
Munich Personal RePEc Archive

garchx: Flexible and Robust GARCH-X

Modelling

Sucarrat, Genaro

BI Norwegian Business School

11 May 2020

Online at https://mpra.ub.uni-muenchen.de/100301/

MPRA Paper No. 100301, posted 11 May 2020 16:36 UTC

1

garchx: Flexible and Robust GARCH-X

Modelling
Genaro Sucarrat

Abstract The garchx package provides a user-friendly, fast, flexible and robust framework for the
estimation and inference of GARCH(p, q, r)-X models, where p is the ARCH order, q is the GARCH
order, r is the asymmetry or leverage order, and ’X’ indicates that covariates can be included. Quasi
Maximum Likelihood (QML) methods ensure estimates are consistent and standard errors valid, even
when the standardised innovations are non-normal or dependent, or both. Zero-coefficient restrictions
by omission enable parsimonious specifications, and functions to facilitate the non-standard inference
associated with zero-restrictions in the null-hypothesis are provided. Finally, in formal comparisons of
precision and speed, the garchx package performs well relative to other prominent GARCH-packages
on CRAN.

Introduction

In the Autoregressive Conditional Heteroscedasticity (ARCH) class of models proposed by Engle
(1982), the variable of interest ǫt is decomposed multiplicatively as

ǫt = σtηt, (1)

where σt > 0 is the standard deviation of ǫt, and ηt is a real-valued standardised innovation with
mean zero and unit variance (e.g. the standard normal). Originally, Engle (1982) interpreted ǫt as the
error-term of a dynamic regression of inflation, so that σt is the uncertainty of the inflation forecast.
However, ARCH-models have also proved to be useful in many other areas. The field in which they
have become most popular is finance. There, ǫt is commonly interpreted as a financial return, either
raw or mean-corrected (i.e. ǫt has mean zero), so that σt is a measure of the variability or volatility of
return. In Engle and Russell (1998) it was noted that the ARCH framework can also be used to model
non-negative variables, say, the trading volume of financial assets, the duration between financial
trades, and so on. Specifically, suppose yt denotes a non-negative variable, say, volume, and µt is the
conditional expectation of yt. Engle and Russell (1998) noted that, in the expression ǫ2

t = σ2
t η2

t implied
by the ARCH model, if you replace ǫ2

t with yt and σ2
t with µt, then it follows straightforwardly that µt

is the conditional expectation of yt. This is justified theoretically, since the underlying estimation theory
does not require that ǫt has mean zero. The observation made by Engle and Russell (1998) spurred a
new class of models, which is known as the Multiplicative Error Model (MEM), see Brownlees et al.
(2012) for a survey. The practical implication of all this is that ARCH-software can in fact be used to
estimate MEMs by simply feeding the package in question with

√
y

t
rather than ǫt. The fitted values

of σ2
t become the fitted values of µt, the error term is defined by yt/µt, and the inference theory and

other statistical results usually carry over straightforwardly. In conclusion, the ARCH-class of models
provides a flexible framework that can be used in a very wide range of empirical applications.

Prominent GARCH-packages on CRAN

Although a large number of specifications of σt have been proposed, the most common in empirical
applications are variants of the Generalised ARCH (GARCH) proposed by Bollerslev (1986). In
particular, the plain GARCH(1,1) is ubiquitous:

σ2
t = ω + α1ǫ2

t−1 + β1σ2
t−1, ω > 0, α1 ≥ 0, β1 ≥ 0. (2)

By analogy with an ARMA(1,1), the conditional variance σ2
t is modelled as a function of the recent

past, where the ǫ2
t−1 is referred to as the ARCH term, and σ2

t−1 is referred to as the GARCH term.

The non-negativity of ǫ2
t , together with the constraints on the parameters ω, α1 and β1, ensure σ2

t is
strictly positive. Another way of ensuring that σ2

t is strictly positive is by modelling its logarithm,
ln σ2

t , as for example in the log-ARCH class of models proposed by Geweke (1986), Pantula (1986) and
Milhøj (1987). Here, however, the focus is exclusively on non-logarithmic specifications of σt. Also,
multivariate GARCH-specifications are not covered.

The most prominent packages on CRAN that are commonly used to estimate variants of (2) are
tseries (Trapletti and Hornik, 2019), fGarch (Wuertz et al., 2020) and rugarch (Ghalanos, 2020). In

2

tseries, the function garch() enables estimation of the GARCH(p, q) specification

σ2
t = ω +

p

∑
i=1

αiǫ
2
t−i +

q

∑
j=1

β jσ
2
t−j, ω > 0, αi ≥ 0, β j ≥ 0. (3)

Notable features of garch() include simplicity and speed. With respect to simplicity, it is appealing
that a plain GARCH(1,1) can be estimated by the straightforward and simple command garch(eps),
where eps is the vector or series in question, i.e. ǫt in (1). As for speed, it is the fastest among the
packages compared here, and outside the R universe it is also likely to be one of the fastest. Indeed, a
formal speed comparison (see Section 4) reveals the relative speed provided by garch can be important
– in particular if the number of observations is large, or if many models has to be estimated (as in
simulations). A notable limitation of (3) is that it does not allow for asymmetry terms, e.g. I{ǫt−1<0}ǫ2

t−1,
also known as ’leverage’, or covariates. Asymmetry effects are particularly common in daily stock
returns, where its presence implies that volatility in day t is higher if return on the previous day, ǫt−1,
is negative. Often, such asymmetry effects are attributed to leverage.

In fGarch asymmetry effects are possible. Specifically, the function garchFit() enables estimation
of the Asymmetric Power GARCH (APARCH) specification

σδ
t = ω +

p

∑
i=1

αi|ǫt−i|δ +
q

∑
j=1

β jσ
δ
t−j +

r

∑
k=1

γk I{ǫt−k<0}|ǫt−k|δ, γk ≥ 0, (4)

where δ > 0 is the power parameter, and the γk’s are the asymmetry parameters. The power parameter
δ is rarely different from 2 in empirical applications, but it does provide the added flexibility of
modelling, say, the conditional standard deviation (δ = 1) directly, if the user wishes to do so. Another
feature of garchFit() is that other densities than the normal can be used in the ML estimation, for
example the skewed normal or the skewed Student’s t. In theory, this provides more efficient estimates
asymptotically if ηt is skewed or more heavy-tailed than the normal. In finite samples, however,
the actual efficiency may be more dependent on how estimation is carried out numerically. Also,
additional density parameters may increase the possibility of numerical problems. To alleviate this
potential problem, the package offers a non-normality robust coefficient-covariance along the lines
of Bollerslev and Wooldridge (1992) in combination with normal ML. The coefficient-covariance of
Bollerslev and Wooldridge (1992) does not, however, provide robustness to dependence of the ηt’s.
Finally, fGarch also offers the possibility of specifying the mean equation as an ARMA model. That
is, ǫt = yt − µt, where µt is the ARMA-specification. Theoretically, joint estimation of µt and σt may
improve the asymptotic efficiency compared with, say, a two-step estimation approach, where µt is
estimated in the first step, and σt is estimated in the second using the residuals from the first step. In
practice, however, joint estimation may in fact reduce the actual efficiency. The reasons for this are
the increase in the number of parameters to be estimated, and the increased possibility of numerical
problems due to the increase in the number of parameters to be estimated.

A limitation of fGarch is that it does not allow for additional covariates (’X’) in (4). This can be a
serious limitation, since additional conditioning variables like high − low, realised volatility, interest
rates and so on may help to predict or explain volatility in substantial ways. The rugarch package
remedies this. Most of the non-exponential specifications offered by rugarch are contained in

σδ
t = ω +

p

∑
i=1

αi|ǫt−i|δ +
q

∑
j=1

β jσ
δ
t−j +

r

∑
k=1

γk I{ǫt−k<0}|ǫt−k|δ +
s

∑
l=1

λl xl,t−1, λl ≥ 0, xl,t−1 ≥ 0, (5)

where the xl,t−1’s are the covariates. However, it should be mentioned that the package also enables the
estimation of additional models, e.g. the Component GARCH model and the Fractionally Integrated
GARCH model, amongst other. These additional models are not the focus here. Note that the
covariates in (5) need not enter as lagged of order 1. That is, xl,t−1 may denote a variable that is lagged
of order 2, say, wt−2, and so on. A variable may also enter as unlagged, wt. However, it is not clear
what the teoretical requirements are for consistent estimation in this case due to simultaneity issues.
Just as in fGarch, the rugarch package also enables a non-normality robust coefficient-covariance,
ML estimation with non-normal densities, and the joint estimation of an ARMA-specification in the
mean together with σt. To the best of my knowledge, no other CRAN-package offers more univariate
GARCH-specifications than rugarch.

3

What does garchx offer?

The garchx package1 aims at providing a simple, fast, flexible and robust – both theoretically and
numerically – framework for GARCH-X modelling. The specifications that can be estimated are all
contained within

σ2
t = ω +

p

∑
i=1

αiǫ
2
t−i +

q

∑
j=1

β jσ
2
t−j +

r

∑
k=1

γk I{ǫt−k<0}ǫ2
t−k +

s

∑
l=1

λl xl,t−1. (6)

While this implies a restriction of δ = 2 compared with the rugarch package, garchx enables several
additional features that are not available in the above-mentioned packages:

i) Robustness to dependence. Normal ML estimation is usually consistent when the ηt’s are depen-
dent over time, see e.g. Escanciano (2009), and Francq and Thieu (2018). This is useful, for
example, when the conditional skewness, conditional kurtosis or conditional zero-probability of
ηt is time-varying and dependent on the past in unknown ways. In these cases, however, the
non-normality robust coefficient-covariance of Bollerslev and Wooldridge (1992) is not valid.
Optionally, garchx offers the possibility of using the dependence (and non-normality) robust
coefficient-covariance derived by Francq and Thieu (2018).

ii) Inference under nullity. In applied work it is frequently of interest to test whether a coefficient
differs from zero. The permissible parameter-space of GARCH-models, however, is bounded
from below by zero. Accordingly, non-standard inference is required when the value of a
null-hypothesis lies on the zero-boundary, see Francq and Thieu (2018). The garchx package
offers functions to facilitate such tests, named ttest0 and waldtest0, respectively, based on the
results by Francq and Thieu (2018).

iii) Zero-constrained coefficients by omission. If one or more coefficients are indeed zero, then it may
be desirable to obtain estimates under zero-constraints on these coefficients. For example, if
ǫt is the error-term in a regression of quarterly inflation, then it may be desirable to estimate a
GARCH(4,4) model in which the parameters associated with orders 1, 2 and 3 are restricted to
zero. That is, it is desirable to estimate

σ2
t = ω + α4ǫ2

t−4 + β4σ2
t−4.

Another example is the non-exponential Realised GARCH of Hansen et al. (2012), which is
simply a GARCH(0,1)-X. That is, the ARCH(1) coefficient is set to zero. Zero-constrained
coefficients do not only provide a more parsimonious characterisation of the process in question.
They may also make estimation more efficient and stable numerically, since fewer parameters
need to be estimated. rugarch offers a feature in which coefficients can be fixed to zero. However,
its approach is not by omission. In other words, using coef in rugarch to extract the coefficients
in the GARCH(4,4) example above will return a vector of length 9 rather than of length 3, while
the coefficient-covariance returned by rugarch will be 3 × 3. This makes multiple hypothesis
testing with Wald-tests tedious in constrained models. In garchx, by contrasts, Wald-tests in
constrained models are straightforward, since the zeros are due to omission: The vector returned
by coef is of length 3 and the coefficient-covariance is 3 × 3.

iv) Computation of the asymptotic coefficient-covariance. Knowing the value of the theoretical, asymp-
totic coefficient-covariance matrix is needed for a formal evaluation of an estimator. For
GARCH-models, these expressions are not available in explicit form. The garchx offers a
function, garchxAvar, that compute them by combining simulation and numerical differenti-
ation. To illustrate the usage of garchxAvar, a small Monte Carlo study is undertaken. While
the results of the study suggest all four packages return approximately unbiased estimates in
large samples, they also suggest tseries and rugarch are less robust numerically than fGarch
and garchx under default options. In addition, the simulations reveal the standard errors of
tseries can be substantially biased downwards when ηt is non-normal. A bias is expected, since
tseries does not offer a non-normality robust coefficient-covariance. However, the bias is larger
than suggested by the underlying estimation theory.

Table 1 provides a summary of the features offered by the four packages.

The rest of the article is organised as follows. The next section provides an overview of the garchx
package and its usage. Thereafter, the garchxAvar is illustrated by means of a Monte Carlo study of
the large sample properties of the packages. Next, a speed comparison of the packages is undertaken.
While tseries is the fastest for the specifications it can estimate, garchx is notably faster than fGarch
and rugarch in all the experiments that are conducted. Finally, the last section concludes.

1On CRAN since 9 April 2020.

4

tseries fGarch rugarch garchx

GARCH(p, q) Yes Yes Yes Yes

Asymmetry Yes Yes Yes

Power GARCH Yes Yes

Covariates (X) Yes Yes

Additional GARCH models Yes

Non-normality robust vcov Yes Yes Yes

Dependence robust vcov Yes

Computation of asymptotic vcov Yes

Constrained estimation Yes

Zero-constraints by omission Yes

Inference under null-restrictions Yes

Normal (Q)ML Yes Yes Yes Yes

Non-normal ML Yes Yes

ARMA in the mean Yes Yes

Table 1: A feature-based comparison of selected R packages that offer GARCH-estimation: tseries
version 0.10-47 (Trapletti and Hornik, 2019), fGarch version 3042.83.2 (Wuertz et al., 2020), rugarch
version 1.4-2 (Ghalanos, 2020) and garchx version 1.1 (Sucarrat, 2020).

The garchx package

Estimation theory

Let Ft−1 denote the sigma-field generated by past observables. Formally, in the garchx package, ǫt is
expected to satisfy ǫ2

t = σ2
t η2

t , (6) and

E(η2
t |Ft−1) = 1 for all t. (7)

The conditional unit variance assumption in (7) is very mild, since it does not require that the
distribution of ηt is identical over time, nor that ηt is independent of the past. In particular, the
assumption is compatible with a time-varying conditional skewness E(η3

t |Ft−1) that depends on the

past in unknown ways, a time-varying conditional kurtosis E(η4
t |Ft−1) that depends on the past in

unknown ways, and even a time-varying conditional zero-probability Pr(ηt = 0|Ft−1) that depends
on the past in unknown ways. Empirically, such forms of dependence are common, see e.g. Hansen
(1994), and Sucarrat and Grønneberg (2020). GARCH models in which the ηt’s are dependent are often
referred to as semi-strong after Drost and Nijman (1993).

Subject to suitable regularity conditions, the normal ML estimator provides consistent and asymp-
totically normal estimates of semi-strong GARCH-models, see Francq and Thieu (2018). Specifically,
they show that

√
T(ϑ̂ − ϑ0)

d→ N(0, Σ), Σ = J−1 I J−1, J = E

(
∂2lt(ϑ0)

∂ϑ∂ϑ′

)
, I = E

(
∂lt(ϑ0)

∂ϑ

∂lt(ϑ0)

∂ϑ′

)
, (8)

where

ϑ̂ = arg min
ϑ

1

T

T

∑
t=1

lt(ϑ), lt(ϑ) =
ǫ2

t

σ2
t (ϑ)

+ ln σ2
t (ϑ), (9)

is the (normal) Quasi ML (QML) estimate of the true parameter ϑ0. If the ηt’s are independent of the
past, then

Σ =
(

E(η4
t)− 1)

)
J−1, (10)

This is essentially the univariate version of the non-normality robust coefficient-covariance of Bollerslev
and Wooldridge (1992). It is easily estimated, since the standardised residuals can be used to obtain
an estimate of E(η4

t), and a numerical estimate of the Hessian J is returned by the optimiser. In the
garchx package, the estimate of (10) is referred to as the "ordinary" coefficient-covariance. Of course,
the expression returned by the software is the estimate of the finite sample counterpart Σ/T, where T
is the sample size. In other words, the standard errors are equal to the square root of the diagonal of

5

the estimate Σ̂/T. If, instead, the ηt’s are not independent of the past, then

Σ = J−1 I J−1, I = E

[{
E

(
ǫ4

t

σ4
t (ϑ0)

∣∣∣Ft−1

)
− 1

}
1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂ϑ

∂σ2
t (ϑ0)

∂ϑ
′

]
. (11)

In the garchx package, the estimate of this expression is referred to as the "robust" coefficient-
covariance. Again, the expression returned by the software is the estimate of the finite sample
counterpart Σ/T. It should be noted that the estimation of (11) is computationally much more
demanding than (10), since an estimate of ∂σ2

t (ϑ0)/∂ϑ in I is computed at each t. More details about
how this is implemented is contained in the Appendix.

Basic usage of garchx

For illustration the spyreal dataset in the rugarch package is used, which contains two daily financial
time series: The SPDR SP500 index open-to-close return, and the realized kernel volatility. The data
are from Hansen et al. (2012), and goes from 2002-01-02 to 2008-08-29. The following code loads the
data, and stores the daily return – in percent – in an object named eps:

library(xts)

data(spyreal, package = "rugarch")

eps <- spyreal[,"SPY_OC"]*100

Note that the data spyreal is an object of class xts. Accordingly, the object eps is also of class xts.

The basic interface of garchx is similar to that of garch in tseries. For example, the code

garchx(eps)

estimates a plain GARCH(1,1), and returns a print of the result (implicitly, print.garchx is invoked):

Date: Wed Apr 15 09:19:41 2020

Method: normal ML

Coefficient covariance: ordinary

Message (nlminb): relative convergence (4)

No. of observations: 1661

Sample: 2002-01-02 to 2008-08-29

intercept arch1 garch1

Estimate: 0.005945772 0.05470749 0.93785529

Std. Error: 0.002797459 0.01180603 0.01349976

Log-likelihood: -2014.6588

Alternatively, the estimation result can be stored to facilitate the subsequent extraction of information:

mymod <- garchx(eps)

coef(mymod) #coefficient estimates

fitted(mymod) #fitted conditional variance

logLik(mymod) #log-likelihood (i.e. not the average log-likelihood)

nobs(mymod) #no. of observations

predict(mymod) #generate predictions of the conditional variance

print(mymod) #print of estimation result

quantile(mymod) #fitted quantile(s), the default corresponds to 97.5% value-at-risk

residuals(mymod) #standardised residuals

summary(mymod) #summarise with summary.default

toLatex(mymod) #LaTeX print of result (equation form)

vcov(mymod) #coefficient-covariance

The series returned by fitted, quantile and residuals are of class zoo.

To control the ARCH, GARCH and asymmetry orders, the argument order – which takes a vector
of length 1, 2 or 3 – can be used in a similar way to as in the garch function of tseries:

• order[1] controls the GARCH order

• order[2] controls the ARCH order

• order[3] controls the asymmetry order

For example, the following code estimate, respectively, a GARCH(1,1) with asymmetry and a GARCH(2,1)
without asymmetry:

6

garchx(eps, order = c(1,1,1)) #garch(1,1) w/asymmetry

garchx(eps, order = c(1,2)) #garch(2,1)

To illustrate how covariates can be included via the xreg argument, the lagged realised volatility from
the spyreal dataset can be used:

x <- spyreal[,"SPY_RK"]*100

xlagged <- lag(x) #this lags, since x is an xts object

xlagged[1] <- 0 #replace NA-value with 0

The code

garchx(eps, xreg = xlagged)

estimates a GARCH(1,1) with the lagged realised volatility as covariate, i.e.

σ2
t = ω + α1ǫ2

t−1 + β1σ2
t−1 + λ1x1,t−1, (12)

and returns the print

Date: Wed Apr 15 09:26:46 2020

Method: normal ML

Coefficient covariance: ordinary

Message (nlminb): relative convergence (4)

No. of observations: 1661

Sample: 2002-01-02 to 2008-08-29

intercept arch1 garch1 SPY_RK

Estimate: 0.01763853 0.00000000 0.71873142 0.28152520

Std. Error: 0.01161863 0.03427413 0.09246282 0.08558003

Log-likelihood: -1970.247

The estimates suggest the ARCH parameter α1 is 0. In a t-test with α1 = 0 as null hypothesis the
parameter lies on the boundary of the permissible parameter space under the null. Accordingly,
inference is non-standard, and below I illustrate how this can be carried out with the ttest0 function.
Note that, if α1 is indeed 0, then the specification reduces to the non-exponential Realised GARCH of
Hansen et al. (2012). Below I illustrate how it can be estimated by simply omitting the ARCH term, i.e.
by imposing a zero-coefficient restriction via omission.

The "ordinary" coefficient-covariance is the default. To instead use the dependence robust
coefficient-covariance, set the vcov.type argument to "robust":

garchx(eps, xreg = xlagged, vcov.type = "robust")

The associated print

Date: Wed Apr 15 09:31:12 2020

Method: normal ML

Coefficient covariance: robust

Message (nlminb): relative convergence (4)

No. of observations: 1661

Sample: 2002-01-02 to 2008-08-29

intercept arch1 garch1 SPY_RK

Estimate: 0.01763853 0.00000000 0.7187314 0.2815252

Std. Error: 0.01864470 0.04569981 0.1507067 0.1136347

Log-likelihood: -1970.247

reveals the standard errors change, but not dramatically. If the estimation result had been stored in
an object with, say, the command mymod <-garchx(eps,xreg = xlagged), then the robust coefficient-
covariance could instead have been extracted by the code vcov(mymod,vcov.type = "robust").

Inference under nullity

If the value of a parameter is zero under the null hypothesis, then it lies on the boundary of the
permissible parameter-space. In these cases non-standard inference is required, see Francq and Thieu
(2018). The garchx package offers two functions to facilitate such nonstandard tests, ttest0 and
waldtest0.

7

Recall that ϑ0 denotes the d-dimensional vector of true parameters. In a plain GARCH(1,1), for
example, d = 3. Next, let ek denote a d × 1 vector whose elements are all 0 except element k, which is
1. The function ttest0 undertakes the following t-test of parameter k ≥ 2:

H0 : e′kϑ0 = 0 and e′lϑ0 > 0 ∀l 6= k against HA : e′kϑ0 > 0.

Note that, in this test, all parameters – except parameter k – are assumed to be greater than 0 under the
null. While the test-statistic is the usual one, the p-value is obtained by only considering the positive
part of the normal distribution. To illustrate the usage of ttest0, let us re-visit the GARCH(1,1)-X
model in (12):

mymod <- garchx(eps, xreg = xlagged)

In this model, the non-exponential Realised GARCH of Hansen et al. (2012) is obtained when the
ARCH(1)-parameter α1 is 0. This is straightforwardly tested with ttest0(mymod,k = 2), which yields

coef std.error t-stat p-value

arch1 0 0.03427413 0 0.5

In other words, at the most common significance levels the result supports the claim that α1 = 0.
Finally, note that if the user does not specify k, then the code ttest0 returns a t-test of all the coefficients
except the intercept ω.

The function waldtest0 can be used to test whether one or more coefficients are zero. Let r denote
the restriction vector of dimension r0 × 1, and let R denote the combination matrix of dimension r0 × d.
Assuming that R has full row-rank, the null and alternative hypotheses in the Wald-test are given by

H0 : Rϑ0 = r against HA : Rϑ0 6= r.

The associated Wald test-statistic has the usual form, but the distribution is non-standard (Francq and
Thieu, 2018):

WT = (Rϑ̂ − r)′R(Σ̂/T)R′(Rϑ̂ − r), WT
d→ W = ||RZ||2, Z ∼ N(0, Σ).

Critical values are obtained by parametric Bootstrap. First the sequence

{
||RẐi||2, i = 1, . . . , n

}

is simulated, where the Ẑi’s are independent and identically distributed N(0, Σ̂) vectors. In waldtest0,
the default is n = 20000. Next, the critical value associated with significance level α ∈ (0, 1) is obtained
by computing the empirical (1-α)-quantile of the simulated values. To illustrate the usage of waldtest0,
let us re-consider the GARCH(1,1)-X model in (12). Specifically, let us test whether both the ARCH
and GARCH coefficients are zero: H0 : α1 = 0 and β1 = 0. This means

r <- cbind(c(0,0))

R <- rbind(c(0,1,0,0),c(0,0,1,0))

Next, the command waldtest0(mymod,r = r,R = R) performs the test, and returns a list with the
statistic and critical values:

$statistic

[1] 72.95893

$critical.values

10% 5% 1%

41.79952 57.97182 97.15217

In other words, the Wald-statistic is 72.96, and the critical values associated with the 10%, 5% and 1%
levels, respectively, are 41.80, 57.97 and 97.15. So H0 is rejected at the 10% and 5% levels, but not at 1%
level. If the user wishes to do so, the significance levels can be changed via the level argument.

Zero-coefficient restrictions via omission

The ARCH, GARCH and asymmetry orders can be specified in two ways. Either via the order

argument as illustrated above, or via the arch, garch and asym arguments whose defaults are all NULL.
If any of their values is not NULL, then it takes precedence over the corresponding component in order.
For example, the code

garchx(eps, order = c(0,0), arch = 1, garch = 1)

8

estimates a GARCH(1,1), since the values of arch and garch override those of order[2] and order[1],
respectively. Similarly, garchx(eps,asym = 1) estimates a GARCH(1,1) with asymmetry, and garchx(eps,garch

= 0) estimates a GARCH(1,0) model.

To estimate higher order models with the arch, garch and asym arguments, the lags must be
provided explicitly. For example, to estimate the GARCH(2,2) model σ2

t = ω + α1ǫ2
t−1 + α2ǫ2

t−2 +

β1σ2
t−1 + β2σ2

t−2, use

garchx(eps, arch = c(1,2), garch = c(1,2))

Zero-coefficient constraints, therefore, can be imposed by simply omitting the lags in question. For
example, to estimate the GARCH(2,2) model with α1 = β1 = 0, use

garchx(eps, arch = 2, garch = 2)

This returns the print

Date: Wed Apr 15 09:34:04 2020

Method: normal ML

Coefficient covariance: ordinary

Message (nlminb): relative convergence (4)

No. of observations: 1661

Sample: 2002-01-02 to 2008-08-29

intercept arch2 garch2

Estimate: 0.009667606 0.07533534 0.91392791

Std. Error: 0.004494075 0.01636917 0.01899654

Log-likelihood: -2033.7251

To estimate the non-exponential Realised GARCH of Hansen et al. (2012), use

garchx(eps, arch = 0, xreg = xlagged)

The returned print shows that the ARCH(1) term has not been included during the estimation.

Finally, a caveat is in order. The flexibility provided by the arch, garch and asym arguments are
not always warranted by the underlying estimation theory. For example, if the ARCH-parameter
α1 in a plain GARCH(1,1) model is restricted to zero, then the normal ML estimator is invalid. The
garchx function nevertheless tries to estimate it if the user provides the code garchx(eps,arch =

0). Currently, the function garchx does not undertake any checks of whether the zero-coefficient
restrictions are theoretically valid.

Numerical optimisation

The two optimisation algorithms in base R that work best for GARCH estimation are, in my experience,
the "Nelder-Mead" method in optim and nlminb. The latter enables bounded optimisation, so it is
the preferred algorithm here, since the parameters of the GARCH-model must be non-negative. The
"L-BFGS-B" method in optim also enables bounded optimisation, but it does not work as well in my
experience. When using the garchx function, the call to nlminb can be controlled and tuned via the
arguments initial.values, lower, upper and control. In nlminb, the first argument is named start,
whereas the other three are equal.

Suitable initial parameter values are important for numerical robustness. In the garchx function,
the user can set these via the initial.values argument. If not, then they are automatically determined
internally. In the case of a GARCH(1,1), the default initial values are ω = 0.1, α1 = 0.1 and β1 = 0.7.
For numerical robustness, it is important that they are not too close to the lower boundary of 0, and
that β1 is not too close to instability, i.e. β1 ≥ 1. The choice c(0.1,0.1,0.7) works well across a range
of problems. Indeed, the Monte Carlo simulations of the large sample properties of the packages (see
Section 3) reveals that the numerical robustness of tseries improves when these initial values are used
instead of the default initial values. In the list returned by garchx, the item named initial.values

contains the values used. For example, the following code extracts the initial values used in the
estimation of a GARCH(1,1) with asymmetry:

mymod <- garchx(eps, asym = 1)

mymod$initial.values

In each iteration nlminb calls the function garchxObjective to evaluate the objective function.
For additional numerical robustness, checks of the parameters and fitted conditional variance are

9

conducted within garchxObjective at each iteration. The first check is for whether any of the pa-
rameter values at the current iteration are equal to NA. The second check is for whether any of the
fitted conditional variances are Inf, 0 or negative. If either of these checks fail, then garchxObjective

returns the value of the logl.penalty argument in the garchx function, whose default value is that
produced by the initial values. To avoid that the term ln σ2

t in the objective function explodes to minus
infinity, the fitted values of σ2

t are restricted to be equal or greater than the value provided by the
sigma2.min argument in the garchx function.

A drawback with nlminb is that it does not return an estimate of the Hessian at the optimum,
which is needed to compute the coefficient-covariance. To obtain such an estimate the optimHess

function is used. In garchx, the call to optimHess can be controlled and tuned via the optim.control

argument. Next, the inverse of the estimated Hessian is computed with solve, whose tolerance for
detecting linear dependencies in the columns is determined by the solve.tol argument in the garchx

function.

Checking the large sample properties

The function garchxAvar returns the asymptotic coefficient-covariance of a GARCH model. The aim
of this section is to illustrate how it can be used to check whether the large sample properties of the
packages correspond to those of the underlying asymptotic estimation theory. Specifically, the aim
is to explore whether large sample estimates from Monte Carlo simulations are unbiased, whether
the empirical standard errors correspond to the asymptotic ones, and whether the estimate of the
non-normality robust coefficient-covariance is unbiased.

The garchxAvar function

To recall, the non-normality robust asymptotic coefficient-covariance is given by

Σ =
(

E(η4
t)− 1)

)
J−1, J = E

(
∂2lt(ϑ0)

∂ϑ∂ϑ
′

)

when the ηt’s are independent of the past. In general, the expression for J is not available in closed
form. Accordingly, numerical methods are needed. The garchxAvar function combines simulation and
numerical differentiation to compute Σ. In short, the function proceeds by first simulating n values of
ǫt (the default is n = 10 million), and then the Hessian of the criterion function n−1 ∑

n
t=1 lt(ϑ) about

the true value ϑ0 is obtained by numerical differentiation to compute an estimate of J. Internally, the
garchxAvar function conducts the simulation with garchxSim, and the differentiation with optimHess.
If we denote the numerically obtained Hessian as J̃, then the corresponding finite sample counterpart
of the asymptotic coefficient-covariance associated with a sample of size T is given by

1

T

(
E(η4

t)− 1
)

J̃
−1

. (13)

In other words, the square root of the diagonal of this expression is the asymptotic standard error
associated with sample size T.

To obtain an idea about the precision of garchxAvar, a numerical comparison is made for the case
where the DGP is an ARCH(1) with standard normal innovations:

ǫt = σtηt, ηt
iid∼ N(0, 1), σ2

t = ω + α1ǫ2
t−1. (14)

In this case it can be shown that

J = E

1
(ω+α1ǫ2

t−1)
2

ǫ2
t−1

(ω+α1ǫ2
t−1)

2

ǫ2
t−1

(ω+α1ǫ2
t−1)

2

ǫ4
t−1

(ω+α1ǫ2
t−1)

2

 , (15)

see (Francq and Zakoïan, 2019, pp. 180-181). In other words, in this specific case it is straightforward to
obtain a numerical estimate of J without having to resort to numerical derivatives (as in garchxAvar),
by simply computing the means of the sample counterparts. For an ARCH(1) with (ω, α1) = (1, 0.1),
the code :

n <- 10000000

omega <- 1; alpha1 <- 0.1

set.seed(123)

eta <- rnorm(n)

10

eps <- garchxSim(n, intercept = omega, arch = alpha1, garch = NULL,

innovations = eta)

epslagged2 <- eps[-length(eps)]^2

epslagged4 <- epslagged2^2

J <- matrix(NA, 2, 2)

J[1,1] <- mean(1/((omega+alpha1*epslagged2)^2))

J[2,1] <- mean(epslagged2/((omega+alpha1*epslagged2)^2))

J[1,2] <- J[1,2]

J[2,2] <- mean(epslagged4/((omega+alpha1*epslagged2)^2))

Eeta4 <- 3

Avar1 <- (Eeta4-1)*solve(J)

computes the asymptotic coefficient-covariance, and stores it in an object named Avar1:

Avar1

[,1] [,2]

[1,] 3.475501 -1.368191

[2,] -1.368191 1.686703

With garchxAvar, using the same simulated series for ηt, we obtain

Avar2 <- garchxAvar(c(omega,alpha1), arch=1, Eeta4=3, n=n, innovations=eta)

Avar2

intercept arch1

intercept 3.474903 -1.367301

arch1 -1.367301 1.685338

These are quite similar in relative terms, since the ratio Avar2/Avar1 shows each entry in Avar2 is less
than 0.1% away from those of Avar1.

Bias and standard errors of estimates

To illustrate how garchxAvar can be used to study the large sample properties of the packages, a Monte
Carlo study is undertaken. The DGP in the study is a plain GARCH(1,1) with either ηt ∼ N(0, 1) or
ηt ∼ standardised t(5), and the sample size is T = 10000:

ǫt = σtηt, ηt
iid∼ N(0, 1) or ηt

iid∼ standardised t(5), t = 1, . . . , T = 10000,

σ2
t = ω + α1ǫ2

t−1 + β1σ2
t−1, (ω, α1, β1) = (0.2, 0.1, 0.8).

The values of (ω, α1, β1) are similar to those that are usually found in empirical studies of financial
returns. The code

n <- 10000000

pars <- c(0.2, 0.1, 0.8)

set.seed(123)

AvarNormal <- garchxAvar(pars, arch=1, garch=1, Eeta4=3, n=n)

eta <- rt(n, df=5)/sqrt(5/3)

Avart5 <- garchxAvar(pars, arch=1, garch=1, Eeta4=9, n=n,

innovations=eta)

computes and stores the asymptotic coefficient-covariances in objects named AvarNormal and Avart5,
respectively. They are:

AvarNormal

intercept arch1 garch1

intercept 7.043653 1.1819890 -4.693843

arch1 1.181989 0.7784797 -1.278153

garch1 -4.693843 -1.2781529 3.616365

Avart5

intercept arch1 garch1

intercept 16.234885 3.216076 -11.313749

arch1 3.216076 2.483018 -3.647237

garch1 -11.313749 -3.647237 9.239820

Next, the asymptotic standard errors associated with sample size T = 10000 are obtained with

11

m(ω̂) se(ω̂) ase(ω̂) m(α̂1) se(α̂1) ase(α̂1) m(β̂1) se(β̂1) ase(β̂1) n(NA)

N(0, 1):

tseries 0.218 0.160 0.027 0.100 0.010 0.009 0.791 0.082 0.019 0
fGarch 0.203 0.027 0.027 0.100 0.009 0.009 0.799 0.019 0.019 0
rugarch 0.204 0.027 0.027 0.100 0.009 0.009 0.797 0.019 0.019 0
garchx 0.203 0.027 0.027 0.100 0.009 0.009 0.798 0.019 0.019 0

t(5):

tseries 0.218 0.158 0.040 0.101 0.015 0.016 0.791 0.077 0.030 0
fGarch 0.204 0.039 0.040 0.101 0.016 0.016 0.797 0.030 0.030 0
rugarch 0.201 0.037 0.040 0.100 0.014 0.016 0.799 0.027 0.030 2
garchx 0.201 0.037 0.040 0.100 0.015 0.016 0.799 0.028 0.030 0

Table 2: Comparison of the large sample properties of tseries version 0.10-47 (Trapletti and Hornik,
2019), fGarch version R 3.0.1 (Wuertz et al., 2020), rugarch version 1.4-2 (Ghalanos, 2020) and garchx
version 1.1 (Sucarrat, 2020). m(·), sample average of estimates. se(·), sample standard deviation of
estimates. ase(·), asymptotic standard error. n(NA), the number of times estimation failed due to
numerical issues.

sqrt(diag(AvarNormal/10000))

sqrt(diag(Avart5/10000))

These values are contained in the columns labelled ase(·) in Table 2.

Table 2 contains the estimation results of the Monte Carlo study (1000 replications). For each
package, normal ML estimation is undertaken with default options on initial parameter values, initial
recursion values and numerical control. The columns labelled m(·) contain the sample average
across the replications, and se(·) contains the sample standard deviation. Apart from tseries, the
simulations suggest the packages produce asymptotically unbiased estimates, and empirical standard
errors that correspond to the asymptotic ones. Closer examination suggests the biases and faulty
empirical standard errors of tseries are due to outliers. Additional simulations, with non-default
initial parameter values, produce results similar to those of the other packages.2 This underlines the
importance of suitable initial parameter values for numerical robustness. The package rugarch ran
into numerical problems twice for ηt ∼ t(5), and thus failed to returned estimates in these two cases.
Additional simulations confirmed rugarch is less robust numerically than the other packages under its
default options when ηt ∼ t(5): It always failed at least once. Changing the initial parameter values to
those of garchx did not resolve the problem. Also, changing the optimiser to a non-default algorithm,
nlminb, which is the default algorithm in fGarch and the only option available in garchx, produced
more failures and substantially biased results by rugarch.3

Coefficient-covariance estimate

In each of the 1000 replications of the Monte Carlo study, the estimate of the asymptotic coefficient-
covariance is recorded. For fGarch, rugarch and garchx the estimate is of the non-normality robust
type. For tseries, which does not offer the non-normality robust option, the estimate is under the
assumption of normality. Note also that, for tseries, the results reported here are with the numerically
more robust non-default initial parameter values alluded to above.

Let Σ̂i denote the estimate produced by a package in replication i = 1, . . . , 1000 of the simulations.
The relative bias in replication i is given by the ratio Σ̂i/Σ, a 3× 3 matrix, which is obtained by dividing
the row i column j component in Σ̂i by the corresponding component in Σ. The average relative bias,
m(Σ̂/Σ), is obtained by taking the average across the 1000 replications for each of the 9 entries. When
ηt ∼ N(0, 1), this produces the following averages:

##tseries:

intercept arch1 garch1

2The additional simulations are not reported, but they are readily conducted by minor modifications to the repli-
cation files. Specifically, the code garch(eps) needs to be modified to garch(eps, control = garch.control(start

= c(0.1, 0.1, 0.7))).
3In the replication code, these results are re-produced by changing the estimation command from

ugarchfit(data=eps, spec=spec) to ugarchfit(data=eps, spec=spec, solver="nlminb").

12

intercept 1.0702 1.0489 1.0656

arch1 1.0489 1.0256 1.0366

garch1 1.0656 1.0366 1.0566

##fGarch:

intercept arch1 garch1

intercept 1.0596 1.0335 1.0548

arch1 1.0335 1.0126 1.0229

garch1 1.0548 1.0229 1.0455

##rugarch:

intercept arch1 garch1

intercept 1.0869 1.0723 1.0848

arch1 1.0723 1.0280 1.0501

garch1 1.0848 1.0501 1.0748

##garchx:

intercept arch1 garch1

intercept 1.0630 1.0350 1.0576

arch1 1.0350 1.0142 1.0244

garch1 1.0576 1.0244 1.0479

Three general characteristics are clear. First, the ratios are all greater than 1. In other words, all
packages tend to return estimated coefficient-covariances that are too large in absolute terms. In
particular, standard errors tend to be too high. Second, the size of the biases are similar across
packages. Those of rugarch are slightly higher than those of the other packages, but the difference
may disappear if a larger number of replications is used. Third, the magnitude of the relative bias is
fairly low, since they all lie between 1.26% and 8.69%.

When ηt ∼ t(5), the simulations produce the following averages:

##tseries:

intercept arch1 garch1

intercept 0.1082 0.1038 0.1088

arch1 0.1038 0.0952 0.1002

garch1 0.1088 0.1002 0.1070

##fGarch:

intercept arch1 garch1

intercept 0.9088 1.0198 0.9098

arch1 1.0198 1.0721 0.9858

garch1 0.9098 0.9858 0.9062

##rugarch:

intercept arch1 garch1

intercept 0.8423 0.8596 0.8356

arch1 0.8596 0.8361 0.8349

garch1 0.8356 0.8349 0.8263

##garchx:

intercept arch1 garch1

intercept 0.9343 0.9017 0.9200

arch1 0.9017 0.8973 0.8903

garch1 0.9200 0.8903 0.9043

The downwards relative bias of about 90% produced by tseries, simply reflects that a non-normality
robust option is not available in that package. However, the size of the bias is larger than expected.
If it were simply due to E(η4

t) in the expression for Σ being erroneous (3 instead of 9 in the simula-
tions), then the ratios should have been in the vicinity of (3 − 1)/(9 − 1) = 0.29. Instead, they are
substantially lower, since they all lie in the vicinity of 0.10. In other words, because the way estimation
is implemented by tseries, the downward bias of the standard errors may be substantially larger
than expected when ηt is fat-tailed. The relative bias produced by fGarch, rugarch and garchx are
more moderate, since they all lie less than 18% away from the true values. While the relative bias of
rugarch is slightly larger than those of fGarch and garchx, their general tendency is that the bias is
downwards.

13

Comparison of speed

In nominal terms all four packages are fairly fast. On an average contemporary laptop, for example,
estimation of a plain GARCH(1,1) usually takes less than a second if the number of observations
is 10 000 or less. The reason is that all four packages use compiled C/C++ or Fortran code in the
recursion, i.e. the computationally most demanding part. While the nominal speed difference is almost
unnoticeable in simple models with small T, the relative difference among the packages is significant.
In other words, when T is large or when a large number of models are estimated (as in Monte Carlo
simulations), then the choice of package makes an important difference.

The comparison is undertaken with the microbenchmark (Mersmann, 2019) package version 1.4-7,
and the average estimation-time of four GARCH-models are compared:

ǫt = σtηt, ηt
iid∼ N(0, 1),

1 GARCH(1,1): σ2
t = ω + α1ǫ2

t−1 + β1σ2
t−1

2 GARCH(2,2): σ2
t = ω + ∑

2
i=1 αiǫ

2
t−i + ∑

q
j=1 β jσ

2
t−j

3 GARCH(1,1) w/asymmetry: σ2
t = ω + α1ǫ2

t−1 + β1σ2
t−1 + γ1 I{ǫt−1<0}ǫ2

t−1

4 GARCH(1,1)-X: σ2
t = ω + α1ǫ2

t−1 + β1σ2
t−1 + λ1xt−1

The parameters of the Data Generating Processes (DGPs) are

(ω, α1, β1, α2, β2, γ1, λ1) = (0.2, 0.1, 0.8, 0.00, 0.00, 0.05, 0.3),

and xt in DGP number 4 is governed by the AR(1) process

xt = 0.5xt−1 + 0.1ut, ut
iid∼ N(0, 1).

The comparison is made for sample sizes T = 1000 and T = 2000.

Table 3 contains the results of the comparison in relative terms. A value of 1.0 means the package
is the fastest on average for the experiment in question. A value of 7.15 means the average estimation
time of the package is 7.15 times larger than the average of the fastest. And so on. The entry is empty
if the GARCH-specification cannot be estimated by the package. The overall pattern of the results
is clear: tseries is the fastest among the models it can estimate, garchx is the second fastest, fGarch
is the third fastest and rugarch is the slowest. Another salient feature is how much faster tseries is
relative to the other packages. This is particluarly striking for the GARCH(2,2), where the second
fastest package – garchx – is about 5 to 6 times slower, and the slowest package – rugarch – is about
28 to 30 times slower. A third notable characteristic is that the relative differences tend to fall as the
sample size T increases. For example, rugarch is about 17 times slower than tseries when T = 1000,
but only about 13 times slower when T = 2000. As for the specifications that tseries are not capable of
estimating, garchx is the fastest. Notably so compared with fGarch, and substantially so compared
with rugarch.

Conclusions

This paper provides an overview of the package garchx, and compares it with three prominent CRAN-
packages that offers GARCH estimation routines: tseries, fGarch and rugarch. While garchx does
not offer all the GARCH-specifications available in rugarch, it is much more flexible than tseries,
and it also offers the important possibility of including covariates. This feature is not available in
fGarch. The package garchx also offers additional features that are not available in the other packages:
i) A dependence-robust coefficient covariance, ii) functions that facilitate hypothesis testing under
nullity, iii) zero-coefficient restrictions by omission and iv) a function that computes the asymptotic
coefficient-covariance of a GARCH-model.

In a Monte Carlo study of the packages the large sample properties of the normal Quasi ML
(QML) estimator was studied. There, it was revealed that fGarch and garchx are numerically more
robust (under default options) than tseries and rugarch. However, in the case of tseries the study
also revealed how its numerical robustness can be improved straightforwardly by simply changing
the initial parameter values. In the case of rugarch, it is less clear how the numerical robustness can
be improved. The study also revealed that the standard errors of tseries can be substantially biased
downwards when ηt is non-normal. A bias is expected, since tseries does not offer a non-normality
robust coefficient-covariance. However, the bias is larger than suggested by the underlying estimation

14

DGP T tseries fGarch rugarch garchx

1 GARCH(1, 1): 1000 1.00 7.15 17.42 2.69

2000 1.00 6.28 12.89 1.85

2 GARCH(2, 2): 1000 1.00 10.14 29.78 5.27

2000 1.00 14.72 27.79 6.27

3 GARCH(1, 1, 1): 1000 2.26 14.72 1.00

2000 2.97 9.91 1.00

4 GARCH(1, 1)-X: 1000 5.90 1.00

2000 6.36 1.00

Table 3: Relative speed comparison of tseries version 0.10-47 (Trapletti and Hornik, 2019), fGarch
version R 3.0.1 (Wuertz et al., 2020), rugarch version 1.4-2 (Ghalanos, 2020) and garchx version 1.1
(Sucarrat, 2020). A value of 1.00 means the package is the fastest on average for the experiment in
question. A value of 7.15 means the average estimation time of the package is 7.15 times larger than the
average of the fastest. And so on. The entry is empty if the GARCH-specification cannot be estimated
by the package.

theory.

In a relative speed comparions of the packages, it emerged that the least flexible package – tseries –
is notably faster than the other packages. Next, garchx is the second fastest (1.85 to 6.27 times slower
in the experiments), fGarch is the third fastest and rugarch is the slowest. The experiments also
revealed that the difference can be larger in higher order models. For example, in the estimation of a
GARCH(2,2), rugarch was about 28 times slower than tseries. In estimating a plain GARCH(1,1), by
contrast, it was only 13 to 17 times slower. Another finding was that the difference seems to fall in
sample size: The larger the sample size, the smaller the difference in speed.

Bibliography

T. Bollerslev. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31:
307–327, 1986. [p1]

T. Bollerslev and J. Wooldridge. Quasi-Maximum Likelihood Estimation and Inference in Dynamic
Models with Time Varying Covariances. Econometric Reviews, 11:143–172, 1992. [p2, 3, 4]

C. Brownlees, F. Cipollini, and G. Gallo. Multiplicative Error Models. In L. Bauwens, C. Hafner, and
S. Laurent, editors, Handbook of Volatility Models and Their Applications, pages 223–247. Wiley, New
Jersey, 2012. [p1]

F. C. Drost and T. E. Nijman. Temporal Aggregation of Garch Processes. Econometrica, 61:909–927,
1993. [p4]

R. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United
Kingdom Inflations. Econometrica, 50:987–1008, 1982. [p1]

R. F. Engle and J. R. Russell. Autoregressive Conditional Duration: A New Model of Irregularly Spaced
Transaction Data. Econometrica, 66:1127–1162, 1998. [p1]

J. C. Escanciano. Quasi-maximum likelihood estimation of semi-strong GARCH models. Econometric
Theory, 25:561–570, 2009. [p3]

C. Francq and L. Q. Thieu. Qml inference for volatility models with covariates. Econometric Theory,
2018. https://doi.org/10.1017/S0266466617000512. [p3, 4, 6, 7, 15]

C. Francq and J.-M. Zakoïan. GARCH Models. Wiley, New York, 2019. 2nd. Edition. [p9]

J. Geweke. Modelling the Persistence of Conditional Variance: A Comment. Econometric Reviews, 5:
57–61, 1986. [p1]

A. Ghalanos. rugarch: Univariate GARCH Models, 2020. URL https://CRAN.R-project.org/package=

rugarch. R package version 1.4-2. [p1, 4, 11, 14]

15

B. E. Hansen. Autoregressive Conditional Density Estimation. International Economic Review, 35:
705–730, 1994. [p4]

P. R. Hansen, Z. Huan, and H. H. Shek. Realized GARCH: A Joint Model for Returns and Realized
Measures of Volatility. Journal of Applied Econometrics, 27:877–906, 2012. [p3, 5, 6, 7, 8]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2019. URL https://CRAN.R-project.org/

package=microbenchmark. R package version 1.4-7. [p13]

A. Milhøj. A Multiplicative Parametrization of ARCH Models. Research Report 101, University of
Copenhagen: Institute of Statistics, 1987. [p1]

S. Pantula. Modelling the Persistence of Conditional Variance: A Comment. Econometric Reviews, 5:
71–73, 1986. [p1]

G. Sucarrat. garchx: Flexible and Robust GARCH-X Modelling, 2020. URL https://CRAN.R-project.

org/package=garchx. R package version 1.0. [p4, 11, 14]

G. Sucarrat and S. Grønneberg. Risk Estimation with a Time Varying Probability of Zero Returns.
Journal of Financial Econometrics, 2020. Forthcoming. DOI: https://doi.org/10.1093/jjfinec/
nbaa014. [p4]

A. Trapletti and K. Hornik. tseries: Time Series Analysis and Computational Finance, 2019. URL https:

//CRAN.R-project.org/package=tseries. R package version 0.10-47. [p1, 4, 11, 14]

D. Wuertz, T. Setz, Y. Chalabi, C. Boudt, P. Chausse, and M. Miklovac. fGarch: Rmetrics - Autoregressive
Conditional Heteroskedastic Modelling, 2020. URL https://CRAN.R-project.org/package=fGarch. R
package version 3042.83.2. [p1, 4, 11, 14]

Genaro Sucarrat
BI Norwegian Business School
Nydalsveien 37
0484 Oslo
Norway
genaro.sucarrat@bi.no

Appendix: Estimation of the dependence robust coefficient-covariance

Francq and Thieu (2018) show that

J = E

(
∂2lt(ϑ0)

∂ϑ∂ϑ
′

)
= E

(
1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂ϑ

∂σ2
t (ϑ0)

∂ϑ
′

)

I = E

[{
E
(

η4
t |Ft−1

)
− 1
} 1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂ϑ

∂σ2
t (ϑ0)

∂ϑ
′

]

This means

I = E

[{
E
(

η4
t |Ft−1

)} 1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂ϑ

∂σ2
t (ϑ0)

∂ϑ
′

]
− J

= E

[(
ǫ2

t

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂ϑ

)(
ǫ2

t

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂ϑ

)′]
− J

The computationally challenging part to estimate in I is ∂σ2
t (ϑ0)/∂ϑ, since it entails the computation

of a numerically differentiated gradient of a recursion at each t. In garchx, this is implemented with
numericDeriv in the vcov.garchx function.

	garchx: Flexible and Robust GARCH-X Modelling
	Introduction
	Prominent GARCH-packages on CRAN
	What does garchx offer?

	The garchx package
	Estimation theory
	Basic usage of garchx
	Inference under nullity
	Zero-coefficient restrictions via omission
	Numerical optimisation

	Checking the large sample properties
	The ````garchxAvar function
	Bias and standard errors of estimates
	Coefficient-covariance estimate

	Comparison of speed
	Conclusions
	Appendix: Estimation of the dependence robust coefficient-covariance

