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1 Introduction

Consider an individual choice problem over alternatives that have multiple attributes. For

instance, suppose an individual faces a choice over different cellphones where each cellphone

has three attributes: data capacity, battery life and quality of camera. For an individual

having a lexicographic preference over such choices, there is an order of importance of different

attributes. The individual first looks at the attribute most important to him, then looks at

the second most important attribute and so on. In the example of cellphones, suppose data

capacity is the most important attribute for an individual, followed by battery life and quality

of camera. Then for any two cellphones having different data capacity, this individual prefers

the one that has a higher data capacity; for any two phones with the same data capacity,

the individual prefers the one that has a higher battery life and finally for any two phones

that are same with respect to both data capacity and battery life, prefers the one that has a

better quality camera. Lexicographic preferences are particularly useful to understand choice

problems where alternatives have a large number of attributes.

This paper presents a characterization of lexicographic preferences in an individual choice

framework. The early literature can be traced back to the seminal paper of Fishburn (1975),

whose axiomatization of lexicographic preferences is closely connected with Arrow’s (1951)

impossibility theorem. For a lexicographic preference over a finite-dimensional product set,

the most dominant factor is dictatorial in the sense that for two points that differ with

respect to that factor, the preference order is solely determined by that specific factor; if

two points are same with respect to the most dominant factor, the second most dominant

factor is dictatorial and so on. In the words of Fishburn, there is a “hierarchy of dictators”

for lexicographic preferences. Fishburn’s proof begins by establishing the existence of a

smallest decisive subset of the set of factors to show that this subset must contain a single

element. A recent alternative proof by Mitra and Sen (2014) reconfirms the Arrow-Fishburn

interconnections by determining an extremely pivotal factor along the same lines Geanakoplos

(2005) identifies an extremely pivotal voter to prove Arrow’s theorem.

More recently, Petri and Voorneveld (2016) propose another characterization of lexico-

graphic preferences. They point out the unsatisfactory restriction of domain in Fishburn’s

approach that is needed to apply Arrow’s proof technique. Specifically, one of the axioms

of Fishburn requires that for every coordinate, only two equivalence classes are important

to identify the entire order, but to use Arrow’s technique, each coordinate must have at

least three equivalence classes. The characterization of Petri and Voorneveld is based on

robustness of preference ordering between two alternatives for changes in a few rather than a

large number of coordinates. However, it requires Fishburn’s noncompensation axiom, which

“prohibits tradeoffs between factors” and thus already has a lexicographic flavor.

In this paper we consider an individual choice problem over alternatives that are identified

by a finite number n of attributes, where the domain of each attribute is the set of all non-

negative real numbers, so that the set of all alternatives is Rn
+. In this framework, we provide a
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different characterization of lexicographic preferences. Unlike Fishburn (1975) and Petri and

Voorneveld (2016), our characterization does not require any noncompensation condition.1

Our key distinction from the Arrow-Fishburn way of reasoning is that continuity arguments

play a prominent role in our analysis. This approach can be of interest, since lexicographic

preference is perhaps the most well known textbook example of a discontinuous preference.

Our characterization is based on two central concepts: a weaker version of continuity

called mild continuity and the notion of unhappy sets, which is an extension of lower contour

sets. To define mild continuity, call two alternatives totally different if they are different with

respect to every attribute. A preference relation is mildly continuous if strict preference order

between any two totally different alternatives is preserved around their small neighborhoods.

A set of alternatives is called an unhappy set if any alternative outside the set is preferred to

all alternatives inside.2

One of our axioms imposes a certain structure on the unhappy sets of the preference

relation. Consider two totally different alternatives that belong to an unhappy set. Suppose

the second alternative is superior with respect to a subset S of attributes while the first is

superior with respect to the complementary subset. We say an unhappy set satisfies inclusion

of marginally improved alternatives (IMIA) if it includes a third alternative that does better

than the first but worse than the second with respect to the attributes in S but has the same

levels as the first alternative for the remaining attributes. First we show that when there are

only two attributes (that is, the choice problem is on R
2
+), any rational preference relation

is lexicographic if and only if it is strong monotone, mildly continuous and any unhappy set

satisfies IMIA (Theorem 1). The result on R
2
+ is of independent interest. In addition, we

build on this result for the analysis of cases with more than two attributes.

Extending to the general case of more than two attributes, the starting point is to compare

alternatives for which all but two attributes have level zero.3 The zero level can be interpreted

as the minimum or basic level of an attribute. Fix any subset of two attributes and consider

all alternatives for which all attributes outside that subset have zero level. The original

preference relation gives an induced preference between alternatives for which all but two

fixed attributes have level zero (such an induced preference is defined on R
2
+). One of our

axioms requires that any closed unhappy set for any such induced preference satisfies IMIA.

Our last axiom requires preference nonreversibility under additional attributes (NRAA).

As before consider two alternatives for which all but two attributes have zero level. Suppose

one of these alternatives is preferred to the other. Now add positive levels of one or more

attributes to each of these alternatives keeping the levels of additional attributes same across

the two. NRAA holds if the preference order between such new pairs of alternatives stays the

1Consider any alternatives x, y, w, z. The noncompensation condition says: suppose for every attribute i,

xi > yi if and only if wi > zi and yi > xi if and only if zi > wi; then the individual prefers x to y if and only
if the individual prefers w to z.

2Unhappy sets were introduced in Mitra and Sen (2017).
3This approach is closely related to choice rules based on “elimination by aspects” proposed by Tversky

(1972).
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same as before. Consider the example of cellphones given before in which any cellphone has

three attributes: data capacity, battery life and quality of camera. Consider two cellphones,

each of which has zero level (that is, the minimum level) of battery life and suppose the first

cellphone is preferred to the second. NRAA says that raising battery life by the same amount

to each of them without changing their levels of data capacity or quality of camera does not

alter the preference order.4

Our main result (Theorem 2) shows that in the general case of more than two attributes,

a rational preference relation is lexicographic if and only if (a) any induced preference be-

tween alternatives for which all but two same attributes have zero levels satisfies (i) strong

monotonicity, (ii) mild continuity, (iii) IMIA for any closed unhappy set and (b) preference

nonreversibility holds. The guiding principle of our characterization is facing choices involv-

ing multiple attributes, the individual decision maker proceeds by looking at two attributes

at a time. This can arguably be a good behavioral rule in many problems in which looking

at a large number attributes together might seem too complex and demanding. Accord-

ingly we look for structures on the induced preferences defined on R
2
+ and finally preference

nonreversibility is used to gradually go from two to many attributes.

The paper is organized as follows. We present the analytical framework in Section 2. The

axioms of lexicographic preference and the main result are presented in Section 3. Section 4

gives examples to illustrate the robustness of the axioms. Most proofs are presented in the

Appendix (Section 5).

2 The analytical framework

Consider an individual who has a preference relation % on a set of alternatives X. Each

alternative is characterized by n attributes. Let N = {1, . . . , n} be the set of attributes.

The domain of any attribute i ∈ N is R+. Therefore an alternative is given by a vector

x = (x1, . . . , xn) ∈ R
n
+ and the set of all alternatives is X = R

n
+.

For any non empty S ⊆ N, denote XS = R
|S|
+ . For any x ∈ X and S ⊆ N, we write

x = (xS , xN\S) where xS ∈ XS and xN\S ∈ XN\S (note that x = xN ). If xi = 0 for all i ∈ S,

we write xS = 0S .

In the special case when S is the singleton set {i}, it will be convenient to use the simpler

notation xS = xi, x
N\S = x−i, XS = Xi and XN\S = X−i. We write x = (xi, x−i) where

xi ∈ Xi and x−i ∈ X−i.

The distance between x, y ∈ X, denoted by d(x, y), is given by the Euclidean metric. For

xS , yS ∈ XS , d(x
S , yS) is the same metric d restricted to XS . A neighborhood of xS is a set

Bε(x
S) consisting of all yS ∈ S such that d(xS , yS) < ε for some ε > 0.

The individual’s preference on X is defined using the binary relation % where “x % y”

4Although NRAA has some resemblance with the independence axiom of Fishburn, they are not same.
We refer to Example 2, which gives a preference that satisfies NRAA, but for which Fishburn’s independence
axiom does not hold.
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stands for “the individual prefers x to y”. The strict preference is defined as x ≻ y ⇔ [x % y]

and [not y % x]. The indifference relation is defined as x ∼ y ⇔ [x % y] and [y % x].

For any x ∈ X, the lower contour set under % is L(x) = {y ∈ X | x % y}. The strict lower

contour set is L(x) = {y ∈ X | x ≻ y} and the indifference set is I(x) = {y ∈ X | x ∼ y}.

A preference relation % on X is complete if for any x, y ∈ X, either x % y or y % x. It is

transitive if for any x, y, z ∈ X, whenever x % y and y % z, we have x % z.

A preference relation % on X is rational if it is complete and transitive.

Let x, y ∈ X. If xi > yi for all i ∈ N , we write x > y. If xi ≥ yi for all i ∈ N, we write

x ≥ y. Two alternatives x, y are non-comparable, denoted by x ⊲⊳ y, if there are i, j ∈ N such

that yi > xi and xj > yj .

A preference relation % on X is monotone if for any x, y ∈ X with x > y, we have x ≻ y.

It is strong monotone if for any x, y ∈ X with x ≥ y and x 6= y, we have x ≻ y.

Definition 1 A preferences % on X is lexicographic if there is a linear order i(1) <0 i(2) <0

. . . <0 i(n) on N such that for any x, y ∈ X, x ≻ y if and only if either [xi(1) > yi(1)] or

[xi(1) = yi(1), xi(2) > yi(2)] or . . . or [xi(1) = yi(1), . . . , xi(n−1) = yi(n−1), xi(n) > yi(n)].

For such a preference, i(1) will be called the most important attribute, i(2) the next most

important attribute and so on.

2.1 Some useful concepts

To characterize lexicographic preferences, it will be useful to introduce two concepts: (i) mild

continuity of a preference relation, which is a weaker version of continuity and (ii) unhappy

sets, which are related to lower contour sets. The notion of induced preferences will be also

useful.

2.1.1 Mild continuity

Definition 2 For x, y ∈ X, we say x and y are totally different, denoted by x ˆ6= y, if xi 6= yi

for all i ∈ N.

Note that x ˆ6= y if and only if y ˆ6= x. For xS , yS ∈ XS , we define xS ˆ6= yS similarly. A

preference relation is mildly continuous if strict preference order between any two totally

different points is preserved around their small neighborhoods.

Definition 3 A preference relation % is mildly continuous on X if for any x, y ∈ X with

x ˆ6= y and x ≻ y, there exists ε > 0 such that if x̃ ∈ Bε(x) and ỹ ∈ Bε(y), then x̃ ≻ ỹ.

We recall that a preference relation % is continuous on X if for any x, y ∈ X with x ≻ y,

there exists ε > 0 such that if x̃ ∈ Bε(x) and ỹ ∈ Bε(y), then x̃ ≻ ỹ. Thus for a continuous

preference strict preference order between any two points, totally different or otherwise, is

preserved around their small neighborhoods.
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2.1.2 Unhappy sets

Definition 4 A set A ⊆ X is an unhappy set for a preference relation % on X if for any

y ∈ X \A, y ≻ x for every x ∈ A.

Observe that lower contour and strict lower contour sets are unhappy sets. So are the sets

X and ∅.

Let A be a subset of a metric space X. A point x ∈ X is a boundary point of A if

every neighborhood of x contains at least one point in A and at least one point in X \ A.

The set of all boundary points of A is called the boundary of A and denoted by ∂A. To

characterize unhappy sets we recall the following result. For the proof, see, e.g., Mendelson

(1990: Theorem 4.23, Chapter 3 and Definition 2.1 of Chapter 4).

Result 1 If A is a non empty proper subset of a connected space, then (i) ∂A 6= ∅ and (ii)

the set A cannot be both open and closed.

Since R
n
+ is a connected set, we can use this result for subsets of X = R

n
+.

Proposition 1 Consider a rational preference relation % on X = R
n
+.

(i) If A,B are unhappy sets, then either A ⊆ B or B ⊆ A.

(ii) Let A be a non empty proper subset of X. If A is an unhappy set and % is mildly

continuous then for any x ∈ ∂A, the following hold for any y ˆ6= x.

(a) If y ∈ ∂A, then x ∼ y.

(b) If y ∈ A, then x % y.

(c) If x ≻ y, then y ∈ A.

Proof See Section 5.2 of the Appendix.

For a continuous preference relation, the last part of the proposition also holds for y that

are not totally different from x. In that case unhappy sets can be more precisely characterized.

Corollary 1 Consider a rational and continuous preference relation % on X = R
n
+. Let A

be an unhappy set which is a non empty proper subset of X. Then the following hold for any

x ∈ ∂A.

(i) x ∼ y for any y ∈ ∂A.

(ii) L(x) ⊆ A ⊆ L(x).

(iii) The set A must be either closed or open, but not both. If A is closed, then A = L(x)

and if A is open, then A = L(x).
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Proof See Section 5.2 of the Appendix.

Thus for a continuous preference a set is an unhappy set if and only if it is a lower

contour or a strict lower contour set. A lexicographic preference is not continuous, although

it is mildly continuous. Any lower contour set of a lexicographic preference is neither open

nor closed.

2.1.3 Induced preferences

Fix a subset of attributes and consider all points for which attributes in that subset have zero

level. The original preference relation gives a preference order between alternatives for which

a fixed subset of attributes have level zero. This is formalized by the notion of an induced

preference, defined as follows.

Definition 5 Let S be a non empty subset of N. For a preference relation % on X, the

induced preference %S on XS = R
|S|
+ is defined as follows: for yS , zS ∈ XS , y

S %S zS if and

only if (yS , 0N\S) % (zS , 0N\S).

Thus %S is a preference relation over all alternatives for which the attributes in the set

N \S have zero level. Note that the induced preference %N coincides with % . We can define

unhappy sets for induced preferences. We say a set A ⊆ XS is an unhappy set for the induced

preference %S if for any b ∈ XS \A, b ≻S a for every a ∈ A.

For x ∈ X and a preference relation % on X, denote by L(x) the closure of the lower

contour set L(x), that is, L(x) := L(x) ∪ ∂L(x). The next proposition shows mild continuity

of induced preferences ensures that the closure of a lower contour set is an unhappy set.

Proposition 2 Consider a rational and strong monotone preference relation % on X = R
n
+.

Suppose for any S ⊆ N, the induced preference %S is mildly continuous on XS . Then for

every x ∈ X, the set L(x) is an unhappy set for % .

Proof See Section 5.2 of the Appendix.

A strong monotone preference relation on R+ is continuous, and so it is mildly continuous.

Suppose % is strong monotone and let S ⊆ N be a singleton set. Then the induced preference

%S , which is defined on R+, is strong monotone and therefore mildly continuous. When

X = R
2
+ in Proposition 2, then any non empty proper subset of X is a singleton set and mild

continuity already holds for the corresponding induced preference. This gives the following

result.

Corollary 2 For a rational, strong monotone and mildly continuous preference relation on

R
2
+, the closure of any lower contour set is an unhappy set.

Note that for a lexicographic preference, any induced preference is also lexicographic.
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Observation 1 If % is lexicographic with linear order 1 <0 2 <0 . . . <0 n and S =

{i1, . . . , is} ⊆ N where i1 < . . . < is, then %S is lexicographic with linear order i1 <0

i2 <0 . . . <0 is.

The converse of Observation 1 does not hold. We give an example where an induced

preference is lexicographic, but the original preference is not.

Example 1 Let N = {1, 2, 3}. Consider a preference relation % on X = R
3
+ that is reflexive

(x ∼ x for all x ∈ X) and for which following hold for any xi, yi ∈ R+: (a) (x1, x2, x3) ≻

(y1, y2, y3) if x1 > y1, (b) (0, x2, x3) ≻ (0, y2, y3) if x2 > y2, (c) (0, x2, x3) ≻ (0, x2, y3) if

x3 > y3, (d) (x1, x2, x3) ≻ (x1, y2, y3) if x1 > 0 and x2 + x3 > y2 + y3 and (e) (x1, x2, x3) ∼

(x1, y2, y3) if x1 > 0 and x2 + x3 = y2 + y3. For any S ⊆ N with |S| = 2, the induced

preference %S is lexicographic, but % is not lexicographic.

3 Characterization of lexicographic preferences

We begin with a property which together with strong monotonicity and mild continuity can

characterize a lexicographic preference in the case where there are only two attributes (that

is, when X = R
2
+). This property will also be the basis of an axiom for the characterization

of a lexicographic preference with more than two attributes.

3.1 Inclusion of marginally improved alternatives

Consider x, y ∈ X such that x ˆ6= y and let S ⊆ N. We say (i) y is S-superior to x if yS > xS

and (ii) y is exhaustively S-superior to x if yS > xS and xN\S > yN\S . If y > x, then clearly

y is (exhaustively) N -superior to x.

Definition 6 For a preference relation % on X, an unhappy set A satisfies inclusion of

marginally improved alternatives (IMIA) if the following hold for any x ˆ6= y and any S ⊆ N :

if x, y ∈ A with yS > xS and xN\S > yN\S , then ∃ x̃S ∈ XS with yS > x̃S > xS such that

(x̃S , xN\S) ∈ A.

For an unhappy set A satisfying IMIA, if x, y ∈ A and y is S-superior to x, then any

new alternative that does better than x but worse than y with respect to the attributes in S

but is the same as x for the remaining attributes does not necessarily take us outside of the

unhappy set A.

Observation 2 Let A be an unhappy set for a monotone preference relation % on X. If A

satisfies IMIA, then the following hold for x, y ∈ A:

(i) If yS > xS and xN\S > yN\S , then for any T ⊆ S, ∃ x̃T ∈ XT with yT > x̃T > xT such

that (x̃T , xN\T ) ∈ A.

(ii) If yi > xi and x−i
ˆ6= y−i, then ∃ x̃i with yi > x̃i > xi such that (x̃i, x−i) ∈ A.
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Proof (i) By IMIA, ∃ x̃S ∈ XS with yS > x̃S > xS such that (x̃S , xN\S) ∈ A. As the

preference is monotone, for any T ⊆ S, we have (x̃S , xN\S) % (x̃T , xN\T ). As A is an unhappy

set, the result follows.

(ii) Since yi > xi and x−i
ˆ6= y−i, there is a non empty set S (in particular, i ∈ S) such

that yS > xS and xN\S > yN\S (the set N \ S can be possibly empty). Then the result

follows by taking T = {i} in part (i).

Remark 1 When S = N in Definition 6, we have y > x. So for a monotone preference,

the requirement of IMIA always holds when S = N. IMIA imposes additional structure on a

monotone preferences only when S ⊂ N.

Remark 2 If x is an interior point of A then there is a neighborhood Bε(x) ⊂ A and we

can find a point x̃ = (x̃S , xN\S) ∈ Bε(x) such that yS > x̃S > xS . Thus IMIA always holds

for open unhappy sets such as strict lower contour sets. IMIA imposes additional structure

on the preference only for unhappy sets that are not open. For example, for continuous

preferences such as Cobb-Douglas, perfect substitutes or perfect complements IMIA does not

hold for lower contour sets. For a lexicographic preference IMIA does not hold for lower

contour sets either (which are neither open nor closed). However, any closed unhappy set of

a lexicographic preference satisfies this property.

Lemma 1 Any closed unhappy set for a lexicographic preference satisfies IMIA.

Proof See Section 5.2 of the Appendix.

When a closed unhappy set satisfies IMIA, it can be bounded with respect to at most

one attribute. This gives a structure to such sets, which is stated in the next lemma. See

Section 6 for more details of this structure. For a preference relation %, let A% be a family

of subsets of X defined as follows

A% = {A|A ⊂ X; ∃y ∈ A with y > 0N ;A is a closed unhappy set that satisfies IMIA} (1)

Lemma 2 Consider a rational, strong monotone and mildly continuous preference relation

% on X. Let A ∈ A%. Then ∃ a positive number αA and an attribute i∗ ∈ N such that

A = {x ∈ X|0 ≤ xi∗ ≤ αA}. Moreover the attribute i∗ is the same for all sets in A%.

Proof See Section 5.2 of the Appendix.

3.2 Lexicographic preference with two attributes

Applying Lemma 2 for the case X = R
2
+ and using Corollary 2, we can characterize lexico-

graphic preferences with two attributes. This result is of independent interest. Moreover, it

will be also useful for characterizing lexicographic preferences with more than two attributes.

Theorem 1 A rational preference relation % on R
2
+ is lexicographic if and only if it is strong

monotone, mildly continuous and any closed unhappy set of % satisfies IMIA.
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Proof See Section 5.2 of the Appendix.

3.3 Lexicographic preference with more than two attributes

Now we are in a position to characterize lexicographic preferences that have more than

two attributes. A key aspect of our approach is all axioms are on induced preferences %S

for |S| = 2 (that is, on preferences defined on R
2
+). As we mentioned before, the guiding

principle here is facing a choice problem involving multiple attributes, the individual decision

maker proceeds by looking at two attributes at a time.

3.3.1 Strong monotonicity, IMIA

Axiom 1 For any S ⊆ N with |S| = 2, the induced preference %S is strong monotone.

Axiom 2 Consider any S ⊆ N with |S| = 2. Any closed subset of XS = R
2
+ that is an

unhappy set for the preference %S , satisfies IMIA.

Remark Let A be an unhappy set for a monotone preference relation on R
2
+. Then A satisfies

IMIA if for any x, y ∈ A with y1 > x1 and x2 > y2, there is x̃1 with y1 > x̃1 > x1 such that

(x̃1, x2) ∈ A.

3.3.2 Mild continuity of induced preference

Consider two points both of which have zero levels for all but two attributes, say 1 and 2.

Also suppose these two points are different with respect to both attributes 1, 2 and one of

them is strictly preferred to other. The next axiom requires that the initial preference order is

preserved when we move to new pairs of points that are found by small changes in attributes

1 or 2, still keeping all other attributes at zero level. This is simply the requirement that the

induced preference %S is mildly continuous for any S that contains only two attributes.

Axiom 3 For any S ⊆ N with |S| = 2, the induced preference %S is mildly continuous on

XS = R
2
+.

3.3.3 Nonreversibility under additional attributes

As before consider two points for which all but two attributes have zero level. Suppose one of

these points is strictly preferred to the other. Now suppose we add one or more attributes to

each of these points keeping the levels of additional attributes same across the two. Preference

nonreversibility holds if the preference order between such new pairs of points stays the same

as before.

Definition 7 A preference relation % on X satisfies nonreversibility under additional at-

tributes (NRAA) if for any S ⊆ N with |S| = 2, the following hold: if (xS , 0N/S) ≻ (yS , 0N/S),

then (xS , zN/S) ≻ (yS , zN/S) for any zN/S ∈ XN\S .
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Axiom 4 The preference relation % satisfies NRAA.

Remark Fishburn’s independence axiom (see Axiom 2, p.416 of Fishburn, 1975) requires

for any for any S ⊆ N with |S| = 1 and any zN/S , z̃N/S ∈ XN\S : (xS , zN/S) ≻ (yS , zN/S) if

and only if (xS , z̃N/S) ≻ (yS , z̃N/S). We give an example where NRAA holds, but Fishburn’s

independence axiom does not.

Example 2 Let N = {1, 2, 3}. Consider a preference relation % on X = R
3
+ that has utility

function u(x1, x2, x3) = min{x1, x2}+min{x1, x2}x3.Observe that if S = {1, 3} or {2, 3}, then

u(xS , 0N/S) = u(yS , 0N/S) = 0, so we do not have (xS , 0N/S) ≻ (yS , 0N/S). For S = {1, 2}, if

(xS , 0N/S) ≻ (yS , 0N/S), then min{x1, x2} > min{y1, y2}, which implies that u(x1, x2, z3) >

u(y1, y2, z3) for all z3 ≥ 0. This shows that NRAA holds for this preference.

To see Fishburn’s independence axiom does not hold for this preference, let S = {1}, so

that N/S = {2, 3}. Take xS = x1 = 4, yS = y1 = 1, zN/S = (z2, z3) = (2, 2) and z̃N/S =

(z̃2, z̃3) = (1/2, 3). Then u(x1, z2, z3) = 6 > u(y1, z2, z3) = 3 so (xS , zN/S) ≻ (yS , zN/S). But

u(x1, z̃2, z̃3) = u(y1, z̃2, z̃3) = 2 so (xS , z̃N/S) ∼ (yS , z̃N/S).

3.4 The main result

Now we are in a position to state the main result.

Theorem 2 Consider any rational preference relation % on X = R
n
+ where n ≥ 3. The

following statements are equivalent.

(L1) The preference relation % satisfy Axiom 1, Axiom 2, Axiom 3 and Axiom 4.

(L2) The preference relation % is lexicographic.

Proof

Proof of (L2)⇒(L1)

Consider a lexicographic preference relation %. Since it is strong monotone, any induced

preference %S is also strong monotone for any S ⊆ N with |S| = 2, so Axiom 1 holds. Since

for %, the induced preference %S is mildly continuous for any S ⊆ N, Axiom 3 holds. Since

for any S ⊆ N, whenever (xS , 0N\S) ≻ (yS , 0N\S), we have (xS , zN\S) ≻ (yS , zN\S) for any

zN\S ∈ XN\S , Axiom 4 also holds.

Finally recall from Observation 1 that for a lexicographic preference %, the induced pref-

erence %S is also lexicographic for any S ⊆ N (and in particular when |S| = 2). Applying

Lemma 1 for %S it follows that any closed unhappy set for %S satisfies IMIA. Hence Axiom

2 also holds. This shows that (L2)⇒(L1).
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Proof of (L1)⇒(L2)

We begin with a lemma, which will be useful for the proof.

Notation Let i, j ∈ N and S = {i, j}. We write “i ≻∗ j” to mean “%S is a lexicographic

preference with linear order i <0 j”.

Lemma 3 Consider a rational preference relation % that satisfy Axiom 1, Axiom 2, Axiom

3 and Axiom 4.

(i) Consider any S ⊆ N with |S| = 2. Then ∃ i, j ∈ S such that

(a) i ≻∗ j so that (xS , 0N\S) ≻ (yS , 0N\S) if and only if either xi > yi or (xi = yi and

xj > yj).

(b) For any zN\S ∈ XN\S : (xS , zN\S) ≻ (yS , zN\S) if and only if either xi > yi or

(xi = yi and xj > yj).

(ii) Let i, j, k ∈ N. If i ≻∗ j and j ≻∗ k, then i ≻∗ k.

(iii) Based on ≻∗, the attributes of N can be ordered. That is, we can write N = {i1, . . . , in}

such that i1 ≻
∗ . . . ≻∗ in.

Proof See Section 5.2 of the Appendix.

Proof of (L1)⇒(L2) Consider a rational preference relation % that satisfies Axiom 1,

Axiom 2, Axiom 3, and Axiom 4. By Lemma 3 we can write N = {i1, . . . , in} such that

i1 ≻
∗ . . . ≻∗ in. Without loss of generality let i1 = 1, . . . , in = n. Fix any m ∈ {1, . . . , n− 1}.

Let S = {i ∈ N |i < m} and T = {i ∈ N |i > m}. Let x, y ∈ X such that xS = yS and

xm > ym. We can find numbers x0m, . . . , xn−m
m such that xm = x0m > x1m > . . . > xn−m

m = ym.

Construct z(k) ∈ X recursively as follows: z(0) = x and for k = 1, . . . , n −m, z(k) is such

that

z(k)m = xkm, z(k)m+k = ym+k, z(k)
S = z(0)S = xS and z(k)T\{m+k} = z(k − 1)T\{m+k}

That is,

z(1)i = xi for i < m, z(1)m = x1m, z(1)m+1 = ym+1, z(1)i = xi for i > m+ 1

z(2)i = xi for i < m, z(2)m = x2m, z(2)i = yi for i = m+ 1,m+ 2, z(2)i = xi for i > m+ 2

and in general

z(k)i = xi for i < m, z(k)m = xkm, z(k)i = yi for i = m+1, . . . ,m+k, z(k)i = xi for i > m+k

Observe that z(k) and z(k−1) have same levels for all but two attributes (m andm+k). Since

m ≻∗ m+ k and z(k−1)m = xk−1
m > z(k)m = xkm, by Lemma 3(i)(b) we have z(k−1) ≻ z(k).

Noting that z(n−m) = y, we conclude that x = z(0) ≻ . . . ≻ z(n−m) = y. Hence x ≻ y.
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Thus for any x, y with xi = yi for all i < m and xm > ym, we have x ≻ y. Applying this

result for m = 1, . . . , n − 1 it follows that % is a lexicographic preference with linear order

1 <0 . . . <0 n.

4 Robustness of the axioms

In conclusion we give examples of rational preferences to show that if one of the four axioms

does not hold, then we do not get a lexicographic preference.

Example 3 (All axioms except Axiom 1 hold) Let N = {1, 2, 3}. Consider a rational

and continuous preference relation % on X = R
3
+ that has utility function u(x1, x2, x3) = x1.

Note that the induced preference %S is not strong monotone for S = {1, 2}, so Axiom 1 is

violated. We show the remaining three axioms hold.

Note that for any S ⊆ N with |S| = 2, %S is continuous, so Axiom 3 holds. As %S is

continuous, any closed unhappy set for %S is a lower contour set. To see Axiom 2 and Axiom

4 hold, first let S = {1, 2}. Since xS = (x1, x2) ≻S yS = (y1, y2) if and only if x1 > y1, we

have L∗(xS) = {yS ∈ R
2
+|0 ≤ y1 ≤ x1}. If y, z ∈ L∗(xS) such that z1 < y1, then we can find

z1 < z̃1 < y1 ≤ x1, so (z̃1, z2) ∈ L∗(xS). If y, z ∈ L∗(xS) such that z2 < y2, then for any

z2 < z̃2 < y2, (z1, z̃2) ∈ L∗(xS). This shows IMIA holds for any closed unhappy set for %S .

Similar reasoning applies when S = {1, 3}.

Note that if (x1, x2, 0) ≻ (y1, y2, 0), then x1 > y1. So for any x3 we have u(x1, x2, x3) =

x1 > u(y1, y2, x3) = y1. This shows the requirement for NRAA is satisfied when S = {1, 2}.

Similar reasoning applies when S = {1, 3}.

Finally let S = {2, 3}. Then u(0, x2, x3) = 0. Hence for any xS , yS ∈ XS we have xS ∼S yS

so that L∗(xS) = R
2
+. This shows IMIA trivially holds for any closed unhappy set for %S .

Since for any xS = (x2, x3), y
S = (y2, y3), we have (0, x2, x3) ∼S (0, y2, y3), the requirement

for NRAA is satisfied vacuously when S = {2, 3}. This shows both Axiom 2 and Axiom 4

hold.

Example 4 (All axioms except Axiom 2 hold) Let N = {1, 2, 3}. Consider a rational,

continuous preference relation % on X = R
3
+ with utility function u(x) = x1+x2+x3 (perfect

substitutes). Since % is strong monotone, so is %S for any non empty S ⊆ N, so Axiom 1

holds. Since it is continuous, Axiom 3 also holds. Since the utility function is additively

separable, NRAA (Axiom 4) holds.

However, Axiom 2 does not hold. For instance, let S = {1, 2}. Consider the induced

preference %S , which has utility function uS(x
S) = x1 + x2. It is continuous, so by Corollary

2 any closed unhappy set of %S is a lower contour set. Consider the lower contour set L∗(xS)

for xS = (1, 3). Let yS = (3, 1). Then xS , yS ∈ L∗(xS). Also note that xS ˆ6= yS with y1 > x1

and x2 > y2. But there is no x̃1 with y1 > x̃1 > x1 such that (x̃1, x2) ∈ L∗(xS). This is

because for any x̃1 > x1, we have x̃1+x2 > x1+x2 = uS(x
S), so such a point will be outside

L∗(xS).
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Example 5 (All axioms except Axiom 3 hold) Let N = {1, 2, 3}. Consider the lexi-max

preference % introduced by Bossert, Pattanaik and Xu (1994). For x = (x1, x2, x3) ∈ R
3
+,

denote by x∗i the i-th highest order statistics of x so that x∗1 ≥ x∗2 ≥ x∗3. For the lexi-max

preference, for any xi, yi ∈ R+ we have: (a) x ≻ y if either [x∗1 > y∗1], or [x
∗
1 = y∗1, x

∗
2 > y∗2],

or [x∗1 = y∗1, x
∗
2 = y∗2, x

∗
3 > y∗3] and (b) x ∼ y if [x∗1 = y∗1, x

∗
2 = y∗2, x

∗
3 = y∗3].

Note that % is rational. It does not satisfy Axiom 3, but satisfies the remaining three

axioms. To see Axiom 3 is violated, let S = {1, 2} and consider the induced preference %S .

Let x = (3, 2, 0), y = (1, 3, 0), so that xS = (3, 2), yS = (1, 3). Note that xS ˆ6= yS . Since x ≻ y,

we have xS ≻S yS . Any neighborhood of yS contains a point zS = (1, z2) such that z2 > 3,

so that z∗1 = z2 > 3 = x∗1 and we have zS ≻S xS . This shows %S is not mildly continuous, so

Axiom 3 does not hold.

To see that the remaining three axioms hold, note that since % is strong monotone, so is

%S for any non empty S ⊆ N, so Axiom 1 holds. To see Axiom 2 and Axiom 4 hold, consider

any S ⊆ N with |S| = 2. Without loss of generality let S = {1, 2}. For xS = (x1, x2),

yS = (y1, y2), recall that the induced preference %S is defined as

xS %S yS if and only if (x1, x2, 0) % (y1, y2, 0)

So the induced preference %S is a lexi-max preference on XS = R
2
+. That is, (a) x

S ≻S yS if

either [x∗1 > y∗1], or [x
∗
1 = y∗1, x

∗
2 > y∗2] and (b) xS ∼S yS if [x∗1 = y∗1, x

∗
2 = y∗2]. Let A be any

closed unhappy set for %S . In what follows we show A satisfies IMIA.

Let xS , yS ∈ A be such that y1 > x1 and x2 > y2. If x1 ≥ x2, then we have y∗1 = y1 >

x∗1 = x1, so that yS ≻S xS . Consider any x̃1 with y1 > x̃1 > x1 and let x̃S = (x̃1, x2). Then

yS ≻S x̃S , so we have x̃S ∈ A.

Finally let xS , yS ∈ A be such that y1 > x1, x2 > y2 and x2 > x1. Consider any x̃1 with

min{x2, y1} > x̃1 > x1 and let x̃S = (x̃1, x2). Then any neighborhood of x̃S contains a point

zS = (z1, z2) such that z1 = x̃1 < z2 < x2. Then z∗1 = z2 < x∗1 = x2 and we have xS ≻S zS ,

so zS ∈ A. This shows x̃S is a limit point of A. Since A is closed, we must have x̃S ∈ A. This

shows A satisfies IMIA, so Axiom 2 holds.

To verify Axiom 4 (NRAA) holds, let (x1, x2, 0) ≻ (y1, y2, 0). Then either [x∗1 > y∗1] or

[x∗1 = y∗1, x
∗
2 > y∗2]. Take any x3 ∈ R+ and let a, b ∈ R

3
+ be such that

a1 = x1, a2 = x2, a3 = x3 and b1 = y1, b2 = y2, b3 = x3

We have to show a ≻ b. First let x3 ≥ x∗1 ≥ y∗1. Then a∗1 = b∗1 = x3, a
∗
2 = x∗1, b

∗
2 = y∗1, a

∗
3 = x∗2

and b∗3 = y∗2. Since either [a∗2 > b∗2] or [a
∗
2 = b∗2, a

∗
3 > b∗3], we conclude that a ≻ b.

Next suppose x3 < x∗1. If x
∗
1 > y∗1, then a∗1 = x∗1 > b∗1 = max{y∗1, x3}, so we have a ≻ b.

Finally suppose x3 < x∗1 and let x∗1 = y∗1, x
∗
2 > y∗2. Then a∗1 = b∗1 = x∗1. If x

∗
2 ≤ x3, then

a∗2 = b∗2 = x3 and a∗3 = x∗2 > b∗3 = y∗2, so we have a ≻ b. If x∗2 > x3, then a∗2 = x∗2 and

b∗2 = max{y∗2, x3} < a∗2, so we have a ≻ b. This shows that Axiom 4 (NRAA) also holds.
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The preference of Example 1 (All axioms except Axiom 4 hold) This preference is

rational. For any S ⊆ N with |S| = 2, the induced preference %S is lexicographic, so it is

strong monotone and mildly continuous, implying Axiom 1 and Axiom 3 holds. By Lemma

1, any closed unhappy set of %S satisfies IMIA, so Axiom 2 also holds. Note from (c) and

(d) that (0, 6, 4) ≻ (0, 3, 8) but (1, 3, 8) ≻ (1, 6, 4) so it violates Axiom 4 (NRAA).

The following two examples show without rationality we do not get lexicographic prefer-

ence even with all four axioms. For these two examples, it will be useful to recall x, y ∈ X,

we say x, y are non-comparable, denoted by x ⊲⊳ y, if ∃ i, j such that yi > xi and xj > yj .

Example 6 Let N = {1, 2, 3}. Consider a preference relation % on X = R
3
+ that is reflexive,

strong monotone and x ∼ y whenever x ⊲⊳ y. Note that % is complete but not transitive. For

example, let x = (3, 2, 0), y = (2, 2, 0) and z = (4, 1, 0). By strong monotonicity, x ≻ y. Since

y ⊲⊳ z, we have y ∼ z. For transitivity to hold we must have x ≻ z. However, since x ⊲⊳ z, we

have x ∼ z, so transitivity does not hold.

For any S ⊆ N with |S| = 2, the induced preference %S is strong monotone, so Axiom

1 holds. To see the remaining axioms also hold, consider any S ⊆ N with |S| = 2. Without

loss of generality let S = {1, 2}. Let A be an unhappy set for %S and let xS , yS ∈ A such

that y1 > x1, x2 > y2. Then (x1, x2, 0) ⊲⊳ (y1, y2, 0), so we have xS ∼S yS . For any x̃1 with

y1 > x̃1 > x1, let x̃
S = (x̃1, x2). Since (x̃1, x2, 0) ⊲⊳ (y1, y2, 0), we have x̃S ∼S yS . As A is an

unhappy set, we must have x̃S ∈ A. This shows any unhappy set for %S satisfies IMIA, so

Axiom 2 holds.

To see Axiom 3 holds, let xS ˆ6= yS and xS ≻S yS . Then we must have xS > yS . Since there

are neighborhoods Bε(x
S), Bε(y

S) such that x̃S > ỹS for all x̃S ∈ Bε(x
S) and ỹS ∈ Bε(y

S),

by strong monotonicity of %S it follows that %S is mildly continuous, so Axiom 3 holds.

Finally to see Axiom 4 (NRAA) holds, let (x1, x2, 0) ≻ (y1, y2, 0). Then we must have

xS = (x1, x2) ≥ yS = (y1, y2) and xS 6= yS . So for any x3, (x1, x2, x3) ≥ (y1, y2, x3) and

(x1, x2, x3) 6= (y1, y2, x3). This shows Axiom 4 also holds.

Example 7 Let N = {1, 2, 3}. Consider a preference relation % on X = R
3
+ that is reflexive,

strong monotone and whenever x ⊲⊳ y, we have neither x % y nor y % x. This preference

relation is transitive but not complete.

For any S ⊂ N with |S| = 2, the preference %S is strong monotone, so Axiom 1 holds.

By the same reasoning as in Example 6, Axiom 3 and Axiom 4 (NRAA) also hold. To see

Axiom 2 holds, consider any S ⊆ N with |S| = 2. Without loss of generality let S = {1, 2}.

Let A be an unhappy set for %S and let xS , yS ∈ A such that y1 > x1, x2 > y2. For any x̃1

with y1 > x̃1 > x1, let x̃
S = (x̃1, x2). Since (x̃1, x2, 0) ⊲⊳ (y1, y2, 0), we have neither x̃S %S yS

nor yS %S x̃S . So in particular we do not have x̃S ≻S yS . Since A is an unhappy set, we must

have x̃S ∈ A. This shows Axiom 2 holds.
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5 Appendix

5.1 Boundedness of unhappy sets under IMIA

When an unhappy set is inclusive of marginally improved alternatives, there are some useful

implications with respect to boundedness of that set. Let A ⊆ X and x = (xi, x−i) ∈ A.

Denote A(x−i) := {yi ∈ Xi|(yi, x−i) ∈ A}. We say A(x−i) is bounded above if there is a

number k such that yi ≤ k for all yi ∈ A(x−i).

Proposition 3 Consider a rational and strong monotone preference relation % on X. Let A

be a proper subset of X. Suppose A is a closed unhappy set which satisfies IMIA. Let x ∈ A

be such that x > 0N .

(i) Let i ∈ N. If A(x−i) is bounded above, then

(a) ∃ α(x−i) (the least upper bound of A(x−i)) such that A(x−i) = [0, α(x−i)].

(b) For any z ∈ A, A(z−i) is also bounded above with the same least upper bound. That

is, α(x−i) = α(z−i) = αi > 0 and A(x−i) = A(z−i) = [0, αi]. Moreover the points

(αi, x−i), (αi, z−i), are both boundary points of A.

(ii) Let i ∈ N. If A(x−i) is not bounded above, then for any z ∈ A, A(z−i) is also not

bounded above and A(x−i) = A(z−i) = R+.

(iii) Suppose % is also mildly continuous. Then there can be at most one i ∈ N where the

following hold: ∃ z ∈ A with z > 0N such that A(z−i) is bounded above.

Proof (i)(a) Since x = (xi, x−i) ∈ A, we have xi ∈ A(x−i), so A(x−i) is a non empty subset of

R. As A(x−i) is bounded above, by the least-upper-bound property of R (see, e.g., Theorem

1.19, Rudin, 1976) A(x−i) has a least upper bound α(x−i) ≥ xi > 0. As A is an unhappy set,

strong monotonicity of the preference implies whenever yi ∈ A(x−i), any y′i < yi also belongs

to A(x−i). Hence (yi, x−i) ∈ A for 0 ≤ yi < α(x−i) and (yi, x−i) /∈ A for yi > α(x−i). Finally

note that any neighborhood of (α(x−i), x−i) contains a point (yi, x−i) with yi < α(x−i). So

(α(x−i), x−i) is a limit point of A. Since A is a closed set, (α(x−i), x−i) ∈ A. This proves that

A(x−i) = [0, α(x−i)].

(i)(b) Since z ∈ A, we have zi ∈ A(z−i), so A(z−i) is non empty. First suppose z−i
ˆ6= x−i.

Since A satisfies IMIA and (α(x−i), x−i) ∈ A, if (yi, z−i) ∈ A with yi > α(x−i), then by

Observation 2(ii), ∃ x̃i > α(x−i) such that (x̃i, x−i) ∈ A, implying x̃i ∈ A(x−i), contradicting

(a). So A(z−i) must be bounded above by α(x−i) and it has a least upper bound α(z−i) ≤

α(x−i).

If α(z−i) = 0, it is the only point of A(x−i) and (α(z−i), z−i) ∈ A. If α(z−i) > 0, using

strong monotonicity of the preference and closedness of the unhappy set A as in (a) we again

have (α(z−i), z−i) ∈ A. Since (α(xi), x−i) ∈ A, if α(z−i) < α(x−i), then by Observation

2(ii), ∃ z̃i > α(z−i) such that (z̃i, z−i) ∈ A. This implies z̃i ∈ A(z−i), a contradiction. So
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we must have α(z−i) = α(x−i) > 0. Denoting their common value by αi, it follows that

A(x−i) = A(z−i) = [0, αi] for any z−i
ˆ6= x−i.

Now consider the case where z−i, x−i are not totally different. Since x > 0N , we can

construct x̃ such that for all j ∈ N : 0 < x̃j < xj and x̃j 6= zj . Since x ∈ A and x > x̃,

by strong monotonicity, x̃ ∈ A. Since x̃−i
ˆ6=x−i, applying the result of the last paragraph we

have A(x̃−i) = [0, αi]. Finally observing that x̃ > 0N and z−i
ˆ6=x̃−i, reapplying the result of

the last paragraph we have A(z−i) = [0, αi].

As any neighborhood of (αi, x−i) contains two points y = (yi, x−i), y
′ = (y′i, x−i) such

that y′i < αi < yi, we have y ∈ A and y′ ∈ X \A. This shows (αi, x−i) ∈ ∂A. The same holds

for (αi, z−i).

(ii) As A(x−i) is not bounded above, for any k > 0, there is yi > k such that yi ∈ A(x−i).

As A is an unhappy set, strong monotonicity of the preference implies any y′i < yi also belongs

to A(x−i). This shows A(x−i) = R+.

For z ∈ A, if the set A(z−i) is bounded above, it has a least upper bound α(z−i) ≥ zi

and by the same reasoning as before, (α(z−i), z−i) ∈ A. Consider any k > α(z−i). Since

A(x−i) = R+, (k, x−i) ∈ A. As x > 0N , we can construct x̃ such that x̃i = k and for all

j ∈ N \ {i}: 0 < x̃j < xj and x̃j 6= zj . Since (k, x−i) ≥ x̃, by strong monotonicity x̃ ∈ A.

Since (α(z−i), z−i) ∈ A, x̃−i
ˆ6=z−i and x̃i = k > α(z−i), by Observation 2(ii) ∃ z̃i > α(z−i)

such that (z̃i, z−i) ∈ A, a contradiction. This shows A(z−i) must be also not bounded above

and A(z−i) = R+.

(iii) We have to show that there can be at most one i ∈ N where the following hold:

∃z ∈ A with z > 0N such that A(z−i) is bounded above (2)

If (2) does not hold, then there are i, k ∈ N and y, z ∈ A with y > 0N , z > 0N such that

A(y−i) and A(z−k) are both bounded above. By part (i), there are positive numbers αi, αk

such that A(y−i) = [0, αi] and A(z−k) = [0, αk].

Since y > 0N and z > 0N , we can construct x̃, ỹ such that 0 < ỹj < x̃j < min{yj , zj}

for all j ∈ N and ỹk < x̃k < αk. Then y > x̃ > ỹ. As y ∈ A, by strong monotonicity,

x̃, ỹ ∈ A. Then by part (1)(i), A(x̃−i) = A(ỹ−i) = [0, αi]. Let x = (αi, x̃−i), y = (αi, ỹ−i).

Then x, y ∈ ∂A.

Since z > 0N , we can construct z̃ such that 0 < z̃i < min{zi, αi} and z̃j = zj for all

j ∈ N \ {i}. Then z ≥ z̃. As z ∈ A, by strong monotonicity, z̃ ∈ A. Then by part (1)(i),

A(z̃−k) = [0, αk]. Then z = (αk, z̃−k) ∈ ∂A.

Note that (a) yj < xj < zj for j ∈ N \ {i, k}, (b) yi = xi = αi > zi and (c) yk < xk <

αk = zk. This shows x ˆ6= z and y ˆ6= z. Since x, y, z are all boundary points of the unhappy

set A, by Proposition 1(ii), we conclude: x ∼ z and y ∼ z. Then transitivity implies x ∼ y.

However, since xi = yi and x−i > y−i, by strong monotonicity of the preference relation have

x ≻ y, which is a contradiction. This proves that there is at most one i ∈ N where (2) holds.
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5.2 Proofs

Proof of Proposition 1 (i) Suppose there are two unhappy sets A,B and x ∈ A, y ∈ B

such that x /∈ B, y /∈ A. By definition of unhappy sets we must have x ≻ y and y ≻ x, a

contradiction.

For (ii), by the Result 1 we know there exists x ∈ ∂A.

(ii)(a) If the assertion is not true, then by completeness one of x, y is strictly preferred

to the other. Without loss of generality, let x ≻ y. Then mild continuity implies ∃ ε > 0

such that all points in Bε(x) is strictly preferred to all points in Bε(y). Since x, y ∈ ∂A, ∃

x̃ ∈ Bε(x), ỹ ∈ Bε(y) such that x̃ ∈ A, ỹ /∈ A and we have x̃ ≻ ỹ. A contradiction since A is

an unhappy set.

(b) If the assertion is not true, then y ≻ x and mild continuity implies ∃ ε > 0 such that

y is strictly preferred to all points in Bε(x). Since x ∈ ∂A, ∃ x̃ ∈ Bε(x) such that x̃ /∈ A and

we have y ≻ x̃, a contradiction since y ∈ A and A is an unhappy set.

(c) As x ≻ y, mild continuity implies ∃ ε > 0 such that all points in Bε(x) is strictly

preferred to y. Since x ∈ ∂A, ∃ x̃ ∈ Bε(x) such that x̃ ∈ A and we have x̃ ≻ y. Since A is an

unhappy set, we must have y ∈ A.

Proof of Corollary 1 (i)-(ii) As the preference relation is continuous, strict preference

orders are preserved around small neighborhoods of any two points rather than only totally

different points. Thus for any x ∈ ∂A, conclusions of Proposition 1(iv) hold for any y ∈ X.

Part (i) of the corollary follows by applying Proposition 1(iv)(a) for any y ∈ X. Part (ii)

follows by applying Proposition 1(iv)(b)-(c) for any y ∈ X.

(iii) By Result 1, the set A cannot be both open and closed, so we can have either (a) A

is neither open nor closed, or (b) A is either open or closed, but not both. First we rule out

(a). To see this, suppose there is an unhappy set A that is neither open nor closed. Since

A is not open, ∃ x ∈ A such that every neighborhood of x contains a point outside A, so

we have x ∈ ∂A. Since A is not closed, ∃ y /∈ A which is a limit point of A, that is, every

neighborhood of y contains a point in A, so we have y ∈ ∂A. Since x, y ∈ ∂A, by (i) we

have x ∼ y. However, since x ∈ A, y /∈ A and A is an unhappy set, we must have y ≻ x, a

contradiction. This rules out (a). So the set A is either open or closed, but not both.

Suppose A is open. Let x ∈ ∂A. We must have x /∈ A since every neighborhood of x

contains a point outside A. As A is an unhappy set, if y ∼ x, we must have y /∈ A. This shows

A ∩ I(x) = ∅. Since A ⊆ L(x) = L(x) ∪ I(x) (by (ii)), we must have A ⊆ L(x) and again by

(ii) we have A = L(x).

Suppose A is closed. Let x ∈ ∂A. As A is closed, we have x ∈ A. Since A is an unhappy

set, if y ∼ x, we must have y ∈ A. This shows I(x) ⊆ A. Since L(x) ⊆ A, (by (ii)), we

conclude L(x) = L(x) ∪ I(x) ⊆ A. Again by (ii) it follows that A = L(x).
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Proof of Proposition 2 Note by definition of lower contour set that any point in X \L(x)

is strictly preferred to any point in L(x). To prove L(x) is an unhappy set, it remains to show

that if a ∈ X \ L(x) and b ∈ ∂L(x), then a ≻ b.

Since % is rational (complete and transitive), if the result does not hold, there are a ∈

X \ L(x), b ∈ ∂L(x) such that b % a. Denote

E = {i ∈ N |ai = bi = 0} and S = N \ E

so that S ∪ E = N. Since % is monotonic preference relation, 0N ∈ L(x), so a 6= 0N . Thus

S 6= ∅ and there is i ∈ S with ai > 0.

Since a ∈ X \ L(x) and a /∈ ∂L(x), there is a neighborhood Bε(a) ⊆ X \ L(x). We can

construct ã ∈ Bε(a) (so that ã ∈ X \ L(x)) such that (i) if i ∈ E, then ãi = ai = 0; (ii) if

i ∈ S and ai = 0, then ãi = 0; and (iii) if i ∈ S and ai > 0, then 0 < ãi < ai and ãi 6= bi.

Note that ãS ˆ6= bS . By strong monotonicity of %, a ≻ ã and transitivity implies b ≻ ã.

If E = ∅, then N = S. So ã = ãS , b = bS and we have ã ˆ6= b. Since L(x) is an unhappy set,

b ∈ ∂L(x) and b ≻ ã, by Proposition 1(ii)(c) we must have ã ∈ L(x) which is a contradiction

since ã ∈ X \ L(x).

If E 6= ∅, then ã = (ãS , 0E) and b = (bS , 0E). Since b ∈ ∂L(x), every neighborhood Bε(b)

contains a point b̄ ∈ L(x). From such b̄, construct c as c = (b̄S , 0E). By monotonicity of %,

we have b̄ % c. Hence c ∈ L(x). Moreover d(bS , b̄S) = d(b, c) ≤ d(b, b̄) < ε, so b̄S ∈ Bε(b
S).

This shows for every neighborhood Bε(b
S) of bS :

∃ b̄S ∈ Bε(b
S) such that (b̄S , 0E) ∈ L(x) (3)

Consider the induced preference %S on XS . Note that for yS , zS ∈ XS :

yS %S zS ⇔ (yS , 0E) % (zS , 0E) (4)

It is given %S is mildly continuous on XS . Since b = (bS , 0E) ≻ ã = (ãS , 0E), by (4) we have

bS ≻S ãS . Since bS ˆ6= ãS , by mild continuity of %S , there is a neighborhood Bε(b
S) such that

for every b̃S ∈ Bε(b
S) we have b̃S ≻S ãS , so by (4)

(̃bS , 0E) ≻ (ãS , 0E) = ã for all b̃S ∈ Bε(b
S) (5)

By (3) and (5), it follows that ã ∈ L(x), which is a contradiction since ã ∈ X \ L(x).

Proof of Lemma 1 Let the set of all attributes be N = {1, . . . , n}. Let % be a lexicographic

preference on X = R
n
+. Suppose 1 is the most important attribute of % .

Let A ⊆ X be a closed unhappy set for % . Let x, y ∈ A be such that x ˆ6= y with yS > xS

and xN\S > yN\S . Then we have either x ≻ y or y ≻ x.

If x ≻ y, then we must have 1 ∈ N \ S and x1 > y1 ≥ 0. Consider any x̃S > xS and let

x̃ = (x̃S , xN\S). So in particular, x̃1 = x1. Note that any neighborhood of x̃ contains a point
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z such that z1 < x̃1 = x1. So we have x ≻ z. As A is an unhappy set, we have z ∈ A. Thus

any neighborhood of x̃ contains a point z 6= x̃ such that z ∈ A. So x̃ is a limit point of A. As

A is closed, x̃ ∈ A. This shows x̃ = (x̃S , xN\S) ∈ A for any x̃S > xS .

If y ≻ x, then 1 ∈ S and y1 > x1 ≥ 0. Consider any x̃S such that yS > x̃S > xS , so in

particular y1 > x̃1 > x1. Let x̃ = (x̃S , xN\S). Then y ≻ x̃. As A is an unhappy set, we have

x̃ ∈ A. This shows x̃ = (x̃S , xN\S) ∈ A for any yS > x̃S > xS . This proves that any closed

unhappy set A for % satisfies IMIA.

Proof of Lemma 2 Let A ∈ A%. By Proposition 3 there can be at most one i ∈ N where

(2) holds. Suppose (2) fails to hold for all i ∈ N. We know ∃ x ∈ A with x > 0N . Consider

any point z = (z1, . . . , zn) ∈ X. Since A(x−1) is unbounded, z1 = (z1, x2, . . . , xn) ∈ A.

Since A(z1−2) is unbounded, z2 = (z1, z2, x3, . . . , xn) ∈ A. After n steps we can show zn =

(z1, . . . , zn) ∈ A. Using this reasoning for any z ∈ X, we have X = A, which cannot happen

since A is a proper subset of X. This shows there is exactly one i ∈ N for which (2) holds.

Denote this i by i∗.

Then by Proposition 3(i) it follows that ∃ αA > 0 such that for any z ∈ A: (a) A(z−i∗) =

[0, αA] and (b) A(z−j) = R+ for any j ∈ N \ {i∗}. Note from (a) that if y ∈ X has yi∗ > αA,

then y ∈ X\A. Since x ∈ A, by (a), (αA, x−i∗) ∈ A. Then by (b) it follows that (αA, y−i∗) ∈ A

for any y−i∗ ∈ X−i∗ . Since A is an unhappy set, strong monotonicity of the preference implies

that (zi∗ , y−i∗) ∈ A for any zi∗ ∈ [0, αA]. This proves that A = {y ∈ X|0 ≤ yi∗ ≤ αA}.

To complete the proof consider another set B ∈ A%. Then there is k ∈ N and αB > 0 such

that B = {x ∈ X|0 ≤ xk ≤ αB}. It only remains to show that k = i∗. Recall by Proposition

1 that since A,B are both unhappy sets, either A ⊆ B or B ⊆ A. Without loss of generality

let A ⊆ B. If k 6= i∗, then for any z ∈ A, A(z−k) = R+, so there is a z ∈ A such that zk > αB,

so that z /∈ B, a contradiction. So we must have k = i∗.

Proof of Theorem 1 A lexicographic preference on X = R
2
+ is strong monotone and mildly

continuous and by Lemma 1, any closed unhappy set of such a preference satisfies IMIA.

To prove the converse, let % be a rational, strong monotone and mildly continuous pref-

erence relation on X = R
2
+ for which any closed unhappy set satisfies IMIA. Consider any

x = (x1, x2) ∈ R
2
+ such that x1, x2 are both positive. Let L(x) be the lower contour set of x

and L(x) = L(x)∪∂L(x) be its closure. By Corollary 2, L(x) is a closed unhappy set, so it be-

longs to the family A% given in (1). By Lemma 2 we conclude there is κ(x) > 0 and a unique

i∗ ∈ {1, 2} such that L(x) = {y ∈ R
2
+|0 ≤ yi∗ ≤ κ(x)}. Without loss of generality, let i∗ = 1.

Then for any x where x1, x2 are both positive we have L(x) = {y ∈ R
2
+|0 ≤ y1 ≤ κ(x)}.

In what follows we show κ(x) = x1. Note that if κ(x) < x1, then x will be outside L(x),

so we must have κ(x) ≥ x1. If κ(x) > x1, we can construct x̃ ∈ R
2
+ such that x̃1 = κ(x) > x1

and x̃2 > x2. Observe that x̃ ∈ L(x) and any neighborhood of x̃ contains a point y such that

y1 > κ(x), so that y /∈ L(x). This shows x̃ ∈ ∂L(x).

Next observe that x̃ > x so by monotonicity x̃ ≻ x. Since % is mildly continuous and

x̃ ˆ6= x, there exists a neighborhood Bε(x̃) such that all points there is strictly preferred to x.
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So we have x̃ /∈ ∂L(x). But we know x̃ ∈ ∂L(x). This is a contradiction since for any set A,

the boundary of its closure is a subset of ∂A (see, e.g., Chapter 3 of Mendelson, 1990). This

shows we must have κ(x) = x1. So for any x where x1, x2 are both positive:

L(x) = {y ∈ R
2
+|0 ≤ y1 ≤ x1} (6)

To show that % is lexicographic, consider any y, z ∈ R
2
+ such that y 6= z. If z1 > y1, then ∃

x with x1, x2 both positive such that z1 > x1 > y1. Then by (6) it follows that y ∈ L(x) and

z /∈ L(x). Since L(x) is an unhappy set, we must have z ≻ y. This shows whenever z1 > y1,

we must have z ≻ y. Finally let y 6= z such that z1 = y1. Then by strong monotonicity, z ≻ y

if z2 > y2 and y ≻ z if y2 > z2. This shows that % is a lexicographic preference with linear

order 1 <0 2.

Proof of Lemma 3 (i)(a) Take any S ⊆ N with |S| = 2. Consider the induced preference

%S defined on XS = R
2
+. Note that %S is rational (since % is rational), strong monotone

(by Axiom 1) and mildly continuous (by Axiom 3). By Axiom 2, any closed unhappy set for

%S satisfies IMIA. Then by Proposition 1 we conclude that %S is a lexicographic preference

on XS = R
2
+. Since |S| = 2, ∃ i, j ∈ S such that i ≻∗ j, that is, the linear order of the

lexicographic preference %S is i <0 j.

(i)(b) Take any xS , yS ∈ XS = R
2
+ where xS 6= yS . Then either (a) xi > yi or (b) yi > xi or

(c) (xi = yi and xj > yj) or (d) (xi = yi and yj > xj).

Consider any zN\S ∈ XN\S . Since i ≻∗ j, if (a) or (c) hold, then (xS , 0N\S) ≻ (yS , 0N\S)

and by Axiom 4 we have (xS , zN\S) ≻ (yS , zN\S). If (b) or (d) hold, then (yS , 0N\S) ≻

(xS , 0N\S) and by Axiom 4 we have (yS , zN\S) ≻ (xS , zN\S).

(ii) Suppose i ≻∗ j and j ≻∗ k. Let S = {i, k}. First observe that if xS , yS are such that

xi = yi and xk > yk, then by strong monotonicity of %S , we have (xS , 0N\S) ≻ (yS , 0N\S).

So let xS , yS are such that xi > yi. Consider non negative numbers xk, yk, x̃j such that

x̃j > 0. Denote T = {i, j, k} and let

xT = (xi, 0, xk), x̃
T = (yi, x̃j , xk), y

T = (yi, 0, yk) and

x = (xT , 0N\T ), x̃ = (x̃T , 0N\T ), y = (yT , 0N\T ).

Note that xi > x̃i = yi and xℓ = x̃ℓ for any ℓ 6= i, j. Since i ≻∗ j, by (i)(b), we have x ≻ x̃.

Next observe that x̃j > yj = 0 and x̃ℓ = yℓ for any ℓ 6= j, k. Since j ≻∗ k, by (i)(b) we have

x̃ ≻ y. By transitivity of %, we have x ≻ y. Noting that x = (xS , 0N\S) and y = (yS , 0N\S)

we conclude that if xi > yi, then (xS , 0N\S) ≻ (yS , 0N\S). This shows that i ≻∗ k.

(iii) Note from (i)-(ii) for any two different i, j ∈ N, either i ≻∗ j or j ≻∗ i. Moreover for

i, j, k ∈ N, if i ≻∗ j and j ≻∗ k, then i ≻∗ k. We prove the result by induction on n. The

result clearly holds for n = 2. For m ≥ 3, assume the result holds for all n ≤ m − 1 and let

M = {1, . . . ,m}. Let S = {i ∈ M |i ≻∗ m} and T = {i ∈ M |m ≻∗ i}. Then S, T are disjoint
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and S ∪ T = M. Let |S| = s, |T | = t. Then 0 ≤ s, t ≤ m− 1. So by induction hypothesis, we

have S = {i1, . . . , is} such that i1 ≻
∗ . . . ≻∗ is and T = {j1, . . . , jt} such that j1 ≻

∗ . . . ≻∗ jt.

Since is ≻
∗ m and m ≻∗ j1, we have i1 ≻

∗ . . . ≻∗ is ≻
∗ m ≻∗ j1 . . . ≻

∗ jt.
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