, called the “snowball effect,” why defection from equilibrium

strategies might be observable in the dynamic commuting game. But for now,

let us focus on the implications of the two theorems for daily commuting.

We begin by assuming observability and apply the folk theorem. Here we

examine two repeated games. The first has the static model repeated every

day, namely a countable infinity of repetitions. The second has the dynamic

model repeated every day. The main results, using Kaneko (1982, Proposi-

tions 2.1 and 2.1’),2 are that if commuters have discount factors sufficiently

close to one, in other words they do not discount the future much, then there is

a huge variety of equilibria. The usual folk theorem holds, so any individually

1At this point, it is useful to take versions of strategies such that if a set of measure zero

plays a particular strategy, then no commuter plays it.
2Kaneko (1982) actually says that any feasible, individually rational stage game strategy

profile can be achieved as a repeated game equilibrium. Payoffs can be derived from

this strategy.profile. So in summarizing the results, we use strategy profile and payoff

interchangeably.
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rational, feasible strategy profile (not necessarily a Nash equilibrium in the

one shot game) can be obtained as a Nash equilibrium of the repeated game.

Kaneko (1982, Proposition 2.1") proves The Perfect Folk Theorem, where we

can restrict even to subgame perfect Nash equilibrium and obtain similar re-

sults. The equilibrium strategy profiles are supported by various punishment

strategies, that apply if the prescribed equilibrium strategy is not followed by

a player. Thus, the one day equilibrium is just one of many. Moreover, on the

equilibrium path, one only observes the prescribed equilibrium strategies, not

the punishments. Thus, one expects to see the one shot equilibrium played,

perhaps, but also (for example) the efficient strategies.

In the static model, the implication is that any feasible routing strategy

that gives utility at least as high as the maximin payoff for the one shot game

for each commuter can be achieved as a constant (over time) Nash equilibrium

strategy for the infinitely repeated game with no discounting. If we modify

this so that the utility of the strategy in the one shot game is at least ǫ greater

than the maximin utility, then the prescribed strategy can be achieved as

a Nash equilibrium strategy in the infinitely repeated game with a discount

factor sufficiently close to 1. Example 1 is applicable here. In that example,

there is a Pareto improvement over Nash equilibrium that will not be a Nash

equilibrium for the one shot game. However, it can be supported as a (subgame

perfect) Nash equilibrium in the repeated game with discount factor sufficiently

close to 1. Standard strategies that support this are the threat of Nash

reversion. As we have described, the Braess paradox gives further examples

of Pareto improvements over one shot Nash equilibrium that can be supported

in repeated games.

Consider the repeated dynamic commuting game. That is, the dynamic

commuting game is played daily. What payoffs are attainable? We shall

apply a folk theorem, so the set of payoffs attainable as Nash equilibria in

the repeated game is related to the payoffs attainable in the one shot game.

Specifically, for large enough discount factors in the repeated game, all feasible

payoffs at least as high as the maximin payoff for the one shot game (that are

not necessarily Nash equilibria of the one shot game) are attainable as Nash

equilibria of the repeated game. In fact, we can show that any payoff that

is feasible in the one shot game can be attained as a Nash equilibrium of the

repeated game. This result is achieved by simply computing the maximin

payoff of the one shot game. It will be −∞. Why? Consider one individual.

The worst case scenario for that individual in the one shot commuting game
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is that everyone else who lives at the same node “blockades” them at time

zero. That is, the strategy used by everyone else is to depart at time 0 along

the same route as the deviating commuter, whoever and whatever that may

be. Then local congestion is infinite, so nobody ever reaches the destination or

even moves at all, independent of what the commuter in question does (namely,

what departure time strategy they follow). Time to destination is infinite.3

So any feasible route and departure time strategy for the one shot game can

be supported as a Nash equilibrium of the infinitely repeated game without

discounting. If we modify this so that the utility of the prescribed strategy

profile in the one shot game is above −∞, then the prescribed strategy can

be achieved in the infinitely repeated game with a discount factor sufficiently

close to 1.

Of course, if no individual’s behavior is observable, then the anti-folk theo-

rem applies to both the static and dynamic models, so the only Nash equilibria

of the repeated game are the Nash equilibria of the one shot game (Kaneko,

1982, Propositions 2.3 and 2.3’).

One might argue that commuting is not a good context for repeated game

punishment strategies. However, evolutionary foundations of the folk theorem

studied in Vasin (1999, 2006) show how these many equilibria can obtained

as globally stable outcomes of various game-theoretic dynamical systems, in-

cluding replicator dynamics and selection dynamics, justifying our interest.

Beyond that, grim trigger strategies are not terribly complicated. The basic

idea is that commuters play, say, a Pareto optimal strategy every period until

they observe something they didn’t expect on their drive to work, at which

time everyone institutes a punishment strategy. In equilibrium, use of the

punishment strategy is never actually observed. This punishment strategy

will be subgame perfect, and thus credible. Stochastic elements, such as ran-

dom weather or accidents, can easily be added to the model. Such elements

are common in the folk theorem literature; see, for example, Fudenberg and

Yamamoto (2011).

3In fact, in the dynamic commuting game, there is sometimes an exogenous departure

grid, in that only a finite number of departure times can be chosen and actual departure

time is randomized over a small time interval containing the chosen time. If the departure

grid is sufficiently fine relative to the measure of commuters departing from each origin node,

then other commuters can always make any particular commuter arrive as late as desired.

Thus, by choosing the grid to be sufficiently fine, any given payoff is above the maximin

payoff. The upshot is that any feasible departure time and route strategy gives a payoff

that is at least as high as the maximin payoff for a grid chosen sufficiently fine.
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3.2 Finite Commuters vs. Continuum of Commuters:

The Snowball Effect

Here we consider the relevance of models with a continuum of commuters, such

as the one we have used. Of course, they are only relevant in the case that

they are mathematically convenient approximations to the equilibria of models

with a large but finite number of commuters.

With a finite number of commuters, the anti-folk theorem becomes irrele-

vant, as the folk theorem applies because there is generally no issue of observ-

ability of strategies. With a continuum of commuters without observability

of strategies, the anti-folk theorem applies. Due to this apparent discontinu-

ity in the set of equilibria as the number of commuters tends to infinity, it

is imperative to examine the continuity properties of the Nash equilibrium

correspondence.

Let us put aside the static commuting game. Given the discussion of

the previous subsection, we consider two cases in the context of the repeated

dynamic commuting game: when individual strategies are observable and when

individual strategies are unobservable.

When individual strategies are observable, for example by commuters de-

parting from the same node, the commuting folk theorem applies to both the

model with a finite number of commuters and a continuum of commuters.

Thus, there is no issue of a discontinuity as the number of commuters tends

to infinity.

When individual strategies are not observable, there is the potential for

such a discontinuity. The set of equilibria can contract from the set of in-

dividually rational, feasible strategies to the set of one shot Nash equilibria.

In the model with a continuum of commuters, when an individual commuter

changes their strategy, there will be no change in what is observed by other

agents, say their commuting time, so there is no basis on which to punish

deviators. Thus, the anti-folk theorem applies. But now consider the model

with a finite number of commuters. Even if the number of commuters is

large, deviations from a prescribed along-the-equilibrium-path-strategy can be

detected (for instance by commuters on the same route using the same depar-

ture time on the equilibrium path since their commuting time changes) and

therefore can be punished. This explains the contraction of the equilibrium

set. However, one can easily argue that as the number of agents gets large,

these individual commuter deviations become undetectable, as their effects are

small and indistinguishable from noise. For example, an analog would be to
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assume perfect competition in the context of a finite number of agents, where

the error from this assumption is small for large economies.

If this were true, then there would be no substantial error in simply using

the limit commuting game with a continuum of commuters without observ-

ability. The big problem here is that the effect of one commuter deviations in

large but finite commuting games are not small. To see this, consider a simple

example with 2 nodes, home and work, and 1 link of length 2. Variants of this

example are described more formally in Berliant (2020). Everyone commutes

once a day between home and work. If density (cars per mile) at a time and

place on a link is f , then speed is 1 + 1/f whereas volume is speed multiplied

by density, or 1 + f . There is measure 2 commuters. Set arrival time to 2;

if consumers arrive late, the penalty is large. Consider the Nash equilibrium

where departures are uniform on times [0, 1], volume is 2, and density is f = 1.

So speed is 2 and the last commuter arrives at work at time 2. If a single

commuter deviates from this strategy, it is undetectable.

Next, instead of using a continuum of commuters, consider a large but finite

number. In the case of a large but finite number of commuters, it’s natural

to think of a (fine) grid of a finite number of evenly spaced departure times

in [0, 1]. Pure commuter strategies are uniformly distributed over departure

times so that departure density is again 1. Speed and volume are 2. Suppose

that a commuter changes their strategy from the second departure time in the

grid to the first, reducing density and volume at the second departure time

and increasing density and volume at the first departure time. This will slow

down the first cohort. The second cohort will quickly catch up, slowing down

both cohorts. The third cohort will catch up to the first two, and so forth.

This “snowball effect” will not only be detectable (even if individual strategies

aren’t), but it also substantially changes the behavior of the entire system due

to one commuter’s deviation. Such a “snowball effect” is simply not possible

in the commuting game with a continuum of commuters.

It is logical to inquire next whether this effect disappears as the number of

commuters tends to infinity. The issue here, as in classical urban economics,

is how one takes limits as the number of commuters tends to infinity. If the

number of commuters is simply increased whereas the road capacities remain

constant, some densities tend to infinity and some speeds tend to zero, so

the system halts. Allowing road capacity to tend to infinity seems unrealis-

tic. The last possibility, that seems implicit in urban transportation models

generally, is that one commuter in the finite model is represented by a con-
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tinuum of identical commuters of positive measure (say 1) in the continuum

model. In that case, deviation by a set of measure zero of commuters does

not make economic sense (though it does make mathematical sense), as it does

not correspond to any type of behavior in the model with a finite number of

commuters. Under this interpretation, deviations can only occur for coalitions

of commuters of measure 1, and we are back to the snowball effect.

With this interpretation of the dynamic model, neither the snowball effect

nor the folk theorem should be a surprise.

In summary, the behavior of the dynamic commuting game with a con-

tinuum of commuters where individual commuter strategies are undetectable

differs from the behavior of the commuting game with a large but finite number

of commuters where individual strategies are unobserved. For this reason, we

view the repeated dynamic commuting game with a continuum of commuters

where the individual strategies are undetectable, and the associated anti-folk

theorem, as irrelevant.

In the general game theory literature with a continuum of players, only

the extreme cases of observability (the folk theorem) and unobservability (the

anti-folk theorem) have been investigated thoroughly. There are two more

important points to be made about the application of the theory of repeated

games to the commuting game. First, the commuters who observe a defection

are not necessarily those who punish. In the simple one route example, of

course any commuter who observes a defection can punish. However, with

many routes, this might not be possible. If individual strategies are observable

to all, for example neighbors departing at the same time and along the same

route, then of course we are back in the context of the folk theorem. An

alternative assumption is that any defection causes a snowball effect, in that

a positive measure of commuters is affected. Then it is assumed that if a

positive measure of commuters is affected, this is observable to all and the

deviators can be punished.

The problem with this idea is that there is literally no snowball effect with

a continuum of commuters, but only with a large but finite (or countable)

number. In fact, this is the reason there is a discontinuity of the Nash equilib-

rium correspondence in the limit as the number of commuters goes to infinity.

A sufficient condition for a snowball effect in large but finite games close to the

game with a continuum of commuters of interest is: For the given one shot

strategy profile that is to be supported as a repeated game Nash equilibrium,

at any time on any link with a positive local density of commuters, speed is
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strictly decreasing in density. Under this condition on the strategy profile,

whenever a commuter deviates, there is a snowball effect; this is detected and

punished by everyone, for example by using a blockade in the next period.

In summary, our conclusion is that although the snowball effect is not

present in commuting games with a continuum of commuters, it is present in

the large but finite games nearby. We also assume that effects on any positive

measure of commuters are observable to all. Thus, under a sufficient condition

on strategies to be supported in the repeated game, it makes sense to say

that the consequence of any individual deviation from a prescribed strategy is

observable, and thus the folk theorem is applicable to such strategies in the

repeated dynamic game with a continuum of commuters.

Therefore, be it from observations of neighboring commuters or the snow-

ball effect, the folk theorem in the model with a continuum of commuters seems

relevant.

A messy alternative to our framework would employ a finite or countable

number of commuters and either Nash equilibrium in mixed strategies or ε-

equilibrium in pure strategies. The drawbacks of this approach are tractability

and consistency with the balance of the literature on commuting. However,

the advantages of this approach are that the snowball effect could be made

explicit.

3.3 Evidence

In this subsection, we examine evidence, in the context of the repeated com-

muting game, that can tell us whether commuters are playing a one shot Nash

equilibrium in all periods, or whether other strategies, possibly more efficient,

are used. The idea for the analysis is similar to that used in Lee (1999), but

now in the context of commuting.

Consider a repeated game with a termination date that is finite and known

to the players. In general, it is expected that only one shot Nash equilibrium

will be played every period, since backward induction leads to the unravelling

of other possible equilibrium strategies.

However, as described in Lee (1999, p. 123), there are various theories

involving small changes in the classical repeated game model that lead to a

kind of folk theorem in finitely repeated games. This is exploited by the

empirical work in the field.4 Next we proceed to try to determine which

4If the folk theorem only applied to infinitely repeated games, those wishing to determine

which strategies are played in equilibrium would be waiting a long time for data.
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equilibrium strategy is reflected in commuting data.

If for example the players are myopic and playing one shot Nash equilib-

rium, then it is expected that behavior will not change as the repeated game

termination date approaches. If the players are using strategies other than

one shot Nash, for example they are participating in some tacit collusion as

the folk theorem might predict, then one expects to see such strategies played

when the termination date of the game is not near, but reversion to one shot

Nash equilibrium close to the termination date.

How does this work in the context of the repeated commuting game? On

January 2, 2008, reconstruction was begun on I-64 (state route 40), a major

east-west commuting corridor in St. Louis. A portion was completely shut

down. Parts were reopened a year later, though other (adjacent) parts were

shut down at that time.5 We take this to be the termination of a repeated,

daily commuting game. This closure was announced years in advance, so

it was not a shock to commuters. We examine rush hour traffic speed and

volume for locations that were closed on this date.

If commuters were playing one shot Nash equilibrium strategies, one would

expect to see the same rush hour traffic speed daily until close to the closure.

Near the time of the closure, traffic volume would drop off and speed would

increase as commuters explored alternate routes to be used after closure.

If commuters were playing a strategy other than one shot Nash, for example

Pareto dominant over one shot Nash, then one would expect to see high traffic

speed when the closure is not imminent, followed by lower traffic speed as the

closure date approaches and one shot Nash is played,6 followed by an increase

in speed near the closure date due to commuters exploring alternate routes.

Thus, it is detection of this counterintuitive decrease in traffic speed as the

closure date approaches that can distinguish among the equilibria of the system.

Before presenting the data, it is useful to recall the fundamental identity

of traffic, namely: Traffic volume is equal to speed times density. We have

obtained data on volume and speed, so density can be calculated. But there

are two important points to be made. First, volume is not terribly informative

on its own in general, as there can be two equilibria with the same volume, one

with low speed and high density, the other with low density and high speed.

Second, the externality actually perceived by commuters is in speed, so we

focus on that.

5The entire highway was reopened on December 7, 2009.
6The exact timing depends on both the model used for the folk theorem in the finitely

repeated game and the discount factor.
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We have obtained data from two sensor locations, one toward the east end

(closer to the downtown area) of the closure, the other at the west end.7 Let’s

examine the east location first, studying evening then morning rush hour. The

figures graph average traffic speed and total volume in the hour by date. We

have deleted weekends, but we have not deleted holidays that fall on weekdays.
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Figure 1 (again): Evening rush hour (5-6 PM) I-64 westbound weekdays .3

miles west of Hampton Avenue

7The author was offered more data than the one calendar year at two sensors actually

provided, but at the cost of relinquishing rights to all future work (whether related to this

project or not), as well as other considerations.
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Figure 2: Evening rush hour (5-6 PM) I-64 westbound weekdays .3 miles

west of Hampton Avenue

Notice that in early October, there is a decrease in speed and an attendant

increase in volume, as seen in Figures 1 and 2. The outliers in the data are

obviously accidents. For morning rush hour, as seen in Figure 3, there is a

similar effect, though not as large in magnitude and with speed increasing over

the Thanksgiving holiday.
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Figure 3: Morning rush hour (8-9 AM) I-64 eastbound weekdays .3 miles

west of Hampton Avenue
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Evening rush hour for the west sensor is displayed in Figure 4. In general,

for the west sensor (more distant from the central business district), traffic

moves at the speed limit. We conjecture that this is due to the fact that

traffic in this area is not congested enough to cause speeds to drop below the

speed limit during rush hours.

Many questions about the data arise at this point. Does weather cause

traffic to slow down in the fall? There are two responses. In the author’s

experience, most of the inclement driving weather occurs in St. Louis during

the time period from mid-December to mid-February. Moreover, the sensors

at the west end of the shut down, that show no decrease in speed, serve as a

nice control for weather, as St. Louis is very flat and thus weather seems to

be common to most of the area. Can holiday shopping can account for the

increased traffic? Most stores used for shopping are now located in malls well

outside the city, along with most of the area’s population. Does an increasing

accident rate in the fall cause the decrease in speed rather than the theory

we have put forth? If this were the case, we would observe a decrease in

volume accompanying the decrease in speed. Instead, we observe an increase

in volume in the data. Could the effect we observe be due to intertemporal

substitution between commuting with a car and commuting with mass transit,

where commuters take advantage of the expressway when it is open? Concep-

tually, this would depend on the elasticity of substitution between commuting

mode choices. This elasticity of substitution has been found to be quite low;

see, for example, Chung (1979). Is the change in commuting speed seasonal?

In theory, one could look at commuting in 2006. However, a low probabil-

ity event occurred that year that disrupted commuting and corrupted data

throughout the fall - the Cardinals (unexpectedly) won the World Series.
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Figure 4: Evening rush hour (5-6 PM) I-64 westbound weekdays .7 miles

west of Brentwood Boulevard

In summary, there is some evidence that commuters are not playing one

shot Nash equilibrium. They revert to one shot Nash equilibrium strategies

at around 2 1/2 to 3 months from the end of the game.

4 Conclusions

We have examined the set of Nash equilibria in the infinitely repeated versions

of both the static and dynamic commuting games, and use the folk theorem to

obtain these large sets. Why have the additional equilibria from the repeated

game, including efficient equilibria, been ignored by the literature? It would

be interesting to see if classical assertions of transportation economists that

“commuting equilibria are inefficient due to a congestion externality” hold

in the real world. We have presented some preliminary evidence from the

shutdown of an expressway in St. Louis that commuters do not always play

one shot Nash equilibrium. We have also discussed the application of the anti-

folk theorem to our specific game, namely conditions under which the Nash

equilibria of the infinitely repeated game are the Nash equilibria of the one

shot game.

The commuting folk theorem poses a direct challenge to congestion pric-

ing. If commuters are already playing equilibrium strategies that are efficient
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without tolls, congestion pricing can mess this up. If the commuters are play-

ing efficient strategies, then the introduction of congestion pricing can jolt the

system to a new repeated game equilibrium, for example one that is Pareto

dominated. In order to make this idea formal, congestion pricing would have

to be added to the model, likely as a penalty additive in the utility function

as in Sandholm (2007). Then a folk theorem would be applied to this ex-

tended model. The equilibria of the models with and without congestion

pricing could be compared. It is expected that all individually rational, feasi-

ble payoffs would be equilibria of the repeated games under a sufficiently high

discount factor. The additional notation and complexity does not seem worth

the trouble. However, an example is in order.

Example 1 (continued): Suppose that the commuters are commuting hap-

pily each day using Pareto optimal strategies supported by (say) the threat of

Nash reversion if they deviate. Suddenly, one day, they experience a Pigou-

vian congestion tax, namely marginal damages at the optimum. Suppose that

the utility function is additive in money. The Pigouvian tax is specified as

follows. It is 1 for all of the upper links, such as ABD, and 0 for all the

lower links, such as ACD. The Pareto optimum itself is a Nash equilibrium of

the repeated game with Pigouvian taxes, but so is any other feasible strategy

profile that is at least as good as the one shot Nash equilibrium, that has travel

time of 8.

The folk theorem and anti-folk theorem can also be applied to repeated ver-

sions of other one shot models in the literature, such as Arnott et al. (1993).

For the bottleneck type of model, again the punishment strategy of interest

involves everyone arriving at the bottleneck simultaneously, at the earliest

possible time. It would be very interesting to explore experimental comple-

ments to our theory and data; for example, see Daniel et al (2009). Which

equilibrium of the repeated game is selected in the laboratory?

The model could also be extended to allow elastic demand for travel to

work.

Future work includes examining the repeated dynamic model with myopic

commuters. The set of Nash equilibria will include the equilibria from the

one shot game, but not as many as in the repeated commuting game with a

discount factor close to 1.

The repeated commuting model should be applied to real world commut-

ing. Since it can accommodate an arbitrary (exogenous) route structure, it
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has both positive and normative content, especially regarding Pareto improve-

ments. For example, it can be used to perform cost benefit analysis with

respect to changing public infrastructure.
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