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Abstract 

What happens when information reaches the human brain? In economics, a black-box 

approach to information processing in the brain is generally taken with an implicit 

assumption that information, once it reaches the brain, is accurately processed. In sharp 

contrast, research in brain sciences has established that when information reaches the 

brain, a mental template or schema (neural substrate of knowledge) is first activated, which 

influences information absorption. Schemas are created through a resource intensive 

process in which finite brain resources are allocated to different tasks, with resource 

allocation in the brain having an impact on the structure of schemas. In this article, we 

explore the implications of this richer view from brain sciences for the capital asset pricing 

model (CAPM). We show that two versions of CAPM arise depending on how the brain 

resources are allocated in schema creation. In one version, the relationship between beta 

and expected returns is flat along with value and size effects. In the second version, the 

relationship between beta and expected return is strongly positive with an implied risk-free 

rate which could be negative. The two version CAPM provides a unified explanation for a 

series of empirical findings including high-alpha-of-low-beta, size and value effect as well as 

strongly positive relationship between beta and average stock returns at specific times such 

as on macroeconomic announcement days, and at market open. As certain morbidities, such 

as autism, are thought to be associated with lack of schemas that attenuate information, a 

laboratory experiment with high functioning autism sufferers might be our best bet at 

observing the classical CAPM in its full glory.   
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Resource Allocation in the Brain and the Capital Asset Pricing 

Model 

 

What happens when information reaches the human brain? In economics, a black-box 

approach to information absorption is typically taken with an implicit assumption that 

information, when it reaches the brain, is accurately processed. In sharp contrast, research 

in brain sciences has established that when information reaches the brain, a mental 

template or schema, is first activated, which influences information absorption.1 Brain 

imaging studies show that schema formation is a resource-intensive process that involves 

different regions of the brain talking to each other2; however, these schemas, once formed, 

make subsequent processing of schema-consistent information a lot faster by attenuating 

schema-inconsistent information.3   In this article, we study the implications of this richer 

view from brain sciences for the capital asset pricing model (CAPM).  

 A schema can be conceived as a scaffold or a blueprint,4 essentially representing a 

set of preconceived ideas. Neurologically, it is a brain template that involves systems of 

neurons across various brain regions talking to each other, with each system constituting a 

particular unit in the schema. That is, schemas contain units as well as relationships 

between these units. For example, for a car schema, units could be car body and wheel, 

with the relationship that car body contains four wheels. For a firm schema, units could be 

expected cash flow levels and associated risks with a specific relationship between these 

units. Schemas, by only containing the essential details, simplify the world. They direct 

attention to relevant aspects, and speed-up processing of information that fits within the 

schema.  

 When received information does not fit within an existing schema and it can’t be 

ignored, then the brain may create a new schema by attempting to appropriately modify a 

 
1 There is a large body of literature in neuroscience that explores various facets of schemas and how they 

influence information absorption (for a review, see van Kesteren et al (2012), Gilboa and Marlatte (2017), 

Spalding et al (2015) and references therein).  
2 See Ohki and Takei (2018) and references therein.  
3 Sweegers et al (2015) 
4 See Hampson and Morris (1996) or Anderson (2000) for a detailed review of schema theory. 
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related schema.  Brain organizes knowledge in a network of such interconnected schemas. 

For example, a child may initially only have a schema for a horse (large with four legs, hair, 

and a tail). However, when she encounters a cow, a new schema for a cow could be created 

by modifying the horse schema. Similarly, relevant to our context, an investor analysing a 

firm that she has not analysed before, may create a new schema for the firm by altering the 

schema of a similar firm that she has analysed before. Studying the implications of such a 

schema-creation process for CAPM is the subject of this article.  

Research in brain sciences has established that there is brain specialization with 

different brain systems performing different tasks and competing for scarce resources that 

are allocated by a ‘central executive system’ (CES) located in the lateral prefrontal cortex 

(see Alonso et al (2014) and references therein).  This suggests that, while modifying an 

existing schema to create a new one, each unit in a schema is exclusively worked on by a 

distinct system of neurons. Each system makes demands for resources with task 

performance dependent on resource allocation. For relatively simple schemas (such as for a 

cow or a car), the resource constraint is not binding and all units in an existing schema are 

fully adjusted to create accurate units in the new schema. However, for sufficiently complex 

schemas such as a firm schema, the resource constraint is likely to be binding. In the context 

of CAPM, keeping things simple, expected cash flows and risk of the cash flows are the two 

key units in the schema of a given firm. So, each unit is worked on by a different system of 

neurons while modifying an existing schema to create a new one. With a binding resource 

constraint, how the scarce brain resources are split across the two units matters.  

In this article, we consider two ways in which scarce brain resources can be allocated 

towards the two units while creating a new schema for a firm: 

1) More resources are allocated to the brain system working on expected cash flows. 

2) More resources are allocated to the brain system working on risk of the cash flows. 

It follows that there are two types of traders. Traders, who are more adept at 

processing cash flow information as they have schemas with more resources devoted to 

cash flows, and traders who are better at processing risk-related information as they have 

schemas with more resources devoted to risk of the cash flows. Note that neither type of 
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trader completely ignores information, it is just that their relative skill in processing a certain 

type of information differs depending on the structure of schemas that they have.   

We show that which trader type is marginal matters for CAPM. When a cashflow-

schema trader is marginal, a version of CAPM is obtained (cashflow-schema CAPM), which 

displays a flatter relationship between stock beta and expected excess returns. Betting-

against-beta anomaly is observed along with the value and size effects. Hence, a unified 

explanation for betting-against-beta, value, and size anomalies emerges in this version. 

When a risk-schema trader is marginal, another version of CAPM arises (risk-schema 

CAPM). In this version, there is a strong positive relationship between beta and expected 

excess return with an implied risk-free rate that could be negative. Stocks that do better in 

the first version (low beta, small) do worse in the second version.  

Generally, the marginal investor is expected to be a cashflow-schema trader due to 

the importance given to earnings or cashflow news (Basu et al 2013). However, there are 

specific times when the marginal investor is expected to be a risk-schema trader: (i) when 

risks fall, or (ii) when cashflows fall. When risks fall, both cashflow-schema traders and risk-

schema traders increase their demand; however, the increase in demand from risk-schema 

traders is larger making them net buyers. When cashflows levels fall, both cashflow-schema 

traders and risk-schema traders reduce their demand; however, the demand reduction from 

risk-schema traders is smaller, making them net buyers.  

As risk reductions as well as cashflow reductions make risk-schema traders marginal, 

we predict a steeper relationship between beta and average stock returns at such times. 

Risk reductions can happen, at least for some traders, when macro announcements about 

interest rates, unemployment, and inflation are made. Cashflow level reductions are 

associated with weak aggregate spending in the economy generally indicated by low 

inflation. Hence, we predict a steeper relationship between beta and average stock returns 

on macro announcement days, and during periods when inflation is low. Indeed, this is what 

Savor and Wilson (2014) and Cohen et al (2005) find. 

In general, whenever trades are triggered by risk-reduction, we expect a strongly 

positive relationship between beta and average stock returns as the marginal trader is a 
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risk-schema trader at such times. For example, at market open, there is quite a bit of 

uncertainty about the opening price, which can be substantially different from the previous 

close. This uncertainty keeps most traders on the sidelines. Only traders who manage to 

reduce this uncertainty for themselves (perhaps by considering what happened in other 

markets across the globe while this particular market was closed) increase their demand. As 

risk reduction increases the demand by risk-schema traders more, they become net-buyers 

at open. Hence, we predict that, at market open, the relationship between beta and average 

excess stock return is strongly positive. Again, this is consistent with the empirical findings in 

Hendershott et al (2019). 

 

2. CAPM adjusted for Resource Allocation in the Brain 

We take a modern derivation of CAPM (such as in Frazzini and Pedersen (2014)) and add a 

twist to it, which is incorporating the implications of information processing through a 

schema as created by a resource-constrained brain.  

As in Frazzini and Pedersen (2014), we consider an overlapping generations (OLG) 

economy with agents having identical beliefs. Each agent lives for two periods. Agents that 

are born at 𝑡 aim to maximize their utility of wealth at 𝑡 + 1. Their utility functions are 

identical and exhibit mean-variance preferences. They trade securities 𝑠 = 1, ⋯ , 𝑆 where 

security 𝑠 pays dividends 𝑑𝑡𝑠and has 𝑛𝑠∗ shares outstanding, and invest the rest of their 

wealth in a risk-free asset that offers a rate of 𝑟𝐹. 

The market is described by a representative agent who maximizes: 

max 𝑛′{𝐸𝑡(𝑃𝑡+1 + 𝑑𝑡+1) − (1 + 𝑟𝐹)𝑃𝑡} − 𝛾2 𝑛′Ω𝑡𝑛  

where 𝑃𝑡 is the vector of prices, Ω𝑡 is the variance-covariance matrix of 𝑃𝑡+1 + 𝑑𝑡+1, and 𝛾 is 

the risk-aversion parameter. 

It follows that the price of a security, 𝑠, is given by: 

𝑃𝑡𝑠 = 𝐸(𝑋𝑡+1𝑠 ) − 𝛾𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )1 + 𝑟𝐹                                                                                               (2.1) 
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where security 𝑠 payoff is 𝑋𝑡+1𝑠 = 𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠   

and aggregate market payoff is: 𝑋𝑡+1𝑀 = 𝑛1∗(𝑃𝑡+11 + 𝑑𝑡+11 ) + 𝑛2∗(𝑃𝑡+12 + 𝑑𝑡+12 ) +∙∙∙∙∙∙∙∙∙∙∙∙ +𝑛𝑆∗(𝑃𝑡+1𝑆 + 𝑑𝑡+1𝑆 ). 

 

2.1 Schema Creation 

As discussed in the introduction, schema is a mental template that contains units as well as 

a relationship between units. With mean-variance preferences, the relevant units are 

expected cash flows and the risk of cash flows, with the risk measured by covariance of cash 

flows with the aggregate market cash flows. We define a firm-schema as follows: “It is a set 

of preconceived ideas about expected cash flow levels and their risks that help in processing 

new information to evaluate one’s willingness-to-pay (WTP)”. So, a firm-schema has the 

following general form: 

𝑊𝑇𝑃 =  𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝑠 − (𝑟𝑖𝑠𝑘𝑎𝑣𝑒𝑟𝑠𝑖𝑜𝑛)(𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑖𝑠𝑘)1 + 𝑟𝑖𝑠𝑘𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒  

To understand the process of schema creation, we consider how a typical stock 

analyst behaves while analysing a firm. Stock analysis is usually done at firm-level cash 

flows, which are then transformed to the level of an individual security. We denote firm-

level earnings or cash flows by 𝜋𝑡+1𝑠  where the number of outstanding shares is 𝑛𝑠∗. Earnings-

per-share (EPS) is then given by: 𝐸𝑃𝑆𝑡+1 = 𝜋𝑡+1𝑠𝑛𝑠∗ . Denoting the price-earnings (P/E) ratio, 

inclusive of dividends, for firm 𝑠 by 𝑐𝑠: 

𝑋𝑡+1𝑠 = 𝑃𝑡+1𝑠 + 𝑑𝑡+1𝑠 = 𝑐𝑠(𝐸𝑃𝑆𝑡+1) = 𝑐𝑠 𝜋𝑡+1𝑠𝑛𝑠∗  

We assume that when a trader analyses the cash flows of a firm 𝑠 for the first time, she 

creates a schema by modifying the schema for a similar firm 𝑞 that she has analysed earlier. 

The two units that constitute a schema for a firm are: expected cash flows and the risk of 

cash flows. So, the process of creating a new schema by modifying an existing schema 

requires modifications in these two units. 
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For expected cash flow levels, the modification is: 𝐸′(𝜋𝑡+1𝑠 ) = 𝐸(𝜋𝑡+1𝑞 ) − 𝑚1𝐷1 

where 𝐷1 = 𝐸(𝜋𝑡+1𝑞 ) − 𝐸(𝜋𝑡+1𝑠 ) is the correct adjustment needed, and 0 ≤ 𝑚1 ≤ 1, 

captures the fraction of correct adjustment reached. If the brain is not resource constrained, 

then 𝑚1 = 1, which corresponds to full or correct adjustment. On the other hand, 𝑚1 < 1, 

indicates that the resource constraint is binding.  

Transforming to the level of EPS: 𝐸′(𝜋𝑡+1𝑠 )𝑛𝑠∗ = 𝐸(𝜋𝑡+1𝑞 )𝑛𝑞∗ 𝑛𝑞∗𝑛𝑠∗ − 𝑚1𝐷1𝑛𝑠∗  

⇒ 𝐸′(𝐸𝑃𝑆𝑡+1𝑠 ) = 𝑛𝑞∗𝑛𝑠∗ 𝐸(𝐸𝑃𝑆𝑡+1𝑞 ) − 𝑚1 (𝑛𝑞∗𝑛𝑠∗ 𝐸(𝐸𝑃𝑆𝑡+1𝑞 ) − 𝐸(𝐸𝑃𝑆𝑡+1𝑠 )) 

⇒ 𝐸′(𝐸𝑃𝑆𝑡+1𝑠 ) = (1 − 𝑚1) 𝑛𝑞∗𝑛𝑠∗ 𝐸(𝐸𝑃𝑆𝑡+1𝑞 ) + 𝑚1𝐸(𝐸𝑃𝑆𝑡+1𝑠 )                                                   
Similarly, the schema-unit for the risk of cash flows is obtained as follows: 𝐶𝑜𝑣′(𝜋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) = 𝐶𝑜𝑣(𝜋𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) − 𝑚2𝐷2 

⇒ 𝐶𝑜𝑣′(𝜋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )𝑛𝑠∗ = 𝐶𝑜𝑣(𝜋𝑡+1𝑞 , 𝑋𝑡+1𝑀 )𝑛𝑞∗ 𝑛𝑞∗𝑛𝑠∗ − 𝑚2 (𝐶𝑜𝑣(𝜋𝑡+1𝑞 , 𝑋𝑡+1𝑀 )𝑛𝑞∗ 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣(𝜋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )𝑛𝑠∗ ) 

⇒ 𝐶𝑜𝑣′(𝐸𝑃𝑆𝑡+1𝑠 , 𝑋𝑡+1𝑀 )= 𝐶𝑜𝑣(𝐸𝑃𝑆𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗− 𝑚2 (𝐶𝑜𝑣(𝐸𝑃𝑆𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣(𝐸𝑃𝑆𝑡+1𝑠 , 𝑋𝑡+1𝑀 )) 

⇒𝐶𝑜𝑣′(𝐸𝑃𝑆𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) = (1 − 𝑚2)𝐶𝑜𝑣(𝐸𝑃𝑆𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ + 𝑚2(𝐶𝑜𝑣(𝐸𝑃𝑆𝑡+1𝑠 , 𝑋𝑡+1𝑀 )) 

Following the behavior of a typical stock analyst, we define the notion of similar firms as 

having the following two properties: 

1) Firms that are in the same line of business, and 
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2) Have the same P/E ratios. 

P/E ratios (inclusive of dividends) for 𝑠 and 𝑞 are 𝑐𝑠 and 𝑐𝑞, and applying the above 

properties, the firms are in the same line of business with similar P/E ratios:  𝑐𝑐 ≈ 𝑐𝑞 = 𝑐 

So, the schema-unit for risk of the cash flows is estimated as: 

𝐶𝑜𝑣′(𝑐𝐸𝑃𝑆𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) = (1 − 𝑚2)𝐶𝑜𝑣(𝑐𝐸𝑃𝑆𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ + 𝑚2(𝐶𝑜𝑣(𝑐𝐸𝑃𝑆𝑡+1𝑠 , 𝑋𝑡+1𝑀 ))       
⇒ 𝐶𝑜𝑣′(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) = (1 − 𝑚2)𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ + 𝑚2(𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ))       
⇒ 𝐶𝑜𝑣′(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )=  𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )+ (1 − 𝑚2) (𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ))                               (2.2) 

Similarly, the schema-unit for expected cash flow levels can be written as: 

𝐸′(𝑐𝐸𝑃𝑆𝑡+1𝑠 ) = (1 − 𝑚1) 𝑛𝑞∗𝑛𝑠∗ 𝐸(𝑐𝐸𝑃𝑆𝑡+1𝑞 ) + 𝑚1𝐸(𝑐𝐸𝑃𝑆𝑡+1𝑠 ) 

⇒𝐸′(𝑋𝑡+1𝑠 ) = (1 − 𝑚1) 𝑛𝑞∗𝑛𝑠∗ 𝐸(𝑋𝑡+1𝑞 ) + 𝑚1𝐸(𝑋𝑡+1𝑠 ) 

⇒ 𝐸′(𝑋𝑡+1𝑠 ) =  𝐸(𝑋𝑡+1𝑠 ) + (1 − 𝑚1) (𝐸(𝑋𝑡+1𝑞 ) 𝑛𝑞∗𝑛𝑠∗ − 𝐸(𝑋𝑡+1𝑠 ))                                      (2.3) 

(2.2) and (2.3) capture the following two properties associated with resource allocation in 

the brain (see Alonso et al (2014)): 

1) When a new schema is created by modifying an existing schema, the process is broken 

down into separate tasks, with each unit worked on by a separate system of neurons. Each 

system communicates its resource requirements to CES, which allocates finite brain 

resources between systems. 

2) The resource constraint is generally binding for complex schemas with task performance 

dependent on how much of resources are allocated to that particular task. 
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2.2 Cashflow-Schema CAPM 

Schema creation is a resource intensive process. A separate system of neurons is allocated 

to each unit in the schema of a firm, with allocation of brain resources to the two units 

determined by CES. In this section, we assume that more resources are devoted to the unit 

for expected cash flows when compared with the unit for risk of the cash flows. That is, 𝑚1 > 𝑚2. We refer to such traders as having a cashflow-schema, and the CAPM so obtained 

is referred to as the cashflow-schema CAPM. In section 2.4, we consider the other case 

where 𝑚2 > 𝑚1 (with such traders referred to as risk-schema traders). 

Without loss of generality, we set 𝑚1 = 1, it then follows that 𝑚2 = 𝑚 < 1. 

Suppose, there is a firm 𝑞 that had been analysed earlier, and its schema is modified to 

create a schema for firm 𝑠.  

The share price of firm 𝑞 is given by (from 2.1): 

𝑃𝑡𝑞 = 𝐸(𝑋𝑡+1𝑞 ) − 𝛾𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 )1 + 𝑟𝐹                                                                                               (2.4) 

And, the share price of firm 𝑠 is given by (using 2.2): 

𝑃𝑡𝑠 = 𝐸(𝑋𝑡+1𝑠 ) − 𝛾 {𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) + (1 − 𝑚) (𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ))} 1 + 𝑟𝐹  

                      (2.5) 

The expected returns of 𝑠 and 𝑞 are then (with 𝑅𝐹 = 1 + 𝑟𝐹): 

𝐸[𝑅𝑡+1𝑞 ] = 𝑅𝐹 + 𝛾𝑃𝑡𝑞 𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 )                                                                                            (2.6) 

𝐸[𝑅𝑡+1𝑠 ] = 𝑅𝐹 + 𝛾𝑃𝑡𝑠 {𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )
+ (1 − 𝑚) (𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ))}                               (2.7) 
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To fix ideas, initially it is useful to assume that there are just two firms in the market, 𝑠 and 𝑞 before generalizing to 𝑁 firms. Multiplying (2.6) by 𝑤𝑞 = 𝑛𝑞∗ 𝑃𝑡𝑞𝑃𝑡𝑀 , which is the weight of firm 𝑞 in the market portfolio (𝑃𝑡𝑀is the price of aggregate market portfolio), multiplying (2.7) by 𝑤𝑠 = 𝑛𝑠∗𝑃𝑡𝑠𝑃𝑡𝑀 , and adding: 

𝐸[𝑅𝑡+1𝑀 ] = 𝑅𝐹 + 𝛾𝑃𝑡𝑀 {𝑉𝑎𝑟(𝑋𝑀) + (1 − 𝑚)(𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 )𝑛𝑞∗ − 𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )𝑛𝑠∗)} 

⇒ 𝛾 = (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹)𝑃𝑡𝑀{𝑉𝑎𝑟(𝑋𝑀) + (1 − 𝑚)(𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 )𝑛𝑞∗ − 𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )𝑛𝑠∗)}                    (2.8) 

 

Substituting (2.8) in (2.6) and re-arranging/simplifying leads to the modified CAPM equation 

for 𝑞: 

𝐸[𝑅𝑡+1𝑞 ] = 𝑅𝐹 + (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) ∙ 𝛽𝑞 ∙ ( 11 + (1 − 𝑚)(𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠))                             (2.9) 

where 𝛽𝑞 = 𝐶𝑜𝑣(𝑅𝑡+1𝑞 ,𝑅𝑡+1𝑀 )𝑉𝑎𝑟(𝑅𝑡+1𝑀 )  and 𝛽𝑠 = 𝐶𝑜𝑣(𝑅𝑡+1𝑠 ,𝑅𝑡+1𝑀 )𝑉𝑎𝑟(𝑅𝑡+1𝑀 )  

Substituting (2.8) in (2.7) leads to: 

𝐸[𝑅𝑡+1𝑠 ] = 𝑅𝐹 + (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) ∙ 𝛽𝑠 ∙ ( 1 + (1 − 𝑚) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1)1 + (1 − 𝑚)(𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠))                         (2.10) 

(2.9) and (2.10) are modified CAPM expressions when schemas are created with a binding 

resource constraint (and with more brain resources allocated to the schema-unit concerned 

with expected cash flows). Note that (2.9) and (2.10) revert to the classical CAPM expression 

when 𝑚 = 1 (resource constraint in the brain is not binding).  
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Generalizing to 𝑁 firms with several 𝑞 firms spawning new schemas of several 𝑠 firms, the 

corresponding CAPM expressions for 𝑞 and 𝑠 firms are: 𝐸[𝑅𝑡+1𝑞 ] = 𝑅𝐹 + (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) ∙ 𝛽𝑞∙ ( 11 + (1 − 𝑚)(∑ ∑ (𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠)𝑠𝑞 ))                                                    (2.11)    
𝐸[𝑅𝑡+1𝑠 ] = 𝑅𝐹 + (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) ∙ 𝛽𝑠

∙ ( 1 + (1 − 𝑚) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1)1 + (1 − 𝑚)(∑ ∑ (𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠)𝑠𝑞 ))                                                  (2.12)    
It is intriguing to note that CAPM expressions with finite brain resources have the same form 

as the classical CAPM with only one difference: a factor that multiplies 𝛽 appears. When the 

resource constraint is not binding, 𝑚 = 1, the multiplicative factor equals 1, so we revert 

back to the classical CAPM expression.  

2.3 High-alpha-of-low-beta, value, and size effects 

(2.12) and (2.11) show that the classical CAPM is a special case of a schema-adjusted CAPM. 

In schema-adjusted CAPM, there is an additional multiplicative factor, which multiplies 𝛽. 

This factor reduces to 1 when the resource constraint is not binding. In other words, the 

schema-adjusted CAPM reduces to the classical CAPM when 𝑚 = 1.  

 For a firm 𝑠 whose schema is created by modifying the schema of a similar firm 

(same line of business with similar P/E ratios) 𝑞, this additional multiplicative factor is equal 

to: 𝑓 = ( 1+(1−𝑚)(𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 −1)1+(1−𝑚)(∑ ∑ (𝑤𝑞𝛽𝑞−𝑤𝑠𝛽𝑠)𝑠𝑞 ))                                                                                           (2.13) 

Firms to which investors and analysts devote most of their time are likely to be ones that 

spawn new schemas for other firms.  Investor and analyst attention is strongly asymmetric 

with large, prominent firms (high market capitalizations) getting a lion’s share (Fang and 

Peress 2009). This motivates the following assumption: 

• Within a group of firms whose schemas are spawned by the same firm, 𝑞, the 

following holds: 𝑤𝑞𝛽𝑞 > 𝑤𝑠𝛽𝑠  
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It follows that 𝑓 > 0. Proposition 1 shows the emergence of high-alpha-of-low-beta in the 

cashflow-schema CAPM 

 

Proposition 1 (High-alpha-of-low-beta) In a given cross-section of stocks, a stock with low 

beta outperforms a stock with large beta on a risk-adjusted basis, all else equal. 

Proof 

Suppose there are two stocks 𝑠 and 𝑠′ such that 𝛽𝑠 < 𝛽𝑠′ . Risk-adjusted return on 𝑠 is given 

by: 𝐸[𝑅𝑡+1𝑠 ] − 𝑅𝐹𝛽𝑠 = {1 + (1 − 𝑚) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 − 1)} × 1𝑔 × (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) 

where 𝑔 is a constant in a given cross-section of stocks. 

 𝑔 = 1 + (1 − 𝑚)(∑ ∑ (𝑤𝑞𝛽𝑞 − 𝑤𝑠𝛽𝑠)𝑠𝑞 ) 

Risk-adjusted return on 𝑠′ is given by: 

𝐸[𝑅𝑡+1𝑠′ ] − 𝑅𝐹𝛽𝑠′ = {1 + (1 − 𝑚) (𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠′ − 1)} × 1𝑔 × (𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹) 

As 𝛽𝑠 and 𝛽𝑠′  appear in the denominator on R.H.S, it follows that: 

𝐸[𝑅𝑡+1𝑠 ]−𝑅𝐹𝛽𝑠 > 𝐸[𝑅𝑡+1𝑠′ ]−𝑅𝐹𝛽𝑠′  ∎ 

 

One can also see the size effect in the cashflow-schema CAPM as proposition 2 shows. 

 

Proposition 2 (Size effect) In a given cross-section of stocks, a stock with a lower weight in 

the market portfolio outperforms a stock with a higher weight on a risk-adjusted basis, all 

else equal 
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Proof 

Suppose there are two stocks 𝑠 and 𝑠′ such that 𝑤𝑠 < 𝑤𝑠′ . Following the same steps as in 

the proof of proposition 1, it is easy to see that  
𝐸[𝑅𝑡+1𝑠 ]−𝑅𝐹𝛽𝑠 > 𝐸[𝑅𝑡+1𝑠′ ]−𝑅𝐹𝛽𝑠′ . 

∎ 

 

The cashflow-schema CAPM not only explains the high-alpha-of-low-beta and size-effect, 

but also the value effect. Value effect refers to the finding that a stock with low price to 

fundamentals tends to outperform a stock with high price to fundamentals.  Suppose there 

are two stocks 𝑠 and 𝑠′ that have the same fundamentals (expected cash flows and the risk 

of the cash flows). That is, 𝐸(𝑋𝑡+1𝑠 ) = 𝐸(𝑋𝑡+1𝑠′ ), and 𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) = 𝐶𝑜𝑣(𝑋𝑡+1𝑠′ , 𝑋𝑡+1𝑀 ). 

Assume that 𝑃𝑠 < 𝑃𝑠′ .  

If there is a value effect, then it must be so that  𝐸[𝑅𝑡+1𝑠 ] − 𝑅𝐹𝛽𝑠 > 𝐸[𝑅𝑡+1𝑠′ ] − 𝑅𝐹𝛽𝑠′  

To see if the above is true, start from: 

𝑃𝑠 = 𝐸(𝑋𝑡+1𝑠 )−𝛾{𝐶𝑜𝑣(𝑋𝑡+1𝑠 ,𝑋𝑡+1𝑀 )+(1−𝑚)(𝐶𝑜𝑣(𝑋𝑡+1𝑞 ,𝑋𝑡+1𝑀 )𝑛𝑞∗𝑛𝑠∗ −𝐶𝑜𝑣(𝑋𝑡+1𝑠 ,𝑋𝑡+1𝑀 ))} 1+𝑟𝐹 < 𝑃𝑠′ =
𝐸(𝑋𝑡+1𝑠′ )−𝛾{𝐶𝑜𝑣(𝑋𝑡+1𝑠′ ,𝑋𝑡+1𝑀 )+(1−𝑚)(𝐶𝑜𝑣(𝑋𝑡+1𝑞 ,𝑋𝑡+1𝑀 )𝑛𝑞′∗𝑛𝑠′∗ −𝐶𝑜𝑣(𝑋𝑡+1𝑠′ ,𝑋𝑡+1𝑀 ))} 1+𝑟𝐹 . Assuming the same 

fundamentals across the two stocks, 𝐸(𝑋𝑡+1𝑠 ) = 𝐸(𝑋𝑡+1𝑠′ ), and  𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) =𝐶𝑜𝑣(𝑋𝑡+1𝑠′ , 𝑋𝑡+1𝑀 ), it follows that: 𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ > 𝐶𝑜𝑣 (𝑋𝑡+1𝑞′ , 𝑋𝑡+1𝑀 ) 𝑛𝑞′∗𝑛𝑠′∗  

⇒ 𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) > 𝐶𝑜𝑣 (𝑋𝑡+1𝑞′ , 𝑋𝑡+1𝑀 ) 𝑛𝑞′∗𝑛𝑠′∗ − 𝐶𝑜𝑣(𝑋𝑡+1𝑠′ , 𝑋𝑡+1𝑀 ) 
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⇒ 𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) {𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 )𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ − 1}
>  𝐶𝑜𝑣(𝑋𝑡+1𝑠′ , 𝑋𝑡+1𝑀 ) {𝐶𝑜𝑣 (𝑋𝑡+1𝑞′ , 𝑋𝑡+1𝑀 )𝐶𝑜𝑣(𝑋𝑡+1𝑠′ , 𝑋𝑡+1𝑀 ) 𝑛𝑞′∗𝑛𝑠′∗ − 1} 

⇒ 𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 )𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) 𝑛𝑞∗𝑛𝑠∗ > 𝐶𝑜𝑣 (𝑋𝑡+1𝑞′ , 𝑋𝑡+1𝑀 )𝐶𝑜𝑣(𝑋𝑡+1𝑠′ , 𝑋𝑡+1𝑀 ) 𝑛𝑞′∗𝑛𝑠′∗  

⇒ 𝑤𝑞𝛽𝑞𝑤𝑠𝛽𝑠 > 𝑤𝑞′𝛽𝑞′𝑤𝑠′𝛽𝑠′                                                                                                                            (2.14) 

It follows immediately from (2.14) that: 

𝐸[𝑅𝑡+1𝑠 ] − 𝑅𝐹𝛽𝑠 > 𝐸[𝑅𝑡+1𝑠′ ] − 𝑅𝐹𝛽𝑠′  

Proposition 3 follows. 

 

Proposition 3 (Value effect) In a given cross-section of stocks, a stock with low price to 

fundamentals outperforms a stock with high price to fundamentals on a risk-adjusted 

basis. 

 

It is intriguing that value and size effects as well as high-alpha-of-low-beta can all be seen in 

the cashflow-schema CAPM that has the same form as the classical CAPM except for the 

appearance of a factor, 𝑓, which multiplies beta. This multiplicative factor is larger for small 

size stocks, for low beta stocks, and for value stocks.  

 Stocks with original schemas that spawn schemas for other stocks have a generalized 

CAPM expression given in (2.11). That is, for such stocks, beta is multiplied by a factor less 

than 1, and a comparison of (2.11) and (2.12) clearly shows that such stocks have lower risk-

adjusted returns when compared with stocks with derived schemas. Original schemas are 

likely to be associated with stocks that command greater investor and analyst attention.   

Proposition 4 follows. 
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Proposition 4 (Attention effect) Large, prominent stocks that receive a lion’s share of 

investor attention have lower risk-adjusted return when compared with stocks that 

receive less investor attention. 

 

Proposition 4 is consistent with the empirical findings in Fang and Peress (2009). Next, we 

consider the case when more brain resources are allocated to risk of the cash flows when 

compared with expected cash flows. 

 

2.4 Risk-Schema CAPM 

When schema of a firm is being created by modifying an existing schema, the two schema-

units that need to be adjusted are expected cash flows and the risk of cash flows. In the 

previous sections, we considered the case when more brain resources are allocated to 

expected cash flows. In this section, we consider the other case: when more brain resources 

are allocated to the system of neurons working on the risk of cash flows. In (2.2) and (2.3), 

this means the following: 𝑚1 < 𝑚2. Without loss of generality, we set 𝑚2 = 1, it follows 

that 𝑚1 = 𝑚 < 1. 

The stock of firm 𝑠, whose schema is obtained by modifying the schema of a similar 

firm (same line of business and P/E ratios) 𝑞, is priced as: 

𝑃𝑡𝑠 = 𝐸(𝑋𝑡+1𝑠 ) + (1 − 𝑚) (𝑛𝑞∗𝑛𝑠∗ 𝐸(𝑋𝑡+1𝑞 ) − 𝐸(𝑋𝑡+1𝑠 )) − 𝛾𝐶𝑜𝑣(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 )1 + 𝑟𝐹                         (2.15) 

The stock of firm 𝑞, whose schema is modified to obtain the schema for 𝑠, is priced as: 

𝑃𝑡𝑞 = 𝐸(𝑋𝑡+1𝑞 ) − 𝛾𝐶𝑜𝑣(𝑋𝑡+1𝑞 , 𝑋𝑡+1𝑀 )1 + 𝑟𝐹                                                                                             (2.16) 
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Following the same set of steps as in section 2.2, the following generalized CAPM 

expressions for 𝑠 and 𝑞 stocks are obtained: 

𝐸[𝑅𝑡+1𝑠 ] = 𝑅𝐹 + 𝛽𝑠 [𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹 + (1 − 𝑚)𝑃𝑡𝑀 ∑ ∑ (𝑛𝑞∗ 𝐸(𝑋𝑡+1𝑞 ) − 𝑛𝑠∗𝐸(𝑋𝑡+1𝑠 ))𝑠𝑞 ]
− (1 − 𝑚)𝑃𝑡𝑠 {𝑛𝑞∗𝑛𝑠∗ 𝐸(𝑋𝑡+1𝑞 ) − 𝐸(𝑋𝑡+1𝑠 )}                                                               (2.17) 

𝐸[𝑅𝑡+1𝑞 ] = 𝑅𝐹 + 𝛽𝑞 [𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹 + (1 − 𝑚)𝑃𝑡𝑀 ∑ ∑ (𝑛𝑞∗ 𝐸(𝑋𝑡+1𝑞 ) − 𝑛𝑠∗𝐸(𝑋𝑡+1𝑠 ))𝑠𝑞 ]     (2.18) 

where 𝑃𝑡𝑀 is the value of aggregate market portfolio.  The above can be simplified further by 

defining expected market capitalization inclusive of dividends as: 𝐸(𝑤𝑡+1𝑞 ) = 𝑛𝑞∗ 𝐸(𝑋𝑡+1𝑞 )𝑃𝑡𝑀  and 𝐸(𝑤𝑡+1𝑠 ) = 𝑛𝑠∗𝐸(𝑋𝑡+1𝑠 )𝑃𝑡𝑀 : 

𝐸[𝑅𝑡+1𝑠 ] = 𝑅𝐹 + 𝛽𝑠 [𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹 + (1 − 𝑚) ∑ ∑ (𝐸(𝑤𝑡+1𝑞 ) − 𝐸(𝑤𝑡+1𝑠 ))𝑠𝑞 ]
− (1 − 𝑚) {𝐸(𝑤𝑡+1𝑞 ) − 𝐸(𝑤𝑡+1𝑠 )𝑤𝑡𝑠 }                                                                (2.19) 

where 𝑤𝑡𝑠 = 𝑛𝑠∗𝑃𝑡𝑠𝑃𝑡𝑀  is the weight of stock s in the market portfolio.  

 𝐸[𝑅𝑡+1𝑞 ] = 𝑅𝐹 + 𝛽𝑞 [𝐸[𝑅𝑡+1𝑀 ] − 𝑅𝐹 + (1 − 𝑚) ∑ ∑ (𝐸(𝑤𝑡+1𝑞 ) − 𝐸(𝑤𝑡+1𝑠 ))𝑠𝑞 ]              (2.20) 

Given evidence that large firms (large market capitalizations) get a lion’s share of 

investor and analyst attention (Fang and Peress 2009), it is likely that they are the ones 

spawning schemas of other firms.  Hence, we assume that 𝐸(𝑤𝑡+1𝑞 ) > 𝐸(𝑤𝑡+1𝑠 ).   

 It is immediately obvious that, in risk-schema CAPM, the relationship between beta 

and excess stock return is steeper than what classical CAPM predicts as beta is multiplied by 

a factor larger than excess market return. Larger the beta, bigger the improvement over 

classical CAPM prediction.  
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Furthermore, the implied risk-free rate is smaller than what the classical CAPM predicts and 

could even be negative: 

𝑅𝐹′ = 𝑅𝐹 − (1 − 𝑚) {𝐸(𝑤𝑡+1𝑞 ) − 𝐸(𝑤𝑡+1𝑠 )𝑤𝑡𝑠 }                                                                           (2.21) 

It is straightforward to see that large size (market capitalization) stocks do better in this 

version as the implied risk-free rate is larger for them. 

Proposition 5 formalizes the key differences between the two versions of CAPM. 

Proposition 5 (Differences between the two versions) CAPM when more brain resources 

are allocated to expected cash flows (Cashflow Schema CAPM) differs from the CAPM 

when more brain resources are allocated to the risk of cash flows (Risk schema CAPM) in 

the following ways: 

1) The former has a flatter relationship between beta and expected returns, whereas 

the latter has a steeper relationship between beta and expected returns. 

2) The implied risk-free rate is smaller in the latter and could be negative. 

3) Small size, and low beta stocks do better in the former whereas large size, and high 

beta stocks do better in the latter. 

 

3. Discussion and Conclusions 

Depending on which trader type is marginal, either cashflow-schema-CAPM or risk-schema-

CAPM is observed. Using the behavior of a typical stock analyst as a guide, normally one 

expects to observe cashflow-schema-CAPM, as most of the resources of a typical stock 

analyst are devoted to estimating future cash flows. However, there are specific times when 

the marginal trader is expected to be a risk-schema trader. We expect this to happen when 

traders are prompted by risk-reductions or cashflow reductions. Using the superscript, 𝑖, for 

risk-schema traders, and the superscript, 𝑗, for cashflow-schema traders, we can map the 

change in their respective willingness-to-pay for 𝑠 as follows: 𝜕𝑊𝑇𝑃𝑖𝑠𝜕𝐶𝑜𝑣𝑖(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) = −𝛾1 + 𝑟𝐹 < 0                                                                                                (2.22) 
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𝜕𝑊𝑇𝑃𝑗𝑠𝜕𝐶𝑜𝑣𝑗(𝑋𝑡+1𝑠 , 𝑋𝑡+1𝑀 ) = −𝛾𝑚1 + 𝑟𝐹 < 0                                                                                              (2.23) 

𝜕𝑊𝑇𝑃𝑖𝑠𝜕𝐸𝑖(𝑋𝑡+1𝑠 ) = 𝑚1 + 𝑟𝐹 > 0                                                                                                              (2.24) 

𝜕𝑊𝑇𝑃𝑗𝑠𝜕𝐸𝑗(𝑋𝑡+1𝑠 ) = 11 + 𝑟𝐹 > 0                                                                                                              (2.25) 

 

As risk-reductions increase the willingness-to-pay of risk-schema traders by more, whereas, 

reductions in expected cashflows reduces their willingness-to-pay by less, it follows that the 

marginal trader is expected to be a risk-schema trader under these scenarios. Hence, as 

discussed in the introduction, when trades are prompted by risk-reductions (actual or 

perceived), as on macro announcement days or at market open, we expect a stronger 

relationship between beta and average stock returns. This is consistent with empirical 

findings (Savor and Wilson 2014, Hendershott et al 2019).  

 When trades are prompted by reductions in expected cashflow levels, such as when 

there is a negative shock to aggregate spending (generally associated with low inflation), we 

expect a stronger relationship between beta and average returns due to the marginal 

investor being a risk-schema trader. The findings in Cohen et al (2005) are consistent with 

this prediction. 

Research in brain sciences has made it clear that reliance on schemas is essentials for 

a normal functioning human being (see Spalding et al (2015) and references therein). 

Without schemas to attenuate information, and focus on the relevant bits, even simple 

tasks such as putting fuel in a car or setting a dinner table becomes overly exhausting as 

commonly experienced by individuals with autism (APA 2013). If reliance on schemas is 

responsible for deviations from classical CAPM, then a laboratory experiment with subjects 

who do not rely on schemas (such as people with high functioning autism) on a delayed 

time-scale (to avoid information overload) is our best bet at observing the classical CAPM in 

its full glory.  

 



19 

 

References  

Alonso, Brocas, and Carrillo (2014), “Resource allocation in the brain”, Review of Economic Studies, 

Vol. 81, pp. 501-534.  

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders. 5th. 

Washington, DC. 

 

Anderson, J. R. (2000). Cognitive Psychology and Its Implications (5th ed.). New York, NY. Worth 

Publishers.  

 

Basu, Duong, Markov and Tan (2013), “How Important are Earnings Announcements as an 
Information Source”, European Accounting Review, Vol. 22, pp. 221-256. 

 

Cohen, Polk, and Vuolteenaho (2005), “Money illusion in the stock market: The Modigliani-Cohn 

hypothesis”, Quarterly Journal of Economics, Vol. 120, pp. 639 – 668. 

Fang and Peress (2009), “Media coverage and the cross section of stock returns”, Journal of Finance, 

Vol. 64, pp. 2023-2052. 

Frazzini and Pedersen (2014), “Betting against beta”, Journal of Financial Economics, Vol. 114, pp. 1-

25. 

Gilboa, A., and Marlatte, H. (2017), “Neurobiology of schema and schema mediated memory”, 
Trends in Cognitive Science, Vol. 21, pp. 618-631. 

Graham, Harvey, and Rajgopal (2005), “The economic implications of corporate financial reporting”, 
Journal of Accounting and Economics, Vol. 40, pp. 3-73. 

Hampson, P. J. & Morris, P. E. (1996) Understanding Cognition. Cambridge, MA. Blackwell Publishers. 

Hendershott, Livdan, and Rosch (2019), “Asset pricing: A tale of night and day”, Journal of Finance 

(Forthcoming) 

Ohki and Takei (2018), “Neural mechanisms of mental schema: a triplet of delta, low beta/spindle 

and ripple oscillations”, European Journal of Neuroscience, Vol. 48, pp. 2416-2430. 

Spalding, Jones, Duff, Tranel, and Warren (2015), “Investigating the Neural Correlates of Schemas: 

Ventromedial Prefrontal Cortex Is Necessary for Normal Schematic Influence on Memory”, Journal of 

Neuroscience, Vol. 35, pp. 15745-15751. 

Sweegers, Coleman, van Poppel, Cox, and Talamini (2015), “Mental schemas hamper memory 
storage of goal-irrelevant information”, Frontiers in Human Neuroscience, Vol. 9, pp. 6-29. 

van Kesteren MT, Ruiter DJ, Fernandez G, Henson RN (2012), “How schema and novelty augment 
memory formation”, Trends in Neuroscience, Vol. 35, pp. 211–219. 


