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ABSTRACT  

Several studies have tested semi-endogenous versus Schumpeterian growth models using different 

methodological approaches. This paper critically reviews these studies including their approaches 

and provides new evidence on this issue, by analyzing both time-series data from the United States 

and panel data from 19 OECD countries over the period 1980-2014. The review finds much support 

for Schumpeterian growth theory, but shows that all studies reviewed have several limitations, 

including conceptual problems associated with the use of the number/stock of patents as a measure 

of the flow/stock of knowledge, the possibility of spurious regressions due to non-stationary data, 

potential mismeasurement of R&D inputs due to possible interpolation and deflation errors, 

misspecification problems that can arise in difference models when variables are cointegrated, and 

potential spurious rejections of the unit root hypothesis for R&D intensity when the lag length in 

unit root tests is too small. The present study avoids these limitations and finds strong evidence in 

favor of semi-endogenous growth. 
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1. Introduction 

Most recent research and development (R&D) based models of economic growth fall into two broad 

categories. On the one hand, there are Schumpeterian growth models (see, e.g., Young, 1998; 

Peretto, 1998; Howitt, 1999), in which new knowledge is produced using resources devoted to 

R&D and the existing stock of knowledge that exhibits constant returns. As an economy grows, 

however, the associated proliferation of product varieties reduces the effectiveness of R&D because 

a given amount of R&D resources has to be spread more thinly over a larger number of varieties. 

Since the number of varieties, in the long run, is proportional to the scale of the economy, the 

growth rate of the stock of knowledge, and thus the growth rate of output per capita, depends on the 

amount of resources devoted to R&D relative to the scale of the economy, commonly referred to as 

R&D intensity. On the other hand, there are semi‐endogenous growth models (see, e.g., Jones, 

1995; Kortum, 1997; Segerstrom, 1998), which assume diminishing returns to the stock of 

knowledge and absence of negative product proliferation effects. Semi‐endogenous growth models 

therefore imply that the growth rates of knowledge and per capita output depend on the growth rate 

of research effort.1 Finally, Jones (1999) considers a hybrid semi-endogenous model with 

diminishing returns to the stock of knowledge and partial product proliferation. In such a model, 

knowledge growth depends negatively on growth in the scale of the economy and positively on 

growth in research effort. 

Several studies have empirically tested these theories against each other using different 

methodological approaches. The contributions of this paper lie in (1) critically reviewing these 

studies and their approaches and (2) providing new evidence on the validity of these theories. 

Studies that have tested either Schumpeterian theory or semi-endogenous growth theory are 

also discussed but are not explicitly included in the review because they are by their nature unable 

to reject the other, untested theories, whose predictions overlap in part with those of the tested 

theories. As we demonstrate in this paper, confirmatory evidence in these studies for the tested 

theory therefore does not necessarily imply the validity of the theory.  

Our review finds much support for Schumpeterian growth theory, but shows that all of these 

studies suffer from at least one of several limitations, including conceptual problems associated 

with the use of the number/stock of patents as a measure of the flow/stock of knowledge, the 

possibility of spurious regressions due to non-stationary data, possible measurement error 

                                                      
1 Semi-endogenous growth models assume that, along a balanced growth path, the growth rate of research effort is 

equal to the growth rate of the population, implying that in a balanced growth equilibrium, the growth rates of 

knowledge and per capita output are proportional to the growth rate of the population. However, out of steady state, 

when the number of researchers and the size of the population do not grow at the same rate, the growth rates of 

knowledge and per capita output are only proportional to the growth rate of research effort, as discussed in Jones (2002) 

(and later in this paper). In this sense, and explicitly noted by Jones (1995, p. 777), “[t]he [semi-endogenous growth] 

model actually relates the growth in the effective number of researchers, rather than in population, to economic 

growth.” 
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associated with the use of interpolated R&D input data and/or the use of an overall price deflator to 

deflate R&D expenditures, misspecification problems that arise when difference models with 

cointegrated variables are estimated without an error-correction term, and potential spurious 

rejections of the unit root hypothesis for R&D intensity when the lag length in unit root tests is too 

small. 

To address these limitations, we present new empirical evidence on the validity of R&D-

based models of growth, using total factor productivity (TFP) as a measure of the stock of 

knowledge, employment as a measure of scale, and non-interpolated data on the number of 

researchers as a measure of research effort within a unit-root/cointegration framework for non-

stationary data combined with proper lag selection procedures.  

To increase the comparability of our results with those in the existing literature, which 

focuses mainly on the United States and other relatively advanced economies, we conduct both a 

time-series analysis for the United States and a panel data analysis of 19 OECD countries; the 

United States is excluded from the panel analysis to ensure that the panel results are not driven by 

the observations of the United States. To preview our main result, we find empirical support for 

semi-endogenous growth theory in explaining recent performance in the OECD countries, including 

the United States.  

The remainder of this paper is structured as follows. Section 2 provides the theoretical 

framework for our review of the empirical literature.2 The literature is reviewed in Section 3. 

Section 4 presents the new empirical evidence, and Section 5 concludes. 

 

2. Schumpeterian and semi-endogenous growth models 

2.1. General specifications 

We assume an aggregate Cobb-Douglas production function of the form 

 

Yt=AtKt
α(Ltht)

1−α
, 0 < α < 1,  

(2.1) 

where Yt is output at time t; Kt denotes the stock of physical capital; Ltht is the amount of human 

capital-augmented labor used in production, defined as the number of workers, Lt, times human 

capital per worker, ht; and At represents the stock of knowledge. The production function in (2.1) 

can be rewritten in terms of output per worker yt ≡ Yt/Lt as 

 

                                                      
2 Bond-Smith (2019) provides a comprehensive survey of the theoretical work that has been carried out on endogenous 

growth over the last thirty years. In Section 2, we focus on the theoretical issues relevant to our review of the empirical 

literature that has tested semi-endogenous against Schumpeterian growth models. 
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yt=At

11−α (Kt 
Yt 

) α1−α
ht 

(2.2) 

The central component of any R&D-based growth model is a knowledge production 

function. A general form of this function which allows us to distinguish between semi-endogenous 

and Schumpeterian growth theories is (see, e.g., Ha and Howitt, 2007; Ang and Madsen, 2011) 

 

Ȧt= δAt
ϕ (Xt 

Qt
β)λ

 

(2.3) 

where Ȧt is the flow of new ideas or knowledge produced at time t; δ is a constant of 

proportionality; ϕ is a parameter that describes the nature of returns to scale in the production of 

new ideas, Xt is R&D input, usually measured by R&D labor or R&D expenditure; λ, where 0 < λ ≤ 

1, is a parameter that captures the extent to which an increase in R&D effort induces duplication; Qt 

is the number of product varieties or sectors, which, as part of the denominator of the last term in 

(2.3), captures possible product proliferation effects that reduce the effectiveness of R&D; finally, β 

is the parameter of product proliferation.  

Schumpeterian models of economic growth are based on the assumption that β = 1 and ϕ = 

1. In these models, the variable Qt, which can be interpreted more generally as a scale variable, is 

proportional to the size of the labor force Lt (or the population) and hence can depend on any 

variable that grows in the long run at the same rate as the labor force, such as output. Semi-

endogenous growth models are characterized by the absence of product proliferation, β = 0, and 

diminishing returns to knowledge, ϕ < 1. Finally, Jones’s (1999) hybrid semi-endogenous model 

considers the case where 0 < β < 1 and ϕ < 1. 

In all these models, the long-run growth rate of output per capita/worker depends on the 

long-run growth rate of the knowledge stock. Rewriting (2.3) in terms of the growth of the stock of 

knowledge gives 

 

Ȧt

At
= δAt

ϕ−1 (Xt 
Qt

β)λ

 

  

(2.4) 

 

 



 

5 

 

2.2. Schumpeterian growth models  

If ϕ = 1 and β = 1, then equation (2.4) becomes   

 

Ȧt

At
= δ (Xt 

Qt )λ

 

(2.5) 

This equation predicts that long-run changes in R&D intensity, Xt/Qt, lead to long-run changes in 

knowledge growth. If the growth rate of knowledge is constant, then the above equation implies that  

R&D intensity must also be constant. 

The logic behind equation (2.5) can be described as follows (see, e.g., Jones, 1999; Laincz 

and Peretto, 2006). Assuming that the production function (2.1) is an average production function 

for varieties (that are produced in the same quantity) and that aggregate output is given by 

 

Yt=Qt
θAtKt

α(Ltht)
1−α

 

(2.6) 

we can express per capita output as the product of  Qt
θ−1

 and the average sectoral output per sectoral 

worker At

11−α (Kt 
Yt 

) α1−α
ht, 

 

yt= Qt
θ−1At

11−α (Kt 
Yt 

) α1−α
ht 

(2.7) 

where θ > 1 is related to the elasticity of substitution between products and captures the variety 

effect—that is, the increased productivity that results from the increased availability of specialized 

inputs. Along a balanced growth path, all terms on the right side of (2.7) except for  Qt
θ−1

 and At

11−α 

are constant. Thus, the growth rate of per capita/worker output in steady-state is given by 

 

gy=(θ − 1)gQ+
1

1 − α
gA 

(2.8) 

where gQ is the steady-state growth rate of varieties and gA is the steady-state growth rate of 

average knowledge. With a sectoral knowledge production of the form 
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Ȧt= δAtXt
λ 

 (2.9) 

the steady-state growth rate of A therefore depends on research effort per sector and thus on R&D 

intensity,  

 

gA= λδ
X 
Q

 

(2.10) 

This is the logic behind equation (2.5), which is based on the idea that an increase in scale increases 

the potential supply of R&D inputs and the number of products available in the same proportion, 

leaving R&D intensity unchanged.  

Substituting (2.10) into (2.8) yields  

 

gy= (θ − 1)gQ + λδ
1 − α

X 
Q

 

(2.11) 

Since in a balanced growth equilibrium the growth rate of the labor force gL is equal to the growth 

rate of varieties, we can also write the steady-state growth rate of per capita/worker output as 

 

gy= (θ − 1)gL + λδ1 − α
X 
Q

 

(2.12) 

This equation predicts that the growth rate of output per capita/worker is positively related to the 

level of R&D intensity and the growth rate of the labor force (or the population). The latter requires 

that θ > 1. If θ = 1, then population or employment growth does not affect steady-state growth, and 

steady-state growth depends only on R&D intensity (see, e.g., Laincz and Peretto, 2006). 

 

2.3. Semi-endogenous growth models 

If ϕ < 1 and β = 0, then equation (2.4) reduces to 

  

Ȧt

At
=δAt

ϕ−1Xt
λ 

 (2.13) 

Assuming that the stock of knowledge grows in the long run at a constant rate gA, the above 

equation can be solved for the stock of knowledge, yielding 
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At= ( δ
gA

) 1
1−ϕ

Xt

λ
1−ϕ 

(2.14) 

It follows from (2.14) that Xt

λ
1−ϕ is proportional to At if the growth rate of knowledge is constant. In 

this case, the long-run growth rate of the knowledge stock is given by 

 

gA=
λ

1 − ϕ
gX 

(2.15) 

where gX is the long-run growth rate of research effort. 

Along a balanced growth path, gX is equal to gL (or gY), implying that Xt is proportional to Lt 

(or Yt). In a balanced growth equilibrium, equation (2.14) therefore implies 

 

At= ( δ
gA

) 1
1−ϕ

Lt(or Yt)
λ

1−ϕ 

(2.16) 

and  

 

gA=
λ

1 − ϕ
gL (or Y) 

(2.17) 

Thus, as can be seen by rewriting equation (2.4) as 

 

Ȧt

At
= δ ( Xt

Qt )λ ( At

Qt λ
1-ϕ

)ϕ−1

 

 

(2.18) 

both R&D intensity is constant and Qt λ
1−ϕ is proportional to At in a balanced growth equilibrium. 

Moreover, comparing equation (2.18) with (2.5), it is apparent that both semi-endogenous theory 

and Schumpeterian theory are consistent with a constant ratio of Lt (or Yt) to Qt and a constant 
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growth rate of knowledge/output per worker, but semi-endogenous theory (Schumpeterian theory) 

requires that in steady state Qt λ
1−ϕ is (not) proportional to At.  

It is important to emphasize here that equations (2.16) and (2.17) are valid only if the share 

of labor devoted to R&D (or the stare of output going to R&D) is constant over time. However, to 

the extent that the amount of resources allocated to R&D depends on additional factors beyond the 

mere size of the labor force (such as education, international competition, and access to foreign 

markets) and to the extent that these additional factors change over time, they induce changes over 

time in Xt, so that Lt  (or Yt) and Xt do not grow at the same rate over long periods of time.  

Jones (2002) therefore distinguishes between a constant growth path and a balanced growth 

path. Along both paths, growth rates are constant, but the latter is associated with a steady state or 

balanced growth equilibrium in which all variables in non-per capita terms grow the same rate 

forever, so that R&D intensity is necessarily constant. The implication is that, in semi-endogenous 

growth theory, in contrast to Schumpeterian growth theory, R&D intensity may not be constant 

over long time intervals even though the growth rate of knowledge is constant. To see this, rewrite 

equation (2.14) as  

 

At= ( δ
gA

) 1
1−ϕ ( Xt

Lt (or Yt ) ) λ
1−ϕ

Lt (or Yt ) λ
1−ϕ 

(2.19) 

Taking logs and differencing the equation yields 

 

gA=
λ

1 − ϕ
g(X/L or Y)+

λ
1 − ϕ

gL (or Y) 

(2.20) 

where g(X/L or Y) is the growth rate of R&D intensity. Thus, out of steady state, the growth rate of 

knowledge can be constant and depend on both the growth rate (rather than the level) of R&D 

intensity and the growth rate of the labor force (or the growth rate of output). In steady state, the 

first term in equation (2.20) must be zero, so that this equation reduces back to equation (2.17). In 

this case, it follows from the steady-state version of equation (2.2), 

 

gy=
11 − α

gA 

(2.21) 

 that the growth rate of output per capita/worker gy is given by 
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gy=
λ(1 − α)(1 − ϕ) gL 

(2.22) 

or 

 

gy=
λ(1 − α)(1 − ϕ) gX 

(2.23) 

Thus, the growth rate of per capita/worker output in steady-state does not depend on R&D intensity, 

as is the case in Schumpeterian growth theory, but on the growth rate of the population or the 

growth rate the growth rate of research input. 

Moreover, we see by inserting the expression for At from equation (2.14) into (2.2) that, out 

of steady state, per worker output is given by  

 

yt= ( δ
gA

) 1(1−α)(1−ϕ)
Xt

λ(1−α)(1−ϕ) (Kt 
Yt 

) α1−α
ht 

(2.24) 

Since ht and (Kt 
Yt 

) must be constant along a balanced growth path, (2.24) reduces in steady state to 

  

yt= c ( δ
gA

) 1(1−α)(1−ϕ)
Xt

λ(1−α)(1−ϕ) 
(2.25) 

or  

 

yt= c ( δ
gA

) 1(1−α)(1−ϕ)
Lt

λ(1−α)(1−ϕ) 
(2.26) 

where c ≡ h(K
Y
) α1−α

.  

 

2.4. The hybrid semi-endogenous model 

The hybrid semi-endogenous model can be derived by assuming a sectoral knowledge function of 

the type Ȧt=δAt
ϕXt

λ with ϕ < 1 and assuming further that the number of sectors grows less than 
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proportionally with population (Q = Lβ, β < 1) (see, e.g., Jones, 1999). If 0 < β < 1 and ϕ < 1, then, 

after setting Q = Lβ, equation (2.4) can be written as 

 

Ȧt

At
= δ ( At

Xt

λ
1−ϕLt −λβ

1−ϕ
)ϕ−1

 

(2.27) 

or 

 

Ȧt

At
=δ (Xt

Lt )λ ( At

Lt λ(1−β)
1−ϕ

)ϕ−1

 

 (2.28) 

The latter equation shows that the hybrid model is also consistent with a constant R&D intensity 

and constant growth rate of knowledge, provided that Lt λ(1−β)
1−ϕ  is proportional to At. If the growth rate 

of knowledge is constant, equations (2.28) and (2.29) can be solved for At, giving 

 

At= ( δ
gA

) 1
1−ϕ

Xt

λ
1−ϕLt λ(−β)

1−ϕ  

(2.29) 

or 

 

At= ( δ
gA

) 1
1−ϕ (Xt

Lt 
) λ

1−ϕ
Lt 

λ(1−β)
1−ϕ  

(2.30) 

Equation (2.29) implies that a constant growth rate of knowledge is also compatible with a situation 

in which Xt

λ
1−ϕLt −λβ

1−ϕ (and not only Xt

λ
1−ϕ) is proportional to At. The constant growth rate of the 

knowledge stock is given by 

 

gA=
λ

1 − ϕ
gX+

λ( − β)
1 − ϕ

gL 

(2.31) 
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In addition, it follows from (2.30) that the growth rate of knowledge can also be constant for 

a certain period of time even if R&D intensity is not constant, provided that the term (Xt /Lt ) λ
1−ϕLt 

λ(1−β)
1−ϕ  is proportional to At. The previous “disequilibrium equation” (2.20) can thus be 

written as 

 

gA=
λ

1 − ϕ
g(X/L)+

λ(1 − β)
1 − ϕ

gL 

 

(2.32) 

In steady state, this equation reduces to  

 

gA=
λ(1 − β)

1 − ϕ
gL 

(2.33) 

Now, inserting equation (2.31) into equation (2.11), and taking into account that the first 

term of equation (2.11) becomes (θ − 1)βgL if Q = Lβ, the steady-state growth rate of per capita 

output is given by  

 

gy=
λ(1 − α)(1 − ϕ) gX+ ((θ − 1)β+

λ( − β)(1 − α)(1 − ϕ)) gL 

 (2.34) 

Setting gX = gL in (2.34) gives 

 

 

gy= ((θ − 1)β+
λ(1 − β)(1 − α)(1 − ϕ)) gL 

 

(2.35) 

Thus, in contrast to Schumpeterian growth models, the hybrid model implies a positive effect of 

population growth on output per capita growth even if there is no variety effect (if θ = 1). If there is 

a variety effect (if θ > 1), then it is even possible that the economic growth effect of population 

growth in the hybrid model is larger than the corresponding effect in (pure) semi-endogenous 

models. 
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3. Empirical literature 

3.1. General remarks 

This section reviews the literature testing the predictions of semi-endogenous models against the 

predictions of Schumpeterian growth models. In this literature three different approaches can be 

distinguished, which we denote here as Types I to III. 

The Type I approach is based on the estimation of empirical specifications of equation (2.3), 

with the log of A ̇  as the dependent variable. Studies using this approach generally use the number 

of patent applications or patents granted as a measure of Ȧt and the patent stock or (real) GDP as a 

measure of At. The Type II approach is based on logarithmic specifications of equation (2.4), in 

which the dependent variable is logȦt/At. Studies based on this approach generally employ ∆logAit 

as an approximation for logȦt/At and then use the differenced log of TFP as a measure of ∆logAit 

and the level of (the log of) TFP as a measure of (the log of) At. In addition, there are some studies 

that use equations (2.11), (2.22), and (2.24) (or variants of them) to discriminate between the 

theories. In these studies, the dependent variable is the growth rate and/or the level of output per 

capita (or per worker). We categorize these studies as Type III. Finally, this review includes one 

study that does not fit well into these categories. We denote the approach of this study as 

“unclassified”.  

Table 1 lists the studies included in our review and presents information on each study 

regarding the type of approach, the main variables of interest for our review, the type of analysis 

(time series analysis, panel analysis), the sample composition (number of countries/industries/firms 

and observation period), the econometric methods, and the evidence. As can be inferred from the 

table, our review includes 17 studies, three of which use the Type III approach, one is unclassified, 

two use both Type I and Type II, and eleven use either Type I or Type II. Type I, like Type II, is 

used in seven studies. 

In the following subsections, we discuss these types in detail. Each subsection starts with a 

discussion of the specifications from the different approaches, followed by a detailed review of the 

findings from these approaches, including a critique of the existing research. The unclassified study 

is discussed in a separate subsection. 

 

3.2. Type I approach 

3.2.1. Specifications 

Taking logs of equation (2.3) and adding an error term gives the following general empirical model:  
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logȦit= ci + ϕlogAit+ λlogXit +λ(-β)logQit+ εit 

(3.1) 

where i denotes the cross-section unit and ci ≡ logδi. If β = 1, equation (3.1) can be written as 

  

logȦit= ci + ϕlogAit+ λlog
Xit

Qit + εit 

(3.2) 

If β = 0, equation (3.1) reduces to 

 

logȦit= ci + ϕlogAit+ λlogXit + εit 

 

(3.3) 

Writing the general form of equations (3.2) and (3.3) as 

 

logȦit= ci + ϕlogAit+ (λ-λβ)logXit+ λβlog
Xit

Qit 
+ εit 

(3.4) 

we can see that if the estimated coefficient on logXit in (3.2) is significantly positive while the 

estimated coefficient on log Xit
Qit 

 in (3.3) is not significantly different from zero, then this can be 

interpreted as evidence that β = 0, as semi-endogenous growth models predict; if the estimated 

coefficient on logXit in (3.2) is insignificant while the estimated coefficient on log Xit
Qit 

 in (3.3) is 

positive and significant, then this can be interpreted as evidence that β = 1, as Schumpeterian 

growth models predict; finally, if both coefficients are significantly positive, then this can be 

interpreted as evidence in favor of 0 < β < 1, as the hybrid semi-endogenous model predicts. 

 

3.2.2. Findings 

Based on equation (3.1), Furman et al. (2002) find that the estimates of ϕ are much smaller than one 

in some specifications. Another of their findings is that the estimated coefficient on logQit is always 

significantly negative, whereas the estimated coefficient on logXit is always significantly positive. 

Given that the coefficient on logQit tends to be smaller in absolute value than the coefficient on 

logXit, their results imply 0 < β < 1, which, together with the finding that ϕ tends to be smaller than 

one, is consistent with the “hybrid” semi-endogenous model. 

Venturini (2012a) finds, also using equation (3.1), that the estimated coefficients on logXit 

and logQit are significant and have the expected (positive and negative) signs in most cases. 
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Another result of his study is that although ϕ̂ is statistically significant and close to (but smaller 

than) one in most regressions, ϕ̂ = 1 is rejected in the majority of cases. Similarly, his Wald tests 

reject both the null hypotheses that β̂ = 0 and the null hypothesis that β̂ = 1 in the majority of cases. 

Luintel and Khan (2009) use a dynamic heterogeneous panel model to estimate the short-run 

elasticities of Ȧit with respect to Ait, Xit, and 
Xit
Qit , both for each country in their sample and for their 

sample as a whole. From these short-run elasticities, they also calculate the country-specific long-

run elasticities of the knowledge production function as given by equation (3.4). Their results 

suggest that the short- and long-run elasticities differ across countries, but the estimated effects of 

Ait, Xit, and 
Xit
Qit 

 on Ȧit are significant in almost all countries. Their results also indicate that in almost 

all countries the long-run coefficient on logAit is smaller than one and that the long-run coefficients 

on both logXit and log Xit
Qit  are positive (suggesting 0 < β < 1). 

These results in favor of the hybrid semi-endogenous model are in contrast to those of Ang 

and Madsen (2011), Ang and Madsen (2015), Hu and Mathews (2005), and Fedderke and Liu 

(2017). Based on equations (3.2) and (3.3), Ang and Madsen (2011) find in all specifications that ϕ̂ 

is very close to one and that ϕ̂ = 1 is not rejected. They also find that while the coefficients on logXit 

are insignificant or have the „wrong“ (negative) sign, the coefficients on log Xit
Qit 

 are positive and 

significant in all regressions (suggesting β = 1). 

Support for Schumpeterian growth is also provided by Ang and Madsen (2015). Based on 

equations (3.1) and (3.3), they find that the estimated coefficient on logAit is highly significant and 

close to one. Their results also show that the coefficient on logXit is insignificant in equation (3.3). 

In equation (3.1), in contrast, the estimated λ coefficient is always positive and statistically 

significant, whereas the coefficient on logQit is always negative and significant. In addition, the 

coefficients on logXit are similar or equal in absolute value to the coefficients on logQit in many 

regressions (suggesting β = 1). 

In contrast, the results of Hu and Mathews (2005) are inconsistent with Schumpeterian 

growth, semi-endogenous growth, and hybrid semi-endogenous growth. The authors find that the 

estimated coefficient on logAit is always significant and always greater than one. They also find, 

using equation (3.3), that the coefficient on logQit is negative and significant in all regressions, that 

the coefficient on logXit is positive and significant in most regressions, and that the coefficient on 

logQit is always much greater in absolute value than that on logXit (implying β > 1). 

Finally, Fedderke and Liu (2017) provide time series estimates of equation (3.1) using 

(unlike the above studies) TFP as measure of A and the change in TFP as a measure of A ̇ . They 
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report that their results are “mixed”; in fact, however, their results are almost all inconsistent with 

both Schumpeterian growth and (hybrid) semi-endogenous growth, either because (i) the 

coefficients on logAit are greater than one, (ii) the coefficients on logXit are greater than one, (iii) the 

coefficients on logXit are negative or insignificant, (iv) the coefficients on logQit are positive, (v) the 

coefficients on logQit are greater in absolute value than the coefficients on logXit, or (iv) all 

coefficients are insignificant. 

In closing this section, we note that the above studies yield mixed results on the size of the λ 

parameter. Venturini (2012a) and Ang and Madsen (2011, 2015) report λ estimates that are smaller, 

and sometimes much smaller, than 0.1. In contrast, the other studies reviewed here obtain estimates 

of λ that tend to be much greater than 0.1, and sometimes even greater than one. 

 

3.2.3. Critique 

A conceptual problem is that in many countries, especially the United States, the number of patents 

has grown much faster than GDP per worker, at least since the 1980s. Calculating the average 

growth rate of the stock of patent applications for the United States during the period 1980-2014, 

we obtain a value of 0.028. Using this value for gA in equation (2.21), we would predict an average 

annual growth of per worker output through growth in the stock of knowledge of 0.043 (based on α 

≡ 1/3), but the actual average annual growth rate of output per worker over the period 1980-2014 

was 0.016.3 It thus appears that the number/stock of patents is not a good proxy for the flow/stock 

of ideas.4 We come back to this point below. 

A methodological problem is the potential non-stationarity of the data. If the dependent and 

explanatory variables in the above equations are stationary, then these equations can be used to 

estimate the desired relationships. If, however, the variables in equations (3.1)-(3.4) are non-

stationary, then it has to be determined if they form a cointegrating set or not. If the variables in the 

above equations are non-stationary and not cointegrated, then regressions involving these variables 

may be spurious in the sense that they may indicate the existence of a significant relationship 

                                                      
3 Following common practice, we constructed the patent stock from the number of patent applications using the 

perpetual inventory equation, Ait=Ȧi0+(1 − δ)Ait-1, where δ is the depreciation rate. The data on the number of 

(domestic) patent applications were obtained from the World Intellectual Property Organization (WIPO) database 

(available at http://www.wipo.int/ipstats/en/). Consistent with the literature, the initial value of the patent stock was set 

equal to Ai0=A ̇ i0/(g + δ), where Ȧi0 is the number of patent applications in the first year it is available, and g is average 

growth rate of the patent series between the first year with available data (1933) and the last year of the observation 

period. Following the literature, we used a depreciation rate of δ = 15%. Our data on GDP per worker are from the Penn 

World Tables 9.0 (available at https://www.rug.nl/ggdc/productivity/pwt/). 
4 Similarly, Jones (2016, p.20) argues that “[i]f each patent raises GDP by a constant percent, then a constant flow of 
new patents can generate a constant rate of economic growth. The problem with this approach (or perhaps the problem 

with the patent data) is that it breaks down after 1980 or so. Since 1980, the number of patents has risen by more than a 

factor of four, while growth rates are more or less stable.” 
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between the variables when, in fact, the variables are unrelated.5 If the variables in the above 

equations are non-stationary and cointegrated, inference from standard methods may be biased as 

well; however, this bias may result in a type II error and thus in failure to find a relationship that 

exists (see, e.g., Kao and Chiang 2000). The solution to the potential problem of non-stationarity is 

to pre-test the stationarity and cointegration properties of the data. If the variables are non-

stationary and cointegrated, then an estimator should be used that provides valid inference in the 

presence of non-stationary data. If the variables are non-stationary but not cointegrated, the above 

equations should be estimated in first differences. However, of the above studies, only Venturini 

(2012a) and Fedderke and Liu (2017) test all variables in their estimating equation for non‐
stationarity and cointegration (in their online appendices), and since they find that their data are 

non‐stationary and cointegrated, they use a cointegration estimator to estimate equation (3.1). Ang 

and Madsen (2015) do not test for cointegration, but they use levels equations, first difference 

equations, and a panel vector error model (VECM) to account for potential non-stationarity (and 

cointegration).6 The other studies do not address possible problems due to potential non-stationarity. 

Another related methodological problem is the order of integration. The order of integration 

is the number of times a variable must be differenced to achieve stationarity. In the case of more 

than two variables which are of a different order of integration and the order of the dependent 

variable is one (I(1)), while the explanatory variables are a mixture of I(1) and I(2) variables, these 

variables can cointegrate to a stationary (or I(0)) process if (i) there are at least two I(2) variables, 

(ii) these I(2) variables cointegrate to an I(1) process, and (iii) this linear combination is then 

cointegrated with the other I(1) variables.7 Thus, if there is only one I(2) regressor, then it cannot be 

cointegrated with the dependent variable. While this is intuitively obvious, the time-series 

econometrics literature suggests that standard cointegration tests and estimators, which assume that 

all variables are I(1), can produce misleading test and estimation results when applied to unbalanced 

regressions with a mixture of I(1) and I(2) variables (see, e.g., Haldrup, 1998).8 Before conducting 

cointegration tests and estimating the parameters of interest, it is therefore important to determine 

the order of integration of the variables. Furman et al. (2002), Hu and Mathews (2005), Luintel and 

                                                      
5 The phenomenon of spurious regression is well known from the time-series econometrics literature. Kao (1999) shows 

that the tendency for spuriously indicating a relationship may even be stronger in panel data regressions than in pure 

time-series regressions.  
6 Ang and Madsen (2015, p. 85) note that “[they] have not used cointegration regression techniques in the baseline 
regressions because the dependent variable [the log of the patent stock] is found to be stationary.” They (p. 85) also note 
that “to ensure that the estimates are not biased because of the conclusion of our unit root tests, the panel vector error-

correction and first-difference estimators are also used in the robustness section under the assumption that the 

dependent variable contains a unit root.” 
7 The I(2) variables may also cointegrate directly to a stationary variable and thus form a cointegrating relationship with 

the I(1) variables, provided that the I(1) variables are cointegrated. 
8 False inference can also occur when the dependent variable is I(0) but the regressor is I(1), as  we discuss in more 

detail in Section 3.3.3. 
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Khan (2009), however, do not examine the time-series properties of their data. Fedderke and Liu 

(2017) find that their variables are I(1) (and cointegrated). Venturini (2012a) tests the variables for 

non-stationarity (and finds non-stationarity), but he does not determine the order of integration of 

the variables and thus does not account for the possibility of a mixture of I(1) and I(2) variables. 

Ang and Madsen (2011) investigate the time series properties of logXit, logQit, and log Xit
Qit 

 (and 

report panel unit root test results that tend to support the stationarity of these variables), but they do 

not determine the order of integration of the log of patents and the log of the patent stock. Ang and 

Madsen (2015) find, somewhat surprisingly, that both the log of patent applications and the log of 

the patent stock are I(0),9 while logXit and logQit are I(1). Finally, Tables A1 and A2 in the 

Appendix provide results of time-series unit root tests for the United States and results of panel unit 

root tests for our panel of 19 countries for the levels and differences of the log of patent applications 

and the log of the patent stock. These tests suggest that the log of patent applications is I(1), 

whereas the log of the patent stock is I(2) (implying that the growth rate of the patent stock is I(1)). 

Besides the above mentioned methodological problems associated with the presence of I(2) 

variables, this result once again implies that the stock of patents is a poor proxy for the stock of 

knowledge because (given that the growth rate of GDP per worker is generally found to be 

stationary) it is inconsistent with the idea that long-run growth in per capita income is driven by 

growth in the patent stock as a proxy for the knowledge stock. 

As a final remark, we note that there are numerous studies estimating knowledge production 

functions without testing semi-endogenous growth models against Schumpeterian growth models. 

The focus of these studies is on testing either semi-endogenous growth theory (see, e.g. Abdih and 

Joutz, 2006) or Schumpeterian growth theory (see, e.g., Ulku, 2007), or they focus on examining 

the innovation impact of other variables that are not part of these theories, such as financial market 

development (see, e.g., Ang and Madsen, 2016). In general, these studies include either a measure 

of research input (and find a significantly positive coefficient on logXit) (see, e.g., Abdih and Joutz, 

2006; Ang, 2010a; Luintel and Khan, 2017) or a measure of R&D intensity (and find significantly 

positive coefficient on log Xit
Qit 

) (see, e.g., Ulku, 2007; Ang, 2010b; Ang, 2014; Ang and Madsen, 

2016). Thus, these studies are unable to detect partial product proliferation effects (and hence 

hybrid semi-endogenous growth) because they either do not allow at all for product proliferation 

effects or assume complete product proliferation. 

In addition, by rewriting equation (3.1) as 

                                                      
9 This would imply that despite the rise in income per capita over their sample period (1870-2010), the patent stock as a 

proxy for the knowledge stock stayed more or less the same and thus cannot have been the cause of growth during this 

period. 
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logȦit= ci + ϕlogAit+ λlog
Xit

Qit 
 +λ(1-β)logQit+ εit 

(3.5) 

it becomes clear that a significant positive coefficient on log Xit
Qit 

 is not sufficient to reject semi-

endogenous growth. If the case ϕ < 1 cannot be ruled out with certainty and if logQit is significantly 

positively related to logȦit (although omitted in many studies), it is still possible that (hybrid) semi-

endogenous growth theory is valid even if the coefficient on log Xit
Qit 

 is positive and significant. In 

fact, Neves and Sequeira (2018) find in a meta-analysis of the effect of the stock of knowledge on 

the flow of knowledge, proxied by the number of patents, that the average estimate of ϕ is smaller 

than (but close to) one. 

 

3.3. Type II approach 

3.3.1. Specifications 

The specific form of equation (2.4) for the case of Schumpeterian growth is equation (2.5), which 

after taking logs and approximating log
Ȧt
At

 by ∆logAt can be written in empirical form for the ith 

cross-sectional unit as 

  

∆logAit= ci + λilog
Xit

Qit 
+ εit 

(3.6) 

or 

 

∆logAit= ci + λi[logXit − logQit ]+ εit 

(3.7) 

where ci ≡ δi. If ΔlogAit is stationary it follows from equation (3.6) that, for a statistically 

meaningful relationship between ΔlogAit and log Xit
Qit 

 to hold, log Xit
Qit 

 must also be stationary; in this 

case, the model can be estimated using conventional techniques. If, however, logXit and logQit are 

non-stationary, then, as implied by equation (3.7), they must be cointegrated with a cointegrating 

vector (1, −1), which means that the estimated value of βi in the regression  

 

logXit = ci + βilogQit + eit 

(3.8) 
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should be (close to) one and that the residuals from this regression should be stationary. 

Cointegration with a vector (1, −1) in turn implies the stationarity of the variable log Xit
Qit 

, whose 

coefficient should be significantly positive in equation (3.6) for Schumpeterian growth theory to be 

valid (see, e.g., Ang and Madsen, 2011). Combining equation (3.6) with the steady‐state equation 

(2.15) from the semi‐endogenous theory yields the following empirical model that nests both 

theories (see, e.g., Madsen, 2008): 

 

∆logAit= ci + ρ1ilog
Xit

Qit 
+ ρ2i∆logXit+ εit 

(3.9) 

Schumpeterian growth models predict ρ1i (≡ λi) > 0, whereas (hybrid) semi-endogenous growth 

models predict ρ1i = 0 and ρ2i (≡ λi
1−ϕi

 in equation (2.15) or 
λi(1−βi)

1−ϕi
 in equation (2.32)) > 0. 

For the case of semi-endogenous growth, equation (2.13) is a specific form of equation (2.4) 

that can be written in the empirical form 

 

∆logAit= ci + (ϕi − 1)logAit + λilogXit+ εit 

(3.10) 

If the variables in this model are I(0), then this model can be estimated directly with conventional 

techniques. If, however, ΔlogAit is I(0), whereas logAit and logXit are I(1) (and not cointegrated), 

then equation (3.10) represents an unbalanced regression, which can produce spurious results (see, 

e.g., Stewart, 2011; Bekiros et al. 2018). To avoid such a mixture of I(0) and I(1) variables, it is 

useful to rewrite the above equation in the form 

 

∆logAit= ci − (1 − ϕi) [logAit − λi

1−ϕi
logXit] + εit 

(3.11) 

or 

 

∆logAit= ci + λi [logXit − 1 − ϕi
λi

logAit] + εit 

(3.12) 

From equations (3.11) and (3.12) it can be concluded that if ΔlogAit is stationary and logAit and 

logXit are non-stationary, the two non-stationary variables must be cointegrated with a cointegrating 
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vector (1, − λi
1−ϕi

) or (1, − 1−ϕi
λi

) (see, e.g., Ha and Howitt, 2007). The cointegrating relationship 

between logAit and logXit can thus be expressed as 

 

logAit = ci + 
λi

1−ϕi
logXit + eit 

(3.12) 

Since equation (3.12) is an empirical version of equation (2.14), the term 
λi

1−ϕi
 can be interpreted as 

the long-run, or steady state, elasticity of knowledge with respect to research input. If the degree of 

returns to scale ϕ is less than unity, then this elasticity should be significantly positive.  

Alternatively, the cointegrating relationship between the two variables can be expressed as 

 

logXit = ci + 
1 − ϕi

λi
logAit+ eit 

(3.13) 

In this reverse regression, the coefficient on logAit should be significantly positive. 

In the case of the hybrid semi-endogenous model, equation (2.4) can be written as equation 

(2.27). An empirical form of this equation is 

 

∆logAit= ci − (1 − ϕi) [logAit − λi

1 − ϕi
logXit+

λiβi
1 − ϕi

logQit] + εit 

   (3.14) 

which can be rewritten as  

 

∆logAit= ci+λi [logXit − λiβilogQit − 1 − ϕi
λi

logAit] + εit 

(3.15) 

It follows from these equations that if ΔlogAit is stationary and logAit, logXit, and logQit are non-

stationary, then logAit, logXit, and logQit must be cointegrated for the hybrid semi-endogenous 

model to hold. In the case of one cointegrating vector among the three non-stationary variables, the 

long-run relationship can be written as 
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logAit = ci + 
λi

1−ϕi
logXit − λiβi

1−ϕi
logQit+ eit 

(3.16) 

This equation, which is an empirical version of equation (2.29), implies that the hybrid semi-

endogenous model cannot be rejected if the coefficient logXit is significantly positive and the 

coefficient on logQit is significantly negative. 

The hybrid model is also supported if, alternatively, the coefficients on logQit and logAit in 

the reverse cointegrating regression 

 

logXit = ci + λiβilogQit +
1 − ϕi

λi
logAit+ eit 

(3.17) 

are significant and positive. 

Finally, the following two equations are also empirical versions of equation (2.4): 

 

∆logAit= ci − (1 − ϕi) [logAit − 1
1 − ϕi

logXit] + (λi − 1) [logXit − λiβi
λi − 1 logQit] + εit 

(3.18) 

∆logAit= ci − (1 − ϕi) [logAit − λi(1 − βi)
1 − ϕi

logQit] + λilog
Xit

Qit 
 + εit 

(3.19) 

Equation (3.18) implies that the hybrid semi-endogenous model may also be valid if there 

are two cointegrating relationships between the level variables—that is, (i) if logAit and logXit are 

cointegrated with a cointegrating vector (1, − 1
1−ϕi

) in which the second element is negative and (ii) 

if logXit and logQit are cointegrated with a cointegrating vector (1, − λiβi
λi−1

) in which the second 

element is positive. If the second element of the cointegrating vector (1, − λiβi
λi−1

) is positive, then 

log Xit
Qit 

 is non-stationary (because the stationarity of log Xit
Qit 

 implies a cointegrating vector (1, −1) in 

which the second element is equal to –1). If, in contrast, logXit and logQit are not cointegrated, then 

log Xit
Qit 

 is also non-stationary (as in the case where logXit and logQit are cointegrated with a 

cointegrating vector different from (1, −1)) and equation (3.18) reduces to equation (3.11). Thus, 

non-stationarity of log Xit
Qit 

 is consistent with both the hybrid semi‐endogenous growth model and 
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“pure” semi‐endogenous growth models, but the latter implies (in the case of a non-stationary R&D 

intensity variable) that logXit is not cointegrated with logQit. It therefore follows from the invariance 

of cointegration relationships to model extensions that if logAit and logXit are cointegrated, while 

logXit and logQit are not cointegrated, the hybrid semi-endogenous growth model can be rejected.10 

Non-stationarity of log Xit
Qit 

 is inconsistent and stationarity of log Xit
Qit 

 is consistent with 

Schumpeterian growth models if ΔlogAit is stationary, as argued above. However, as implied by 

equation (3.19), and already discussed in Sections 2.3 and 2.4, (hybrid) semi-endogenous growth 

models may also be valid if R&D intensity is stationary. The necessary condition is that logAit is 

cointegrated with logQit—with a cointegrating vector (1, − λi(1−βi)
1−ϕi

) in the case of hybrid semi-

endogenous growth and a cointegrating vector (1, − λi
1−ϕi

) in the case of semi-endogenous growth. 

Thus, the validity of (hybrid) semi-endogenous growth models requires cointegration between 

logAit and logXit (and logXit and logQit) or, if log Xit
Qit 

 is stationary, cointegration between logAit and 

logQit, whereas the validity of the Schumpeterian theory requires not only that log Xit
Qit 

 is stationary, 

but also that logAit is not cointegrated with logQit and hence with logXit.
11 The implication is that 

(hybrid) semi-endogenous growth models can be rejected in favor of Schumpeterian growth models 

if, and only if, logXit is cointegrated with logQit but not cointegrated with logAit. 

In addition, equation (3.19) (which is an empirical version of equation (2.28)) shows that 

(hybrid) semi-endogenous growth models do not predict that the coefficient on log Xit
Qit 

 in a 

regression of ΔlogAit on log Xit
Qit 

 will be zero. Although Schumpeterian growth models predict that 

this coefficient will be significantly positive, a significant positive coefficient on log Xit
Qit 

 in equation 

(3.6) does not imply a rejection of (hybrid) semi-endogenous growth. The reason why (hybrid) 

semi-endogenous growth models are consistent with a significant positive coefficient estimate for 

R&D intensity is that these models suggest that if ΔlogAit and log Xit
Qit 

 are stationary and population 

growth is constant, temporary increases in R&D intensity lead to temporary increases in the growth 

rate of research effort and thereby to temporary increases in the growth rate of Ait. 

                                                      
10 The invariance of cointegration relationships to model extensions means that if there is cointegration between a set of 

variables, then this stationary relationship also exists in extended variable space. 
11 If Xit and Qit behave so that their log ratio is stationary, then their logarithms are cointegrated (with a cointegrating 

vector (1,−1)). If the pairs (logXit, logQit) and (logAit, logQit) are cointegrated, it follows necessarily that the pair (logAit, 

logXit) is also cointegrated. 
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It follows from the last two paragraphs that studies testing only Schumpeterian theory—by 

testing the stationarity of log Xit
Qit 

 and running regressions of the form of equation (3.6)—are only 

able to reject Schumpeterian models (if log Xit
Qit 

 is non-stationary or log Xit
Qit 

 is stationary but the 

coefficient on log Xit
Qit 

 in equation (3.6) is insignificant), but these studies, which include Zachariadis 

(2003, 2004), among others, are unable to reject (hybrid) semi-endogenous models in favor of 

Schumpeterian models.  

Similarly, it follows from the discussion of equations (3.17) and (3.18) that studies, such as 

those of Ang (2011a, 2011b) and Bottazzi and Peri (2007, 2015), which are based on a “pure” semi-

endogenous model—and thus do not include logQit—are unable to reject the hybrid in favor of the 

“pure” semi-endogenous growth theory. 

The studies whose findings are summarized below do not suffer from these limitations 

because they use at least two of the above specifications to distinguish between the theories or they 

use equation (3.17), which includes both logAit and logQit.  

 

3.3.2. Findings 

With the exception of Venturini (2012b), all studies we discuss here measure Ait by TFPit and 

∆logAit by the differenced log of TFPit. The common finding of these studies is that logAit is I(1), so 

that ∆logAit is I(0) (in what follows the country index i is omitted whenever data for an aggregate 

time-series analysis of a single country are used).  

The earliest of these studies is the work of Ha and Howitt (2007), who find that log Xt
Qt 

 is 

stationary, but they find no evidence of cointegration between logAt and logXt. Similar findings in 

support of the Schumpeterian theory are reported by Madsen (2008), Saunoris and Payne (2011), 

Madsen et al. (2010a), and Ang and Madsen (2011). Madsen (2008) finds strong evidence that 

logXit and logQit are cointegrated and that the coefficient on logQit in equation (3.8) is always 

positive and sometimes close to one. In contrast, there is relatively weak evidence of cointegration 

between logAit and logXit. In addition, his results show that, although there is some evidence of 

cointegration between logAit, logXit, and logQit, the estimated coefficient on logQit in equation 

(3.16) always has the “wrong” (positive) sign (to indicate hybrid semi-endogenous growth) and the 

estimated coefficient on logXit is insignificant and/or has the “wrong” (negative) sign.  

Similarly, Saunoris and Payne (2011) find that logXt, logQt, and logAt are I(1) and 

cointegrated, but the coefficient on logAt in equation (3.17) is always insignificant (at the 5% level) 

and has the “wrong” sign. In contrast, the coefficient on logQt in equation (3.17) is always 
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significant, and the null hypothesis that the coefficient on logQt is equal to one cannot be rejected 

(suggesting β = 1 and λ = 1). 

Madsen et al. (2010a) and Ang and Madsen (2011) find evidence of both stationarity of 

log Xit
Qit 

 and cointegration between logXit and logQit (although the magnitudes of the estimated 

cointegrating vectors are, with one exception, always not as predicted by Schumpeterian growth 

models).12 In contrast, there is little evidence of cointegration between logAit and logXit in the study 

by Ang and Madsen (2011), while Madsen et al. (2010a) find some evidence of cointegration 

between logAit and logXit, but the second element of the cointegrating vector has the “wrong” sign 

and/or is insignificant or implausibly large (in absolute value). 

Finally, Madsen (2008) and Madsen et al. (2010a) also find that the coefficient on log Xit
Qit 

 in 

equation (3.9) is positive and significant in most regressions, whereas the coefficient on ΔlogXit is 

insignificant or has the “wrong” sign in most regressions; and in the study by Ang and Madsen 

(2011), the coefficients on log Xit
Qit 

 in equation (3.9) are more often significant than the coefficients 

on ΔlogXit. 

These results are in contrast to those of Barcenilla-Visús et al. (2014), Fedderke and Liu 

(2017), and Venturini (2012b). Barcenilla-Visús et al. (2014) find that logAit, logXit, logQit, and 

log Xit
Qit 

 are I(1). Their results also suggest that logAit is cointegrated with logXit and that logXit is 

cointegrated with logQit (so that there are two cointegrating relationships between logAit, logXit, 

logQit, as described by equation (3.18)). Thus, although Barcenilla-Visús et al. (2014) claim that 

they find strong support for semi-endogenous growth, the results of their integration and 

cointegration tests are consistent with the hybrid semi-endogenous model. However, in contrast to 

what one would expect from the hybrid semi-endogenous model, their estimated coefficients on 

logXit have mixed signs in the cointegrating regressions of logAit on logXit, and the estimated 

cointegration relationships between logXit on logQit are either positive or insignificant (implying 

that, contrary to the predictions of the hybrid semi-endogenous model with two cointegrating 

relationships, the second element of the cointegrating vector between logXit on logQit is not 

negative). Thus, their results are inconsistent with Schumpeterian growth, semi-endogenous growth, 

and hybrid semi-endogenous growth. 

Fedderke and Liu (2017) (also) estimate equation (3.17). Similar to Barcenilla-Visús et al. 

(2014), their results are almost all inconsistent with the predictions of both theories, either because 

(i) the coefficients on logAit are negative (implying ϕ > 1), (ii) the coefficients on logQit are negative 

                                                      
12 Madsen et al. (2010a) find that all of their (logged) measures of R&D intensity are stationary; the only exception is 

the ratio of researchers to total employment. 
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(implying β < 0 if λ > 0), or (iii) the coefficients on logQit are greater than one (implying β > 1 if λ > 

0). In addition, they find, inconsistent with Schumpeterian growth, that while ΔlogAit is I(0), log Xit
Qit 

 

is I(1). 

Finally, Venturini (2012b) estimates equations (3.6) and (3.10) using the patenting rate as 

the dependent variable; the number of innovating firms (normalized by output or employment) acts 

as proxy for Ait in equation (3.10).13 He finds that the relationship between the patenting rate and 

R&D intensity is not significant when control variables are added to the equation. In contrast, the 

coefficient on logAit is always significantly negative but smaller (in absolute terms) than one 

(suggesting 0 < ϕ < 1), while the coefficient on logXit is always significantly positive but smaller 

than one (suggesting 0 < λ < 1). 

As a final remark, we note that while Madsen (2008) reports estimated values of λ that are 

positive, statistically significant but close to zero in most regressions (typically below 0.04), and 

while the λ estimates in Madsen et al. (2010a) and Venturini (2012b) lie between 0.1 and 0.9, Ang 

and Madsen (2011) report estimates of λ > 1.  

 

3.3.3. Critique 

The problem with the results of Venturini (2012b) and Fedderke and Liu (2017) is that they may be 

spurious due to non-stationarity and non-cointegration. Fedderke and Liu (2017) find that logXit, 

logQit, and logAit (measured by the log of TFPit) are I(1), but they do not test for cointegration.14 

Venturini (2012b) does not test his variables for stationarity, implying that they may be non-

stationary and not cointegrated.15 Moreover, the study by Venturini (2012b) is potentially limited by 

                                                      
13 Venturini (2012b) uses a different notation in his equations, but his equations correspond to equations (3.6) and (3.10) 

(with the modification that he uses lagged explanatory variables).  
14 Fedderke and Liu (2017) report (in their online appendix) tests of the null hypothesis that there are no cointegrating 

relationships between logȦit, logAit, logXit, and logQit against the alternative that there is at least one cointegrating 

relationship between these four variables, but they do not test for cointegration between logXit, logQit, and logAit. The 

point is that rejection of the null of no cointegrating vectors among the four variables does not imply cointegration 

among the three variables. More specifically, if logȦit, logAit, logXit, and logQit are cointegrated with one cointegrating 

vector, then there cannot be a cointegrating relationship between logXit, logQit, and logAit.  
15 In order to achieve stationarity, Venturini (2012b) normalizes his right-hand-side variables in equation (3.10) by 

expressing them as ratios to output or employment. However, even such ratios may be non-stationary, and Venturini 

(2012b) does not provide stationarity tests for his (explanatory and dependent) variables. Thus, the possibility cannot be 

excluded that his variables are non-stationary processes. Specifically, the log of the patenting rate may be non-

stationary when the log of the number of patent applications is I(1) and the log of the patent stock is I(2). In fact, we 

find evidence that this is the case, as discussed in the previous section. Moreover, the logarithmic patenting rate is an 

approximation of the growth rate of the stock of patents, and thus necessarily evolves roughly proportional to the first 

difference of the log of the patent stock. Thus, our finding that the first difference of the log of the patent stock has a 

unit root implies that the logarithmic patenting rate is also likely to be unit root process. To account for the possibility 

of spurious regressions due to unit roots in the data, Venturini (2012b) tests the residuals of his estimated equations for 

stationarity, at least in the working paper version of his article (Venturini, 2011). However, the panel unit root test he 

uses is a test for unit roots in univariate time series, and thus is not designed to test residuals from multivariate 

regressions for stationarity. In other words, the panel unit root test he applies to test the residuals of his regressions for 

stationarity is not a formal test for cointegration.  
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the use of the (logarithmic) patenting rate, which, as an approximation of the growth rate of the 

stock of patents, may be a poor proxy for the growth rate of the stock of knowledge for the reasons 

discussed in Section 3.2.3.  

A general problem with some of the studies is that unit root tests can suffer from large size 

distortions that lead to spurious rejections of the unit root null hypothesis when the lag length is too 

small (see, e.g., Ng and Perron, 2001). This problem of spurious rejections may be exacerbated in 

panel data because panel unit root tests are known to have higher power to reject the null than unit 

root tests based on individual time series. The point here is that the validity of Schumpeterian 

growth theory depends on whether both ΔlogAit and log Xit
Qit 

 are stationary and that studies such as 

those of Ha and Howitt (2007), Madsen et al. (2010a), and Ang and Madsen (2011), which provide 

formal evidence for the stationarity of both variables using unit root tests, may suffer from this 

problem if the lag length in the unit root tests is not adequately specified. In fact, visual inspection 

of the data in the studies of Ha and Howitt (2007), Madsen et al. (2010a), and Ang and Madsen 

(2011) shows that while TFP growth rates exhibit no large persistent changes, the measures of 

log Xit
Qit 

 tend to have an upward trend. Similarly, it can be seen from Figure 1, which graphs the log 

of the share of researchers in total employment and the growth rate of TFP for the United States and 

for the 19 countries in our study over the period 1980-2014, that this measure of log Xit
Qit 

 shows a 

very strong upward trend, whereas TFP growth exhibits no persistent increase. This casts doubt on 

the results of the unit root tests on the log levels of R&D intensity reported in the studies by Ha and 

Howitt (2007), Madsen et al. (2010a), and Ang and Madsen (2011) and thus on the evidence for 

Schumpeterian growth. 16 

                                                      
16 Jones (1995 (2002, p.226) graphs the share of researchers in total employment for the United States from 1950 to 

1993 (based on data with interpolated values). The graph shows that this measure of R&D intensity has increased about 

three-fold during this period—and thus appears to be clearly non-stationary. Nevertheless, we find that the log of the 

share of researchers in total employment is stationary when we apply the ADF unit root test based on standard lag 

selection criteria (such as the Schwarz information criterion and the modified Schwarz information criterion) to the data 

from the graph (available at https://web.stanford.edu/~chadj/datasets.html). The point is that standard lag selection 

criteria select one lag. In contrast, the general-to-specific criterion of Hall (1994) selects four lags. In fact, when we use 

four lags, the ADF indicates that the share of researchers in total employment is non-stationary. 

https://web.stanford.edu/~chadj/datasets.html
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Another potential problem with these studies is that they use time series on R&D 

expenditures and/or the number of researchers with large, interpolated data gaps.17 This can bias 

tests of cointegration in favor of the null of no cointegration between logAit and logXit and thus lead 

to erroneous conclusions regarding the rejection of semi-endogenous growth if there are large 

discrepancies between the interpolated and true values of these variables.18 

The same problem may occur with the use R&D expenditures as a proxy for research effort: 

Since there is no R&D-specific deflator based on the wages of R&D workers and the prices of R&D 

investment goods, nominal R&D expenditures are deflated by an overall deflator, typically based on 

an aggregate wage index and/or an aggregate price deflator. This may lead to spurious fluctuations 

in R&D that reflect mismeasurement of the prices of R&D inputs rather than true changes in R&D 

activity (see, e.g., Barlevy, 2007). As a consequence, cointegration tests may not be able to detect 

cointegration between the log of TFP and the log of the true research effort.  

In addition, the coefficient on ΔlogXit in equation (3.9) may be biased toward zero if 

research effort is measured with error. The lack of significance of the coefficient on the growth rate 

of R&D expenditures/R&D labor therefore does not necessarily imply evidence against semi-

endogenous growth but may be due instead to measurement error. 

Another problem with equation (3.9) can be illustrated as follows. As noted above, the term 

λi
1−ϕi

 in equation (3.12) can be interpreted as the long-run, or steady state, elasticity of knowledge 

with respect to research input. If logAit and logXit are I(1), then the two series must be cointegrated 

for a long-run equilibrium relationship, as given by equation (3.12), to exist. If the variables are 

cointegrated, 
λi

1−ϕi
 can be estimated directly from equation (3.12) (using a cointegration estimator) or 

indirectly from an autoregressive distributed lag model of the form 

 

                                                      
17 Madsen et al. (2008) report in the working paper version of their 2010 article on “The Indian growth miracle and 
endogenous growth” that the data on the number of researchers between 1950 and 1990 are available only at ten-year 

intervals. Ang and Madsen (2011) report that data for China (Korea) [Singapore] {Taiwan} on R&D expenditures and 

the number of R&D workers are not available for the years 1953–1959 and 1961–1977 (1953–1967) [1953–1970] 

{1953–1970}. Ha and Howitt (2007) claim that their data on the number of scientists and engineers engaged in R&D 

for the period 1950–1997 are from the Science and Engineering Indicators 2000 published by the National Science 

Foundation (which can be obtained at https://wayback.archive-

it.org/5902/20150627162232/http://www.nsf.gov/statistics/seind00/append/appa.htm in Appendix Table 3–25). 

However, these data are available from the Science and Engineering Indicators 2000 only for the period 1979–1997 and 

contain many gaps (at least for the United States). It should perhaps be noted here that the Industrial Research and 

Development Information System contains historical data on the number of scientists and engineers engaged in R&D 

for the United States starting in 1954 (available at https://wayback.archive-

it.org/5902/20181004145214/https://www.nsf.gov/statistics/iris/search_hist.cfm?indx=24), but these data are also not 

available for many years (1955, 1956, 1959, 1960, 1961, 1962, 1965, 1966, 1969, 1970, and 1982). In addition, these 

data are available only for January rather than for the entire year (as annual average) during the period 1954–1981.  
18 Interpolation does not pose problems if the true values are cointegrated with the interpolated values, in which case the 

measurement error is stationary. It is well known that stationary measurement error has no serious effect on tests for 

cointegration, whereas in the case of non-stationary measurement error, cointegration tests fail to find cointegration 

between the variables involved. 

https://wayback.archive-it.org/5902/20181004145214/https:/www.nsf.gov/statistics/iris/search_hist.cfm?indx=24
https://wayback.archive-it.org/5902/20181004145214/https:/www.nsf.gov/statistics/iris/search_hist.cfm?indx=24
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logAit = c0i + ϕilogAit-1+ λilogXit + εit 

(3.20) 

It is well known from the time series literature that equation (3.20) can be rewritten in error-

correction form as 

 

∆logAit = c1i −  (1 − ϕi) [logAit-1 − λi

1 − ϕi
logXit-1 −  ci ] + λi∆logXit + εit 

(3.21) 

where the term in brackets is the so-called error-correction term representing deviations from the 

long-run equilibrium relationship, and the term −(1 − ϕi) represents the so-called error-correction 

coefficient measuring the speed of adjustment to the long-run equilibrium. According to the 

Granger Representation Theorem (Engle and Granger, 1987), the error-correction coefficient must 

be non‐zero if logAit and logXit are cointegrated and long-run Granger causality runs from logXit to 

logAit. In the case of semi-endogenous growth, the error-correction model given by equation (3.21) 

thus explains the growth rate of Ait by the growth in Xit and the past disequilibrium. The implication 

is that if the estimate of −(1 − ϕi) is not significantly different from zero, then a long-run 

relationship between logAit and logXit does not exist, so that semi-endogenous growth can be 

rejected; if, however, the estimate of −(1 − ϕi) is significantly negative, and semi-endogenous 

growth can therefore not be rejected, then simple models in growth rates may produce misleading 

results—not only because the error-correction term accounts for the long-run relationship between 

logAit and logXit, but also because the omission of the error-correction term may bias the coefficient 

on ΔlogXit down. The problem of equation (3.9) is thus that it is misspecified by the omission of the 

lagged error-correction term, which should be significant and negative if semi-endogenous growth 

theory is correct; an empirical growth model that nests both semi-endogenous and Schumpeterian 

growth should therefore not only include ΔlogXit and log Xit
Qit 

 (provided that log Xit
Qit 

 is stationary), but 

also the error-correction term. However, to be fair, it should be noted again that Madsen (2008), 

Madsen et al. (2010a), and Ang and Madsen (2011), who use equation (3.9), find little evidence of 

cointegration between logAit and logXit. 

A final problem with the use of equation (3.9) is that it represents an unbalanced regression 

when the growth rate of TFP is stationary and R&D intensity is non-stationary,19 in which case its 

use can lead to spurious results. As shown by Bekiros et al. (2018), the tendency for spuriously 

indicating a relationship in unbalanced regressions may even be stronger in panel than in time series 

                                                      
19 Balance in such a situation requires the presence of an additional I(1) regressor and cointegration between the I(1) 

regressors. 
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data. The point is that in the studies that estimate equation (3.9) (or equation (3.6)) and report 

statistically significant coefficients on log Xit
Qit 

, such as Madsen (2008) and Madsen et al. (2010a), the 

significance is necessarily spurious if the regression is unbalanced since the true slope on the 

integrated regressor is necessarily zero in an unbalanced regression. However, we note here again 

that the results in Madsen (2008) and Madsen et al. (2010a) suggest that R&D intensity is 

stationary. 

 

3.4. Type III approach 

3.4.1. Specifications 

An empirical form of the steady state equation (2.12) for the growth rate of per capita/worker output 

from Schumpeterian growth theory can be expressed as  

 

gy,it= ci + b1g
L,it

+ b2
Xit

Qit 
+ εit 

(3.22) 

As discussed in Section 2, Schumpeterian growth theory suggests that the coefficient on gL,it 

(≡ (θ-1)) may be positive or insignificant, whereas the coefficient on 
Xit
Qit 

 (≡ λδ
1−α

) should be positive 

and significant. In contrast, semi‐endogenous growth theory predicts that the steady-state rate of per 

capita output growth is proportional to population growth (with a coefficient on  gL,it equal to 

λ(1−α)(1−ϕ)) and independent of R&D intensity. Minniti and Venturini’s (2017) idea is therefore that 

equation (3.22) nests the steady state equation (2.22) for the growth rate of per capita/worker output 

from semi‐endogenous growth theory, and thus can be used as a basis to test semi-endogenous 

growth models against Schumpeterian growth models. Based on this idea, b1 > 0 and b2 = 0 can be 

interpreted as evidence for semi-endogenous growth models, whereas b2 > 0 can be interpreted as 

evidence for Schumpeterian growth models.  

Another idea in the literature is to estimate the parameters b1 and b2 separately in two models 

(see, e.g., Laincz and Peretto, 2006), 

 

gy,it= ci + b1g
L,it

+ εit 

 

(3.23) 
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gy,it= ci + b2
Xit

Qit 
+ εit 

 

(3.24) 

Replacing  gL,it on the right hand side of equation (3.23) by  gX,it yields an alternative empirical 

version of the steady state equation for the growth rate of per capita/worker output from semi‐
endogenous growth theory (based on equation (2.23)), 

 

gy,it= ci + b1g
X,it

+ εit 

(3.25) 

Replacing 
Xit
Qit 

 on the right hand side of equation (3.24) by 
Lit
Qit 

 gives an alternative empirical form of 

the equation for the steady state growth rate from Schumpeterian growth theory,20 

 

gy,it= ci + b2
Lit

Qit 
+ εit 

(3.26) 

A third idea, suggested by Madsen et al. (2010b), combines equation (3.25) with equation 

(3.27),  

gy,it=ci + b3log
Xit

Qit 
+ εit 

(3.27) 

to get 

gy,it= ci + b1g
X,it

+ b3log
Xit

Qit 
+ εit 

(3.28) 

where b3, like b2, must be greater than one for Schumpeterian growth theory to hold (Madsen et al., 

2010b). 

Thus, a positive and significant b2 or b3 is a necessary condition for the validity of 

Schumpeterian growth theory. A necessary (but not sufficient) precondition is that (the log of) 
Xit
Qit 

 

(or 
Lit
Qit 

) is stationary, or, equivalently, that (the log of) Xit (Lit) and (the log of) Qit are cointegrated 

                                                      
20 The intuition behind equation (3.26) is that with a constant share of labor devoted to R&D, the number of people 

employed in R&D is proportional to total employment, so that, in steady state, the ratio of total employment to the 

number of sectors or firms must also be constant. With a constant fraction of labor allocated to R&D, higher 

employment per sector or firm means more researchers per sector or firm and thus a higher growth rate in 

Schumpeterian growth models (see, e.g., Laincz and Peretto, 2006). 
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with a cointegrating vector (1, −1)) (see, e.g., Madsen et al., 2010b). The reason for this 

precondition is the prediction of Schumpeterian growth models that growth rates of GDP per 

capita/worker should be proportional to the (log-)level of R&D intensity, implying that if gy,it is 

stationary (as generally found in the literature), then (the log of) 
Xit
Qit 

 (
Lit
Qit 

) must also be stationary. 

As far as b1 is concerned, it should be noted that this coefficient does not allow a distinction 

between pure semi-endogenous models and the hybrid semi-endogenous model in equations (3.22) 

and (3.23). As discussed in Section 2, the steady-state growth rate of output per capita/worker can 

be expressed as the product of the growth rate of the population and the term ((θ − 1)β+ λ(1−β)(1−α)(1−ϕ)) 

in the case of the hybrid model (see equation (2.35)), or as the product of the population growth rate 

and 
λ(1−α)(1−ϕ) in semi-endogenous theory (see equation (2.22)). A positive and significant value for 

b1 in equations (3.22) and (3.23) may therefore represent both 
λ(1−α)(1−ϕ) and ((θ − 1)β+ λ(1−β)(1−α)(1−ϕ)) 

and is thus consistent with both pure and hybrid semi-endogenous models. Similarly, equations 

(3.25), and (3.28) unable to discriminate between these models because they do not include the 

growth rate of the population, and semi-endogenous growth models predict that the growth rate of 

output per capita/worker in the steady state depends only on the growth rate of research effort (and 

the parameters σ, λ, α, and ϕ) (see equation (2.23)), while the hybrid model predicts that the growth 

rate of output per capita/worker in the steady state depends on both the growth rate of research 

effort and the growth rate of the population (and the parameters λ, α, ϕ, β, and θ) (see equation 

(2.34)). In this sense, the implicit intention of equations (3.22)-(3.28) is to is to provide a test of 

Schumpeterian growth models against pure and hybrid semi-endogenous models. 

Finally, Madsen et al. (2010b) test semi-endogenous growth theory (over a long historical 

period) using a variant of the per capita production function in equation (2.24) in which land T is 

included as a factor of production but human capital per worker is excluded. Taking logs of both 

sides of this equation and adding an error term yields 

 

logyit=  ci + λ(1 − α)(1 − ϕ)  logXit + α1 − α
log (Kit 

Yit 
) +

11 − α
γit logT − 11 − α

γit logLit+εit 

(3.29) 

where the subscript t on γ indicates that the output elasticity of land is not estimated from the data, 

but imposed using a measure of the land share. This equation implies that, out of steady state, if 

logyit, logXit, log (Kit 
Yit 

), and logLit exhibit I(1) behavior, and if γit is also non-stationary, then (for 
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semi-endogenous growth theory to hold) logyit, logXit, log (Kit 
Yit 

), γit and γit logLit must be 

cointegrated with a (single) cointegrating vector (1, − λ(1−α)(1−ϕ) , − α1−α
, − 11−α

, 11−α
).  

 

3.4.2. Findings 

All studies that are based on one or more of the equations discussed above reject semi-endogenous 

growth in favor of Schumpeterian growth. 

Minniti and Venturini (2017) estimate a distributed lag version of equation (3.22) and find 

no significant association between employment growth and output (value-added) per worker 

growth, whereas the share of R&D workers in employment is significantly and positively related to 

the growth rate of output per worker.  

Laincz and Peretto (2006) use data on the growth rates of output per capita and private 

business productivity (as measures of gy), employment (as a measure of L), R&D personnel (as a 

measure of X), and the number of establishments (as a measure of Q) and find that the ratio of Lt to 

Qt is stationary. In addition, their results suggest that, although the unit root null hypothesis cannot 

be rejected for the Xt/Qt ratio by the ADF test, cointegration exists between Xt and Qt and between 

Lt and Qt. Finally, using distributed lag versions of equations (3.23)-(3.26), they find that the b1 

coefficients are insignificant (with one exception), whereas the b2 coefficients are significant and 

have a positive sign. 

Madsen et al. (2010b) provide evidence of stationarity of the logarithmic ratio of Xt to Qt. 

Consistent with this evidence in favor of Schumpeterian growth models, they also find that logXt 

and logQt are cointegrated (although the estimated cointegrating vectors differ from the 

theoretically suggested value of (1, −1)). In addition, they find up to four cointegrating vectors 

among the variables in equation (3.29), depending on the period (and the test) chosen, and interpret 

this as “inconsistent with the prediction of only one cointegrated relationship among the variables 

by semi-endogenous growth theory” (p. 277). Moreover, they estimate equation (3.29) for the entire 

period and for sub-periods and find that the estimates differ from the theoretical values suggested in 

equation (3.29). Finally, they report estimates of (a lagged version of) equation (3.28) that show that 

the coefficients on (lagged) gxt are always insignificant and sometimes have the ”wrong” (negative) 

sign, whereas the coefficients on (lagged) log Xt
Qt 

 always have the “correct” (positive) sign and are 

mostly significant. 
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3.4.3. Critique 

As discussed above, a necessary precondition for the validity of Schumpeterian growth theory is the 

stationarity of (the log of) R&D intensity, given that per capita output or labor productivity growth 

is generally found to be stationary. However, Laincz and Peretto (2006) find some evidence that the 

Xt/Qt ratio has a unit root;21 Madsen et al. (2010b) find, on the one hand, that the logarithmic ratio 

of Xt to Qt is stationary and that logXt is cointegrated with logQt, while, on the other hand, they 

present estimates of the cointegrating relationship between logXt and logQt showing that there is no 

one-to-one relationship between these variables (implying that the logarithmic ratio of Xt to Qt is 

non-stationary); and Minniti and Venturini (2017) report (in their online appendix) mixed evidence 

of stationarity for the growth rate of labor productivity and strong evidence that R&D intensity is 

non-stationary. 

If, however, R&D intensity is non-stationary but per capita (or per worker) growth is 

stationary, then equations (3.22), (3.24), (3.27), and (3.28) represent unbalanced regressions. As 

discussed in Section 3.3.3, the true coefficient on the non-stationary variable is necessarily zero in 

an unbalanced regression, implying that in studies that estimate unbalanced regressions and report 

statistically significant coefficients, the significance is necessarily spurious. Thus, it cannot 

completely be ruled out that at least some of the correlation between the growth rate of output per 

capita/worker and (the log of) 
Xit
Qit 

 found in the studies above is spurious.  

Similar caution should be exercised regarding the evidence against semi-endogenous growth 

models. The reason is that, as discussed in Section 3.3.3, models specified in growth rates of the 

variables—such as equations (3.22), (3.23), (3.25), and (3.28)—are misspecified if (as implied by 

equations (2.24), (2.25), (2.26), and (3.29)) there is a long‐run cointegrating relationship between 

the (log-)levels of the variables. While Minniti and Venturini (2017) find, somewhat surprisingly, 

that gy,it,  gL,it, and 
Xit
Qit 

 are cointegrated (which would imply that their model is not misspecified due 

to the omission of the error-correction term),22 Laincz and Peretto (2006), however, do not tests 

whether the log of GDP per capita/worker and the log of research effort or the log of employment 

are cointegrated, implying that their results may be misleading because they do not include the 

                                                      
21 Laincz and Peretto (2006, p. 280) conclude that “the evidence is quite strong that average establishment size and 

R&D workers per establishment are stationary, trendless variables […].” However, the ADF test fails to reject the unit 
root null for the number of R&D workers per establishment. 
22 Minniti and Venturini (2017) find, using a small number of lags, that the growth rate of labor productivity is 

stationary. However, using a larger number of lags, they find that gy,it has a unit root. They also find that gL,it and 
Xit
Qit 

 

have a unit root, regardless of the number of lags included. Based on these findings, the authors treat gy,it, and gL,it, and 
Xit
Qit 

 as I(1) and test these variables for cointegration. 
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error-correction term capturing the potential cointegrating relationship between logyit and logXit or 

logLit.  

Madsen et al. (2010b), in contrast, test for cointegration among the variables in equation 

(3.29), and find up to four cointegrating vectors, but they make no attempt to identify the 

cointegrating vectors; rather, they impose the restriction of one cointegrating vector over all 

estimation periods (although the evidence for one cointegrating relationship is weak), and justify 

this restriction by claiming that semi-endogenous growth theory predicts only one cointegrating 

vector between logyt, logXt, log (Kt 
Yt 

), γt, and γt logLt. However, while this claim holds for situations 

out of steady state, semi-endogenous theory implies (under the assumption of non-stationarity of γt) 

that in steady state, where the ratio of Kt to Yt is constant, there are two cointegrating relationships 

among the five variables: one cointegrating relationship representing the stationary variable 

log (Kt 
Yt 

), and the other cointegrating relationship involving the other variables. In case that γt is 

stationary, it is even possible to find four cointegrating vectors in steady state: one cointegrating 

vector may simply reflect the stationarity of γt; log (Kt 
Yt 

) may account for the second stationary 

relationship; a third cointegrating relationship may exist between logXt and γt logLt; and the fourth 

cointegrating relationship may involve logyt and logXt. Thus, it can be argued that the evidence 

provided in Madsen et al. (2010b) is not sufficient to reject semi-endogenous growth with 

confidence.  

These considerations point to a general problem with attempts to test semi-endogenous 

growth models using the Type III approach: The correct specification depends on whether the 

economy is in or out of steady state. To further illustrate this problem, recall that semi-endogenous 

growth models imply, according to equation (2.24), that we can write output per worker along a 

constant growth path as a function of research effort, the capital-output ratio, and human capital per 

worker. However, along a balanced growth path, output per worker is determined only by research 

effort, as equation (2.25) shows. Within the Type III approach, there are thus two possible empirical 

specifications for models of semi-endogenous growth whose correctness depends on whether or not 

economic growth is balanced. In contrast, the correctness of the specifications of the Type II 

approach does not depend on whether the economy is on a balanced or on a constant growth path. 

Similarly, the specifications of the Type I approach are correct regardless of whether the economy 

is in or out of steady state (but they all potentially suffer from unbalanced regression problems, as 

discussed in Section 3.2.3). 

Finally, because λ is captured as part of the estimated coefficients, the Type III approach can 

be criticized for its failure to estimate the magnitude of duplication externalities. 
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3.5. The study by Sedgley and Elmslie (2010) 

One study that does not fit into the above categories is that of Sedgley and Elmslie (2010). The 

authors provide a theoretical framework in which, assuming a constant R&D intensity, the steady-

state growth rate of output per worker is proportional to the rate of population growth only in semi-

endogenous growth models, while the capital-labor ratio and knowledge grow at the same rate 

along a balanced growth path in all R&D‐based growth models (including first-generation R&D 

models). Hence, their empirically testable implications are as follows: If knowledge growth, capital 

per capita/worker growth, and population or employment growth are I(1) processes, then semi-

endogenous growth theory predicts two cointegrating relations among the three variables, whereas 

fully endogenous growth models (including Schumpeterian and first-generation R&D models) 

predict that only knowledge growth and capital per capita/worker growth are cointegrated. 

Using the growth rate of the stock of patents as a measure of the growth rate of the 

knowledge stock, they find that the three variables exhibit I(1) behavior. They also find 

cointegration between the growth rates of knowledge and capital per capita/worker, whereas they 

find no evidence of two cointegrating vectors, and interpret these findings as evidence in favor of 

fully endogenous growth models and against semi-endogenous growth models. 

One problem with the study by Sedgley and Elmslie (2010), however, is that it does not 

explicitly test the validity of Schumpeterian theory. It assumes, rather than tests, the constancy or 

stationarity of R&D intensity. If R&D intensity is constant, then one would expect from 

Schumpeterian theory that the growth rate of the stock of knowledge is stationary. However, they 

find that their measure of the growth rate of the stock of knowledge, the growth rate of the stock of 

patents, is non-stationary, which inconsistent with their assumption of the stationarity of R&D 

intensity if Schumpeterian theory is valid.  

Their finding of a unit root in the growth rate of the patent stock is consistent with 

Schumpeterian growth if R&D intensity has a unit root; but if R&D intensity exhibits I(1) behavior, 

then R&D intensity should be cointegrated with the growth rate of the patent stock for 

Schumpeterian theory to hold.23 However, they test neither for a unit root in R&D intensity nor for 

cointegration between R&D intensity and growth of the patent stock. Thus, it can be argued that 

their findings can be interpreted as evidence against semi-endogenous growth theory, but they do 

not provide any evidence in favor of Schumpeterian growth theory (or first‐generation theory); 

                                                      
23 Their finding of a unit root in the growth rate of the patent stock and their assumption of the stationary R&D intensity 

may be consistent with first‐generation R&D models. However, since the steady-state growth rate of knowledge 

depends on population size and R&D intensity in these models (see, e.g., Jones, 1999), knowledge growth should be 

cointegrated with population size for these models to hold. Sedgley and Elmslie (2010) find that the growth rate of the 

population is an I(1) process, implying that population size is I(2). Given their finding that the growth rate of the patent 

stock is I(1), it is not possible that the growth rate of the patent stock cointegrates with population size. Thus, their 

results are inconsistent with the first generation of R&D-based models if R&D intensity is stationary. 
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more specifically, their finding of cointegration between the growth rate of the patent stock and the 

growth rate of the capital-labor ratio is also consistent with exogenous growth models, and thus not 

sufficient to accept fully endogenous growth theory, because capital per worker grows at the rate of 

technical progress along a balanced growth path also in exogenous growth models. 

Another, more fundamental problem associated with Sedgley and Elmslie’s (2010) analysis 

is the use of the growth rate of the patent stock as a measure of the growth rate of the knowledge 

stock. As discussed in Section 3.2.3., the patent stock is probably a poor proxy for the stock of 

knowledge for two related reasons: the first is that the growth rate of output per worker in the 

United States (at least after 1980) is much smaller than one would expect on the basis of patent 

stock data if the patent stock were a good proxy for the knowledge stock; the second is that the 

growth rate of the patent stock exhibits I(1) behavior (as found in this study and by Sedgley and 

Elmslie (2010)), while the growth rate of GDP per worker is typically found to be stationary; 

however, all R&D-based growth models suggest that both output per worker growth and knowledge 

growth should be stationary (or non-stationary). In this sense, their finding of a unit root in the 

growth rate of the patent stock can be interpreted either as inconsistent with the predictions of all 

R&D-based growth models or as an indication that the patent stock is not a good proxy for the stock 

of knowledge.24  

 

3.6. Summary 

In summary, it can be said that of the 17 studies reviewed, nine provide evidence in favor of 

Schumpeterian growth models; three support the hybrid semi-endogenous model; three present 

results that are largely inconsistent with Schumpeterian growth, semi-endogenous growth, and 

hybrid semi-endogenous growth; one provides results that can be interpreted as evidence against 

semi-endogenous growth models (but not necessarily as evidence of Schumpeterian growth); and 

one supports semi-endogenous growth. 

However, all of these studies suffer from at least one of six major limitations:  

(1) The majority of the studies use patent data to measure the flow of knowledge and/or to 

construct measures of the level and/or the growth rate of the stock of knowledge. A 

comparison of the evolution of the growth rate of GDP per capita with the evolution of 

the growth rate of the patent stock, however, suggests that the number/stock of patents is 

probably a poor measure of the flow/stock of knowledge (at least from the 1980s). 

                                                      
24 Sedgley and Elmslie (2010) admit themselves that growth in per capita/worker output cannot be caused by growth in 

the stock of patents since the former is typically found to be stationary (while the latter is I(1)). They argue that it is 

necessary to use a linear combination of at least two I(1) series to explain the stationary behavior of per capita output 

growth and suggest that the other I(1) variable could be the growth of the capital stock. However, we are not aware of 

any R&D-based growth model that predicts a cointegrating relationship between the growth rates of capital and 

knowledge.  
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(2) Many of the studies pay little to no attention to the possibility of spurious regressions 

due to non-stationary data for the dependent and/or the independent variables. Hence, 

some of the reported significance levels may be misleading, and the evidence from these 

studies for Schumpeterian or (hybrid) semi-endogenous growth may be false. 

(3) Some of the studies use time series on the number of researchers and/or R&D 

expenditures with large, interpolated data gaps. If there are significant discrepancies 

between the interpolated and true values of these variables, cointegration tests can be 

biased in favor of the null hypothesis of no cointegration between the log of the stock of 

knowledge and the log of research effort and thus toward rejecting semi-endogenous 

growth.  

(4) The studies often use simple growth regressions to test semi-endogenous growth models. 

If there is a long-run (cointegrating) relationship between the log-levels of the variables, 

such regressions, however, are misspecified by the omission of the error-correction term 

that captures the long-run relationship.  

(5) Most of the studies employ R&D expenditures as a measure of research effort. A 

potential problem is that, since there are no long time series on the price of R&D, these 

studies use an overall deflator instead of an R&D-specific deflator to convert nominal 

R&D expenditures to real R&D expenditures. Thus, failure to find empirical support for 

semi-endogenous growth could also (in part) be due to measurement error in the data on 

real R&D expenditures. 

(6) Several studies use unit root tests to examine the stationarity of R&D intensity. These 

studies may suffer from the problem that standard unit root tests may falsely reject the 

unit root null hypothesis when the lag length is incorrectly specified to be too small. 

Thus, these studies may incorrectly conclude from their unit root test that Schumpeterian 

theory is supported by the data.  

Finally, a common limitation of studies using the Type I approach is that the underlying 

regressions are all likely to be unbalanced in the sense that the order of integration of the dependent 

knowledge flow variable is smaller than the order of integration of the explanatory knowledge stock 

variable, which can lead to biased results; general limitations of the Type III approach are that the 

correct specification to test semi-endogenous growth theory depends on whether the economy is in 

or out of steady state, which can lead to uncertainty in the results, and that the approach fails to 

provide estimates of λ (estimates that vary widely across studies using Type I and II). 

The following analysis aims to overcome these limitations by (i) applying unit root and 

cointegration methods within the Type II approach, (ii) using proper lag selection procedures, (iii) 

employing TFP as a measure of the stock of knowledge and the number of researchers as a measure 
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of research effort, and (iv) using non-interpolated data on the number of researchers. Unit root and 

cointegration methods not only provide tests of the long-run predictions of (hybrid) semi-

endogenous and Schumpeterian growth models, but also help to avoid potential problems associated 

with spurious regressions, unbalanced regressions, and simple growth regressions.  

To increase the comparability of our results with those in the studies reviewed here, we 

conduct both a time-series analysis for the United States and a panel data analysis of OECD 

countries (excluding the United States), as already noted in the Introduction. 

 

4. New empirical evidence on the validity of semi-endogenous and Schumpeterian growth 

models 

4.1. Data 

The stock of knowledge is measured by TFP. Following common practice, we calculate TFP as the 

residual from the production function (2.1), using employment times average hours times human 

capital per worker as the measure of human capital-augmented labor input and assuming α = 1/3. 

All data used to calculate TFP are from the Penn World Tables (PWT) version 9.0 (available at 

https://www.rug.nl/ggdc/productivity/pwt/pwt-releases/pwt9.0).25 

Our measure of research input is the number of full-time equivalent researchers, LAit; total 

employment, measured by the number of employed persons, Lit, is used as a measure of scale; and 

R&D intensity is measured by the share of researchers in total employment (researchers per 1000 

employees), LAit/Lit. Data on these variables are from the Main Science and Technology Indicators 

(MSTI) of the OECD (available at https://stats.oecd.org/Index.aspx?DataSetCode=MSTI_PUB#). 

Since the PWT data end in 2014 and the MSTI data start in 1981, our sample covers the 

period from 1981 to 2014. For the United States, complete data are available for this sample period, 

implying that our time-series analysis is based on 34 observations. For our panel analysis, we 

include all countries outside the United States with complete time series and at least 20 time-series 

observations, resulting in an unbalanced panel of 500 observations from 19 OECD countries. 

The growth rate of TFP and the log of the share of researchers in total employment between 

1981 and 2014 for the 20 countries in our study are plotted in Figure 1. As already noted in Section 

3.3.3, the TFP growth rates in all countries show no persistent increase during this period, whereas 

the log of the number of researchers as a proportion of employment shows an upward trend for each 

                                                      
25 The Penn World Tables 9.0 contains its own measure of TFP, which is based on a translog production function in 

which the labor share varies across countries and across time. However, as argued by Jones (2016), such a measure is 

problematic because it implies that countries and years with the same inputs and the same level of TFP will have 

different outputs. In fact, it is still debated whether the labor share is approximately constant across time and space 

(with a value of about 2/3). While Karabarbounis and Neiman (2014) document a secular decline in the labor share in 

most advanced countries since the early 1980s, Cette et al. (2020) challenge this finding and demonstrate that, when 

corrected for measurement error, the labor share of advanced economies does not follow a secular trend. Therefore, we 

follow the common practice of assuming α = 1/3. 



 

39 

 

country. This visual inspection of the data already suggests that there is no evidence to support 

Schumpeterian theory. In the next sections, we investigate this issue further. 

 

4.2. Unit root tests 

To examine the time-series properties of logAt, logLAt, logLt, and log(LAt/Lt) for the United States, 

we use the augmented Dickey-Fuller (ADF) test, the DF-GLS test of Elliott et al. (1996), and the 

MZα
GL, MZt

GLS, MSBGLS, and MPT
GLS tests of Ng and Perron (2001). The lag length for the ADF test 

is chosen by the general-to-specific criterion of Hall (1994). For all other tests, we employ the 

modified Akaike information criterion (MAIC) of Ng and Perron (2001). Following the 

recommendation of Perron and Qu (2006), we calculate the MAIC using OLS (rather than GLS) 

detrended data. The results based on these lag selection procedures are presented in Table 2. All six 

tests fail to reject the unit root null for the levels of each of the variables. In contrast, the null 

hypothesis of a unit root for the first differences is rejected, indicating that we have stationarity in 

first differences and each of the four variables can be regarded as I(1). Thus, the results of the unit 

root tests for the United States provide evidence against Schumpeterian growth models. 

To test for unit roots in our panel data, we use a second-generation panel unit root tests: the 

cross-sectionally augmented panel unit root test (CIPS) of Pesaran (2007). Panel unit root tests of 

the first-generation can lead to spurious results if a significant degree of residual cross-sectional 

dependence exist (but is ignored).26 In fact, the p-values of the cross-sectional dependence (CD) test 

of Pesaran (2004), reported in Table 3, indicate that both the levels and first differences of the series 

are not cross-sectionally independent, implying that error cross-sectional dependence can be a 

serious problem (if not controlled). The CIPS test, which is based on averaging individual ADF 

statistics, is designed to control for cross-sectional dependence in the residuals by augmenting the 

ADF regressions with cross-sectional averages. Table 2 presents the p-values of the CIPS tests for 

different lags k = 0, …, 3. Regardless of the lag length chosen, the null hypothesis of a unit root 

cannot be rejected for all series in levels, but can be rejected for all in their first differences. Thus, 

our panel unit root tests, like our unit root tests for the United States, reject Schumpeterian growth 

models. 

 

4.3. Cointegration tests 

We next test for cointegration between logLAt and logLt and between logAt and logLAt for the United 

States using the standard Engle and Granger (1987), Phillips and Ouliaris (1990), and Pesaran et al. 

(2001) methods. The results of these tests, which are reported in Panels A and B of Table 4, show 

                                                      
26 Cross‐sectional dependence may be due to common factors that affect all countries (but not necessarily with the same 

magnitude) and/or spatial spillover effects across subsets of countries. 
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that the null hypothesis of no cointegration between logLAt and logLt cannot be rejected, while the 

null hypothesis of no cointegration between logAt and logLAt can be rejected. Thus, we again find 

evidence against Schumpeterian models. In contrast, the data support the implication of semi-

endogenous growth models that if logAt and logLAt are I(1), these variables must be cointegrated. In 

addition, the finding that logLAt is cointegrated with logAt but not cointegrated with logLt implies 

that the hybrid semi-endogenous is inconsistent with the data (as discussed in Section 3.3.1). 

To test for cointegration in our panel, we use the standard panel and group ADF and PP test 

statistics of Pedroni (1999). Given that these tests, which assume cross-sectionally independent 

residuals, suffer from size distortions in the presence of error cross-sectional dependence, we 

demean the data by subtracting the average value of xt = (∑ xit
N
i=1 )/N from each xit in each period t, 

xit − (∑ xit
N
i=1 )/N, and use the demeaned data in place of the original data. In addition, we use the 

error-correction model (ECM) t-test of Gengenbach et al. (2016), which, like the CIPS test, 

accounts for cross-sectional dependence via the use of cross-sectional averages (and is therefore 

applied to the raw data). 

The results of our panel cointegration tests are given in Panels A and B of Table 5. In Panel 

A, we see that the tests fail to reject the null of no cointegration between logLAit and logLit. In 

contrast, in Panel B, we see that the null of no cointegration between logAit and logLAit is rejected by 

all tests. Thus, like our time-series results for the United States, our panel results provide evidence 

consistent with semi-endogenous growth.  

 

4.4. Cointegrating relationship 

To estimate the cointegrating parameter 
λ

1−ϕ
 for the United States, we use the dynamic OLS (DOLS) 

estimator of Stock and Watson (1993) and the fully modified ordinary least squares (FMOLS) 

estimator of Phillips and Hansen (1990). The estimates are reported in Table 6. In the Table, we 

also report Hansen’s (1992) Lc statistic for parameter instability, which is also a test of the null of 

cointegration. Since the Lc statistics are not significant at the 20%, both the null of parameter 

stability and the null of cointegration cannot be rejected, both for the DOLS regression and the 

FMOLS regression. Thus, we again find evidence for the United States that logAt and logLAt are 

cointegrated. In addition, we find a positive and highly significant coefficient on logLAt in both 

regressions for the United States, as semi-endogenous growth models predict. 

To provide panel estimates of 
λ

1−ϕ
, we use the panel DOLS (PDOLS) and panel FMOLS 

(PFMOLS) estimators of Kao and Chiang (2000). Both estimators are applied to the demeaned data 

to account for error cross-sectional dependence. The estimation results are presented in Table 7, 

along with the results of the CD test applied to the residuals from the PDOLS and PFMOLS 
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regressions. As can be seen, the CD test indicates that the PDOLS and PFMOLS estimates do not 

suffer from error cross-sectional dependence, and the estimated coefficients on logLAit are highly 

significant. Consistent with the results for the United States, our panel estimates thus provide 

evidence supporting semi-endogenous growth models, although the panel estimates of 
λ

1−ϕ
 are 

smaller than the time-series ones. 

 

4.5. Error-correction models 

Having identified the long-run relationships between logAit and logLAit for the United States and our 

panel of 19 countries, we are able to construct error-correction models that allow us to estimate λ 

and ϕ.  

Since the DOLS estimator performs better in small samples than the FMOLS estimator (see, 

e.g., Stock and Watson, 1993), we use the DOLS estimates of the cointegrating relationships to 

calculate the error-correction terms as ec1it = logAit – 
λ

1–ϕ̂
logLAit and include these terms (lagged one 

period) in regression models of the form (3.21). To account for the possibility that ΔlogAit responds 

to ΔlogLAit with a lag, up to four lagged values of these variables are also included. 

However, while estimates of cointegrating relationships are robust to omitted variables, the 

problem with this specification is that it may produce biased estimates of λ if unobserved business-

cycle effects increase both the growth rate of TFP and the growth rate of research effort. More 

specifically, the estimated coefficient on the current value of ΔlogLAit may be biased upward 

because of the well-known procyclicality of both TFP and R&D. When lagged values of ΔlogLAit 

are included in equation (3.21), however, the coefficient on lagged ΔlogLAit may be biased 

downward because the current business cycle may be negatively correlated with lagged growth in 

R&D activities but positively correlated with current growth in TFP. This source of bias is less of a 

concern for the estimation of the coefficient on ec1it−1 because it measures the single‐period 

response of the dependent variable to departures from equilibrium and must therefore be negative 

and significant (if logAit and logLAit are cointegrated and logAit is not weakly exogenous). In 

addition, the error-correction term by construction should be weakly correlated or uncorrelated with 

business-cycle effects that stimulate both productivity growth and research. Therefore, we use the 

estimated coefficients on ec1it−1 to derive estimates of ϕ (using the delta method), but we do not use 

the short-run dynamics of the models to identify λ. 

To identify λ, we make use of the facts that parameter estimates are robust to endogeneity 

assumptions when variables are cointegrated and that equation (3.21) can be rewritten as  

 



 

42 

 

∆logAit = c1i + λ [logXit-1 − 1
λ

1 − ϕ

logAit-1 − 1
λ

1 − ϕ

 ci ] + λ∆logXit + εit 

(3.30) 

This allows us to alternatively calculate the error-correction terms as ec2it = logLAit – (1/
λ

1–ϕ̂
) logAit 

using the reciprocals of the DOLS estimates of 
λ

1−ϕ
, and to use these terms alternatively in the 

regressions of ΔlogAit on (country-specific) constant(s), up to four lagged values of ΔlogAit, and 

both current and up to four lagged values of ΔlogLAit, In doing so, we can estimate the values for λ 

through the coefficients on ec2it-1.  

Table 8 reports the error-correction model results for the United States using the general-to-

specific approach. Both error-correction terms have the expected signs and are highly statistically 

significant, which is consistent with the finding that logAt and logLAt are cointegrated. In addition, 

the coefficient on ec1t-1 implies a scale parameter of 0.656, while the coefficient on ec2t-1 yields a 

value for the duplication parameter of 0.129. This value differs markedly from the λ estimate of 

0.055 implied by the coefficient on ΔlogLAt-2 (which is significant only 10% level), suggesting that 

the first-difference estimate of λ is biased by business cycle effects, as discussed above. 

Table 9 presents our panel results (also using the general-to-specific approach). As in Table 

8, the error correction terms are highly statistically significant.  However, the estimate of ϕ is larger 

than its counterpart in Table 8, whereas the estimated value of λ is smaller than its counterpart in 

Table 8. More specifically, the estimated value of ϕ implied by the coefficient on ec1it−1 is 0.930, 

and the coefficient on ec2it−1 implies a value of λ of 0.012, which again differs from the value of the 

coefficient on the first difference of logLAit. 

All together, these results suggest that semi-endogenous theory is empirically valid, but 

there are strong negative duplication externalities resulting from competition for new ideas. These 

externalities appear to be stronger in countries outside the United States.  

 

5. Conclusions 

Our review and analysis lead to two main conclusions: First, there are two measurement issues that 

plague most studies. The first is that the evolution of per capita output implies an evolution of the 

stock of knowledge that is inconsistent with the evolution of the number/stock of patents (at least 

since the 1980s). It is therefore doubtful whether studies based on patent data can properly test the 

different assumptions of semi-endogenous and Schumpeterian growth models. A second 

measurement issue relates to the use of an overall price deflator to deflate R&D expenditures, which 

may lead to measurement error in real R&D expenditures. In fact, we find (not reported) that neither 
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semi-endogenous growth theory nor Schumpeterian growth theory is supported by our analysis 

when real R&D expenditures based on the GDP deflator (from the MSTI) are used as a measure of 

R&D activity. We therefore recommend the use of TFP as a measure of the stock of knowledge and 

the number of researchers as a measure of research effort. 

Second, on the one hand, there are possible reasons why studies might fail to find evidence 

of semi-endogenous growth, including bias resulting from estimating difference models with 

cointegrated variables without an error-correction term and/or mismeasurement of R&D inputs due 

to interpolation and deflation errors. On the one hand, there are possible reasons why studies might 

find spurious evidence for Schumpeterian growth, including spurious rejections of the unit root 

hypothesis for R&D intensity due to incorrectly specified lags and/or spurious regression problems 

associated with non-stationary data. In contrast to most previous studies, we find strong evidence in 

favor semi-endogenous growth, suggesting indeed that at least some of the evidence against semi-

endogenous growth is spurious. 
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Figure 1 Growth rate of TFP (▬) and log of the share of researchers in total employment (–) between 1981 and 2014 
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Table 1 Summary of studies testing semi-endogenous versus Schumpeterian growth models 

(1) 

Study 

[Approach] 

 

(2) 

Main variables 

 

 

(3) 

Type of analysis and number of countries, industries 

or firms 

[Period] 

(4) 

Econometric methods 

 

 

(5) 

Conclusion 

 

 

Furman et al.  (2002) 

[Type I] 

 

 

Ȧ: PatG, 

A: PatGStock_0, GDP/POP 

X: LA, R&D 

Q: POP 

Panel data analysis covering 17 OECD countries 

[1973–1996] 

 

 

FE, POLS 

 

 

 

Results support the hybrid 

semi-endogenous model 

 

 

Hu and Mathews 

(2005) 

[Type I] 

 

Ȧ: PatG, 

A: PatGStock_0, GDP/POP 

X: LA, R&D 

Q: POP 

Panel data analysis covering 5 Asian countries 

[1975–2000] 

 

 

FE, POLS 

 

 

 

Results are inconsistent 

with Schumpeterian 

growth and (hybrid) semi-

endogenous growth 

Laincz and Peretto 

(2006) 

[Type III] 

 

 

 

gy: growth rate of GDP7POP, growth rate of 

PBP 

gL: growth rate of L 

gX: growth rate of LA 

X/Q: LA /NE 

L/Q: L/NE 

Time-series analysis for one country, the United 

States 

[1964–2001] 

 

 

 

Unit root and 

cointegration tests, 

distributed lag 

regressions 

 

 

Evidence in 

favor of Schumpeterian 

growth  models 

 

 

 

Ha and Howitt 

(2007) 

[Type II] 

 

A: TFP 

X: LA, LAG5,a R&D/TFP 

X/Q: LA/L, LA/(h×L), R&D/(TFP×L), 

R&D/(TFP× h×L), R&D/GDP 

Time-series analysis for one country, the United 

States 

[1950–2000 (1953–2000 for R&D)] 

 

Unit root and 

cointegration tests, ML  

 

 

Evidence in 

favor of Schumpeterian 

growth  models 

 

Madsen (2008) 

[Type II] 

 

 

 

 

A: TFP 

X: Pat, PatG, R&D 

Q: TStock_20, GDP, L 

X/Q: R&D/GDP, R&D/(TFP×L), 

R&D/(TFP× TStock_20), Pat/L, Pat/ 

TStock_20 

Panel data analysis covering 21 OECD countries 

[1965–2004] / 14 OECD countries [1900–2004] and 

time-series analysis for the United States [1922–
2004], Japan [1953–2004], Australia [1940–2004], 

Germany [1870–2004], and Spain [1870–2004] 

 

Panel and time series 

cointegration tests, 

DOLS, FE 

 

 

 

Evidence in 

favor of Schumpeterian 

growth  models 

 

 

 

Luintel and Khan 

(2009) 

[Type I] 

 

Ȧ: TPat 

A: PatGStock_15 

X: LA 

X/Q: LA/L 

Panel data analysis covering 19 OECD countries 

[1981–2000] 

 

 

GMM based on a 

dynamic heterogeneous 

panel model 

 

Results support the hybrid 

semi-endogenous model 

 

 

Madsen et al. 

(2010a) 

[Type II] 

 

 

 

A: TFP 

X: LA, R&D, Pat, PatG 

X/Q: LA/L, LA/(h×L), R&D/(h×L), 

R&D/GDP, Pat/L, PatG/L 

 

 

Time-series analysis for one country, India [1950–
2005], and panel data analysis covering 590 Indian 

firms [1993–2005] 

 

 

 

Time series and panel 

unit root and 

cointegration tests, ML 

(aggregate data)b, OLS 

with HAC standard 

errors, FE 

Evidence in 

favor of Schumpeterian 

growth  models 
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(1) 

Study 

[Approach] 

 

(2) 

Main variables 

 

 

(3) 

Type of analysis and number of countries, industries 

or firms 

[Period] 

(4) 

Econometric methods 

 

 

(5) 

Conclusion 

 

 

Madsen et al. 

(2010b) 

[Type III] 

 

 

gy: growth rate of GDP/POP 

gX: growth rate of Pat 

X/Q: Pat/POP 

y: GDP/POP 

X: Pat 

Time-series analysis for one country, Britain 

(England and Wales) [1620–2006] 

 

 

 

Unit root and 

cointegration tests, ML, 

OLS with HAC standard 

errors 

 

Evidence in 

favor of Schumpeterian 

growth  models 

 

 

Sedgley and Elmslie 

(2010) 

[Unclassified] 

 

 

gA: growth rate of PatGStock_0  

gPOP: growth rate of POP 

gL: growth rate of L 

gk: growth rate of the capital stock per 

capita/worker  

Time-series analysis for one country, the United 

States 

[1951–2000] 

 

 

Unit root and 

cointegration tests, ML 

 

 

 

Evidence against semi- 

endogenous growth 

models 

 

 

Ang and Madsen 

(2011) 

[Type I and Type II] 

 

 

 

Ȧ: Pat 

A: TFP, PatStock_15 

X: R&D, LA 

Q: GDP, L 

X/Q: R&D/GDP, R&D/(TFP×L), 

R&D/(PatStock_15×L), LA/L, LA/(h×L) 

Panel data analysis covering 6 Asian countries 

[1953–2006] 

 

 

 

 

Panel unit root and 

cointegration tests, SUR 

 

 

 

 

Evidence in 

favor of Schumpeterian 

growth  models 

 

 

 

Saunoris and Payne 

(2011) 

[Type II] 

A: TFP 

X: R&D 

Q: GDP, TFP×h×L, TFP×L 

Time-series analysis for one country, the United 

States 

[1960–2007] 

Unit root and 

cointegration tests, 

DOLS 

Evidence in 

favor of Schumpeterian 

growth  models 

Venturini (2012a) 

[Type I] 

 

 

Ȧ: Pat, FCPat, BCPat, PCPat 
A: PatStock_15 X: R&DStock_15 

Q: SO 

Panel data analysis covering 20 US manufacturing 

industries 

[1975–2003] 

 

Panel unit root and 

cointegration tests, 

DOLS 

 

Results support the hybrid 

semi-endogenous model 

 

 

Venturini (2012b) 

[Type II] 

 

 

 

 

 

Ȧit/Ait : Pat/PatStock_15 

A: number of innovating firms (relative to SO 

or L) 

X: R&D (relative to SO), R&DStock_15 

(relative to SO), LA (relative to L) 

X/Q: R&D/SO, 

LA /L, R&D/L, R&DStock_15/L 

Panel data analysis covering 12 

US manufacturing industries 

[1975–1996] 

 

 

 

 

FE-IV 

 

 

 

 

 

 

Evidence in 

favor of semi- endogenous 

growth models 

 

 

 

 

Barcenilla-Visús et 

al. 

(2014) 

[Type II] 

 

 

A: TFP 

X: R&D, R&D/ TFP 

Q: L, SV, SH, 

TFP×SH 

X/Q: R&D/(TFP×SH), R&D/SV 

 

Panel data analysis covering 10 manufacturing 

industries in 6 OECD countries 

(Canada, Finland, France, Italy, Spain, and the 

United States) 

[1979–2001] 

 

Panel unit root and 

cointegration tests, 

DOLS, FE, POLS 

 

 

 

Results are inconsistent 

with Schumpeterian 

growth and (hybrid) semi-

endogenous growth 
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(1) 

Study 

[Approach] 

 

(2) 

Main variables 

 

 

(3) 

Type of analysis and number of countries, industries 

or firms 

[Period] 

(4) 

Econometric methods 

 

 

(5) 

Conclusion 

 

 

Ang and Madsen 

(2015) 

[Type I] 

 

Ȧ: Pat, PatGF 

A: PatStock_15, PatStock_5, PatStock_25 

X: R&D 

Q: GDP 

Panel data analysis covering  

26 countries [1870–2010] 

 

 

FGLS 

 

 

 

Evidence in 

favor of Schumpeterian 

growth  models 

 

Minniti and 

Venturini (2017) 

[Type III] 

gy: growth rate of SV/L 

gL: growth rate of L 

X/Q: LA /L 

Panel data analysis covering 20 

US manufacturing industries 

[1975–2000] 

Panel unit root and 

cointegration tests, 

CSDL 

Evidence in 

favor of Schumpeterian 

growth  models 

Fedderke and Liu 

(2017) 

[Type I and Type II] 

 

 

 

 

 

Ȧ: change in TFP 

A: TFP 

X: R&D/TFP 

Q: L, SH, TH, SV, GDP, Pat 

X/Q: R&D/(TFP×L), R&D/(TFP×SV), 

R&D/(TFP×GDP), R&D/(TFP×Pat), 

R&D/(TFP×TH), R&D/(TFP×SH) 

 

Panel data analysis covering 13 countries 

[1996–2010] / 25 manufacturing industries in South 

Africa [1973–1993] / 10 manufacturing sectors in 6 

OECD countries (Canada, Finland, France, Italy, 

Spain, and the United States) [1979–2001] and time-

series analysis for 25 manufacturing industries in 

South Africa [1973–1993] and 10 manufacturing 

sectors in 6 OECD countries [1979–2001] 

Panel unit root tests (but 

no panel cointegration 

tests), PMG,  GMM, 

time series unit root and 

cointegration tests, ML 

 

 

 

Results are inconsistent 

with Schumpeterian 

growth and (hybrid) semi-

endogenous growth 

 

 

 

  

Notes: Abbreviations in column (2) are: BCPat = backward-citation-weighted patents, FCPat = forward-citation-weighted patents, Firms = number of innovating firms, GDP = real 

gross domestic product, L = total (sectoral) employment, LA = number of researchers, LAG5 = sum of the number of scientists and engineers engaged in R&D in the G-5 countries 

(France, West Germany, Japan, the United Kingdom, and the United States), NE = number of establishments, Pat = patent applications, PatG = patents granted, PatGF = patents 

granted to foreign residents, PatStock_x = stock of patent applications with a depreciation rate of x%, PatGStock_x = stock of granted patents with a depreciation rate of x%, PBP = 

private business productivity, PCPat = priority claims-weighted patents, POP = population size, R&D = real research and development expenditures, R&DStock_15 = stock of R&D 

expenditures with a depreciation rate of 15%, SH = sectoral hours worked, SO = real sectoral output, SV = real sectoral value added, TH = total working hours, TPat = triadic patents 

(granted by all three major patent offices, the USPTO, the European Patent Office, and the Japanese Patent Office), TFP = total factor productivity, TStock_20 = stock of trademarks 

with a depreciation rate of 20%.  

Abbreviations in column (4) are: CSDL = cross-sectionally augmented distributed lag estimator, DOLS = dynamic ordinary least squares estimator, FE = fixed-effects estimator, FE-

IV = fixed effects instrumental variables estimator, FGLS = feasible generalized least squares estimator, FMOLS = fully modified least squares estimator, GMM = generalized 

method of moments estimator, HAC = heteroskedasticity and autocorrelation consistent, ML = maximum likelihood estimator, POLS = pooled ordinary least squares estimator, PMG 

= pooled mean group estimator, SUR = seemingly unrelated estimator. 
a Ha and Howitt (2007) use both the number of scientists and engineers engaged in R&D in the United States and the number of scientists and engineers engaged in R&D in the G-5 

countries, LAG5. The latter takes into account the possibility that much of the relevant input to U.S. productivity growth comes from ideas generated in other leading industrial 

countries. 
b Madsen et al. (2010a) provide no information regarding the panel cointegration estimator they use for the firm level data 
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Table 2 Time-series unit root tests for the United States 

  ADF DF–GLS MZα
GLS MZt

GLS MSBGLS MPT
GLS 

Levels 

 logAt -0.931 -0.187 0.667 0.520 0.780 42.095 

 logLAt -1.385 0.671 0.446 0.273 0.612 27.384 

 logLt -2.613 -0.625 -0.691 -0.353 0.511 17.124 

 Log(LAt/Lt) -0.610 0.620 1.524 1.297 0.851 57.289 

First differences 

 ΔlogAt -6.281*** -3.204*** -10.513** -2.279** 0.217** 2.383*** 

 ΔlogLAt -6.387*** -6.337*** -15.712*** -2.802*** 0.178** 1.561*** 

 ΔlogLt -3.768*** -2.788*** -9.612** -2.165** 0.225** 2.652** 

 Δlog(LAt/Lt) -6.127*** -5.321*** -15.704*** -2.799*** 0.178*** 1.573*** 

Notes: The critical values are as follows: (1) ADF: -3.646 [-3.661] (1% significance level), -2.954 [-2.960] (5% 

significance level), -2.616 [-2.619] (10% significance level). (2) DF–GLS: -2.637 [-2.642] (1% significance level), -

1.951 [-1.952] (5% significance level), -1.611 [-1.610] (10% significance level). (3) MZα
GLS: -13.800 (1% significance 

level), -8.100 (5% significance level), -5.700 (10% significance level). (4) MZt
GLS: -2.580 (1% significance level), -

1.980 (5% significance level), -1.620 (10% significance level). (5) MSBGLS: 0.174 (1% significance level), 0.233 (5% 

significance level), 0.275 (10% significance level). (6) MPT
GLS: 1.780 (1% significance level), 3.170 (5% significance 

level), 4.450 (10% significance level). The ADF and DF–GLS critical values were obtained from the response surfaces 

of MacKinnon (1996). These critical values are for a (realized) sample size of T = 33 [31]. The critical values for the 

MZα
GLS, MZt

GLS, MSBGLS, and MPT
GLS tests are from Ng and Perron (2001). All unit root tests include a constant. Based 

on the simulation results of Hall (1994), the lag length for the ADF test was chosen by the general-to-specific method 

(with a maximum of four lags allowed). For all other tests, we used the modified Akaike information criterion (MAIC) 

of Ng and Perron (2001). Following the recommendation of Perron and Qu (2006), we calculated the MAIC based on 

OLS (rather than GLS) detrended data. *** (**) indicate significance at the 1% (5%) level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Cross-sectional dependence and panel unit root tests 

  Pesaran's (2007) CIPS panel unit root test 

  CD  k = 0 k = 1 k = 2 k = 3 

Levels 

 logAit  0.000***  0.287 0.103 0.199 0.173 

 logLAit  0.000***  0.859 0.970 0.929 0.826 

 logLit  0.000***  0.447 0.228 0.431 0.509 

 log(LAit/Lit)  0.000***  0.490 0.881 0.199 0.136 

First differences 

 ΔlogAit  0.000***  0.000*** 0.000*** 0.011** 0.082* 

 ΔlogLAit  0.000***  0.000*** 0.000*** 0.030** 0.090* 

 ΔlogLit  0.000***  0.000*** 0.001*** 0.000*** 0.098* 

 Δlog(LAit/Lit)  0.007***  0.000*** 0.000*** 0.030** 0.094* 

Notes: Reported values are p-values. CD is the cross-sectional dependence test of Pesaran (2004) (adjusted for 

unbalanced panel data); the null hypothesis is cross-sectional independence. k is the number of lags in the CIPS tests. 

All tests include country-specific intercepts. *** (**) [*] indicate significance at the 1% (5%) [10%] level.     
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Table 4 Time-series cointegration tests for the United States  

Panel A: Tests for cointegration between logLAt and logLt – cointegration tests of Schumpeterian growth models 

 Engle-Granger (1987)  Phillips-Ouliaris (1990)  Pesaran et al. (2001) 

p-value of the t-statistic 0.719  0.609   

p-value of the z-statistic 0.614  0.528   

t-statistic     -1.367 

F-statistic     1.208 

Panel B: Tests for cointegration between logAt and logLAt  – cointegration tests of semi-endogenous growth models 

 Engle-Granger (1987)  Phillips-Ouliaris (1990)   Pesaran et al. (2001) 

p-value of the t-statistic 0.018**  0.013**   

p-value of the z-statistic 0.019**  0.011**   

t-statistic      -4.542*** 

F-statistic     10.508*** 

Notes: In Panel A, the dependent variable (independent variable) in the tests of Engle and Granger (1987) and Phillips 

and Ouliaris (1990) is logLAt (logLt); the dependent variable in the test of Pesaran et al. (2001) test is ΔlogLAt. In Panel 

B, the Engle and Granger (1987) and Phillips and Ouliaris (1990) tests are based on a regression of logAt on logLAt, 

while the Pesaran et al. (2001) test is based on a regression with ΔlogAt as the dependent variable. The number of lags 

in the Engle and Granger (1987) and Pesaran et al. (2001) tests was determined using the general-to-specific lag 

selection procedure, with a maximum of four lags allowed. The 10%, 5% and 1% critical value bounds for the t-test of 

Pesaran et al. (2001) are (-2.57, -2.91), (-2.86, -3.22) and (-3.43, -3.82), respectively. The 10%, 5% and 1% critical 

value bounds for the F-test of Pesaran et al. (2001) are (4.04, 4.78), (4.94, 5.73) and (6.84, 7.84), respectively. The  

critical value bounds are from Pesaran et al. (2001). If the calculated statistic is above the upper critical value, the null 

hypothesis of no cointegration can be rejected irrespective. If the calculated statistic is below the lower critical value, 

the null hypothesis of no cointegration cannot be rejected. If the calculated statistic falls between the lower and upper 

critical values, the result is inconclusive. *** (**) [*] indicate significance at the 1% (5%) [10%] level.     

 

 

 

 

 

 

 

 

 

 

 

Table 5 Panel cointegration tests 

Panel A: Tests for cointegration between logLAit and logLit – cointegration tests of Schumpeterian growth models 

 Pedroni (1999)  Gengenbach et al. (2016) 

 Panel statistics Group mean statistics   

PP t-statistics -0.197 0.582   

ADF t-statistics -0.059 0.169   

ECM t-statistic    -1.948 

Panel B: Tests for cointegration between logAit and logLAit – cointegration tests of semi-endogenous growth models 

 Pedroni (1999)  Gengenbach et al. (2016) 

 Panel statistics Group mean statistics   

PP t-statistics -2.764*** -3.438***   

ADF t-statistics -2.404*** -3.665***   

ECM t-statistic    -2.935*** 

Notes: In Panel A, the dependent variable in the Pedroni (1999) tests is logLAit; the dependent variable in the test of 

Gengenbach et al. (2016) is ΔlogLAit. In Panel B, the dependent variable in the Pedroni (1999) tests is logAit; the 

dependent variable in the tests of Gengenbach et al. (2016) is ΔlogAit. For the Pedroni (1999) (PP and ADF) tests, the 

lag length was chosen using the general-to-specific method (with a maximum of four lags allowed). The Pedroni (1999) 

test statistics are distributed as standard normal. The panel variance ratio test has a one-sided rejection region consisting 

of large positive values, whereas all other tests reject for large negative values. Given the limited number of time-series 

observations available (for some countries) here, no lags of the first differences were included in the Gengenbach et al. 

(2016) tests. The critical values for the Gengenbach et al. (2016) t-test (for N = 20) are as follows: -2.796 (1% 

significance level), -2.653 (5% significance level), -1.568 (10% significance level). The critical values are from the 

online appendix of Gengenbach et al. (2016) (available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.2475). 

To account for cross-sectional dependence (due to possible non-stationary common factors), the results of the Pedroni 

(1999) tests are based on demeaned data. The Gengenbach et al. (2016) test accounts for cross-sectional dependence via 

the use of cross-sectional averages. *** (**) indicate significance at the 1% (5%) level.     
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Table 6 Time-series estimates for the United States of the cointegrating relationship between logAt and logLAt 

 DOLS FMOLS 

logLAt 0.374*** 

(0.012) 

0.380*** 

(0.011) 

Lc [p-value] 0.023 [0.693] 0.140 [0.387] 

Number of obs. 31 33 

Notes: The dependent variable is logAt. DOLS = dynamic OLS estimator of Stock and Watson (1993); FMOLS = fully 

modified ordinary least squares estimator of Phillips and Hansen (1990). All regressions include a constant. The DOLS 

regression was estimated with one lead and one lag. Lc is Hansen’s (1992) Lc test for parameter instability in 

cointegrated relationships; this test is also a test of the null of cointegration against the alternative of no cointegration; 

the p-values for the Lc test were calculated using the p-value function given by Hansen (1992). Heteroskedasticity and 

autocorrelation consistent standard errors are in parentheses. *** indicate significance at the 1% level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 Panel estimates of the cointegrating relationship between logAit and logLAit 

 PDOLS PFMOLS 

logLAit 0.168*** 

(0.025) 

0.155*** 

(0.024) 

p-value of the CD statistic 0.744 0.514 

Number of obs. 443 481 

Notes: The dependent variable is logAit. PDOLS = panel DOLS estimator of Kao and Chiang (2000); PFMOLS = panel 

FMOLS estimator of Kao and Chiang (2000). The DOLS regression was estimated with one lead and one lag. All 

regressions include country fixed effects. The estimators were computed using demeaned data to account for cross-

sectional dependence. CD is the cross-sectional dependence test of Pesaran (2004) (adjusted for unbalanced panel data); 

the null hypothesis is cross-sectional independence. Heteroskedasticity and autocorrelation consistent standard errors 

are in parentheses. *** indicates significance at the 1% level. 
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Table 8 Error-correction models for the United States 

 Regression with  

ec1t−1 

Regression with  

ec2t−1 

Estimated coefficient on ec1t−1 = logAt-1 – 
λ

1–ϕ̂
logLAt-1, −(1 − ϕ)̂  

-0.344*** 

(0.091) 

 

Implied ϕ (= 1 −(1 − ϕ)̂ ) 0.656*** 

(0.091) 

 

Estimated coefficient on ΔlogLAt-2 

 

0.055* 

(0.029) 

0.055* 

(0.029) 

Estimated coefficient on ec2t−1 = logLAt-1 – (1/
λ

1–ϕ̂
) logAt-1, λ̂ 

 0.129*** 

(0.034) 

Number of obs. 31 31 

Notes: The dependent variable is ΔlogAt. ect1 is the residual from the long-run relationship between logAt and logXt, 

estimated by DOLS; ect2 is the residual from the reverse cointegrating relationship between logAt and logXt, calculated 

using the reciprocal of the DOLS estimate of the cointegrating relationship. The regressions include a constant. The 

number of lags in the error-correction regressions was determined using the general-to-specific lag selection procedure, 

with a maximum of four lags considered. Heteroskedasticity and autocorrelation consistent standard errors are in 

parentheses. *** (*) indicate significance at the 1% (10%) level.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 Panel error-correction models 

 Regression with  

ec1it−1 

Regression with  

ec2it−1 

Estimated coefficient on ec1it−1 = logAit-1 – 
λ

1–ϕ̂
logLAit-1, −(1 − ϕ)̂  

-0.070*** 

(0.011) 

 

Implied ϕ (= 1 −(1 − ϕ)̂ ) 0.930*** 

(0.011) 

 

Estimated coefficient on ΔlogLAit 

 

0.041*** 

(0.015) 

0.041*** 

(0.015) 

Estimated coefficient on ec2it−1 = logLAit-1 – (1/
λ

1–ϕ̂
) logAit-1, λ̂ 

 0.012*** 

(0.002) 

p-value of the CD statistic 0.593 0.593 

Number of obs. 481 481 

Notes: The dependent variable is ΔlogAit. ecit1 is the residual from the long-run relationship between logAt and logXt, 

estimated by DOLS; ecii2 is the residual from the reverse cointegrating relationship between logAt and logXt, calculated 

using the reciprocal of the panel DOLS estimate of the cointegrating relationship. All regressions include country fixed 

effects. The estimates control for error cross-sectional dependence via the use of (weighted) cross-sectional averages, 

following the common correlated effects approach of Pesaran (2006). CD is the cross-sectional dependence test of 

Pesaran (2004) (adjusted for unbalanced panel data); the null hypothesis is cross-sectional independence. We used the 

common recursive mean adjustment to reduce the dynamic panel bias. Heteroskedasticity and autocorrelation consistent 

standard errors are in parentheses. *** indicate significance at the 1% level.     
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Appendix 
 

Table A1 Time-series unit root tests for the United States for the log of patent applications (logPatt) and the log of the 

patent stock (logPatStockt), 1980-2014  

  ADF DF–GLS MZα
GLS MZt

GLS MSBGLS MPT
GLS 

logPatit -0.554 0.438 1.002 0.911 0.909 58.522 

ΔlogPatit -5.913*** -5.641*** -15.954*** -2.805*** 0.176** 1.609*** 

logPatStockit -0.226 -0.968 1.832 3.501 1.911          276.707 

ΔlogPatStockit -2.144 -1.517 -3.130 -1.234 0.394 7.798 

Δ2logPatStockit -6.128*** -5.459*** -15.382*** -2.757*** 0.179** 1.654*** 

Notes: The critical values are as follows: (1) ADF: -3.646 [-3.661] (1% significance level), -2.954 [-2.960] (5% 

significance level), -2.616 [-2.619] (10% significance level). (2) DF–GLS: -2.637 [-2.642] (1% significance level), -

1.951 [-1.952] (5% significance level), -1.611 [-1.610] (10% significance level). (3) MZα
GLS: -13.800 (1% significance 

level), -8.100 (5% significance level), -5.700 (10% significance level). (4) MZt
GLS: -2.580 (1% significance level), -

1.980 (5% significance level), -1.620 (10% significance level). (5) MSBGLS: 0.174 (1% significance level), 0.233 (5% 

significance level), 0.275 (10% significance level). (6) MPT
GLS: 1.780 (1% significance level), 3.170 (5% significance 

level), 4.450 (10% significance level). The ADF and DF–GLS critical values were obtained from the response surfaces 

of MacKinnon (1996). These critical values are for a (realized) sample size of T = 33 [31]. The critical values for the 

MZα
GLS, MZt

GLS, MSBGLS, and MPT
GLS tests are from Ng and Perron (2001). All unit root tests include a constant. Based 

on the simulation results of Hall (1994), the lag length for the ADF test was chosen by the general-to-specific method 

(with a maximum of four lags allowed). For all other tests, we used the modified Akaike information criterion (MAIC) 

of Ng and Perron (2001). Following the recommendation of Perron and Qu (2006), we calculated the MAIC based on 

OLS (rather than GLS) detrended data. *** (**) indicate significance at the 1% (5%) level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A2 Cross-sectional dependence and panel unit root tests for the log of patent applications (logPatit) and the log of 

the patent stock (logPatStockit), 1980-2014  

  Pesaran's (2007) CIPS panel unit root test 

  CD  k = 0 k = 1 k = 2 k = 3 

logPatit  0.000***  0.700 0.812 0.896 0.989 

ΔlogPatit  0.944  0.000*** 0.000*** 0.001*** 0.064* 

logPatStockit  0.000***  0.726 0.130 0.591 0.995 

ΔlogPatStockit  0.000***  0.954 0.682 0.906 0.995 

Δ2logPatStockit  0.000***  0.000*** 0.000*** 0.070* 0.889 

Notes: Reported values are p-values. CD is the cross-sectional dependence test of Pesaran (2004) (adjusted for 

unbalanced panel data); the null hypothesis is cross-sectional independence. k is the number of lags in the CIPS tests. 

All tests include country-specific intercepts. *** (*) indicate significance at the 1% (10%) level.     


