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Abstract 

What happens when information reaches the human brain? In economics, a black box 

approach to information absorption is generally taken with an implicit assumption that, 

information, once it reaches the brain, is correctly processed. In sharp contrast, research in 

brain sciences has established that when information reaches the brain, a pre-existing 

knowledge structure or schema is first activated, which influences information absorption. 

The process through which these knowledge structures are created is resource intensive. It 

involves using a pre-existing schema as a starting point and attempting to adjust it 

appropriately by using finite brain resources. We apply this approach to the thinking process 

of investors trying to work out the worth of various stocks. We show that with a binding 

resource constraint, a new multiplicative term emerges on the right-hand-side of the standard 

Sharpe-ratio expression in asset pricing. This new term provides a unified explanation for the 

equity premium puzzle, generates countercyclical equity premia, and gives rise to size, value, 

and momentum effects. A novel prediction of the approach is negative correlation of 

momentum with value and size. 
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Resource Allocation in the Brain and the Equity Premium Puzzle 

 

When happens when information reaches the brain? In economics, a black box approach to 

information absorption is generally taken with an implicit assumption that, information, once 

it reaches the brain, is correctly absorbed. In sharp contrast, research in brain sciences has 

established that, when information reaches the brain, some relevant pre-existing knowledge 

structure (referred to as a schema) is activated, which plays a critical role in how the new 

information is absorbed.1 How are these pre-existing knowledge structures or schemas 

created? Brain imaging studies show that schema construction is a resource-intensive process 

that involves different regions of the brain talking to each other2; however, these schemas, 

once formed, make subsequent processing of schema-consistent information a lot faster.3  

Schemas, once established, are resistant to change and many large prediction errors are 

necessary before a change is considered.4 In this article, we incorporate this richer view from 

brain sciences into asset pricing, and show that a plausible resolution of the equity premium 

puzzle emerges. The approach developed here leads to equity premia that are countercyclical 

along with features akin to size, value, and momentum effects. A novel prediction of the 

approach is as follows: Momentum effect is negatively correlated with value and size.  

 A schema is a pre-existing knowledge structure that serves as a scaffold or a 

blueprint.5 Neurologically, it is a brain template that involves systems of neurons across 

various brain regions talking to each other, with each system constituting a particular unit in 

the schema. That is, schemas contain units as well as relationships between these units. For 

example, for a car schema, units could be car body and wheel, with the relationship that car 

body contains four wheels. For a family schema, the units could be two adults and children 

with the relationship that adults are parents of children. Schemas, by only containing the 

essential details, simplify the world. They direct attention to relevant aspects, and speed-up 

processing of information that fits within the schema. 

 
1 There is a large body of literature in neuroscience that explores various facets of schemas and how they 

influence information absorption (for a review, see van Kesteren et al (2012), Gilboa and Marlatte (2017), 

Spalding et al (2015) and references therein).  
2 See Ohki and Takei (2018) and references therein.  
3 Sweegers et al (2015), van Kesteren et al (2014) 
4 See van Kesteren and Meeter (2020) for a review of relevant neuroscience research.  
5 See Hampson and Morris (1996) or Anderson (2000) for a detailed review of schema theory. 



3 

 

Brain only weighs about 2% of the body weight; however, it consumes over 20% of body’s 

energy intake. A third of brain’s energy need is spent on brain cell and tissue maintenance, 

with the remaining two-third (13% - 14% of body’s typical energy intake) allocated to 

information processing. However, considerably less brain resources are needed for 

information that fits within an existing schema.6 Information that does not fit within any pre-

existing schema is likely to be ignored; however, if its salience does not allow it to be 

ignored, then a new schema may be constructed. Schema construction is a resource intensive 

process, with the brain typically using a related pre-existing schema as a starting point and 

then spending resources in an attempt to appropriately adjust it. For example, a child initially 

may only have a horse schema (large with four legs and a tail). However, if she encounters a 

cow, then the horse schema may be modified to create a cow schema. Brain organizes 

knowledge in a series of such inter-connected schemas. 

 In this article, we explore the implications of such a schema-creation process for asset 

pricing. If an investor analyses a firm for which she does not have a pre-existing schema, then 

she may use the schema of a similar firm that she had analysed earlier as a starting point and 

attempt to appropriately adjust it. How far the adjustment process goes depends on high 

tightly the resource constraint in the brain binds. For simple schemas, such as for a cow or a 

horse, the resource-constraint is not likely to be binding with full adjustment reached; 

however, for sufficiently complex schemas such as that of a firm, the resource constraint is 

expected to bind.  

 Research in brain sciences has established that there is brain specialization with 

different brain systems performing different tasks and competing for scarce resources that are 

allocated by a ‘central executive system’ (CES) located in the lateral prefrontal cortex (see 

Alonso et al (2014) and references therein).  This suggests that, while modifying an existing 

schema to create a new one, each unit in a schema is exclusively worked on by a distinct 

system of neurons. Each system makes demands for resources with task performance 

dependent on resource allocation.  Arguably, the two units in the schema of a firm are 

expected cashflows and the risk of the cashflows, with a different system of neurons working 

on each and making resource demands to CES. Given the central importance of expected 

cashflows in asset pricing (Basu 2013), and also because expected cashflow level is an input 

in any measure of risk (for example, volatility is based on deviations from the mean, so need 

 
6 van Kesteren et al (2012), Gilboa and Marlatte (2017). 
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to know the mean to calculate volatility), arguably, relatively more brain resource are 

allocated to the system of neurons working on expected cashflows. Formally incorporating 

this train of thought in asset pricing leads to some startling results and potentially resolves 

several key asset pricing puzzles with just one idea, including the equity premium puzzle. 

Related research includes Alonso et al (2014) who present a general model of resource 

allocation in the brain, and Siddiqi (2020) who present a modification of the capital asset 

pricing model when the brain is resource constrained.  

 

2. Asset Pricing 

We take the standard consumption-based asset pricing approach and add a twist to it: schema-

creation. As standard, we assume that investor behavior is accounted for by a representative 

investor who maximizes utility over current and future consumption: 𝑈(𝑐𝑡, 𝑐𝑡+1) = 𝑢(𝑐𝑡) + 𝛽𝐸𝑡[𝑢(𝑐𝑡+1)]                                                                                             (2.1) 

where 𝑐𝑡 is consumption at 𝑡.  

Using 𝑤𝑡 to denote investor wealth at 𝑡, 𝑝𝑖𝑡 to denote price of stock 𝑖 at 𝑡, 𝑛𝑖 for the number 

of shares of stock 𝑖 in the portfolio, and 𝑥𝑖𝑡+1 to denote the payoff from 𝑖 at 𝑡 + 1: 

𝑐𝑡 = 𝑤𝑡 − ∑ 𝑛𝑖𝑝𝑖𝑡𝑖  

𝑐𝑡+1 = 𝑤𝑡+1 + ∑ 𝑛𝑖𝑥𝑖𝑡+1𝑖  

The above utility maximization results in the following key asset pricing equation: 

𝑝𝑖𝑡 = 𝐸𝑡 [𝛽 𝑢′(𝑐𝑡+1)𝑢′(𝑐𝑡) 𝑥𝑖𝑡+1] = 𝐸𝑡[𝑀𝑡+1𝑥𝑖𝑡+1]                                                                              (2.2) 

where 𝑀𝑡+1 = 𝛽 𝑢′(𝑐𝑡+1)𝑢′(𝑐𝑡)  is the stochastic discount factor/marginal rate of substitution. If the 

gross risk-free return is 𝑅𝐹, then it follows that: 𝐸𝑡[𝑀𝑡+1] = 1𝑅𝐹 

(2.2) can be expanded as: 

𝑝𝑖𝑡 = 𝐸𝑡[𝑥𝑖𝑡+1]𝑅𝐹 + 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑖𝑡+1)                                                                                             (2.3) 
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2.1 Schema Creation 

When an investor analyses a firm for the first time, a schema for the firm may be created by 

modifying an existing schema associated with a similar firm that had been analysed earlier. 

As discussed in the introduction, such schema creation is a resource intensive process where 

finite brain resources are allocated across multiple tasks. As stock analysis is typically done 

at firm-level cashflows before scaling down to the level of an individual stock, we assume 

that a schema is created at the level of firm cashflows as well.  

 Generalizing from (2.3), the schema for firm-value is as follows: 

𝑉𝑎𝑙𝑢𝑒 =  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝑠𝑅𝑖𝑠𝑘𝐹𝑟𝑒𝑒 𝑟𝑎𝑡𝑒 + 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤 𝑅𝑖𝑠𝑘 

If an investor analyses a firm, 𝑠, for the first time, she may use the pre-existing schema of a 

similar firm, 𝑞 (analysed earlier), as a starting point, and use brain resources in an attempt to 

appropriately adjust the schema.  

Defining cashflows of firm 𝑞 by 𝜋𝑞, and cashflows of firm 𝑠 by 𝜋𝑠, the adjustments are given 

by: 𝐸𝑡′[𝜋𝑠] = 𝐸𝑡[𝜋𝑞] − 𝑧1𝐷1                                                                                                                   (2.4) 𝐶𝑜𝑣𝑡′(𝑀𝑡+1, 𝜋𝑠) = 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝜋𝑞) − 𝑧2𝐷2                                                                                 (2.5) 

where 𝐷1 = 𝐸𝑡[𝜋𝑞] − 𝐸𝑡[𝜋𝑠] , 𝐷2 = 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝜋𝑞) − 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝜋𝑠), 0 ≤ 𝑧1 ≤ 1, and 0 ≤ 𝑧2 ≤ 1. 

If the resource constraint is not binding then 𝑧1 = 𝑧2 = 1, and the pre-existing schema-units 

belonging to 𝑞 are appropriately adjusted to create the new schema-units for 𝑠: 𝐸𝑡′[𝜋𝑠] = 𝐸𝑡[𝜋𝑠]     and   𝐶𝑜𝑣𝑡′(𝑀𝑡+1, 𝜋𝑠) = 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝜋𝑠) 

However, with a binding resource constraint, how the brain resources are allocated between 

the two schema-units matters. Given the central importance of expected cashflows in the 

schema (can’t even begin to calculate covariance of cashflows without figuring out expected 

cashflows first), we make the reasonable assumption that more brain resources are allocated 

to the system of neurons working on expected cashflows. That is, we assume that 𝑧1 > 𝑧2. 

Without loss of generality, we set 𝑧1 = 1. It follows that 𝑧2 = 𝑧 < 1. 
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Dividing (2.5) by the number of shares of 𝑠 outstanding, 𝑛𝑠∗: 𝐶𝑜𝑣𝑡′(𝑀𝑡+1, 𝐸𝑃𝑆𝑠)= 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝐸𝑃𝑆𝑞) 𝑛𝑞∗𝑛𝑠∗ − 𝑧 {𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝐸𝑃𝑆𝑞) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝐸𝑃𝑆𝑠)} 

where 𝐸𝑃𝑆𝑠 = 𝜋𝑠𝑛𝑠∗  and  𝐸𝑃𝑆𝑞 = 𝜋𝑞𝑛𝑞∗  

The above can be simplified further as: 𝐶𝑜𝑣𝑡′(𝑀𝑡+1, 𝐸𝑃𝑆𝑠)= 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝐸𝑃𝑆𝑠) + (1 − 𝑧) {𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝐸𝑃𝑆𝑞) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝐸𝑃𝑆𝑠)} 

Again, following the behavior of professional stock analysts, we define the notion of similar 

firms as: 

1) In the same line of business 

2) With similar price-to-earnings ratios (inclusive of dividends): 𝑐𝑠 ≈ 𝑐𝑞 = 𝑐 

It follows that: 𝐶𝑜𝑣𝑡′(𝑀𝑡+1, 𝑐𝐸𝑃𝑆𝑠)= 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑐𝐸𝑃𝑆𝑠)+ (1 − 𝑧) {𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑐𝐸𝑃𝑆𝑞) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑐𝐸𝑃𝑆𝑠)} 

 𝐶𝑜𝑣𝑡′(𝑀𝑡+1, 𝑥𝑠𝑡+1)= 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠𝑡+1) + (1 − 𝑧) {𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑞𝑡+1) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠𝑡+1)} 

                                                                                                                                                                  (2.6) 

where 𝑥𝑠𝑡+1 = 𝑝𝑠𝑡+1 + 𝑑𝑠𝑡+1 and 𝑥𝑞𝑡+1 = 𝑝𝑞𝑡+1 + 𝑑𝑞𝑡+1 

This approach captures two key features of resource allocation in the brain (see Alonso et al 

(2014)): 

1) When a new schema is created by modifying an existing schema, the process is broken 

down into separate tasks, with each unit worked on by a separate system of neurons. Each 
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system communicates its resource requirements to CES, which allocates finite brain resources 

between systems. 

2) The resource constraint is generally binding for complex schemas with task performance 

dependent on how much of resources are allocated to that particular task. 

Substituting (2.6) in (2.3): 

𝑝𝑠𝑡 = 𝐸𝑡[𝑥𝑠𝑡+1]𝑅𝐹 + 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠𝑡+1)
+ (1 − 𝑧) {𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑞𝑡+1) 𝑛𝑞∗𝑛𝑠∗ − 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠𝑡+1)}                             (2.7) 

 𝐸𝑡[𝑅𝑠𝑡+1] − 𝑅𝐹 = − 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠𝑡+1)𝑝𝑠𝑡𝐸𝑡[𝑀𝑡+1] {𝑧 + (1 − 𝑧) 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑞𝑡+1)𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠𝑡+1) 𝑛𝑞∗𝑛𝑠∗} 

Substituting 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠𝑡+1) = 𝜌𝑠𝜎(𝑀𝑡+1)𝜎(𝑥𝑠𝑡+1) and 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑞𝑡+1) =𝜌𝑞𝜎(𝑀𝑡+1)𝜎(𝑥𝑞𝑡+1) and simplifying: 𝐸𝑡[𝑅𝑠𝑡+1] − 𝑅𝐹𝜎(𝑅𝑠𝑡+1) = − 𝜌𝑠𝜎(𝑀𝑡+1)𝐸𝑡[𝑀𝑡+1] {𝑧 + (1 − 𝑧)𝑒 𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1) }                                              (2.8) 

where 𝑒 = 𝜌𝑞𝜌𝑠 

(2.8) relates the Sharpe-ratio of stock 𝑠 with volatility of the stochastic discount factor, 𝜎(𝑀𝑡+1).  

As can be seen from (2.8), adjusting for schema-creation has added a new multiplicative term 

on the right-hand-side in the standard Sharpe-ratio expression of asset pricing. The term is: 

𝑓 = 𝑧 + (1 − 𝑧)𝑒 𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1)  

(2.8) converges to the classical Sharpe-ratio expression if the resource constraint in the brain 

is not binding. That is, when 𝑧 = 1.  

 The multiplicative term 𝑓 does all of the heavy lifting in what follows. It is a weighted 

average of 1 and a ratio (standard deviation of firm 𝑞 market cap divided by standard 

deviation of firm 𝑠 market cap). Investor and analyst attention is highly asymmetric with 

most of the time spent on large, prominent firms (Fang and Peress 2009). Such prominent 
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firms (with large market capitalisations) are expected to spawn schemas for other firms. 

Hence, 
𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1) ≫ 1. This implies that 𝑓 ≫ 1.  

 

2.2 The Equity Premium Puzzle 

(2.8) provides a plausible quantitative solution to the equity premium puzzle (Mehra and 

Prescott 1985). In the US, historical equity premium has been between 4% to 8% with a 

standard deviation of around 16% on average (Cochrane 2017). Using 6% as the equity 

premium, the left-hand-side of (2.8) is 0.375. Using 𝜌𝑠 = −0.5, (2.8) simplifies to: 

0.75 = 𝜎(𝑀𝑡+1)𝐸𝑡[𝑀𝑡+1] {𝑧 + (1 − 𝑧)𝑒 𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1) }                                                                            (2.9) 

Assuming power utility, and as standard practice, assuming lognormal consumption growth, 

it follows that:  𝜎(𝑀𝑡+1)𝐸𝑡[𝑀𝑡+1] ≈ 𝛾𝜎(∆𝑙𝑛𝑐) 

where 𝛾 is the coefficient of risk-aversion. 

In the US post war data, aggregate consumption growth has been around 2% (Cochrane 

2017). Plugging these in (2.9): 

0.75 = 𝛾0.02 {𝑧 + (1 − 𝑧)𝑒 𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1) } 

 37.5 = 𝛾 {𝑧 + (1 − 𝑧)𝑒 𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1) }                                                                                   (2.10) 

Using the constituent stocks in the S&P 500 index as a proxy for firms that spawn the 

schemas for other firms, the average market cap of a 𝑞 firm is around $55 Billion (Dec. 

2019). With standard deviation of market cap, conservatively estimated to be 10%, 𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1) = $5.5 Billion. Excluding the top 500 firms, the average market cap of the 

remaining 1900 firms in NYSE is no more than $3 Billion (Dec. 2019). With standard 

deviation of market cap at around 10%, 𝜎(𝑛𝑠∗𝑥𝑠𝑡+1) = $0.3 Billion. Setting 𝑒 = 2 , and 𝑧 =0.5, it follows that 𝛾 ≈ 2. Hence, the observed high equity risk-premium can be reconciled 

with the consumption-based model with low risk-aversion when asset prices are adjusted for  
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Table 1 

Risk-Aversion Coefficient and the Tightness of the Resource Constraint in the Brain 

Risk-Aversion Coefficient (𝜸) Resource Constraint Parameter (𝒛) 

1.02 0.0 

1.13 0.1 

1.27 0.2 

1.44 0.3 

1.67 0.4 

1.99 0.5 

2.46 0.6 

3.21 0.7 

4.61 0.8 

8.21 0.9 

37.5 1.0 

 

resource allocation in the brain. A key parameter here is how tightly the resource constraint 

binds with a tighter resource constraint (low 𝑧) lowering the risk-aversion needed to reconcile 

theory with data. Table 1 shows this relationship for various levels of tightness. Table 1 

shows that when the resource constraint in the brain does not bind (𝑧 = 1), we are back to 

classical (schema-free) asset pricing approach with a high risk-aversion coefficient is needed 

(37.5) to match theory with data. On the other hand, when the resource constraint is at its 

tightest (𝑧 = 0), the level of risk-aversion coefficient needed is quite small (1.02). With the 

resource constraint biding at 0.5 to 0.7 level, the required risk-aversion coefficient is in 1.99 

to 3.21 range.   

 

2.3 Equity Risk-Premium is Countercyclical 

Empirical evidence shows that the equity risk premium is countercyclical. For example, 

Harvey (1989) showed that US equity risk premia are higher at business cycle troughs than 

they are at peaks. Similar results are reported in Bekaert and Harvey (1995), He, Kan, Ng and 

Zhang (1996) and Li (2001) among others. With asset pricing adjusted for resource allocation 

in the brain, the countercyclical nature of the equity risk-premium can be seen from (2.8) by 



10 

 

realizing that 𝑓 = 𝑧 + (1 − 𝑧)𝑒 𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1)  is countercyclical. This is because smaller firms are 

hit harder in recessions when compared with larger firms (Lai et al 2016, Sahin et al 2011). 

Consequently, the market capitalizations of smaller firms generally decline by a larger factor. 

Using 𝑔𝑞 and 𝑔𝑠 to denote the factors by which market capitalizations of 𝑞 and 𝑠 firms 

decline: 𝑔𝑠 > 𝑔𝑞. 

It follows that: 
𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1𝑔𝑞 )𝜎(𝑛𝑠∗𝑥𝑠𝑡+1𝑔𝑠 ) > 𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1)  which implies that 𝑓 is larger in bad times. 

 

2.4 The Size Effect 

The size effect can be seen directly from the Sharpe-ratio expression derived under the 

schema-creation approach (equation 2.8): 𝐸𝑡[𝑅𝑠𝑡+1] − 𝑅𝐹𝜎(𝑅𝑠𝑡+1) = − 𝜌𝑠𝜎(𝑀𝑡+1)𝐸𝑡[𝑀𝑡+1] 𝑓 

where  𝑓 = 𝑧 + (1 − 𝑧)𝑒 𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1)  

All else equal, smaller the market capitalization, 𝑛𝑠∗𝑥𝑠𝑡+1, larger the value of 
𝜎(𝑛𝑞∗ 𝑥𝑞𝑡+1)𝜎(𝑛𝑠∗𝑥𝑠𝑡+1) . 

Hence, 𝑓 is higher for a small cap stock when compared with a large cap stock. Hence, the 

size effect emerges naturally.  

 

2.5 The Value Premium 

Value premium is the robust empirical finding that stocks with low price to fundamentals 

outperform stocks with high price to fundamentals. In the approach developed here, value 

premium also emerges quite naturally. Two stocks with the same fundamentals may have 

different prices if the pre-existing schemas that were modified to create the new schemas for 

the two stocks are different. Consider two stocks, 𝑠 and 𝑠′, that have the same cashflow 

fundamentals: 𝐸𝑡[𝑥𝑠] = 𝐸𝑡[𝑥𝑠′] and 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠) = 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠′). 
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 If 𝑝𝑠 < 𝑝𝑠′  then it must be: 

 |𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑞) 𝑛𝑞∗𝑛𝑠∗| > |𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑞′) 𝑛𝑞′∗𝑛𝑠′∗ |.  


|𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑞) 𝑛𝑞∗𝑛𝑠∗||𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠)| > |𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑞′) 𝑛𝑞′∗𝑛𝑠′∗ ||𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑠′)|  

 𝑒𝑠 𝜎(𝑛𝑞∗ 𝑥𝑞)𝜎(𝑛𝑠∗𝑥𝑠) >  𝑒𝑠′ 𝜎(𝑛𝑞′∗ 𝑥𝑞′)𝜎(𝑛𝑠′∗ 𝑥𝑠′)  

 𝑓 > 𝑓′ 
Hence, 𝑓 is larger for the stock with lower price to fundamentals. This is the value premium. 

 

2.5 The Momentum Effect 

Momentum effect refers to the empirical finding that stocks that have done well (poorly) 

recently continue to do well (poorly) over short horizons into the future (6 months or so) 

(Jagadeesh and Titman 1993). An intriguing explanation arises for momentum effect with 

schema creation. As schema-creation is a resource intensive process, schemas, once created 

are unlikely to be changed, unless there is are reasons for change such as many large 

prediction errors. It is easy to see that using schemas generate stock price predictions that are 

rank-order correct (one can see this directly from 2.7). That is, more risky stocks are priced 

lower than less risky stocks. This is a pretty good showing given the resource constraint in 

the brain, not only leading to economizing of resources between units within a schema, but 

also across schemas of various stocks.  

 However, unexpected superior performance of a small set of stocks may lead to a re-

allocation of more brain resource towards their schemas. For example, a positive return shock 

(momentum winners) may attract more attention from investors. Higher attention may lead to 

more brain resources being directed to the schemas of such stocks, pushing up 𝑧. As 𝑧 rises, 

stock price rises (when payoff and discount factor are negatively correlated as expected for 

most stocks) in (2.7). This is the momentum effect.  

 If momentum effect is indeed associated with more brain resources being directed to 

winners to update their schemas, then it immediately follows that momentum effect must be 
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negatively correlated with both value and size effects. This is because a higher 𝑧, which gives 

rise to momentum, makes both value and size weaker, as 𝑓 falls when 𝑧 rises. Hence, the 

schema adjusted model can be falsified empirically if these negative correlations are not 

observed in the data. Empirical evidence has uncovered such negative correlations (Asness et 

al 2013, Rabener 2017), which are quite strong for value-momentum pair.  

 

3. Conclusions and Discussion 

This article shows that one, relatively simple adjustment, to the standard asset pricing 

approach goes a surprisingly long way. The adjustment is based on the findings from brain 

sciences that, when information reaches the brain, a pre-existing knowledge structure or 

schema is first activated, which influences information absorption. The process of schema-

construction is a resource intensive process, which uses a pre-existing schema as a starting 

point and attempts to adjust the relevant units by spending finite brain resources. We apply 

the same approach to the thinking process of investors trying to work out the worth of various 

stocks. We show that with a binding resource constraint, a new multiplicative term emerges 

on the right-hand-side of the standard Sharpe-ratio expression in asset pricing. This new term 

provides a unified explanation for the equity premium puzzle, generates countercyclical 

equity premia, and gives rise to size, value, and momentum effects. A novel prediction of the 

approach is negative correlation of momentum with value and size.  
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