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In this paper I present a method for the simulation of the default of such loans 

that have two important properties: they are seasoned – maybe even being at 

different points of the seasoning curve – and they evolve in an asset-value based 

framework. This latter model allows us to introduce correlation between the loan 

defaults. Although these two features are widely considered in modelling, linking 

them into one single (simulation) framework might not be that common. However, 

the most important merit of this paper is showing a fast and accurate simulation 

algorithm for the asset values. 

 

The Merton-framework is probably the most widespread way to credit risk modelling. Its 

importance is shown, for example, by its application in risk rating (e.g. KMV) and risk 

regulation (the Basel II framework).  

The model’s basic idea is to let the asset value of a firm evolve according to a stochastic 

process (random walk) and as soon as this asset value reaches a lower trigger value (the 

“default trigger”) consider that firm being in default status. There are two important 

variations: in the first the firm defaults whenever its asset value reaches the trigger; 

alternatively, the firm defaults if at the end of a given time horizon its asset value is 

below the trigger. The Basel II regulation is based on the second approach; in another 

paper (Varsanyi [2006]) I examine whether the two approaches (the second as applied 

under Basel II) are really equivalent. 

 

When one tries to simulate from this model one faces a problem. In the above first 

approach (when defaults are triggered whenever the default trigger is hit anytime during 

the period of the analysis) a timescale that is very densely broken up into small time 

intervals has to be applied. For example assuming that the length of the full analytical 

period equals 1, in order to get accurate results sub-periods of a length of, say, one-

hundredth or even smaller are advisable. Of course, the longer the full period the higher 

number of sub-periods we should have. Since then the asset value is simulated over a 

high number of sub-periods it can take a very considerable amount of time to carry out 

the analysis. If, in turn, we apply a lower number (and hence longer) sub-periods, we will 

get inaccurate estimates – to be more specific, we will underestimate the default 

probability (since defaults are only checked at the end of each sub-period we lose all the 

default-trigger hits which occurred between two such end-points but given that the asset 

value came back above the trigger level by the end of the sub-period).  
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The second approach doesn’t require the full period to be broken up. On the one hand it 

makes simulation much quicker; however, it doesn’t allow the analysis of the timely 

evolution of the asset value during the period: we only look at the asset value at the end 

of the full horizon So, for example, looking at a period of one year, we can say nothing 

about the evolution of defaults during the year – we can only tell whether the asset 

defaulted at the end of the year or not.  

 

Fortunately, there is a very simple solution to the problem. A solution whereby we only 

have to simulate a relatively small number of periods (in the vast majority of real life 

problems it should be enough, for example, to simulate a loan default on a monthly basis) 

and still we get fully accurate results. The idea is as follows. Let’s take a period, say, one 

year. Our purpose is to simulate defaults over the period using a monthly time-scale. 

First, let’s take the seasoning curve of the asset (over one year – this could be substituted 

by any length):  
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The curve shows, for example, that up until (and including) month 4 the probability that 

the asset defaults is about 6 percent. 

Now, a very easy way of modelling the default of an asset over consecutive months with 

the above default curve is to generate a standard normal random variable for each month 

and check whether the value of these variables is below the default trigger. The default 

triggers are in turn given by applying the inverse of the standard normal distribution over 

the monthly increments of the default curve. For example, if the probability of being in 

default increases from month 4 to month 5 from 6.1 percent to 6.8 percent, then in month 

5 we would compare the value of that month’s random variable with the inverse of 0.7 

percent (6.8-6.1), which is -2.46: if the random variable is below -2.46 then we say that 

the asset defaulted in that month (given that it hasn’t defaulted earlier). It is easy to see 

why we get the correct results: the default outcomes for the different sub-periods are 

independent, thus their expected values can be summed to arrive at the full-period default 



rate; while these sub-period default rates have expected values implied by the seasoning 

curve. 

One last step must be made, however. Starting from a full-period default probability of 

x%, if we apply defaults as described above – applying incremental defaults from sub-

period to sub-period – these incremental defaults will start to behave like intensities: in 

each sub-period we apply the respective default percent over the exposures which haven’t 

yet defaulted. The resulting expected default rate will be lower than x%.
1
 Thus, before 

running the simulations we have to calculate the average default rate implied by the 

seasoning curve and then scale it up so that its value equals the desired (theoretical) 

default percentage.  

 

The approach can be extended to simulate correlated defaults of assets having different 

seasoning curves. Applying the asset-value framework we can write the asset value (Rt) 

depending on a factor (Xt) and an idiosyncratic shock (et) as: 

ttt ewwXR 21−+= . 

Assuming both X and e are standard normal and they are independent R will also be 

standard normal. In the above equation w can be called the asset correlation which links 

the asset value to the factor.  

If several assets depend on the same factor it will create correlation among their asset 

values. In this case the simulation using the seasoning curves would go as follows. We 

simulate two standard normal variables for each asset and for each month. The first 

variable is for the factor the other is for the idiosyncratic shock. We calculate the asset 

value using the above equation. We know that this asset value is standard normal – so we 

can compare it to the default trigger calculated as described above, for each asset. We 

start by month one, then if the trigger is not hit then we move on to month 2, and so on. 

Of course, in this case we can’t speak about “asset value” as before, since R is not a 

cumulative process. Nevertheless, by this procedure we can correctly simulate correlated 

defaults which also obey the seasoning curve.  

 

As a demonstration I take two exposures. The two seasoning curves are shown in the 

figure below: 
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 For example, with x=20% and with two sub-periods the probability of default will be (1-0.9*0.9)=19%. 
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I examine a high asset correlation case and a low one. In the previous one w equals 0.95 

for both loans, in the latter one it is 0.2. I will run each scenario 3000 times and check 1. 

the average default probability at the end of the 12 sub-periods (should be 10% and 3% 

for loan 1 and loan 2, respectively) and 2. the timely arrival of defaults.  

In the high asset correlation case, as regards the average default probability I get 10.43% 

for loan 1 and 3.13% for loan 2 in one set of 3000 runs. Regarding the seasoning curves, 

the theoretical curves and their empirical counterparts are shown below: 
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In case of both the average default rate and the approximation of the theoretical curves 

we cannot expect 100% accuracy due to sampling error. A simple measure of dependence 

between the two loans can be the number of periods when the two loans defaulted 

simultaneously. In this high correlation case it is 65, while the total number of loan 1 and 

loan 2 defaults is 313 and 94, respectively. 

 

In the low asset correlation case I got 10.2% and 2.5% for the respective averages, and 

also the empirical seasoning curves gave a good approximation of the theoretical ones. 

According to the simple measure of the dependence between loan 1 and loan 2 there were 

11 cases (out of 306 of loan 1 and 75 of loan 2 defaults) when the two loans defaulted 

together. 
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