
Munich Personal RePEc Archive

Discriminating Behavior: Evidence from

teachers’ grading bias

Ferman, Bruno and Fontes, Luiz Felipe

Sao Paulo School of Economics - FGV, Sao Paulo School of

Economics - FGV

14 May 2020

Online at https://mpra.ub.uni-muenchen.de/100400/

MPRA Paper No. 100400, posted 15 May 2020 05:17 UTC



Discriminating Behavior: Evidence from teachers’ grading

bias

Bruno Ferman Luiz Felipe Fontes

(FGV-EESP)

May 14, 2020

Abstract

Recent evidence has established that non-cognitive skills are key determinants of education

and labor outcomes, and are malleable throughout adolescence. However, little is known

about the mechanisms producing these results. This paper tests a channel that could

explain part of the association between non-cognitive skills and important outcomes:

teacher grading discrimination toward student behaviors. Evidence is drawn from a unique

data pertaining to students from middle and high-school in Brazilian private schools. Our

empirical strategy is based on the contrasting of school-level tests graded by teachers

and school-level tests that cover the same content but are graded blindly. Using detailed

data on student classroom behaviors and holding constant performance in exams graded

blindly, evidence indicates that teachers inflate the grades of better-behaved students

while deducting points from worse-behaved ones. These biases are driven by grading

discrimination in exams with open questions. Additionally, teachers’ behavior does not

appear to be consistent with statistical discrimination.
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1 Introduction

Researchers have emphasized that socially productive skills include not only traditionally studied

cognitive abilities, but also behavioral and socio-emotional factors such as perseverance, self-

control, academic behaviors, and prosociality. In recent years, numerous studies have documented

the central role played by these noncognitive skills in shaping educational attainment and adult

outcomes (Segal, 2013; Heckman et al., 2006; Papageorge et al., 2019; Deming, 2017; Kautz and

Zanoni, 2014).1 Importantly from a policy standpoint, there is also ample evidence suggesting

that these skills are malleable, and can be influenced by school and teacher quality, home

environment, and educational interventions (Jackson, 2018; Bertrand and Pan, 2013; Heckman

et al., 2013; Jackson et al., 2020; Alan et al., 2019). However, despite the importance of

non-cognitive skills, and significant advances in understanding its causes and consequences,

there is still limited empirical evidence on how they affect important outcomes.

In the present study, we propose grading discrimination as a potential mediator for gaps

in attainment between students with different non-cognitive skills.2 We examine its prevalence

by testing whether classroom behaviors affect teacher grading.3 The paper employs a unique

administrative data from an educational company that manages more than one hundred private

schools in Brazil. We use teachers’ reports on their students’ behavior to construct measures

of good and bad in-class behaviors. Our empirical strategy is based on the contrasting of

teacher-assigned and blindly-assigned scores from school-level tests that cover the same content.

To deal with the incidence of measurement error on the blind test scores used as regressors,

we use lagged scores as an instrument for the current ones. We show that if the exogeneity

condition of the instrument does not hold, our discrimination parameters of interest are bounded

by OLS and IV estimators under a few additional assumptions. We find evidence that teachers

discriminate students with good behavior positively and discriminate students with bad behavior

negatively. Between 20 and 30 per cent of the correlation between behaviors and teacher-assigned

math scores seem to be explained by grading biases. We also find similar results for Portuguese

and essay.

Our results are largely driven by grading discrimination in written exams, where teachers

may exert discretion by assign partial credits for each question. Using blindly-assigned essay

scores, we find no evidence supporting that our results are explained by potential biases from

1For surveys, see Almlund et al. (2011), Farrington et al. (2012), Heckman and Kautz (2012), and Heckman
et al. (2019).

2By discrimination, we mean the unequal assessment of students on the basis of their in-class behaviors
rather than their performance in examinations. On the one hand, teachers may statistically discriminate pupil
grades by using in-class behaviors to evaluate the unobserved student scholastic aptitude, especially if signals of
scholastic aptitude are hard to measure (Arrow, 1972; Phelps, 1972). On the other hand, teachers may have
particular tastes for pupils with specific classroom behaviors, and this could also lie behind any grading bias
towards student behavior (Becker, 2010).

3As previous papers, we proxy for students’ non-cognitive skill using academic behaviors. Some studies have
used classroom behaviors based on teacher reports like we do (Segal, 2013; Papageorge et al., 2019; Heckman
et al., 2013). Other studies have used grades, disciplinary infractions, absences, and grade progression (Jackson,
2018; Kautz and Zanoni, 2014). Academic behaviors have also been associated with traditional non-cognitive
skills such as patience (Alan and Ertac, 2018; Castillo et al., 2011; Sutter et al., 2013), self-control (Duckworth
and Seligman, 2005), and conscientiousness (Segal, 2008). See Heckman et al. (2019) for further discussion.
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math teachers toward student writing skills. Additionally, teachers’ grading behavior does

not appear to be consistent with statistical discrimination. First, grading biases are constant

throughout the year, which is not compatible with a learning model of statistical discrimination.

Second, limiting the sample to classrooms where badly-behaved students are as skilled as

the well-behaved ones leaves the results unchanged. Overall, this paper shows that grading

discrimination toward classroom behaviors does exist and mediates a significant share of the

association between these non-cognitive skills and test scores. As suggested by Farrington et al.

(2012), other non-cognitive factors affect performance through academic behaviors. Therefore,

our results may be capturing discrimination toward a larger set of non-cognitive skills. What is

more, as grading manipulation can have several consequences,4 our results may also indicate

that inaccurate grades can explain part of the relation between non-cognitive skills and other

important life outcomes.

Our findings contribute to the literature highlighting the importance of non-cognitive skills.

As already mentioned, little is known about the mechanisms behind the association between

non-cognitive skills and educational and labor outcomes. Researches often speculate that

non-cognitive skills produce good study habits which result in better life outcomes.5 Evidence

on that channel is mixed, depending on the skill being evaluated. While Lavecchia et al. (2016)

show that impatient students report spending less time doing homework, other papers find that

impatient students do not have lower study effort, even though they have much worse test scores.

(De Paola and Gioia, 2017; Non and Tempelaar, 2016). Outside the economics literature, a few

papers show that personality traits are correlated with study habits (Lubbers et al., 2010; Credé

and Kuncel, 2008). A related explanation is that non-cognitive skills may affect the effort put

during tasks to obtain good results. Evidence by Borghans et al. (2008) support this explanation.

The authors show that individuals with high non-cognitive skills operate a low-stakes cognitive

test at a high level, even without rewards (see Segal (2012) for a related result). Similarly,

Cubel et al. (2016) show that personality traits predict performance in an experimental task

that requires real effort. The authors argue that this finding suggests that at least part of the

effect of personality on labor market outcomes operates through productivity. Overall, the few

papers proposing mediators for the association between non-cognitive skills and schooling and

labor market outcomes use small samples, analyze experimental outcomes, and are based on

partial correlations. In our study, we analyze a significant number of students and make use

of a quasi-experimental research design to estimate a different mechanism – discrimination in

4Recent papers show that grading biases have far-reaching consequences for the students, affecting their
future performance in test scores, high-school graduation rates, college initiation rates, chosen field of education,
and earnings (Lavy and Sand, 2018; Terrier, 2016; Dee et al., 2019; Nordin et al., 2019; Diamond and Persson,
2016).

5Segal (2013) theorizes a similar channel. Her empirical results provide evidence that childhood misbehavior
is negatively correlated with educational attainment and labor market outcomes. Based on the results of Castillo
et al. (2011) – which find that pupils with higher discount rates have more behavioral problems in school – she
develops a model to interpret the mechanisms driving her results. In her model, individuals are endowed with
both cognitive and non-cognitive human capital. They can enhance their cognitive human capital at each level
of schooling by exerting costly effort. Those who value the future less (i.e., those with low non-cognitive skills)
invest less effort in school and hence accumulate less cognitive human capital; as a result, they earn less.
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grading – behind the relation between non-cognitive skills and an educational outcome. In

particular, we evaluate performance in school-level exams, which is a non-experimental outcome

that can have several consequences for the future of students.

This paper is closely related to the recent literature on teacher discrimination in grading.

Some previous papers compare non-blindly graded exams and blindly graded exams across

minority and non-minority students (Botelho et al., 2015; Burgess and Greaves, 2013; Hanna and

Linden, 2012) and genders (Lavy, 2008; Hinnerich et al., 2011; Falch and Naper, 2013; Cornwell

et al., 2013; Breda and Ly, 2015), and establish that grading discrimination exists in those

dimensions. Besides ethnic and gender indicators, classroom behavior is another relevant student

characteristic available to teachers during in-class interactions that may impact their judgment

when grading.6 We contribute to the literature by testing this hypothesis in detail, using a unique

dataset containing information on objective indicators of student in-class behaviors. Previous

papers recognize that classroom behavior may be one of the most critical cofounders in grading

discrimination estimates. Hence, a few of them try to adjust for proxies of behavior.7 Similar to

those papers, we also find grading discrimination toward ethnicity and gender. However, in our

setting, there is a small correlation between these characteristics and more objective measures

of in-class behaviors. In this scenario, we were able to estimate discrimination effects toward

behaviors, without ethnicity and gender being relevant confounders.

Despite being one of the first studies to examine grading biases toward pupil behaviors in

detail, we are well aware that the question of whether teachers factor the behavior of students into

grades is not new to the education and psychology literature. Researchers working with classroom

assessments have been warning about the unreliability of grades and its consequences for a

long time (e.g., Starch and Elliott (1912)). There is widespread agreement among measurement

specialists that grades should be based exclusively on measures of current achievement. Still,

grading practice studies show that a significant share of teachers report that their grades

also reflect non-achievement factors such as behavior (McMillan, 2001; McMillan et al., 2002;

McMillan, 2003; Frary et al., 1993; Cizek et al., 1995).8 As far as we know, quantitative

researchers within the education literature have not studied grading biases toward student

behaviors. Similar to the economics literature, most of them focus on issues related to gender

and race (Wen, 1979; Piché et al., 1977; Roen, 1992). We contribute by presenting such a

quantitative analysis. Additionally, as we explore mechanisms behind the teachers’ grading

6Mechtenberg (2009) refers to the behaviors as attitudes, which include habits, styles, and personality traits
of the students that teachers may like/dislike.

7Lavy (2008) adjusts for past grades under the hypothesis that those should be correlated with students’ past
behavior in the classroom, which should be correlated with the students’ current behavior. Botelho et al. (2015)
also use previous grades as well as several other variables. Among them, physical education grades, attendance
records, and the perception of parents regarding their children’s engagement at school. Cornwell et al. (2013)
controls for “attitudes toward learning”, which are based on teacher reports. Alesina et al. (2018) use a subjective
behavioral grade decided jointly by all the teachers. Terrier (2016) uses a variable of disruptive behavior that
equals one if the student received a disciplinary warning from the class council or if he/she was temporarily
excluded from the school by the school head because of violent behavior.

8Looking for remedies for the mixed signal sent by grades, specialists proposed a reform known as standards-
based grading, which has been gaining momentum in U.S. schools for the past 20 years (see McMillan (2013)
and references therein).
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behavior, our results also contribute to researchers designing and evaluating technologies to

reduce grading biases (e.g., Jae and Cowling (2009)).

Research in psychology has studied the effects of non-cognitive skills on test scores

extensively. Several studies from the seventies and eighties show that student temperament in

the classroom strongly predicts teacher-assigned grades. In a survey of these papers, Keogh

(1986) concludes that teacher perceptions of student temperament in the classroom may influence

their evaluations of pupil performance.9 Similarly, new researches in psychology have evaluated

the predictive power of student personality skills on grades and standardized achievement

test (SAT) scores (for surveys, see Almlund et al. (2011) and Duckworth and Allred (2012)).

An important finding from this literature is that, among the Big Five, conscientiousness –

traditionally associated with student classroom behaviors – is the most predictive skill of both

course grades and SAT scores. However, a few papers show that some facets of conscientiousness

seem to be better predictors of course grades than of achievement scores. Following our previous

discussion, researchers argue that this may be the result of those abilities inducing more positive

study habits, which translate into higher course grades. As achievement tests require the

students to solve relatively novel problems, its scores may not reflect study habits as much as

test scores.10 It is also speculated that some skills may help students to behave positively in the

classroom, which could be directly factored into report card grades by teachers. Our study adds

to the literature by providing evidence of this channel using an appropriate design. But, instead

of evaluating SAT scores, we use blindly-assigned scores from school-level examinations that are

high-stakes, and contrast them with teacher-assigned grades from examinations that cover the

same content of the blind ones. In our setting, studying habits should impact both types of

tests similarly.

This article is organized as follows. Section 2 describes our data and presents our behavior

measures. Section 3 presents our empirical strategy. The main results are presented at Section 4.

Section 5 presents robustness analyses. Section 6 studies statistical discrimination as a potential

mechanism behind our results. Section 7 concludes.

9She interprets the results through the “Goodness of Fit” model, proposed by Thomas and Chess (1977).
Their model describes how children whose attributes meet or exceed contextual presses (e.g. the demands or
expectations of teachers) evoke stimulation from the context which more readily promotes adaptive functioning
than is the case with the stimulation evoked by children whose characteristics did not fit the demands of their
contexts. This concept can be applied in many concepts, but concerning student classroom behaviors it has been
developed by Lerner and his colleagues (see, e.g., Lerner et al. (1985)). The general idea is that teachers expect
from their students behavioral traits that they believe are consistent with the school environment. Students who
come closest to the “optimum” demand evoke the most positive responses from teachers. As a result, classroom
behaviors (as well as other types of socio-emotional skills) have consequences for achievement and perhaps
especially for teachers’ evaluations.

10Related to this channel, Borghans et al. (2016) find that IQ is a better predictor of SAT scores than of
course grades.
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2 Data

2.1 Background and Data

We employ administrative data from a Brazilian private education company. The company

manages more than one hundred private schools located in the South, Southeast, and Center-

West of Brazil. Enrollment corresponded to more than eighty thousand primary, middle,

and high-school pupils in 2018. To examine teacher assessment biases, we take advantage of

administrative dataset that contains students’ scores on tests graded blindly and non-blindly.

Schools operate a two-term school year (first and second semester). Each term is divided

into three cycles. Students perform, per each cycle, a test graded blindly and another graded by

their teachers. Both types of tests are high-stakes and do factor into the pupils’ end-of-term

average score. Teacher-assessed grades are worth 50%, while the blind scores are worth 40%.

Students also receive a subjective behavioral grade from each teacher, which factors 10% into

the end-of-term average score.

Each subject has a specific teacher-graded examination. Most of the exams rely heavily

on questions that require written answers. The exceptions are the third exams from the first

and second semesters, which are only multiple-choice. When correcting open items, teachers

have considerable arbitrariness to assign grades, mainly because of partial scores. Since teachers

have permanent contact with the pupils they teach, these grades could potentially be biased

by teacher stereotypes. Students from middle and high-school obtain the blind scores when

they complete exams that test knowledge on four topics: mathematics, language (English and

Portuguese), science (physics, biology, and chemistry), and humanities (geography, history,

sociology and philosophy). All the questions from the blind exams are multiple-choice and

corrected by a machine. Hence, the blind scores can be assumed to be free of any bias caused

by stereotypes from examiners. Additionally, in most of the schools, students perform essays

that are graded blindly by an external team. However, these essays are high-stakes for only a

small sample of schools.

Both the blind and the non-blind examinations are created by the schools’ pedagogical

team, based on a bank of questions. For each cycle, they are designed to measure the same

content. Both tests are also taken under the same conditions: they take place in the students’

classroom and are supervised by inspectors, which are also responsible for giving general

instructions. The non-blind exam is scheduled usually 5 to 30 days after the blind exams.

However, neither teachers nor students know the current blind score before the non-blind test.

The major difference between the tests is that the blind exams usually cover different subjects,

while the non-blind exam is specific to each subject. The exceptions are math and essay. We

focus mostly on math scores as most of the blindly-graded essays are not high-stakes.11

Besides evaluating student behaviors using subjective grades, teachers can report their

11We also test for teacher biases in the Portuguese and essay non-blind scores. We do not test for teacher
biases in the other subjects since the blind examinations of humanities and science cover very different subjects.
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pupils’ classroom behavior at any specific class using a platform developed for this purpose,

available in the schools’ online system. Teachers must mark at least one of the following options

when assessing their students’ behavior: “dedication”, “good interaction with classmates”,

“participation during the class”, “excessive talking”, “cellphone use”, “disinterest during the

class”, or “did not complete the required tasks”. All teachers are informed that they should use

the platform regularly, although no sanctions are imposed on those who do not.

The dataset used in this study pertains to the school year 2018 and contains all the blind

and non-blind scores of the students from middle school (grades 6-9) and the first two years of

high-school (grades 10-11).12 We select these students as before grade 6, pupils do not perform

blindly-grade exams. Also, in the last year of high-school (grade 12), students do not perform

teacher-assigned scores. Our working dataset is obtained after imposing restriction on the

availability for each student of at least 4 (out of 6) blind and non-blind test scores. We also have

access to the dataset coming from the schools’ online system, which contains all the behavior

assessments teachers made in 2018. We discuss next how we use these reports to construct

behavior measures. Finally, our data also contain two major student characteristics: ethnicity

and gender.

2.2 Behavior Measures

In order to estimate both a potential discrimination against badly behaved students, as well as

a potential favoritism toward the best behaved ones, we propose and compute two behavior

measures. To do so, we start classifying the behavior reports into good and bad assessments.

In particular, “dedication”, “good interaction with classmates”, and “participation during the

class” are classified as an assessment of good behavior. Now, “excessive talking”, “cellphone

use”, “disinterest during the class”, and “did not complete the required tasks” are classified as

an assessment of bad behavior.

Based on this classification, we construct measures of good and bad classroom behavior

defined on the interval [0, 1] for each student and each subject. The measure of good (bad)

behavior weights the number of good (bad) assessments a student received from his/her teacher

of a specific subject by the maximum number of good (bad) evaluations received by a classmate

from that same teacher. These measures are formally defined as follows. Let I denote the set

of all students. For any i ∈ I, define C(i) ⊂ I as the set of students in the same classroom of

pupil i, including himself/herself. Let bis and gis denote the number of bad and good behavior

reports received by i from a subject s teacher. The good and the bad behavior measures are

defined, respectively, as:

GBis :=
gis

max{gjs : j ∈ C(i)}
,

12In Brazil, children enter the first grade the year they turn six. So, our sample is composed mainly of students
between 11 and 16 years old.
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and

BBis :=
bis

max{bjs : j ∈ C(i)}
.

Notice that the good (bad) behavior measure from subject s is not defined for pupils in

classrooms where gis = 0 (bis = 0) for all i ∈ C(i). These classrooms are discarded from our final

sample. However, the GB (BB) measure is well defined for pupils with no good (bad) behavior

assessments in a specific subject provided they belong to classrooms where at least one of their

classmates received such an assessment. In that case, GBis = 0 (BBis = 0). These students

can be understood as “neutral” with respect to the respective behavior measure. To reduce the

number of missings and neutral students we also use measures that are not a function of teacher

s. These are based on the behavior assessments made by all the teachers. In robustness checks,

we will also test alternative ways of using the behavior reports.

2.3 Descriptive Statistics

Table 1 reports the summary statistics for our sample. The data cover 14,777 students from

grades 6-11 in 513 classrooms and 57 schools. At least 63% of the sample is white, 17% is Pardo,

3% is black, and 0.6% is yellow or indigenous. A large share of parents (16%) did not provide

their children’s ethnicity. The gender split is roughly even. In 94% of the classrooms, there are

students with at least one behavior assessment. This share is lower if we consider only reports

made by math teachers: 72%. Figure 1 plots the empirical CDF of the behavior measures for

both cases. The measures computed using only the assessments from math teachers – panels (a)

and (b) – assume value zero for a large share of students (35% − 40%). The share of neutral

students reduces to 8% − 20% if we consider the behavior assessments from all the teachers –

panels (c) and (d). In both cases students receive more good than bad behavior assessments.

As reported in Table 1 students received, on average, 16 assessments of good behavior and 9 of

bad behavior. Of these, 4 and 3 comes from math teachers, respectively.

Figure 2 displays the performance gap in teacher-assigned scores – converted into z-scores –

between students with different behavior skills. In order to compare different grade distributions

according to the student behaviors, we created binary variables that indicate whether students

are in the top quartile of the bad and good behavior measures’ distribution – BB(Pct.75)

and GB(Pct.75), respectively. Students with BB(Pct.75) = 0 and GB(Pct.75) = 1 strongly

outperform those with BB(Pct.75) = 1 and GB(Pct.75) = 0, respectively. Our goal from here

consists in estimating whether part of this association can be explained by grading discrimination.

As will be furthered discussed, we will use the blind scores as the counterfactual grades that

students would receive if there were no grading discrimination. Figure 3 plots the blind and

non-blind math scores after we took their average across the six examinations to reduce the

effect of test scores measurement error. We can see visually that both grades are extremely

correlated. This is confirmed after we fit the data points with a linear regression model and

obtain an estimated slope of 0.81 and an R-squared of 59%.13 This descriptive evidence supports

13When we pool the six examinations and correct test score measurement error using past scores as instrument
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our research design that relies on the similarity between the blind and non-blind exams.

3 Empirical Strategy

We are interested in estimating a parameter of grading discrimination toward classroom behaviors,

defined as the effect of in-class behaviors on test scores, conditional on the student proficiency in

the subject and other characteristics that teachers may be biased at. To motivate our estimable

equation, we assume a simple and intuitive statistical model for how test scores are defined. The

non-blind scores of student i in exam j and subject s are determined by the following function:

SNB
ijs = Pijs + vijs + ∆(Wijs),

where Pijs is student’s proficiency. This component reflects factors such as i′s knowledge in

the subject s required by the exam j and his/her test-taking ability. The term vijs represents

idiosyncratic factors, such as luck or how the student was feeling on a particular day, that are

equal to zero in expectation. The term ∆(Wijs) represents potential bias by exam graders, who

manipulate test scores based on student i’s characteristics contained in Wijs. In particular, we

let

∆(Wijs) = β′Bis + φ′Xij + ξijs,

where Bis := (GBis, BBis) is a vector of student i’s classroom behavior in subject s–; Xij

includes ethnicity indicators (Black, Indigenous, Pardo, Yellow, and White), gender, and the

past performance of student i in blind examinations;14 and ξijs include i’s characteristics

unobserved by the econometrician that teachers observe and may discriminate against.

We refer to Pijs as the test score that i would receive in expectation if there was no grading

bias. However, we only observe a noisy signal from it, coming from scores in examinations that

cover the same content of SNB
ijs , take place under very similar conditions, but are graded blindly

(SB
ijs), and, hence, are free of any kind of bias from the graders. We assume that

SB
ijs = Pijs + eijs,

where the error term eijs may not be necessarily idiosyncratic. As SB
ijs could potentially measure

different skills, we can decompose

eijs = P̃ijs − Pijs + uijs,

where P̃ijs is the i’s proficiency required in the blindly-graded examinations and uijs is an

idiosyncratic noisy. To make explicit that potential biases could arise if both types of examination

for the current scores, we obtain an even higher slope.
14In our main specifications we adjust for the cumulative average performance in the blind examinations from

science, humanities, and languages. When not using IV, we also adjust for past performance in math.
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were to measure different abilities, we assume a simple relation between Pijs and P̃ijs:

Pijs = δP̃ijs + rijs,

where rijs include factors that are required only by the non-blind examinations.

In a final step, as we pool the test scores from different examinations and classrooms, we

add to our main specification classroom fixed effects (αc) and exam fixed effects (πj). Using

previous definitions, we get that:

SNB
ijs = δSB

ijs + β′Bis + φ′Xij + αc + πj + εijs, (1)

where εijs := ξijs + rijs − δuijs + vijs. Our parameter of interest is the vector β. It measures

the effects of classroom behaviors on teacher-assigned test-scores, conditional on student’s

proficiency (proxied by SB
ijs), other characteristics that teachers may be biased at (Xij), and

exploring only within classroom variation (αc). Its identification requires that we deal with

unobserved heterogeneity (ξijs + rijs) and measurement error in the blind scores (uijs).

Regarding unobserved heterogeneity, we claim that, conditional on ethnicity, gender,

and past blind scores, if there are competencies not captured by the blind scores, varying

systematically within the classroom, they are balanced between students with different in-class

behaviors. In particular, we are adjusting for the characteristics the literature has shown teachers

may be biased against. As will be shown main point estimates are stable in specifications with

and without controls, which may suggest that omitted variable bias is not a major concern

if selection on observables is informative about selection on unobservables (e.g., Altonji et al.

(2005); Oster (2019)). Moreover, we advocate that V(rijs) ≈ 0. We already discussed some

particularities of our design that may provide grounds for the plausibility of the assumption.

Overall, we believe there are no apparent systematic differences in the exam-taking environment

that could interact with i’s characteristics. Both the blindly and the non-blindly graded exams

are school-level tests that take place in the regular classes and are supervised by inspectors.

Furthermore, both types of exams are high-stakes and designed by the pedagogical sector to

cover the same content, based on a bank of questions. Our main concern is that, while the blind

exams are only multiple-choice, most of the non-blind exams require written answers. If these

questions require abilities not covered by the blind exams, correlated with in-class behaviors, our

identification strategy could not be valid. To investigate whether this seems to be a potential

concern we make use of a reduced sample of schools where students perform blindly-graded

essays. First, we use the scores from these essays as proxies for student writing skills and show

that controlling for it leaves the results unchanged. Second, we show that, in this subsample,

essay teachers practice grading discrimination. In this case, we are able to present evidence of

biases toward behaviors in a setting where both the blind and the non-blind exams have the

same format.

To tackle the measurement error problem, we use the lagged blind math score (LSB
ijs) as

an instrument for the current one, under the commonly made assumption that measurement
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errors are not serially correlated (e.g., Bond and Lang (2018)).15 Within the discrimination

in grading literature, this is the same strategy of Botelho et al. (2015).16 In the context of

Value-Added Models, simulations in Lockwood and McCaffrey (2014) suggest that using lagged

scores as instruments for the current ones can eliminate the bias in treatment effects estimations

originated from measurement error in test scores used as regressors.17 Another important finding

by the authors is that controlling for multiple prior test scores can mitigate the influence of test

measurement error. For that reason, especially when we estimate (1) by OLS, Xij include past

cumulative performance in all other subjects: language, science, and humanities. One might still

be worried about the validity of the exclusion restriction. It might be, for example, that teachers

practice statistical discrimination by using students’ past performance in blind math exams to

reduce noisy about their proficiency. The exclusion restriction may be valid provided we adjust

especially for past test scores in other subjects, but also for pupil’s ethnicity, gender, classroom

behavior, and classroom fixed effects. Otherwise, it is likely that lagged blind scores would be

correlated positively with the unobserved skills that determine SNB
ijs . Under this scenario, we

show in Appendix A that OLS and IV produce upper and lower bounds for β. Due to test

scores measurement error, the bias of the OLS estimator of β is bounded away from zero. The

intuition is that behaviors measure part of δ through the correlation between behaviors and SB
ijs

once δ is estimated with attenuation bias. Contrary, if C(LSB
ijs, εijs) > 0, δ is overestimated by

IV, and hence, β is estimated with attenuation bias.18 Anyway, we believe the non-validity of

the exclusion restriction is not a major concern. We obtain nearly identical results when using

more distant lags as instrument. What is more, when we use more than one lag as instrument,

we perform over-identification tests, which provide evidence that all instruments are valid. Also,

when we estimate β by OLS and consider additional proxies for Pijs, we obtain upper bounds

that are very close to the IV estimates. Finally, if we impose the restriction δ = 1 (so that we

do not need to deal with the measurement error problem) we obtain very similar results.

Regarding inference, standard errors are robust to heteroskedasticity and calculated with

student-level clusters. We also tested for school-level clusters and the standard errors remained

15In a study of racial gaps in test scores over time, the authors present evidence suggesting that serial
correlation of measurement errors is unlikely to be a significant problem in their data.

16In a study of gender discrimination in grading, Terrier (2016) estimates an equation similar to (1), in
an additional analysis of her paper. She corrects the test score measurement error using quarter of birth as
instrument for the blind scores. A few papers from the literature also use a similar specification to (1) but do
correct for the measurement error problem (Cornwell et al., 2013; Alesina et al., 2018). Other studies – most
studying gender discrimination – use a difference-in-differences (DID) specification (e.g., Falch and Naper (2013)
and Lavy (2008)). Our results are very similar when we follow this strategy. The DID specification can be
motivated in our setting when we set δ = 1. In fact, the IV estimation of δ is not far from one.

17A drawback is that the IV estimation can lead to imprecise estimates. The authors propose several alternative
methods based on the standard error of the test score – returned by Item Response Theory (IRT) – to correct for
the measurement error bias. As the school examinations we study are not constructed using IRT, we can not use
these methods. However, other papers that also use lagged scores as instrument to correct for the measurement
error report that doing so using the standard errors returned by IRT leads to very similar results (Khwaja et al.,
2011; Botelho et al., 2015).

18
C(LSB

ijs, εijs) > 0 if the lagged blind scores are correlated positively with the unobserved skills that

determines SB
ijs – C(LSNB

ijs , ξijs + rijs) > 0 – and the measurement errors are not auto-correlated or the serial

correlation is lower in comparison to C(LSNB
ijs , ξijs + rijs).
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nearly identical.19 Additionally, in all our specifications, the test scores are standardized to a

distribution with zero mean and a unit standard deviation. This procedure is applied within

subjects to each test separately. To facilitate reading of results, in our main specifications Bis

stands for binary variables that indicate whether students are in the top quartile of the behavior

measures’ distribution. We also present the results using continuous behavior measures. To deal

with a possible simultaneity concern, we compute behavior measures that uses only reports that

precede the teacher-graded examinations. Alternatively, we estimate the biases in the non-blind

scores from the second semester, using only the behavior reports from the first semester.

4 Main Results

We begin by examining the association between behaviors and test scores. Table 2, column (1),

presents the unconditional OLS estimates. We can see that the average math grades of students

with bad in-class behaviors (BB(Pct.75) = 1) are 0.26 standard deviation (SD) below those

with BB(Pct.75) = 0. The unconditional grade gap between students with GB(Pct.75) = 1

and GB(Pct.75) = 0 is even greater: 0.51 SD in favor of the better-behaved pupils. As several

other non-cognitive skills studied by the literature, our behavior measures strongly predict

pupil test scores. Of course, this does not imply directly that teachers are practicing grading

discrimination. If, for example, students with better in-class behavior are those who prepare

more for the tests, we should expect them to obtain higher grades.

Therefore, in column (2), we follow the strategy outlined in Section 3. We control for the

blind math scores, our proxy for the grades that students would obtain if there were no grading

bias. To tackle the measurement error problem we instrument current blind scores with its

lagged values.20 Under this specification, the behavior effects are significantly reduced, indicating

that a share of the competence differences seen by teachers is captured by performance in the

blindly-scored tests. This may be explained by a greater acquisition of cognitive skills – captured

by blind scores – among the students with higher non-cognitive skills – captured by classroom

behaviors. Still, the behavior effects are significant and high in magnitude, indicating that

teachers discriminate student behaviors in grading. Our results suggest that the better-behaved

students have their grades inflated by 0.11 SD. This amounts to 22% percent of the unconditional

gap. Additionally, teachers seem to deduct, on average, 0.08 SD from worse behaved students,

which represents 30% percent of the unconditional gap. As grading manipulation may have

several consequences for the future of students, these results suggest an important channel

whereby non-cognitive skills affect important life outcomes.

Our results remain virtually the same if we control for ethnicity and gender (column

(3)). We are relieved that despite the vast literature showing grading biases toward these

characteristics, they are not relevant cofounders in our setting. In the Appendix Section C.1

19Appendix Table B1 presents this result.
20Reflecting the cumulative nature of student performance, past scores are strongly correlated with current

ones as it is suggested by the high first-stage F statistic. Additional first-stage summary statistics are available
upon request.
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we present evidence suggesting discrimination against boys and black students, in line with

evidence from the literature. Results are, though, much weaker than the results we found for

behavior. In column (4), we control for past scores in other subjects, which may proxy for

unobservable competences required only by the non-blind exams. The point estimates remain

very similar. Finally, in column (5), we follow the same specification of Botelho et al. (2015),

which also correct for the measurement error in language test scores, and consider higher-order

polynomials for the blind scores.21 In particular, a cubic polynomial for the blind math scores,

a linear function of the blind language scores, and the interaction between these. Our results

remain nearly identical under this more flexible specification. We also analyze the different

behaviors separately. Disinterest during class and dedication seem to be the most discriminated

behaviors (Appendix Section C.2 discusses these results). Finally, in Appendix Section C.3, we

repeat the same exercise made here, but looking at the non-blind Portuguese scores. Results

found for this subject are similar to those found for math.

Table 3 presents the results when we tackle the measurement error problem using additional

lags of the blind math scores as instrument. The results remain very similar when, instead

of using the first lag, we use the second or the third lags (columns (2) and (3)). This gives

some support that auto-correlation of measurement errors is not an issue. Otherwise, we should

expect some variation in our estimates due to differential correlations between more distant

measurement errors and the current ones. In column (4), we use both the first and the second

lag as instrument. In column (5), we use all the first three lags. Point estimates do not change

under these specifications. What is more, when using additional lags as instrument, we perform

overidentification tests. The results from the tests suggest that we have no obvious reason to

distrust the validity of the set of instruments employed.

As previously discussed, if serial correlation of the measurement errors is not a major

concern, the non-validity of the exclusion restriction would probably leads us to underestimate

the behavior effects. We then estimate equation (1) by OLS to obtain upper bounds for the

true discrimination parameter of interest β. Table 4 presents the results. In column (1), we

replicate the same specification from Table 2, column (2). The first thing to notice is that the

relation between blind and non-blind scores estimated by OLS (0.42) is much lower than the

estimated by IV (0.97), reflecting the attenuation bias due to test score measurement error. As

a consequence, the behavior effects are higher when estimated by OLS. Another major difference

is that the inclusion of past scores in column (3) changes significantly the magnitude of our

estimates. The reason is that the past blind scores from other subjects serve as proxies for part

of the student proficiency signal, which mitigates the biases from the estimated behavior effects.

This allows us to estimate finer upper bounds for our parameter of interest. We also tried to

reduce the biases even more by using past math scores as control, instead of instrument, but the

results remained virtually the same (column (4)). Overall, we highlight that the upper bounds

estimated by OLS using additional proxies for student proficiency (−0.10 and 0.17 for the BB

21Instrumenting language scores may be especially important if one believes that language skills are required
only by the non-blind math scores.

13



and GB measures, respectively) are close to the IV estimates (−0.07 and 0.11, respectively),

and hence underestimation of β does not seem to be a concern. Appendix Table B2 presents

the results when we also estimate equation (1) by OLS, but restrict δ to 1. In this case, our

dependent variable becomes the difference between blind and non-blind scores. Results are

nearly identical those we obtain using IV.

Taken together, our results confirm that grading discrimination toward behaviors does exist

in our sample and explain a significant share of the association between these non-cognitive skills

and test scores. As already discussed, this may explain part of the effects of non-cognitive skills

on education attainment and labor market outcomes. We also provided compelling evidence

on the validity of our IV strategy to deal with test measurement errors. In the next sections,

we present further robustness checks and study potential channels behind teachers’ grading

behavior.

5 Robustness

In this section, we conduct additional specification checks and explore data heterogeneity to

assess empirically the validity of potential threats to the internal validity of our study.

5.1 Written vs. multiple-choice exams

We start testing whether the difference in exam format – where most of the non-blind tests

require written answers and the blind ones are based on multiple-choice questions – poses a

threat to the internal validity of our study. We start showing that our results are driven by

grading discrimination in written exams, where teachers can exert discretion by assigning partial

scores. Appendix Table B3 presents the results. We find evidence that students with bad

in-class behaviors do not receive grade deductions in multiple-choice examinations. Indeed,

the negative correlation of 0.18 points between bad behavior and math grades (column (1))

vanishes when we adjust for student proficiency.22 Our findings also suggest that students

with better classroom behavior still receive grade credits in objective tests (0.06, s.e 0.02),

though in a much lower magnitude compared to exams that require written answers. In these

exams, we find that teachers deduct, on average, 0.13 SD of the worse-behaved students and

inflate the average grades of the well-behaved ones by 0.14 SD. These findings highlight an

important mechanism on how teachers practice grading discrimination. The results are in line

with evidence by Hanna and Linden (2012), which find that, in their experiment, graders made

an effort to assign students partial credit. Differently from our study, though, they did not

observe teachers grading exams that are only multiple-choice.

Biases are expected to be lower in exams that are only multiple-choice as teachers can

only assign right or wrong to each item, having little leeway to discriminate grades. Still, one

22Appendix Table B4 presents the OLS estimations. In this case, we also find no grading discrimination in
multiple-choice exams.
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could interpret these results as a threat to the internal validity of our study. It can be that

math teachers praise good handwriting and organization when grading questions that require

written answers. If these skills correlate with behaviors, our estimates would be biased, and this

could explain why the grading biases in the objective teacher-graded tests are lower. To test

this hypothesis, we re-estimate our main results using a subsample of schools where students

perform blindly-graded essays, and then adjust for the blind essay scores to check whether

this seems to be an important confounder. This kind of examination, more than any other,

should capture abilities like those mentioned before. Appendix Table B5 presents the results.

In summary, we find nearly identical grading biases when we control for the essay scores, even

if we correct its measurement error by using lagged scores. Overall, we are confident that our

main results are not biased due to writing competencies praised by math teachers in grades.

We also use the blind essay scores to test whether teachers from this subject practice

grading discrimination toward student behaviors. In this particular case, we were able to

compare exams with exactly the same format. Appendix Table B6 presents the estimated biases

in the non-blind essay scores. Unconditional results (column (1)) indicate that students with the

worst classroom behavior (as reported by their essay teachers) have disadvantages of 0.34 SD.

The well-behaved pupils have advantages of 0.36 SD. In column (2), we adjust for performance

in blindly-graded essays. The students with good (bad) in-class behavior receive grade credits

(deductions) of 0.12 SD (approximately 35% of the unconditional effects). Columns (3) and

(4) present the results when we analyze only the essays that are high-stakes. In this reduced

sample, though, we are underpowered to detect smaller effects. Hence, the BB estimate of -0.05

SD is not precisely estimated. Still, we can not reject under traditional levels of significance that

this effect is statistically different from the effect we estimate using only non-high-stakes essays

(column (5)). The GB estimate remains very similar (0.11, s.e 0.06). Overall, the estimates

presented here are quantitatively similar to those obtained when analyzing math scores, even

though here, we are comparing exams with exactly the same format, while in the mathematics’

case, non-blind exams are mostly subjective and the blind ones are objective. This is further

evidence suggesting that our results are not biased due to the potential skills required only by

one type of exam.

5.2 Do the estimated biases reflect effect of different timing of ex-

ams?

We now examine the possibility that the results mainly reflect the effect of the specific pattern

in the timing of the exams where, in most of the cases, the non-blind exam follows the blind

exam. This different timing could, in theory, account for some of the gaps in performance

between students with different behaviors in the blind and non-blind exams. For example, one

could argue that while students with worse classroom behavior tend to rest between the blind

and non-blind exams, those better behaved study. In this case, performance in the blind tests

may not reflect precisely the students’ level of proficiency at the time they take the non-blind
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tests, especially if the time gap is large.23 In our setting, the time difference between the two

exams varies across schools, typically being between 5 to 30 days (see Appendix Figure B.1).

However, the time difference varies less than ten days only for the first exams, which we can not

explore in the IV estimation. In Appendix Table B7, we explore timing heterogeneity using two

subsamples where the time difference between the blind and the non-blind exams differ from

10 to 20 days and more than 20 days. The estimated biases are very similar across these two

subsamples. Appendix Table B8 presents the OLS estimates. We then explore an additional

subsample where the time difference varies up to 9 days. Across these three subsamples, the

estimated biases have the same sign and are high in magnitude. These results suggest that the

specific pattern in the timing of the blind and non-blind exams is not the cause of the pattern

in our main results.

5.3 Behavior Measures

We now test alternative ways of using the behavior reports. Besides considering only the

behavior assessments by math teachers, we also test measures that use the assessments made by

all teachers. One could argue that these measures depend less on the subjectivity of a teacher’s

type, and hence capture better the student behaviors.24 Either way, Appendix Table B9 shows

that the point estimates obtained in this case are identical to those obtained in our primary

specification. Results also remain similar if we discard reports made by math teachers (Appendix

Table B10). The results presented so far are based on a discretization of the behavior measures.

One might be worried whether our evidence depends strongly on this transformation. Appendix

Table B11 shows this is not the case. The share of the association between behaviors and

test scores explained by grading discrimination remains the same when we use the continuous

behavior measures (31% and 21% for the BB and GB measures, respectively). Additionally, we

obtain similar results when using the overall number of good and bad assessments as regressors

(see Appendix Table B12).25 Finally, we use alternative data to test two other indicators of

student behaviors. One of them is the behavioral grades that students receive from each teacher

at the end of each semester. Although this is a subjective measure, it is based on mandatory

assessments, unlike the behavior reports made by teachers on the school’s system. The other

measure we use is restricted to a small sample of schools where students take regular courses

to improve their socio-emotional abilities. In these courses, students are assessed by teachers

based on in-class examinations. We standardize the grades from these exams, and use it as a

measure of non-cognitive skills. These last results are discussed in Appendix Section C.4. In

summary, they are qualitatively similar to those estimated using the behavior reports.

23One could imagine several other mechanisms. Some, however, would not explain our results. For example,
if students with worse classroom behavior tend to study for the exam later than well-behaved pupils, perhaps
because they have a higher discount rate as suggested by the literature, than they might be better prepared for
the second exam than for the first.

24In addition, as there are less missing data on behaviors when using the reports made by all teachers, we can
show that our results are valid in a larger sample of students.

25We actually use the inverse hyperbolic sine of the behavior assessments.
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5.4 Simultaneity

One might be worried about potential feedback effects between biased grades and classroom

behavior. It might be, for example, that after receiving downward biased grades, students get

mad at their teachers and start misbehaving in the classroom. To deal with that concern, we

adopt two strategies. First, we estimate the biases in the non-blind math scores from the second

semester, using only the behavior reports from the first (Appendix Table B13). The estimates

are remarkably similar to our primary results. Second, we create measures that use only behavior

reports that preceded the teacher-graded examinations.26 Appendix Table B14 presents the

results. In comparison to the grading discrimination estimated using the behavior measures

that use the assessments from the whole year – column (2) – the BB estimate remains the same,

while the GB estimate falls slightly – column (4). The conclusions, however, remain the same.

Approximately 25% of the unconditional correlation between behaviors and teacher-assigned

scores (column (3)) seem to be explained by teacher biases.

6 Potential Mechanisms

In this section, we propose and test empirically potential explanations for the teachers’ grading

behavior based on possible interpretations of statistical discrimination models.

6.1 Learning across the school-year

We start exploring predictions of models of statistical discrimination and employer learning

(Altonji and Pierret, 2001). In the employer-learning model, employers observe workers’ perfor-

mance on the job and thus learn about workers’ unobserved productivity. As they learn, they

rely less on easily observed workers’ characteristics to predict their productivity. The faster

employers learn, the shorter the period during which firms statistically discriminate.27 In our

setting, under statistical discrimination, the more teachers observe their students’ performance

at school, the less they should use classroom behaviors to predict students’ proficiency.28

Exploring the fact that we observe teachers grading six exams, we test whether estimated

biases decay throughout the year. In practice, we compare the estimated biases in the first,

second, and third exams from the second semester with its respective exams from the first

semester. If statistical discrimination is at play, and there is some learning, we should expect

lower effects in the second semester. When lagged blind scores are used as instrument for the

current scores, we lose information from the first exam from the first semester. Then, Appendix

26The drawback of using these measures is that we lost many observations, mainly for the first exams, since
among the teachers evaluating their pupils’ behavior, not all have done so since the beginning of the school-year.

27For a test of learning in this context, see Lange (2007). He shows that employers learn quickly. Initial
expectation errors decline by 50% within 3 years.

28In the context of racial grading discrimination, Botelho et al. (2015) find that while there is a bias toward
black students attending classes with a teacher for the first time, no significant disparities are found among those
that have already had classroom with that teacher before.
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Figure 4 presents the results from the second and third exams only. The point estimates are

remarkably stable across the semesters. Figure B.2 presents the results from OLS estimations,

where we can also analyze the first exams. The estimates are also very similar across the

semesters.29 These evidence suggest that a model of statistical discrimination with learning does

not seem to be explaining our results, perhaps because teachers do not statistically discriminate,

or because learning is slow in our setting.

6.2 Biases when badly-behaved students are skilled in math

Statistical discrimination arises if teachers use classroom behavior to predict students’ unobserved

ability based on beliefs they have on the proficiency of students with certain characteristics. The

question of whether such beliefs are based on real evidence or are unfounded is irrelevant to the

outcome of statistical discrimination. However, it is plausible to imagine that these beliefs may

be influenced by the superior average performance of students with better classroom behavior.

We explore heterogeneity in the performance of students in the blindly-graded examinations

to test whether the estimated biases are lower in a subsample of students where those with

worse classroom behaviors are as skilled as their classmates with better behaviors. To do so, we

select classrooms where in the first semester students with BB(pct.75) = 1 or GB(pct.75) = 0

performed, on average, better in the blind math exams than their classmates with BB(pct.75) = 0

or GB(pct.75) = 1, respectively. We call this subsample of sample A. The subsample where the

previous conditions are not satisfied is called of sample B. Appendix Figure B.3 shows that in

sample A, students with good and bad behaviors are homogeneous in terms of math proficiency

captured in the blind math scores from the first semester. In sample B, there is a striking gap

between these groups of students.

Figure 5 presents the estimated biases for the full sample, sample A, and sample B. The

estimates are similar across the samples, both when we use the behavior reports from the whole

year (panel (a)) or when we use only the behavior assessments from the first semester (panel (b)).

If anything, both the positive and the negative grading discrimination are higher within sample

A, which is the opposite of what one should expect under statistical discrimination. These

results may suggest that this form of discrimination is not explaining our results. Otherwise,

teachers are not updating their beliefs based on the average performance of the math class they

are grading.30

29Additionally, do observe that there is not much heterogeneity from the first to the second exams. The
estimates differ a lot in the third exams as in most of the schools, these exams are only multiple-choice, which
refers to our previous discussion.

30It could be, for example, that teachers think the grades from the worse-behaved students are less reliable.
Maybe, because they believe that badly-behaved pupils are more prone to cheating.
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7 Conclusion

Using a quasi-experimental design, we contrast blindly- and non-blindly- graded examinations

that cover the same content and find that teachers inflate the grades of the better-behaved

students while deducting points from the worse-behaved ones. Between 20 and 30 per cent of

the correlation between behaviors and teacher-assigned grades seem to be explained by grading

discrimination. As evidence from the literature point out that grading manipulation may

have several consequences for the students, these findings suggest that grading discrimination

is one mechanism whereby non-cognitive skills affect important life outcomes. Our results

are robust to the incidence of test score measurement error, to the way student behaviors

are measured, to potential feedback effects between behaviors and biased grades, and to the

differences between blind and non-blind examinations. We also find that theses biases are

driven by grading discrimination in written exams, where teachers can potentially be more

discretionary. Finally, we show that teachers’ grading behavior does not seem to be explained

by statistical discrimination models.

In terms of policy, our results may be important for those interested in the effects of

educational policies mediated by non-cognitive skills. As such interventions can also affect

teacher grading practices – directly affecting the importance of non-cognitive skills to test scores

– ignoring our results may lead to misleading interpretations of the results from these policies.

Our results also shed light on policies aimed at reducing grading biases. We find that biasing

grades based on student behaviors may be privately optimal from the perspective of teachers.

The rationale of this practice as a policy would be to try to induce more positive school habits,

which is essential not only for the students themselves but also for their peers. However, this

grading behavior may have pervasive consequences for the students as inaccurate grades affect

schooling and labor market outcomes. The reform known as standards-based grading emphasizes,

among other things, the explicitly use of separate reports describing student performance and

academic behaviors. The use of similar policies may reduce grading discrimination while not

encouraging misbehavior. Additionally, our findings on the grading biases in written questions

highlight the standardization in the use of partial credits as a potential mechanism to reduce

discrimination. Alternatively, new technologies – such as the use of bar codes to assure student

anonymity – can improve policy results. Evaluating the causal effects of such policies are left

for future work.
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Tables and Figures

Figure (1) Empirical CDF of the Good Behavior (GB) and Bad Behavior (BB) Measures

(a) ECDF of the BB measure – math
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(b) ECDF of the GB measure – math
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(c) ECDF of the BB measure – overall
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(d) ECDF of the GB measure – overall
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Note: This figure estimates the empirical cumulative distribution functions (ECDF) of the behavior measures.

Panels a and b plot the ECDF of the bad and good behavior measures, respectively, computed using only

the assessments by math teachers. Panels c and d plot the ECDF of the bad and good behavior measures,

respectively, computed using the assessments made by all teachers.
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Figure (2) Distribution of Blind and Non-blind Math Scores

(a) Across students with different BB measures
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(b) Across students with different GB measures
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Note: These figures plot the distribution of blind math scores and non-blind math scores. Observations are at the

student×exam level. BB(75pct.) and GB(75pct.) stand for binary variables that indicate whether students are

at the top quartile of the math behavior measures’ distribution. In panel (a), solid line represents students with

BB(Pct.75) = 1 and the dotted line represents those with BB(Pct.75) = 0. In panel (b), solid line represents

students with GB(Pct.75) = 0 and the dotted line represents those with GB(Pct.75) = 1. All test scores are

standardized (the mean equals zero and the variance equals one).
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Figure (3) Association Between the Blind and Non-blind Math Scores

Non-blind score = 0 + 0.81 x Blind score
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Note: This figure plots the average of the blind and non-blind math scores across six examinations. The line

fits the data points by OLS. All test scores are standardized (the mean equals zero and the variance equals one).
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Figure (4) Heterogeneity Across Semesters and Exams - IV Estimation
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Note: This figure plots 90% confidence intervals and point estimates from student×exam-level OLS regressions of

teacher-assigned math scores on classroom behavior, using subsamples that are specific for each exam. BB(75pct.)

and GB(75pct.) stand for binary variables that indicate whether students are at the top quartile of the math

behavior measures’ distribution. All specifications follow Table 2, column 3.
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Figure (5) Estimated biases in classrooms where students with different in-class behaviors
differ (Sample B) and do not differ (Sample A) in their math proficiency

(a) Using All Behavior Reports

BB (Pct. 75)

GB (Pct. 75)

-.2 -.15 -.1 -.05 0 .05 .1 .15 .2
Estimated Bias

Full Sample Sample A Sample B

(b) Using Only Past Behavior Reports

BB (Pct. 75)

GB (Pct. 75)

-.2 -.15 -.1 -.05 0 .05 .1 .15 .2
Estimated Bias

Full Sample Sample A Sample B

Note: This figure plots 90% confidence intervals and point estimates from student×exam-level IV regressions of

teacher-assigned math scores on classroom behavior, for different samples. Sample A selects classrooms where

in the first semester students with BB(pct.75) = 1 or GB(pct.75) = 0 performed, on average, better in the

blind math exams than their classmates with BB(pct.75) = 0 or GB(pct.75) = 1, respectively. The subsample

where the previous conditions are not satisfied is called of sample B. Full sample uses samples A and B. All

specifications follow Table 2, column (3).
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Table (1) Summary Statistics

Variable Mean SD Observations

Students 14,766

Schools 57

Classes 513

Grades

Grade 6 14.61% 2,157

Grade 7 15.24% 2,250

Grade 8 17.30% 2,554

Grade 9 10.40% 1,536

Grade 10 22.19% 3,276

Grade 11 20.27% 2,993

Ethnicity and Gender

Female 53.58% 7,912

White 63.36% 9,356

Pardo 16.88% 2,493

Black 2.72% 402

Other (Yellow or Indigenous) 0.63% 95

Refuse to report ethnicity 16.4% 2400

Behavior Data

Classes with at least one behavior assessment 94%

Classes with at least one behavior assessment (Math) 72.18%

Good behavior reports 15.95 22.36 13,879

Good behavior reports (Math) 4.41 7.18 10,009

Bad behavior reports 8.58 13.00 13,766

Bad behavior reports (Math) 2.87 5.19 10,184

Good behavior measure .43 .27 13,879

Good behavior measure (Math) .35 .35 10,009

Bad behavior measure .28 .27 13,766

Bad behavior measure (Math) .23 .30 10,184

Note: This table reports summary statistics for our data. Data on grades, ethnicity and gender,

and classroom behaviors are at the student-level.
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Table (2) Estimated biases in the non-blind math scores toward classroom behavior - IV
estimates

(1) (2) (3) (4) (5)

OLS IV IV IV IV

BB (Pct. 75) -0.266 -0.081 -0.076 -0.073 -0.069

(0.018)*** (0.014)*** (0.014)*** (0.013)*** (0.013)***

GB (Pct. 75) 0.511 0.116 0.115 0.112 0.115

(0.021)*** (0.016)*** (0.016)*** (0.015)*** (0.015)***

Blind Math Score 0.968 0.970 0.911 0.969

(0.013)*** (0.013)*** (0.028)*** (0.067)***

Ethnicity and Gender No No Yes Yes Yes

Other Scores No No No Yes Yes

Instrumenting Language Scores - No No No Yes

High-Order Polynomials for Scores - No No No Yes

Number of Observations 44979 44979 44979 44979 44979

Number of Clusters 9462 9462 9462 9462 9462

First-stage F Statistic 5432 5303 1367 10.73

Note: This table reports student×exam-level OLS (column 1) and IV (columns 2-5) regressions of teacher-assigned

math scores on classroom behavior. BB(75pct.) and GB(75pct.) stand for binary variables that indicate whether

students are at the top quartile of the math behavior measures’ distribution. In the IV estimates, lagged blind

math scores are used as instrumental variable for the current math scores. All specifications include classroom

fixed effects and exams fixed effects. Other scores include the cumulative average performance in science and

humanities, and current performance in language. High-order polynomials for scores include a third order polyno-

mial for blind math scores, and an interaction term between math and language scores. In Column 5, we also use

lagged language scores as instrumental variable for the current language scores. Controls for ethnicity include 5

indicators: Black, Indigenous, Pardo, Yellow, and White. We also include a dummy for students with missing

data on ethnicity. Standard errors in parenthesis are robust and clustered at the student level.

** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (3) Estimated biases in the non-blind math scores toward classroom behavior - Testing
additional lags as instrument

(1) (2) (3) (4) (5)

IV IV IV IV IV

BB (Pct. 75) -0.096 -0.093 -0.094 -0.095 -0.095

(0.016)*** (0.016)*** (0.016)*** (0.016)*** (0.016)***

GB (Pct. 75) 0.133 0.126 0.127 0.130 0.130

(0.018)*** (0.018)*** (0.018)*** (0.018)*** (0.018)***

Blind Math Score 0.801 0.868 0.855 0.827 0.833

(0.033)*** (0.040)*** (0.044)*** (0.029)*** (0.027)***

Number of Lags 1 2 3 1-2 1-3

Number of Observations 27940 27940 27940 27940 27940

Number of Clusters 9459 9459 9459 9459 9459

First-stage F Statistic 1012 766.3 619.1 804.8 649.7

Over-ID Test (p-value) 0.185 0.355

Note: This table reports student×exam-level IV regressions of teacher-assigned math scores on classroom

behavior. Specifications follow Table 2, column (3), except for the instrumental variable. This table tests as

instrumental variable the first, second, and third lags of the math blind scores separately (columns 1-3) and

jointly (columns 4-5). The sample is restricted to observations from the second semester as we need at least

three past exams when using the third lag of the blind scores as instrumental variable. Columns 4-5 present

p-values for over-identification tests.

** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (4) Estimated biases in the non-blind math scores toward classroom behavior - OLS
estimation

(1) (2) (3) (4) (5)

OLS OLS OLS OLS OLS

BB (Pct. 75) -0.261 -0.180 -0.185 -0.104 -0.099

(0.018)*** (0.014)*** (0.014)*** (0.013)*** (0.013)***

GB (Pct. 75) 0.506 0.332 0.333 0.197 0.171

(0.021)*** (0.016)*** (0.016)*** (0.014)*** (0.014)***

Blind Math Score 0.426 0.424 0.234 0.186

(0.005)*** (0.005)*** (0.005)*** (0.005)***

Ethnicity and Gender No No Yes Yes Yes

Other Scores No No No Yes Yes

Past Math Scores No No No No Yes

Number of Observations 46787 46787 46787 46787 46787

Number of Clusters 9462 9462 9462 9462 9462

Adjusted R-squared 0.0534 0.226 0.228 0.330 0.353

Note: This table reports student×exam-level OLS regressions of teacher-assigned math scores on classroom

behavior. BB(75pct.) and GB(75pct.) stand for binary variables that indicate whether students are at the

top quartile of the math behavior measures’ distribution. Other scores include the cumulative average

performance in science and humanities, and current performance in language. Past math scores include the

lagged blind math score. Controls for ethnicity include 5 indicators: Black, Indigenous, Pardo, Yellow, and

White. We also include a dummy for students with missing data on ethnicity. Standard errors in parenthesis

are robust and clustered at the student level.

** p < 0.01; ** p < 0.05; *p < 0.1.
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A OLS and IV Potential Biases

We consider a simple econometric model to analyze the bias of the OLS if the blind test score is

measured with error, and of the IV estimator when the exogeneity assumption of the instrument

does not hold. For simplicity, we assume that all variables have expected value equal to zero,

we consider only the measure of good behavior, and we suppress the ijs sub-index. A simplified

version of equation 1 is then given by

SNB = βGB + δSB + ε, (2)

where ε = ξ + r − δu + v. We assume that E[GBε] = 0, but E[SBε] is potentially different from

zero. Following the discussion from Section 3, we consider the case in which r ≈ 0, so that

E[SBε] 6= 0 because of the measurement error u. We also assume that ξ is uncorrelated with

GB and SB.

Assuming that u is uncorrelated with all other variables in the model, we have that the

OLS estimator is such that


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where σ2

x = var(GB), σ2

w = var(SB), σ2

u = var(u), and σxw = cov(GB, SB). If we define the

linear projection GB = γSB +h, then γ = σxw

σ2
w
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> 0,

so the sign of the bias of the OLS estimator for β is determined by the signs of σxw and δ.

Given model 1, we have that δ > 0. Moreover, we can estimate σxw using the data, where we

find σ̂xw > 0. Therefore, we should expect that β̂ols is upward biased. The intuition is that the

measurement error u implies that the estimator for δ will suffer from attenuation bias, which

implies that it will not completely control for students’ skills. If we consider instead our measure

of bad behavior, then the correlation between BB and SB is negative, which implies that the

estimator associated with BB would be downward biased.

We consider next estimation of equation 2 using lagged blind test score LSB as instrumental

variable for SB. This instrument clearly satisfies the relevance condition. If E[LSBε] = 0, then

the IV estimator would be consistent for β. We are worried, however, that the exogeneity

condition for the instrument may not be valid. We assume that E[LSBu] ≈ 0, which is a

standard assumption in classical test theory and applied papers (e.g., Bond and Lang (2018)).

In section 4, we present evidence that gives some support on the validity of the assumption.

Still, it may be that E[LSBξ] > 0. For example, teachers may statistically discriminate students

based on their past performance in blind scores or other correlated unobservable signals of

scholastic ability. In this case, we have that the IV estimator will converge to
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where σwz = cov(LSB, SB) and σxz = cov(LSB, GB). Note that σ2

xσwz − σxwσxz = cov(e1, e2),

where e1 is the population error in the linear projection of GB on SB, and e2 is the population

error in the linear projection of GB on LSB. If we consider the residuals from a regression of

GB on SB and the residuals from a regression of GB on LSB, then the correlation between

these two residuals is positive, which provides evidence that σ2

xσwz − σxwσxz is positive. Given

that σxw > 0 when we consider a measure of good behavior, if we have E[LSBu] ≈ 0 and

E[LSBξ] > 0, then β̂IV would be downward biased. Likewise, if we consider a measure of bad

behavior, then the estimator associated with this variable would be upward biased.

Combining these results, we have that the discrimination parameters are bounded by the

OLS and the IV estimators.

B Additional Tables and Figures

Figure (B.1) Density of the timing differences between the blind and the non-blind exams
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Note: This figure estimates the density of the timing differences between the blind and non-blind math exams,

when we pool all the six exams.
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Figure (B.2) Heterogeneity Across Semesters and Exams - OLS Estimation
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Note: This figure plots 90% confidence intervals and point estimates from student×exam-level OLS regressions of

teacher-assigned math scores on classroom behavior, using subsamples that are specific for each exam. BB(75pct.)

and GB(75pct.) stand for binary variables that indicate whether students are at the top quartile of the math

behavior measures’ distribution. All specifications follow Table 4, column 5.
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Figure (B.3) Distribution of Blind and Non-blind Math Scores from the 1st Semester
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Note: These figures estimate the density of the blind math scores from the first-semester exams for students whose

behavior indicators assume different values, using two different samples. BB(75pct.) and GB(75pct.) stand for

binary variables that indicate whether students are at the top quartile of the math behavior measures’ distribution.

In the top two figures, solid line represents students with BB(Pct.75) = 1 and the dotted line represents those

with BB(Pct.75) = 0. In the bottom two figures, solid line represents students with GB(Pct.75) = 0 and the

dotted line represents those with GB(Pct.75) = 1. Sample A selects classrooms where in the first semester

students with BB(pct.75) = 1 or GB(pct.75) = 0 performed, on average, better in the blind math exams than

their classmates with BB(pct.75) = 0 or GB(pct.75) = 1, respectively. We call this subsample of sample A. The

subsample where the previous conditions are not satisfied is called of sample B.
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Table (B1) Estimated biases in the non-blind math scores toward classroom behavior – school-
level cluster

(1) (2)

OLS IV

BB (Pct. 75) -0.266 -0.073

(0.019)*** (0.012)***

GB (Pct. 75) 0.511 0.112

(0.029)*** (0.017)***

Blind Math Score 0.911

(0.035)***

Number of Observations 44979 44979

Number of Clusters 51 51

First-stage F Statistic 525.2

Note: This table reports student×exam-level OLS (column 1)

and IV (column 2) regressions of teacher-assigned math scores

on classroom behavior. Column 2 follows the same specifica-

tion from Table 2, column 3, except for the standard errors

that here are calculated with school-level clusters.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B2) Estimated biases in the non-blind math scores toward classroom behavior – re-
stricting δ = 1

(1) (2) (3)

OLS OLS OLS

BB (Pct. 75) -0.075 -0.070 -0.069

(0.014)*** (0.014)*** (0.014)***

GB (Pct. 75) 0.103 0.103 0.101

(0.015)*** (0.015)*** (0.015)***

Ethnicity and Gender No Yes Yes

Other Scores No No Yes

Number of Observations 44979 44979 44979

Number of Clusters 9462 9462 9462

Note: This table reports student×exam-level regressions of the difference

between non-blind and blind math scores on classroom behavior. All

test scores are standardized. All specifications include classroom fixed

effects and exams fixed effects. Other scores include the cumulative aver-

age performance in science and humanities, and current performance in

language. Controls for ethnicity include 5 indicators: Black, Indigenous,

Pardo, Yellow, and White. We also include a dummy for students with

missing data on ethnicity. Standard errors in parenthesis are robust and

clustered at the student level.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B3) Estimated biases in the non-blind math scores toward classroom behavior by
question type

(1) (2) (3) (4)

OLS IV OLS IV

BB (Pct. 75) -0.170 0.016 -0.330 -0.132

(0.020)*** (0.021) (0.021)*** (0.017)***

GB (Pct. 75) 0.405 0.058 0.578 0.145

(0.024)*** (0.023)** (0.023)*** (0.019)***

Blind Math Score 0.908 0.923

(0.048)*** (0.034)***

Type of questions Multiple-choice Multiple-choice Written Written

Number of Observations 17701 17701 27278 27278

Number of Clusters 9282 9282 9457 9457

First-stage F Statistic 582.4 1081

Note: This table reports student×exam-level OLS (columns 1 and 3) and IV (columns 2 and 4) regres-

sions of teacher-assigned math scores on classroom behavior, for two different subsamples. One of them

is restricted to non-blind exams that are only multiple-choice, and the other to non-blind exams that

require written answers. Columns 2 and 4 follow the same specification from Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B4) Estimated biases in the non-blind math scores toward classroom behavior by
question type – OLS estimation

(1) (2) (3) (4)

OLS OLS OLS OLS

BB (Pct. 75) -0.162 -0.020 -0.326 -0.152

(0.020)*** (0.017) (0.021)*** (0.015)***

GB (Pct. 75) 0.399 0.100 0.576 0.213

(0.023)*** (0.019)*** (0.023)*** (0.016)***

Type of questions Multiple-choice Multiple-choice Written Written

Number of Observations 18463 18463 28324 28324

Number of Clusters 9335 9335 9462 9462

Note: This table reports student×exam-level OLS regressions of teacher-assigned math scores on class-

room behavior, for two different subsamples. One of them is restricted to non-blind exams that are only

multiple-choice, and the other to non-blind exams that require written answers. Columns 2 and 4 follow

the same specification from Table 4, column 5.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B5) Estimated biases in the non-blind math scores toward classroom behavior – adjusting
for blind essay scores

(1) (2) (3) (4)

OLS IV IV IV

BB (Pct. 75) -0.321 -0.133 -0.126 -0.109

(0.022)*** (0.018)*** (0.018)*** (0.018)***

GB (Pct. 75) 0.568 0.129 0.126 0.121

(0.024)*** (0.020)*** (0.019)*** (0.019)***

Blind Math Score 0.934 0.923 0.896

(0.037)*** (0.037)*** (0.037)***

Essay Scores No No Yes Yes

Instrumenting Essay Scores - - No Yes

Number of Observations 23177 23177 23177 23177

Number of Clusters 8739 8739 8739 8739

First-stage F Statistic 912.4 903.4 320.6

Note: This table reports student×exam-level OLS (column 1) and IV (columns 2-3) regressions

of teacher-assigned math scores on classroom behavior, in a subsample where essay scores are

available. Column 2 follows the same specification from Table 2, column 3. Column 3 addi-

tionally controls for blind essay scores, and column 4 uses lagged essay scores as instrumental

variable for the current ones.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B6) Estimated biases in the non-blind essay scores toward classroom behavior

(1) (2) (3) (4) (5)

OLS IV OLS IV Low−High

BB (Pct. 75) -0.341 -0.125 -0.248 -0.0510 0.082

(0.024)*** (0.021)*** (0.061)*** (0.053) [0.157]

GB (Pct. 75) 0.356 0.117 0.375 0.112 -0.006

(0.025)*** (0.022)*** (0.072)*** (0.058)* [0.923]

Blind Essay Scores 0.565 0.759

(0.046)*** (0.104)***

Stakes High and Low High and Low High High

Number of Observations 17792 17792 3633 3634

Number of Clusters 6257 6257 860 860

First-stage F Statistic 423.4 96.48

Note: This table reports student×exam-level OLS (columns 1 and 3) and IV (columns 2 and 4) regressions of teacher-

assigned essay scores on classroom behavior, for two different subsamples. One of them uses all the essay exams, and

the other is restricted to essay scores that are high-stakes. BB(75pct.) and GB(75pct.) stand for binary variables

that indicate whether students are at the top quartile of the essay behavior measures’ distribution. Columns 2 and 4

follow the same specification from Table 2, column 3. Column 5 reports the differences between the point estimates of

BB(Pct.75) and GB(Pct.75) presented in column 4 and the point estimates associated with these behavior indicators

obtained in a subsample of only non-high-stakes exams. In brackets, p-values for t-tests under the null that theses

coefficients are equal.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B7) Estimated biases in the non-blind math scores toward classroom behavior – varying
the timing between the blind and non-blind exams

(1) (2)

IV IV

BB (Pct. 75) -0.118 -0.148

(0.032)*** (0.033)***

GB (Pct. 75) 0.136 0.117

(0.036)*** (0.038)***

Blind Math Score 1.093 0.924

(0.065)*** (0.081)***

Timing differences From 10 to 20 days More than 20 days

Number of Observations 8610 6779

Number of Clusters 4350 5050

First-stage F Statistic 338.3 205.4

Note: This table reports student×exam-level OLS (column 1) and IV (columns 2-5)

regressions of teacher-assigned math scores on classroom behavior, for two different

subsamples according due to timing differences between the realization of the blind

and non-blind exams. Column 1 uses exams where this difference varies from 10 to

20 days; Column 2, more than 20 days. All columns follow the same specification

from Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B8) Estimated biases in the non-blind math scores toward classroom behavior – varying
the timing between the blind and non-blind exams (OLS estimation)

(1) (2) (3)

OLS OLS OLS

BB (Pct. 75) -0.112 -0.172 -0.129

(0.039)*** (0.026)*** (0.027)***

GB (Pct. 75) 0.195 0.213 0.179

(0.044)*** (0.028)*** (0.029)***

Timing differences From 0 to 9 days From 10 to 20 days More than 20 days

Number of Observations 2436 8610 6779

Number of Clusters 2436 4350 5050

Note: This table reports student×exam-level OLS regressions of teacher-assigned math scores on classroom

behavior, for three different subsamples according due to timing differences between the realization of the

blind and non-blind exams. Column 1 uses exams in which this difference varies up to 9 days; Column 2,

from 10 to 20 days; Column 3, more than 20 days. All columns follow the same specification from Table 4,

column 5.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B9) Estimated biases in the non-blind math scores toward classroom behavior – using
all the behavior assessments

(1) (2)

OLS IV

BB (Pct. 75) -0.240 -0.076

(0.015)*** (0.011)***

GB (Pct. 75) 0.524 0.110

(0.016)*** (0.012)***

Blind Math Score 0.870

(0.022)***

Number of Observations 67495 67495

Number of Clusters 13654 13654

First-stage F Statistic 2194

Note: This table reports student×exam-level OLS (column 1)

and IV (column 2) regressions of teacher-assigned math scores

on classroom behavior. BB(75pct.) and GB(75pct.) stand for

binary variables that indicate whether students are at the top

quartile of the behavior measures’ distribution, computed us-

ing the behavior assessments made by all teachers. Column 2

follows the same specification from Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B10) Estimated biases in the non-blind math scores toward classroom behavior – using
all the behavior assessments, expect those by math teachers

(1) (2)

OLS IV

BB (Pct. 75) -0.245 -0.073

(0.015)*** (0.011)***

GB (Pct. 75) 0.483 0.102

(0.017)*** (0.012)***

Blind Math Score 0.879

(0.022)***

Number of Observations 65593 65593

Number of Clusters 13271 13271

First-stage F Statistic 2163

Note: This table reports student×exam-level OLS (column 1)

and IV (column 2) regressions of teacher-assigned math scores

on classroom behavior. BB(75pct.) and GB(75pct.) stand for

binary variables that indicate whether students are at the top

quartile of the behavior measures’ distribution, computed us-

ing the behavior assessments made by all teachers, except those

made by math teachers. Column 2 follows the same specifica-

tion from Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B11) Estimated biases in the non-blind math scores toward classroom behavior – using
the continuous behavior measures

(1) (2)

OLS IV

BB -0.357 -0.104

(0.029)*** (0.021)***

GB 0.789 0.177

(0.031)*** (0.022)***

Blind Math Score 0.906

(0.028)***

Number of Observations 44979 44979

Number of Clusters 9462 9462

First-stage F Statistic 1356

Note: This table reports student×exam-level OLS (column 1)

and IV (column 2) regressions of teacher-assigned math scores

on classroom behavior. BB and GB stand for the math be-

havior measures. Column 2 follows the same specification from

Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B12) Estimated biases in the non-blind math scores toward classroom behavior – using
the number of behavior assessments

(1) (2)

OLS IV

Ln BB Reports -0.145 -0.052

(0.012)*** (0.008)***

Ln GB Reports 0.320 0.074

(0.014)*** (0.011)***

Blind Math Score 0.873

(0.026)***

Number of Observations 46757 46787

Number of Clusters 9462 9462

First-stage F Statistic 1532

Note: This table reports student×exam-level OLS (column 1)

and IV (column 2) regressions of teacher-assigned math scores

on classroom behavior. Ln BB reports and Ln GB reports

stand for the natural logarithm of the number of bad and good

behavior assessments received by math teachers plus 1. Col-

umn 2 follows the same specification from Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B13) Estimated biases in the non-blind math scores from the 2nd semester towards
classroom behavior – using behavior reports from the 1st semester

(1) (2)

OLS IV

BB (Pct. 75) (1st Semester) -0.253 -0.070

(0.019)*** (0.014)***

GB (Pct. 75) (1st Semester) 0.488 0.103

(0.022)*** (0.016)***

Blind Math Score 0.914

(0.029)***

Number of Observations 40907 40907

Number of Clusters 8598 8598

First-stage F Statistic 1292

Note: This table reports student×exam-level OLS (column 1) and

IV (column 2) regressions of teacher-assigned math scores on class-

room behavior, for a subsample of exams from the second semester

only. BB(75pct.) (1st Semester) and GB(75pct.) (1st Semester)

stand for binary variables that indicate whether students are at the

top quartile of the math behavior measures’ distribution, computed

using only behavior assessments from the first semester. Column 2

follows the same specification from Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (B14) Estimated biases in the non-blind math scores toward classroom behavior – using
pre-exam behavior reports

(1) (2) (3) (4)

OLS IV OLS IV

BB -0.398 -0.118

(0.037)*** (0.027)***

GB 0.811 0.213

(0.038)*** (0.027)***

BB (Pre-exams) -0.386 -0.108

(0.033)*** (0.025)***

GB (Pre-exams) 0.728 0.182

(0.033)*** (0.026)***

Blind Math Score 0.859 0.862

(0.032)*** (0.033)***

Number of Observations 27303 27303 27303 27303

Number of Clusters 7296 7296 7296 7296

First-stage F Statistic 945.3 942.9

Note: This table reports student×exam-level OLS (columns 1 and 3) and IV (columns 2 and

4) regressions of teacher-assigned math scores on classroom behavior. BB (Pre − exams)

and GB (Pre − exams) are the math behavior measures, computed using only assessments

that preceded each examination. Columns 2 and 4 follow the same specification from Table 2,

column 3. Columns 1 and 2 replicate Appendix Table B11, using a subsample of observations

where the behavior measures that use pre-exam reports are not missing.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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C Additional Heterogeneities and Robustness Checks

C.1 Racial and Gender Discrimination

Table C1 presents the estimated bias in the non-blind math scores toward black pupils. Blacks’

average non-blind scores are 0.20 SD below than whites’ (column (1)). This gap falls drastically

(-0.03, s.e. 0.03) when we adjust for student proficiency captured by blind scores. Although

not precisely estimated, this point estimate is similar to the obtained by Botelho et al. (2015)

(-0.02, s.e. 0.005), which also analyze Brazilian students, though in a very different context. In

their study, 18% of the students are black. In ours, only 3%. A major difference is that we are

analyzing private schools, while they are studying public schools. This fact, associated with

the income gap between black and white people in Brazil, probably explains the lower share

of black students in our sample. They also evaluate a higher number of students, which allow

them to precisely estimate discrimination effects of -0.02 SD. Assuming this is the true effect,

considering our s.e. of 0.036, and fixing a 10% level test, our power is only 14%.

In Table C2 we present the estimated grading bias toward gender. Boys have advantages of

0.04 SD over girls in math test scores. This could indicate some favoritism toward boys. However,

by controlling for non-blind math grades we find evidence that boys’ math proficiency is under-

assessed by teachers. The grading bias is equivalent to a taxation of 0.04 SD in non-blind scores.

Our main estimate drops slightly when we control for student in-class behaviors, reflecting

a small correlation between these non-cognitive skills and gender, but remains statistically

different from zero. These findings are in line with several studies from the literature (e.g., Lavy

(2008); Falch and Naper (2013)).

Taken together, our results indicate that despite suggestive evidence of biases toward boys

and black students, results are much lower in comparison to discrimination toward behavior.
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Table (C1) Estimated biases in the non-blind math scores against black pupils

(1) (2) (3)

OLS IV IV

Black -0.205 -0.036 -0.040

(0.051)*** (0.034) (0.034)

Blind Math Score 0.974 0.946

(0.012)*** (0.012)***

BB (Pct. 75) -0.081

(0.013)***

GB (Pct. 75) 0.121

(0.015)***

Number of Observations 46974 46975 46975

Number of Clusters 9500 9500 9500

First-stage F Statistic 6351 5772

Note: This table reports student×exam-level OLS (column 1) and IV (column

2) regressions of teacher-assigned math scores on ethnicity. Black stands for a

binary variable that indicates whether student is black. We also control for

a binary variable that indicates whether student is Pardo, and for a binary

variable that indicates whether student is yellow, indigenous or has missing

data on ethnicity. The omitted category is white. BB(75pct.) and GB(75pct.)

stand for binary variables that indicate whether students are at the top quar-

tile of the math behavior measures’ distribution. In the IV estimates, lagged

blind math scores are used as instrumental variable for the current math scores.

Columns 2-3 also controls for past blind scores of language, science, and human-

ities. All specifications include classroom fixed effects and exams fixed effects.

Standard errors in parenthesis are robust and clustered at the student level.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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Table (C2) Estimated biases in the non-blind math scores against boys

(1) (2) (3)

OLS IV IV

Boy 0.038 -0.040 -0.027

(0.016)** (0.011)*** (0.011)**

BB (Pct. 75) -0.077

(0.014)***

GB (Pct. 75) 0.119

(0.015)***

Blind Math Score 0.977 0.949

(0.012)*** (0.012)***

Number of Observations 46974 46975 46975

Number of Clusters 9500 9500 9500

First-stage F Statistic 6394 5788

Note: This table reports student×exam-level OLS (column 1) and IV (col-

umn 2) regressions of teacher-assigned math scores on gender. BB(75pct.)

and GB(75pct.) stand for binary variables that indicate whether students

are at the top quartile of the math behavior measures’ distribution. In the

IV estimates, lagged blind math scores are used as instrumental variable for

the current math scores. Columns 2-3 also control for past blind scores of

language, science, and humanities. All specifications include classroom fixed

effects and exams fixed effects. Standard errors in parenthesis are robust

and clustered at the student level.

*** p < 0.01; ** p < 0.05; *p < 0.1.
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C.2 What are the behaviors driving the results?

Here we estimate heterogeneous effects for each of the behaviors. To do so, we calculate

disaggregated behavior measures. Take the behavior report “Dedication” as an example. Let

dis indicate the number of assessments i received under this category by a subject s teacher.

The measure Dedicationis is then defined as:

Dedicationis :=
dis

max{djs : j ∈ C(i)}
.

Figure C.1 presents our main estimates. In panel (a), we estimate the grading biases

toward each of the behaviors separately. Overall, the point estimates are similar, indicating that

they are all capturing correlated biases. Notice that in this case, the point estimates capture

both positive and negative discrimination. In panel (b), we estimate the effects using the same

regression model. The negative discrimination is driven by the disinterest of the students during

the class (-0.10, s.e. 0.2) and is followed by ‘Did not complete the required tasks’ (-0.04, s.e.

0.2). Conditioning on all the disaggregated behavior measures, cellphone use and excessive

talk do not seem to be factored by teachers in grades. The positive discrimination is driven by

dedication (0.15, s.e. 0.2), and is followed by participation during the class (0.06, s.e. 0.2). Point

estimate associated with good interaction with classmates is positive, though not statistically

different from zero (0.2, s.e. 0.2).
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Figure (C.1) Estimated biases toward each behavior

(a) Different regressions

Cellphone Use

Excessive Talking

Disinterest in the class

Didn't complete required tasks

Good Interaction with classmates

Dedication

Participation during the class

-.3 -.25 -.2 -.15 -.1 -.05 0 .05 .1 .15 .2 .25 .3
Estimated Bias

(b) Same regression

Cellphone Use

Excessive Talking

Disinterest in the class

Didn't complete required tasks

Good Interaction with classmates

Dedication

Participation during the class

-.2 -.15 -.1 -.05 0 .05 .1 .15 .2
Estimated Bias

Note: These figures plots student×exam-level IV regressions of teacher-assigned math scores on measures for

each classroom behavior. Panel (a) plots point estimates from different IV regressions on each behavior. Panel

(b) plots point estimates from an IV regression on all the behaviors. Both also plots 90% confidence intervals.

All regressions follow the same specification from Table 2, column 3.
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C.3 Biases in the Portuguese non-blind scores

Table (C3) Estimated biases in the non-blind Portuguese scores toward classroom behavior

(1) (2)

OLS IV

BB (Pct. 75) -0.259 -0.058

(0.021)*** (0.016)***

GB (Pct. 75) 0.406 0.088

(0.024)*** (0.017)***

Blind Portuguese Score 0.832

(0.046)***

Number of Observations 31042 31042

Number of Clusters 6525 6525

First-stage F Statistic 585.6

Note: This table reports student×exam-level OLS (column 1)

and IV (column 2) regressions of teacher-assigned Portuguese

scores on classroom behavior. BB(75pct.) and GB(75pct.)

stand for binary variables that indicates whether students are

at the top quartile of the Portuguese behavior measures’ dis-

tribution. Column 2 follows the same specification from Table

2, column 3.

** p < 0.01; ** p < 0.05; *p < 0.1.
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C.4 Alternative behavior measures

We start showing the results we obtain using the behavioral grades students receive at the

end of each semester. Table C4 shows that students at the top of the math behavioral grades’

distribution perform 0.54 points higher than others in non-blind math tests (column (1)). The

point estimate drops significantly when we control for the blind scores, but remain statistically

significant and high in magnitude (0.14, s.e 0.01). This amounts to 25% of the unconditional

gaps. It is also equivalent to an increase of 0.18 of one SD in blind math scores. Figure C.2

presents the results when we use the standardized scores as regressors. In addition, we show

that the results are similar if instead of using the math grades, we use the average grade from all

subjects. For both cases, we also show that estimating the biases in the non-blind scores from

the second semester, while using the behavioral grades from the first, leads to similar results.

We now use the pupils’ grades in the courses aimed at increasing their non-cognitive skills.

Table C5 shows that the average math grade of students in the top quartile of the non-cognitive

scores’ distribution is 0.46 SD above the others (column (1)). We also find statistically significant

results after controlling for student proficiency proxied by blind scores: 0.06 SD or 12% of the

unconditional gap (column (2)). Table C6 shows that the results are similar when we use the

continuous socio-emotional grades and slightly smaller we use only scores that precede the math

examinations.

Table (C4) Estimated biases in the non-blind math scores toward classroom behavior (using
behavioral grades)

(1) (2)

OLS IV

Behavior Score (Pct.75) 0.547 0.142

(0.019)*** (0.016)***

Blind Math Score 0.750

(0.030)***

Number of Observations 35701 35701

Number of Clusters 11948 11948

First-stage F Statistic 1212

Note: This table reports student×exam-level OLS (column

1) and IV (column 2) regressions of teacher-assigned math

scores on classroom behavior, measured by behavioral grades.

Behavior Score (75pct.) stands for a binary variable that in-

dicates whether students are at the top quartile of the math

behavioral grade. Column 2 follows the same specification

from Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1.

58



Figure (C.2) Estimated biases in the non-blind math scores toward in-class behaviors – using
the behavioral grades

Math

All Subjects

Math (Past Semester)

All Subjects (Past Semester)

0 .02 .04 .06 .08 .1
Estimated Bias

Note: This figure plots 90% confidence intervals and point estimates from student×exam-level IV regressions of

teacher-assigned math scores on classroom behavior, measured by behavioral grades. Math indicates the average

of the math grades through the year; All Subjects stands for the average of the grades from all subjects through

the year; Math (Past Semester) indicates the first-semester math grades; and All Subjects (Past Semester) stands

for the average of the first-semester grades from all subjects. In these last two cases, biases toward classroom

behavior are estimated using only the teacher-assigned math scores from the second semester.
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Table (C5) Estimated biases in the non-blind math scores toward classroom behavior – using
the socio-emotional scores

(1) (2)

OLS IV

Socio-emotional Score (Pct. 75) 0.466 0.057

(0.042)*** (0.026)**

Blind Math Score 0.893

(0.054)***

Number of Observations 9055 9055

Number of Clusters 1834 1834

First-stage F Statistic 341.5

Note: This table reports student×exam-level OLS (column 1) and IV

(column 2) regressions of teacher-assigned math scores on classroom

behavior, measured by grades from a non-cognitive skills course. Sotio-

emotional Score (75pct.) stands for a binary variable that indicates

whether students are at the top quartile of the grades from regular

courses designed to improve sotio-emotional skills. Column 2 follows

the same specification from Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1
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Table (C6) Estimated biases in the non-blind math scores toward classroom behavior – using
the continuous socio-emotional scores

(1) (2) (3) (4)

OLS IV OLS OV

Socio-emotional Score 0.345 0.067

(0.023)*** (0.016)***

Socio-emotional Score (Pre Exams) 0.296 0.051

(0.021)*** (0.015)***

Blind Math Score 0.890 0.892

(0.054)*** (0.054)***

Number of Observations 9055 9055 9055 9055

Number of Clusters 1834 1834 1834 1834

First-stage F Statistic 341.2 342

Note: This table reports student×exam-level OLS (column 1) and IV (column 2) regressions of teacher-

assigned math scores on classroom behavior, measured by grades from a non-cognitive skills course. Socio-

emotional Score stands for the average of the standardized scores that comes from grades in these courses.

Socio-emotional Score (Pre Exams) stands for the cumulative average of these scores. Column 2 follows

the same specification from Table 2, column 3.

*** p < 0.01; ** p < 0.05; *p < 0.1
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