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Abstract. Biologically important but dangerous wildlife creatures encroach into cities, 

which causes human-wildlife conflicts. To explore the effect of the encroachment of wildlife 

into cities on equilibrium land use and its efficiency, we develop an equilibrium theory of 

land used for humans and wildlife by combining an ecosystem model with urban economics 

model. Humans choose their housing location and size in response to the risk of 

encountering wildlife in cities, and animals optimize their food intake by spreading out in 

response to heterogeneous feeding grounds in both urban areas and natural habitats, which 

determines the spatial heterogeneous distribution of both agents. We first prove the existence 

and uniqueness of the spatial equilibrium in a linear city adjacent to natural habitats. Next, 

our theory provides new insights for the wildlife conservation: (i) this spatial heterogeneity 

generates inefficient predator-prey interactions, leading to an inefficient steady state 

population equilibrium of animals; (ii) With the spatial inefficiency, the equilibrium city size 

is not always too big. We numerically demonstrate how both the equilibrium and the optimal 

solution are affected by the scale of conflicts and the value of wildlife. 
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1. Introduction 
While wild animals constitute biodiversity and thus bring a positive externality that has 

public goods charactristics, they bring about negative externalities when they approach 

people. For example, some wildlife—large carnivores, mosquitoes, and so on—encroach 

into cities and harm humans or pets through injury, infectious deseases, and, in extreme 

cases, loss of life (Penteriani et al., 2016).1 Indeed, in many cities worldwide, conflicts 

between people and urban beasts are reported. For example, Rome has a problem with wild 

boars; wolves mingle with suburban Gemans; mountain lions frequent Los Angeles (The 

Guardian, 2017).2 Therefore, a certain distance between humans and wildlife is important to 

resolve human–wildlife conflicts and conserve biological resources efficiently.3 

This paper develops a novel model considering spatial density of land use of humans and 

an ecosystem, and studies the existence and uniqueness of an equilibrium where wildlife 

interacts with humans within cities. In addition, we investigate how animal behavior, 

residents’ location choice, and city size deviate from the first-best social optimum where the 

social planner controls all endogenous variables including animal behavior. This exploration 

is indispensable for making ecological and urban policies such as land use regulations.4  
 

1 According to World’s Deadliest Animals (reporting the number of people killed by animals per year) 
mosquitoes carrying malaria kill 830,000 humans every year and are the deadliest animal on earth. See 
https://www.gatesnotes.com/Health/Most-Deadly-Animal-Mosquito-Week-2016 (accessed November 29, 
2017) 
2 The Guardian (May 2017) further reports “All around the world, city life seems to be increasingly 
conducive to wildlife. Urban nature is no longer unglamorous feral pigeons or urban foxes. Wolves have 
taken up residence in parts of suburban Germany as densely populated as Cambridge or Newcastle. The 
highest density of peregrine falcons anywhere in the world is New York; the second highest is London, 
and these spectacular birds of prey now breed in almost every major British city. And all kinds of wild 
deer are rampaging through London, while also taking up residence everywhere from Nara in Japan to the 
Twin Cities of the US.” 
3 The WWF report identifies basic list of available and tested solutions for human–wildlife conflicts. One 
solution is land-use planning that ensures that both humans and animals have the space they need is possible. 
For example, protecting key areas for wildlife, creating buffer zones and investing in alternative land uses are 
some of the solutions. See https://wwf.panda.org/our_work/wildlife/human_wildlife_conflict/ (accessed 
Jaunuary 25, 2019) 
4 In reality, we cannot effectively allocate all natural resources including animals’ behavior. However, it may 
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It is recognized that biodiverisity provides humans with important benefits.5 However, 

nations worldwide have experienced urban land expansion, reducing the size of the natural 

habitats, which leads to biodiversity loss (e.g. Pidgeon et al., 2007; Radeloff et al., 2010; 

Seto et al., 2012). Weitzman (1992) and Solow et al. (1993) attempt to value the biodiversity 

based on the genetic distance. Brock and Xepapadeas (2003) develop a conceptual 

framework for valuing biodiversity in terms of ecosystem services. Moreover, some studies 

analyze what size of habitat must remain to sustain the ecosystem service (e.g. Walker, 2001; 

Eppink et al., 2004). On the other hand, protection or extermination of certain species by 

humans might have unexpected results such as an extinction of other species. To optimally 

control biological resources, we need to integrate an economic model and an ecosystem 

having predator-prey interactions. 

The work of integrating the micro-founded ecosystem model with the economic model 

was initiated by Eichner and Pethig (2006, 2009). They apply the ecosystem model that has 

been developed in the ecological literature (e.g. Hannon, 1976; Crocker and Tschirhart, 

1992; Tschirhart, 2000). Eichner and Pethig (2006, 2009) focus on land use competition 

between wildlife and humans, implying that the sizes of both natural habitat and land used 

 
be possible for humans to change the animals’ behavior at least to some extent by using some policies such as 
fences and food traps to attract the animals. If we take some concrete second-best measures, we can evaluate 
how useful these are. Yoshida and Kono (in press) analyze how close the social welfare approaches the ideal 
first best optimum by adopting the second-best land use policies. Environmental management through land use 
policy has been widely studied. The effects of urban land use and transportation policies on the energy footprint 
have been explored by Larson, Liu, and Yezer (2012), Larson and Yezer (2015), and Borck (2016). The optimal 
energy taxation and its effect on urban spatial structure has been studied by Borck and Brueckner (2018). 
Brueckner (2000) presents a simple framework in which urban expansion reduces the amount of open space 
available, so that equilibrium cities are too large. The externality in his paper is driven by the amenity value of 
undeveloped land. So, it is interpreted as benefits from wildlife preservation. The effects of land use regulation 
on the wildlife preservation through changes in the spatial land use of animals have not been considered by the 
previous papers. 
5 The Millennium Ecosystem Assessment (2005) reports that ecosystem services can be classified into four 
categories: provisioning services (e.g. food and fresh water), regulating services (e.g. climate regulation and 
disease control), cultural services (e.g. landscape esthetics and recreation), and supporting services (e.g. 
nutrient cycling and soil formation). 
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by humans are endogenously determined. They show that the optimal city size is smaller 

than the laissez-faire equilibrium city size because an increase in natural habitats can 

maintain the supply of ecosystem services to humans.6 

The externalities identified in these previous papers are independent of spatial land use 

of humans and wild animals. But in a real city, they influence each other, and the degrees of 

their influences depend on their spatial land use. For example, some species inhabit not only 

suburban areas but also developed areas (Woodroffe et al., 2005). For example, foxes in 

London and coyotes in Chicago and California sometimes attack domestic animals and 

residents, and bloodsucking mosquitoes and mites infect humans. These are negative 

externalities which must be reduced by keeping some distance between humans and wildlife. 

We summarize the arguments as follows. The value of a species depends on its distance 

from humans. When humans and wildlife are close to each other, a negative externality such 

as injury and loss of life may occur. The amount of the externality depends on the duration of 

their coexisttence in the same place, the number of species entering urban areas, and human 

population density. To solve the human-wildlife conflict, a distance dimension, which has 

been absent in previous models, is required.  

This paper focuses on modeling the above-mentioned mechanisms to identify location- 

dependent market failures in urban areas and natural habitats. Technically, we add a 

continuous distance dimension to the urban-habitat-allocation model of Eichner and Pethig 

(2006, 2009), extending the traditional urban economic model (e.g. Alonso, 1964) to have 

natural habitats with animals.7 To explicitly model the spatial distribution of wild animals, 

we introduce a time density as the population density of wildlife at each location. This 
 

6 In the study of Eichner and Pethig (2006), the social planner solves her maximization problem by taking the 
individual organism’s behavior as given.  
7 In Eichner and Pethig (2006, 2009), the urban area is used only for production of composite goods. However, 
to handle the human-wildlife conflict, we consider residential districts. So, we use the urban economics model. 
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indicates the total amount of time that an animal spends at each point in one year.  

To take the effects of the interaction between certain species and humans on other 

species into account, we consider a food chain of three species: plants as a producer, 

herbivores feeding on plants, and carnivores feeding on herbivores. All of the animals 

behave so as to maximize their net offspring, as in Eichner and Pethig (2006, 2009). To 

generate the offspring, the animal searches the habitat for prey species, while trying to avoid 

encountering predators. In other words, the animal chooses its favorable time density so as to 

maximize its net offspring, taking the other species’ time densities as given, subject to a time 

constraint.8 Carnivores search the city for human-related sources of food such as garbage.9 

Then, humans have disutility of a risk of encountering carnivores. On the other hand, they 

benefit from ecosystem services depending on the numbers of all species.  

To consider of the dynamic population of wildlife in the simplest possible way, we 

employ a traditional dynamic population growth model called the Lotka-Volterra model, and 

we put the wildlife behavior into the model. This enables us to focus on a steady-state 

population equilibrium, and to show how the complex human-wildlife interactions affect the 

population equilibrium through the food chain. 

Finally, we explore characteristics of market failures in terms of the time density of 

animals at each location by comparing the first-best optimum with the equilibrium. We find 

that i) there exists a unique equilibrium in the model; ii) unless the plant densities are 

spatially uniform, the animals’ behavior deviates from the first-best optimum at each 

location within not only cities but also the natural habitat; iii) the first-best optimal city size 

 
8 In Eichner and Pethig (2006, 2009), the animal is assumed to trade his/her own biomass in a virtual 
competitive market. But, we do not follow this idea because the time constraint is more natural for animals. 
9 The geographic distribution of coyotes has expanded dramatically across North and central America (Hody 
and Kays, 2018), and their presence in urban areas has often elicited concern from the public (Gehrt, 2009, 
Baker and Timm 2017). Fedriani et al. (2001) found human-related foods in as much as 25% of coyote diets in 
areas of high human population densities in southern California. 
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can be larger or smaller than the equilibrium city size. 

The paper is organized as follows. Section 2 combines a closed monocentric city with an 

ecosystem model. Section 3 shows the existence and uniqueness of equilibrium allocation. 

Section 4 defines the first-best optimum, then derives the values of species and their 

components, and it shows how the animals’ and humans’ behavior bring about market 

failures. Section 5 shows numerical simulations. The final section concludes the paper. 

 

2. The Model 
2.1 City and natural habitat 

Consider a closed monocentric city adjacent to a natural habitat. There are 2 hN  identical 

households in the city and land is equally owned by the city residents.10 For simplicity, the 

city population equals the number of households. The city is linear with the width of one 

unity, and the size is defined by [ ,Z ]H Hx Z  , where x denotes a distance from the city 

center, and HZ  is an urban boundary. The city is symmetric, and the right hand side (RHS, 

hereafter) has hN  population. We ignore the production of housing and assume that land is 

directly used by residents. Households do not enter the habitat.  

There is an ecosystem in the habitat. In order to represent the ecosystem in the simplest 

possible framework, we suppose a food-chain of three species indexed by i: carnivores (i = 

3) feed on herbivores (i = 2), herbivores feed on plants (i = 1), and plants take up nutrients 

from the land. The populations are denoted by 1 2 3{ , , }N N NN . All animals or organisms 

belonging to the same species are assumed to be identical. 

Carnivores and herbivores search the habitat for prey species, and eat prey species when 

 
10 This is a typical urban economics model, which is referred to as the closed-city model under public 
landownership (CCP) by Fujita (1989). 
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meeting them. Suppose that only carnivores leave the habitat up to location [0,  ]HX Z  in 

the residential area to seek human-origin food such as garbage. X is endogenously 

determined. Closer to the CBD, the availability of garbage to carnivores increases because of 

an increase in human population density, whereas the risk of being killed by people increases 

with time spent in the city. Carnivores determine their search boundary X by equalizing the 

marginal benefit with respect to distance to the marginal cost.  

The land is divided into the following three zones: (i) a point central business district (a 

point CBD) ( 0x  ), (ii) housing zone (called the human zone) ( [0, ]Hx Z ), and (iii) the 

natural habitat (called the animal zone) ( [ ,  ]H Ax Z Z ), where AZ  is the boundary of the 

natural habitat. Superscript H indicates the human zone, and A indicates the animal zone 

throughout the paper. Following a real land use pattern, the geographical pattern is assumed 

as depicted in Figure 1, which shows only the right hand side of the land.11 We model each 

agent’s behavior for one year in a steady state. 

[Figure 1 here] 

2.2 Ecosystem model  

An individual animal or organism of species i, called individual i for short, behaves so as to 

maximize its net offspring, as set in some papers including Eichner and Pethig (2006, 2009). 

This behavior is supposed to be essential for continuation of a species. To produce offspring, 

individual i feeds on prey species to take in nutrients, while trying to avoid encountering its 

predator species as much as possible. For simple analysis, we express such instinctive 

behavior by the traditional Lotka-Volterra-type equation: 

i i i i i ib Q M m    ,                          (1) 

where bi is individual i’s offspring, iQ  is individual i’s intake of prey, iM  is the number of 

 
11 To focus on the case where carnivores enter residential areas, this model omits the land used for agriculture.  
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predators that individual i encounter, and im  is a positive parameter representing individual 

i’s loss rates due to natural death. 0i   is individual i’s reproduction efficiency per prey 

eaten, and 0i   is individual i’s reproduction loss per encounter with predators. 

Based on the common behavior of organisms, we develop a model that can capture the 

spatial aspect of the behavior of organisms. The following model can apply to any mobile 

organisms. In the paper, it applies to herbivores and carnivores (i = 2, 3).  

The individual i spends time to search zone j for prey species and consumes them when 

encountering them. So, j
i ij

Q Q , where j
iQ  is individual i’s intake of prey species in 

zone j. The individual i’s expected intake of prey species at location x depends on the time 

density of individual i in zone j and the density of individual i’s prey species in zone j. The 

time density is formally defined as follows. 

 

Definition 1. Individual i’s time density within zone j (i = 2, 3 and j = H, A), ( )j
it x , 

indicates the total length of time that individual i spends at location x within zone j for eating 

in certain time periods.  

 

The time density, ( )j
it x , which maximizes the net offspring, depends on the location. 

Actually, some empirical ecological studies (e.g., Yoda et al., 2012; Pyke, 2015) show that 

animals optimize their food intake by spreading out in response to the current heterogeneity 

of each feeding ground.  

The sum of intake of prey species per individual i in zone j is expressed by integrating 

the expected intake of prey species at location x over the search range: 

,( ) ( )j
i

j j j
i i i preyD

Q t x n x dx  ,  (2) 

where , ( )j
i preyn x  is the density of individual i’s prey species at location x in zone j and j

iD  
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is individual i’s search range in zone j, that is, 3 [ , ]H HD X Z  and 3 2
A AD D   [ , ]H AZ Z .12 

The individual carnivore (i = 3) eats herbivores (i = 2) in the animal zone and human-origin 

food such as garbage in the human zone. So, 3Q  3 3
A HQ Q . 3, 2 2( ) ( )A A

preyn x t x N , where 

2 2( )At x N  is the density of harbivores at location x. 3, ( )H
preyn x  3 3( ( )) ( )H

ht x n x , where ( )hn x  

is human population density and 3 3( ( ))Ht x  expresses the availability of garbage.13 The 

representative herbivore (i = 2) searches the animal zone for plants. So, 2 2
AQ Q  and 

2, ( )A
preyn x  2 2 1( ( )) ( )At x n x , where 1 ( )n x is the density of plants and 2 2( ( ))At x  expresses 

the availability of plants. 

Similarly, j
i ij

M M , where j
iM  is the number of predators that individual i may 

encounter in zone j. j
iM  is expressed by integrating ( )j

it x  multiplied by the density of 

predators at location x , ( )j
i predatorn x  over its search range:  

,( ) ( )j
i

j j j
i i i predatorD

M t x n x dx  .  (3) 

In the human zone, the carnivore may encounter humans and might be killed by them. So, 

3 3
HM M  and 3, ( ) ( ) ( )H

predator hn x k x n x , where ( )k x  is a parameter that explains humans’ 

chance of encountering carnivores.14 The herbivores may encounter carnivores in the animal 

zone. So, 2 2
AM M  and 2, 3 3( ) ( )A A

predatorn x t x N , which is the density of carnivores at 

location x. The time constraint for individual i is  

 
12 We do not have to divide ( )j

it x  by Ni because ( )j
it x  is the individual i’s time density and ,( ) ( )j j

i i preyt x n x  
is the food consumption per individual i at location x. 
13 We assume that ρi(·) > 0 in ( ) [0,  1]j

it x   to avoid a case in which individual i’s intake of food is negative 
and that ρ′i(·) < 0, and ρ″i(·) < 0, implying that the more food individual i eats, the more difficult it is to find 
new food at location x. For example, the availability of foof waste in garbage to carnivores in the city depends 
on the garbage cans, and the availability of plants to herbivores in the habitat depends on height of trees and 
topological situation. A carnivore eats food waste in garbage at one location. Then, if the carnivore wants more 
food waste at the same location, it tries to find the new trash container and break it open. However, in order to 
obtain more food, it is easier to move to a different location and find new garbage than to stay and search for 
food at the same location. In this way, function ρi(·) is exogenously given and is used for the situation where 
animals have foods that are not moving objects. It is not applicable to carnivores’ food, “herbivores”, because 
herbivores can avoid encountering predators by themselves, and thus 3, 2 2( ) ( )A A

preyn x t x N  is enough to express 
such a situation. 
14 The value of the parameter increases with x (i.e. ( ) 0k x  ). It implies that the closer to the CBD they are, 
the more chances they have of meeting humans. 
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( )j
i

j
iD

j
T t x dx ,  (4) 

 

where T  is one year, ( )j
i

j
iD

t x dx  is the time spent searching in zone j.15  

Individual i maximizes function (1) by controlling j
iQ , j

iM , ( )j
it x  subject to (2)–(4), 

taking the prey and predator’s densities as given. In addition to these variables, the boundary 

of search range X is also endogenous in the case of carnivores. The Lagrangian function for 

the maximization problem of each animal and its first order conditions are found in 

Appendix A.16  

2.3 Household behavior  

Each household resides at location [0, ]Hx Z . They commute to the CBD where all firms 

are located and earn exogenous wage w. As carnivores search the human zone for food, 

households may encounter carnivores. The number of carnivores that each household may 

encounter is denoted by ( )hM x , which implies the risk of being injured by carnivores:  

3 3( ) ( )H
hM x t x N .  (5) 

To reduce the time density of carnivores, households try to put more risk to the carnivores 

directly by using the risk-increase-measure such as guns or alert or monitoring systems that 

can immediately repel or exterminate carnivores. Thus, the longer the carnivores spend at a 

given location, the more risk of being killed by humans the carnivore faces. The degree of 

risk the carnivore faces is denoted by β3(x), which indicates the probability of extermination 

per unit time the carnivore spends at location x within the city.  

The household spends money on commuting, housing, composite goods, and preparing 

the risk-increase-measure. By installing the risk-increase-measure, the household have a 
 

15 In previous papers (e.g. Eichner and Pethig, 2009), the animal is assumed to trade its own biomass in a 
virtual competitive market. We do not use this idea because the time constraint is more natural for ecosystems.   
16 This model considers the spatial dimension and we want to solve the spatial path of time density of both 
animals. In that case, the effect of increasing the time density at each location on social welfare or net offspring 
can be different across locations (that is, the Lagrange multiplier of the time density can be different across 
locations). So, we have to use the optimal control theory to solve the model. For example, see Brueckner 
(2007). By using the theory, we can find that the Lagrange multipliers are constant across locations. In the 
paper, we omit the procedure of the theory for simplicity. 
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sense of security when encountering carnivores at the home. The household’s utility 

increases with the quality of ecosystem services. The quality is determined by the population 

of all species according to the function ( )e E N . We assume that the partial derivative of e 

with respect to N is positive but diminishing marginal benefits. The utility function is  

  1 2 3( ) ( ), ( ) ( ( )) ( ( )) ( )hv x u C x f x g M x g x E    N ,  (6) 

where ( )C x  is the consumption of numeraire composite goods, ( )f x  is the housing lot 

size, 1( ( ))hg M x  is the disutility from a fear of encountering carnivores, and 2 3( ( ))g x  is 

the utility gained from a sense of security by installing the risk-increase-measure for 

carnivores. We assume that marginal utilities with respect to C(x), f (x), and β3(x) are positive, 

and diminishing marginal utility with respect to them. The income constraint is given by 

3 3( ) ( ) ( ) ( ) ( )w C x r x f x x p x       ,                 (7) 

where   is the per-resident revenue from land ownership, ( )r x  is the land rent at location 

x, ( )x  is the commuting cost depending on distance from the CBD, and p3 is the cost of 

preparing the risk-increase-measure.   should equal or less than per-capita land rent 

revenue.17  

0
[ ( ) ]h H

HZ
N r x r dx  ,  (8) 

where Hr  is the cost of housing land development, that is, the cost of land conversion from 

natural habitats to residential areas. 

Endogenous and exogenous variables for each agent are summarized in Table 1. 

[Table 1 here] 

2.4 Market clearing conditions and definition 

The populations of carnivores and herbivores are determined by predator-prey interactions. 
 

17 Inequality implies that residents can refuse the receipt of the land revenue. However, as long as per-capita 
land revenue has a positive utility, equality holds in (8). This inequality is useful to derive the sign of the 
Lagrange multiplier for this constraint, simply using the Kuhn-Tucker condition. The same treatment with the 
same objective is shown in Kono and Kawaguchi (2016) and Kono and Joshi (2017). 
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Since bi is individual i’s offspring produced in one year, the dynamics of population change 

is described by the following differential equations: 

                                    ,i
i i

dN N b
dT

       2,  3i    (9) 

where T is time. The current paper assumes that neither species is extinct. N3 and N2 in a 

steady state are straightforwardly derived from (9) with 3 2 0dN dt dN dt   and (1): 
2 2 2

3
2

,Q mN
P





   (10) 

3 3 3 3 3
2

3

HM Q mN
P

 

 

 ,  (11) 

where 

                  2 3( ) ( )A A
A

H

Z

Z
P t x t x dx  ,                         (12) 

which implies the probability of an encounter between a carnivore and a herbivore.18 

In the steady state, the plant density at location [ ,  ]H Ax Z Z  is  

1 1 2 2( ) ( ) ( )An x F x t x N  , (13) 

where ( )F x  is the plant density that grows naturally before being eaten by herbivores and 

1  is a parameter indicating the herbivore’s intake of plants per unit of time. We assume that 

( )F x  is continuous on [ ,  ]H Ax Z Z . The total number of plants is obtained by integrating 

the plant density over the habitat:  

1 1( )
A

H

Z

Z
n x dx N .  (14) 

Next, (15) implies that household’s utility will be common across locations because 

households can migrate for free:  

( ) ,  [0,  ]Hv x V x Z   .                           (15) 

Households at location x consume ( )f x  area of lot; therefore, total lot consumed at each 

location equals the unit land area supplied:  
 

18 Since N2 and N3 are independent of x, 3 2
AQ PN  and 2 3M PN . 
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( ) ( ) 1hn x f x  .      (16) 

(17) indicates that the total city population hN  equals households’ population:  

0
( )h h

HZ
N n x dx  .      (17) 

At the equilibrium, the urban boundary is determined at which the land rent equals the cost 

of housing development: 

( )H
Hr Z r .19  (18) 

In this setting, an allocation will mean a collection of continuous functions ( ( )f x , 

( )hn x , ( )r x , ( )hM x , 3 ( )Ht x , 3( )x ) on [0, ZH], continuous functions ( 3 ( )At x , 2 ( )At x ) on 

[ZH, ZA], and (endogenous) variables ( 3
HQ , 3

AQ , 3,M  2M , 2 ,Q  3,N  2 ,N  1N , V,  , ZH). 

 

3. Laissez-faire equilibrium 

3.1 Equilibrium conditions 
At the equilibrium, human population density is determined as a result of competition for 

housing location among residents. ( )r x  equals the maximum bid rent as a result of 

competition among residents. Mathematically, such bid-rent behavior is formalized as 
 

 
3

3 3

( ), ( ), ( )

( ) ( ) ( )max ( )
( )C x f x x

w x C x p xr x
f x

   
    s.t. (6) (19) 

Solving (6) for C(x) yields 2 3( ( ) ( ( )), ( ))C G x g x f x , where 1( ) ( ) ( ( ))hG x v x g M x    

( )E N . We substitute this into the objective function. Then, the first order condition with 

respect to β3(x) is  

  2 3 3
2 3

( ( ))
( ) ( ( ))

C g x p
G x g x




  
 

.  (20) 

Assuming that the size of the risk to carnivores from the households does not affect the 

choice of housing lot size f(x), the maximization problem yields 

 
19 This model does not consider the agricultural area, so that the land rent at the city boundary equals the cost of 
housing development in the market equilibrium. 
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 ( ) ( ), ( )f x f G x I x , (21) 

where ( ) ( )I x w x  . 

Next, we show the time density of animals at the equilibrium. From Appendix A, the 

equilibrium condition with respect to 3 ( )Ht x  at any [ ,  ]Hx X Z  and that with respect to 

  t3
A(x)  at any [ , ]H Ax Z Z , taking other species’ behavior   nh(x)  and 2 ( )At x  as given, are 

3
3 3 3 3 3 3 3 3

3

( ( )) ( ) ( ( )) ( ) ( ) ( ) ( ) 0
( )

H H
h h hH

b t x n x t x n x x k x n x
t x

          


, (22) 

3
3 2 2 3

3

( ) 0
( )

A
A

b t x N
t x

 
  


. (23) 

The equilibrium condition with respect to 2 ( )At x  at any [ , ]H Ax Z Z , taking other species’ 

time density   t3
A(x)  as given, is 

2
2 1 2 2 2 1 2 2 2 2 3 3 2

2

( ) ( ( )) ( ) ( ) ( ( )) ( ) 0.
( )

A A A A
A

b n x t x n x t x t x t x N
t x

          


 (24) 

(20)–(24) indicates that the equilibrium land use of humans and animals in both urban area 

and natural habitat. (22)–(24) equations intuitively reflect the animal behavior at each 

location. For example, in (22), it reflects that when the carnivore stays longer at one location, 

it could obtain more foods (the first term), but it could decrease marginal returns of foods 

(the second term) and increase the number of humans the carnivores may encounter, that is, 

face more risk of extermination (the third term) and lose the chance to obtain foods at the 

other locations (the fourth term). 

 

3.2 Existence and uniqueness of equilibrium allocation  
This subsection shows that there exists a unique equilibrium allocation that satisfies the 

market clearing conditions and definitions defined in Section 2. We first show that there 

exists a unique equilibrium land use where carnivores enter the city and interact with 

residents. All other endogenous variables are uniquely determined by the unique equilibrium 
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land use, even if any equilibrium land use is determined, using market cleaning conditions 

and definitions. This conclusion is stated at the end of this subsection as Theorem 1.  

We have three steps to prove the uniqueness of equilibrium land use that satisfies 

equilibrium conditions (20)–(24). First, we show that given the equilibrium utility level V, 

and the land use at all other locations, there is a unique equilibrium of housing size and the 

carnivore’s time density at any x in the city. Second, we show that given V, there is a unique 

equilibrium path of housing size, the carnivore’s time density on [0,  ]HZ  and there is a 

unique equilibrium path of both the carnivore’s and the herbivore’s time density in the 

habitat. Finally, we show that V is uniquely determined. Proofs of Lemmas can be found in 

Appendix B. 

Under the assumption that the choice of 3( )x  does not depend on the choice of f(x), 

there exists one inner solution 3( )x  satisfying (20) at any x in the city. Next, substituting  

the obtained 3( )x  into the system of (21) and (22), we can show the uniqueness of 

housing lot size and the carnivore’s time density at any x in the city. 

 

Lemma 1. Housing lot size which is the residents’ best response function of the carnivores’ 

time density, 3( ) ( ( ))H
resf x R t x , monotonically increases with 3 ( )Ht x  on [0, 1]. 

Carnivores’ time density which is the carnivores’ best response function of the housing lot 

size, 3 ( ) ( ( ))H
cart x R f x , monotonically decreases with ( )f x . 

  

We illustrate the best response functions of carnivores and residents as Figure 2. At any 

location [ , ]Hx X Z , there exists one inner solution except for the following two kinds of 

corner solutions: (i) Point A is smaller than point B; (ii) point C is lower than point D.20 

 
20 Case (i) may occur if humans are eager to exterminate the harmful carnivores and/or the carnivores’ 
availability of food is quite low because the carnivore do not want to stay even if the human population density 
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Each solution is uniquely determined.  

[Figure 2 here] 

Next, given the utility level V, we show ( )f x , 3 ( )Ht x , and 3( )x  are continuous in 

[ , ]HX Z . To prove this, we apply the implicit function theorem to a system of the 

equilibrium conditions with respect to ( )f x , 3 ( )Ht x , and 3( )x  for all [ , ]Hx X Z . We 

also investigate whether the equilibrium path of both carnivore’s and herbivore’s time 

density, 3 ( )At x  and 2 ( )At x , are continuous in the habitat [ , ]H AZ Z . We obtain Lemma 2. 
 

Lemma 2. Given the utility level V, there is a unique equilibrium path of ( )f x , 3 ( )Ht x , and 

3( )x  in [ , ]HX Z  and 3 ( )At x  and 2 ( )At x  in [ , ]H AZ Z  such that (20)–(24) are satisfied. 
 

   Finally, we have to investigate the uniqueness of the equilibrium utility level V. V is 

determined such that (17), 
( )

0
( , )h h

HZ V
N n V x dx  , is satisfied. To show the uniqueness of 

V, it is sufficient to prove that the RHS of (17), 
( )

0
( , )h

HZ V
n V x dx , monotonically changes 

in V. Let ( )V  be the RHS of (17), 
( )

0
( , )h

HZ V
n V x dx . We can obtain the following. 

 

Lemma 3. ( )V  monotonically decreases with V.  

 

Hence, as shown in Lemmas 1-3, we can obtain that there exists the equilibrium land use. In 

addition, the unique equilibrium paths of ( )f x , 3 ( )Ht x , 3 ( )At x , 2 ( )At x , and 3( )x  

uniquely determine all other endogenous variables using associated market cleaning 

conditions and definitions.21 We sum up the above analysis in Theorem 1. 

 
 

becomes larger. Case (ii) may occur when wildlife are less dangerous to humans because the housing size is not 
affected by the time density of carnivores. 
21 Lucus and Rossi-Hansberg (2002) also demonstrate that a uniquely determined wage path determines 
associated endogenous variables uniquely.  
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Theorem 1. There is an allocation where all endogenous variables are determined such that 

(2)–(8), (10)–(18), and (20)–(24) are satisfied. Any such allocation is uniquely determined 

by the unique equilibrium land use ( ( )f x , 3 ( )Ht x , 3 ( )At x , 2 ( )At x , 3( )x ). 

 

3.3 Effect of the encroachment of wildlife into cities on equilibrium land 

use  
From the above analysis, we can obtain the following property about how equilibrium land 

use of humans and animals ( ( )f x , 3( )x , 3 ( )Ht x , 3 ( )At x , 2 ( )At x ) changes with location x.  

 

Property 1 

(i) In the residential area, the time density of carnivores 3 ( )Ht x  first continuously increases, 

then it decreases as it approaches the CBD, and finally it reaches zero. 

(ii) Human population density ( )hn x  continuously decreases with x (i.e. Lot size ( )f x  

continuously increases with x). The decrease in human population density with respect to x 

in the area with carnivores is larger than that in the area without carnivores.  

(iii) The degree of the risk-increase measure that each household sets for carnivores, 3( )x , 

is independent of the location. 

(iv) The time density of herbivores 2 ( )At x  is spatially uniform across the habitat regardless 

of whether the plant density is spatially uniform or not.   

(v) In the habitat, the time density of carnivores 3 ( )At x  is proportional to the plant density 

that grows naturally ( )F x .  

    

First, we focus on Property (i)–(iii). Applying the implicit function theorem to the system of 

equilibrium conditions with respect to ( )f x , 3 ( )Ht x , and 3( )x , given in Appendix B, we 
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can obtain ( ) 0df x
dx

 , 3 ( )Hdt x
dx

 ⋛  0, and 3( ) 0d x
dx


  at any [ , ]Hx X Z . ( ) 0df x
dx

  

holds because the commuting cost increases with x. In contrast, 3 ( )Ht x  can either increase or 

decrease. As carnivores move towards the CBD, both human population density, ( )hn x , and 

the probability of encountering residents, ( )k x , increase. When the amount of increase in 

( )hn x  is larger (respectively, smaller) than that in ( )k x , 3 ( )Ht x  increases with x because 

carnivores can obtain more (respectively, less) food with less (respectively, more) risk of 

encountering residents by moving towards the CBD. Thus the welfare impacts on residents 

differs in size across space. Reflecting the residents’ fear of encountering carnivores, the land 

rent at location with carnivores is lower than that at locations without carnivores.  

   Next, we focus on Property (iv)–(v). Combining (23) and (4) at which i = 2 yields 

2 ( ) / ( )A A Ht x T Z Z  ; thus we can obtain Property (iv). Combining 2 ( ) / ( )A A Ht x T Z Z   

with (13) and (24) yields Property (v). The reason why we obtain Property (iv) and (v) is 

given as follows. Suppose an equilibrium where 3 ( )At x  is smaller in places with high ( )F x . 

Then, herbivores spend more time there because they are able to eat more plants with less 

risk of encountering carnivores. Hence, there is an incentive for carnivores to deviate from 

this equilibrium. As a result, carnivores choose higher 3 ( )At x  in place with high ( )F x  so 

that herbivores are evenly distributed across the habitat. If ( )F x  is spatially uniform across 

the habitat, then both 3 ( )At x  and 2 ( )At x  are uniform because herbivores can eat the same 

amount of plants everywhere, and carnivores do not have to spend more time in a specific 

location.  

In closing this section, we illustrate one possible example of the equilibrium land use of 

humans and an ecosystem on [0, ZA] as Figure 3 under the case where plant densities that 

grows naturally linearly increases with x. 

[Figure 3 here] 
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4. First-best optimum   

The purpose of this section is to understand how the equilibrium deviates from a social 

optimum due to two externalities: the absence of markets in the ecosystem and 

human–wildlife conflicts. The first best or practically unconstrained optimum requires 

complete regulation of time density of animals at every location in both city and habitat. We 

first formally define the social welfare maximization problem. Then, we explore the sign of 

the marginal social value or shadow price of carnivore S3, herbivore S2, and plant at location 

x s1(x) because it is important to determine how each variable deviates from the social 

optimum. In addition, we clarify how much more knowledge is needed to measure the value 

of each species in the location-dependent setting than in the location-independent setting as 

in Eichner and Pethig (2009). Proof of the following propositions are found in Appendix D. 

4.1 Social welfare function  

The social welfare function W is composed of the total utility of households:22  

hW N V . (25) 

A social planner maximizes the social welfare by controlling all endogenous variables 

including variables related with animal behavior. We define this as the first best optimum. 

3 3 3 3 2 1( ), ( ), ( ), ( ), , , ,, , ( ), ( ), ( ), ( ), , ,
max

H A H A H
h

h
C x f x r x n x V Q M P t x t x t x n x Z X

N V
       N

　   s.t. (2)–(8), and (10)–(17). 

We obtain the social optimal solution using the following Lagrangian function: 
 

 
22 We also analyzed the case where people are concerned about animal welfare in terms of the awareness of 
animal protection. There are some animal protection organizations on a worldwide scale such as the 
International Fund for Animal Welfare (IFAW). In this case we should consider the animals’ utility. The 
following utility function of individual animal in species i is assumed: ui = Ui(Qi, Mi,). The social welfare is 
composed of total utility of households, carnivores and herbivores: 3 3 2 2hW N V N u N u    . Alternatively, 
this can be regarded as an altruistic utility function of humans by regarding 0   and 0   as weights. 
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( ) ( )A A

A

H

Z

Z

N
t x t x dx

 
  
  

,　　　　

  

where ( )h x , ( )x ,  , ( )x , ( )x , 1( )s x , 3
O , 2

O , and iS   1,2,3i  are shadow 

prices.23 The boundary condition is 3 ( ) 0Ht X  . We divide the original Lagrangian function 

by the Lagrangian multiplier with respect to (8),  , to represent it in monetary terms. The 

first order conditions are found in Appendix C.  

4.2 Marginal social value of species  

We can obtain Proposition 1 from the Lagrange multipliers of Eq. (26). 

Proposition 1.  The marginal social value of carnivores, herbivores, and plants at location 

x, or Lagrange multipliers S3, S2, and s1(x) are given by, respectively,  
 

 
23 In the literature of urban economics, the optimal control theory has been applied to distance dimension 
instead of time dimension to obtain optimal solutions at each location (e.g. Pines and Sadka 1985; Arnot, Pines 
and Sadka 1986). This Lagrangian includes distance from the CBD x, and it has three heterogenous regions: 
residential area without carnivores’ entering, residential area with carnivores’ entering, and natural habitat. The 
boundary conditions between heterogenous regions are endogenously determined. A similar type of Lagrangian 
is employed in Kono and Kawaguchi (2016) to explore transport policies in a city with heterogenous regions 
and in Kono and Joshi (2017) to explore land use regulation in multiple heterogenous zones. 
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3
3 30 0

[1] Ecosystem services of carnivores [2] Humans' aggregate disutility of carnivores

( ) ( ) ( )Hh
h h

h h

H HZ ZE N g MS n x dx n x t x dx
U C U C
   

 
    

 
　 　

,  (27) 

 
2

2 1 1 20
[4] Benefit or cost of a decrease in plants

[3]Ecosystem services of herbivores due to being hervested by a herbivore 

( ) ( ) ( )A
h

h

H A

H

Z Z

Z
E NS n x dx s x t x dx
U C

 
 

  
　 　

,  (28) 

 
1 2

1 3 2 2 2
2

0

[6] Benefit or cost of an increase in carnivores[5] Ecosystem services of plants

( ) ( ) ( ) ( ( ))A A
h

h

HZ E Ns x n x dx S t x t x
U C P

 


 
 

 


　

 [ , ]H Ax Z Z  .  (29) 

 

Considering the location dependent externalities caused by the encroachment of 

carnivores into the urban areas, some novel components are observed in the value of species: 

i) the humans’ aggregate marginal disutility with respect to the risk of being killed by 

carnivores, which is represented by term [2]; ii) the social benefits or damages of changes in 

the steady-state population of the other species, which are represented by terms [4] and [5].24 

Terms [1], [3], and [5] represent the humans’ aggregate marginal benefits of enhancing the 

provision of ecosystem services by a marginal increase in each species.  

These equations imply that the first terms on the right hand side are positive but the 

second terms can be either positive or negative. Thus, these animals and plants are 

biologically important, but their shadow prices can be negative. In addition, the sign of one 

species depends on the sign of other species through the food-chain. It is intuitive that S3 can 

be negative because of the humans’ aggregate disutility of the entrance of carnivores, and S2 

can be negative because of decrease in the number of plants. However, it is not so intuitive 

that s1(x) can be also negative because of the increase in the number of carnivores that can 

 
24 In the current paper the value of species i’s biomass consumed by humans and the opportunity cost of urban 
land use, which are observed in Eichner and Pethig (2009), do not appear in (27)–(29). The former is regarded 
as a part of ecosystem services. Thus this component corresponds with term [1], [3] or [5]. The latter is not 
observed because the current paper does not consider habitat resources such as the territory of animals.  
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give the risk to humans.  

 

5. Distance-dependent market failures   

This section is devoted to comparing the equilibrium with the first best optimum in terms of 

time density of animals, 3 3,  ( ) ( )H At x t x , and 2 ( )At x , human population density nh(x), and city 

size ZH. We begin with the time density of animals.  

5.1 The time density of animals 

The optimal condition with respect to the time density of carnivores in the city, 3 ( )Ht x , is  
 

2 3 3
3 3 2

3 3

  
[8] Benefit or cost of [7] Humans' disutility of      an increase in carnivores     carnivores

( )   ( ) ,
( )

Ah
hH

h

S b g M Nn x N S t x
P t x U C P
   

       
             (30) 

where 3

3

0
( )H

b
t x





 at the equilibrium as shown in (22). The LHS indicates the benefit or 

cost of changes in herbivores when the time density of carnivores marginally increases at 

[ ,  ]Hx X Z  within the city. The first term on the RHS of (30) represents the humans’ 

aggregate marginal disutility of encountering carnivores. Since the carnivores stay longer in 

the urban area, the herbivore’s risk of encountering carnivores decreases. From (10), this 

leads to increasing the steady state population of carnivores, which is represented by the 

second term on the RHS of (30). Since S3 and S2 can be either positive or negative as shown 

in Proposition 1, we can obtain the following proposition by comparing the equilibrium 

condition (22) with the optimal condition (30). 
 

Proposition 2. The optimal time density of carnivores within the city, 3 ( )Ht x , at any 

[ ,  ]Hx X Z  can be either larger or smaller than the equilibrium 3 ( )Ht x . If the increase in 

humans’ disutility associated with the risk of encountering carnivores is larger than the 

increase in the utility associated with the ecosystem services when the steady state 
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population of carnivores increases (that is, S3 is negative) and if S2 is positive (negative), 

then the optimal 3 ( )Ht x  is larger (smaller) than the equilibrium 3 ( )Ht x . 
 

This result may appear counter-intuitive because Proposition 3 says that even if the 

humans’ disutility of encountering carnivores is larger, when the value of herbivores is 

positive, the carnivore should spend more time in the city at optimum. This result tells us 

that when carnivores encroach into a city, we should not only try to drive carnivores out of 

the city, but also simultaneously take account of the effects of a change in the number of 

herbivores on the social welfare. The intuitive reason for this counter-intuitive result is as 

follows. When S3 is negative, an increase in the number of carnivores indicates a social cost; 

so, the RHS is positive. To satisfy (30), the LHS should be positive, that is, a marginal social 

benefit. When S2 is positive, an increase in the number of herbivores is socially beneficial. If 

carnivores stay longer in the city, they can eat more garbage, but face a higher risk of 

mortality. A longer 3 ( )Ht x  than the equilibrium increases the carnivore’s risk, and the 

increased risk is larger than the benefit of eating garbage. As shown in (11), this situation 

leads to an increase in the steady state population of herbivores, which is socially beneficial.  

Next, we focus on the time density of animals in the habitat.  

 

Proposition 3. The optimal time density of herbivores is spatially uniform across the habitat: 

2
2 ( )A

A H

Tt x
Z Z




.  (31) 

 

This assertion says that even at the optimum as well as in the market equilibrium, herbivores 

spend time spatially uniformly in the natutal habitat. But the optimal time density is different 

from that at the equilibrium because city sizes are different so that A HZ Z  is different.  
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Next, we focus on the carnivore’s one in the habitat 3 ( )At x . The optimal condition is 

33 2
2 2 3

2 2 [9] Benefit or cost of 
[10] Benefit or cost of decreasing herbivores 
increasing herbivores

( )
[ ( ) ],

( )

A
A

A A H

A

H

Z

Z
t x dxS b S N t x

t x Z Z
 

    


 

 (32) 

where 2

2

0
( )A

b
t x





 at the equilibrium as shown in (24). The LHS indicates the benefit or 

cost of changes in the number of carnivores when the time density of herbivores marginally 

increases at [ , ]H Ax Z Z  within the habitat. The interpretation of the RHS is as follows. 

3 ( ) ( )A A H
A

H

Z

Z
t x dx Z Z  implies the average time density of carnivores in the habitat. When 

increasing 2 ( )At x  at any [ , ]H Ax Z Z , the herbivore’s probability of meeting carnivores 

increases, which causes a reduction in the number of herbivores. This is represented by term 

[9]. At the same time, the herbivore’s time density in any other locations decreases. So, the 

herbivore’s probability of meeting carnivores decreases at that locations, which leads to an 

increase in herbivores. This is represented by term [10].  

Using the fact that the herbivore’s optimal time density is equal throughout the habitat, 

we can obtain that the optimal 3 ( )At x  varies (is constant) among locations when the density 

of wild plants, ( ( ))F a x , varies (is constant) among locations. Comparing the equilibrium 

condition (24) with the optimal condition (32), while keeping this relation in mind, we can 

obtain how the equilibrium 3 ( )At x  deviates from the optimum at any location. 
 

Proposition 4 (optimal time density of carnivores (i =3) in natural habitats).  

(i) When the density of wild plants, ( )F x , equal among locations, the optimum 3 ( )At x  

corresponds with the equilibrium 3 ( )At x  at any [ , ]H Ax Z Z .  

(ii) When the density of wild plants, ( )F x , varies among location, the optimal 3 ( )At x  at 

any [ , ]H Ax Z Z  can be either larger or smaller than the equilibrium 3 ( )At x  except for the 

location where the optimum 3 ( )At x  is equal to its average.  
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This assertion says that predator-prey interactions (that is, the probability of encountering 

between prey and predator species depending on the time density) are inefficient at each 

location unless the plant density is uniformly distributed. In view of some observation-based 

studies conducted by ecological researchers (e.g., Yoda et al., 2012; Pyke, 2015) reporting 

that animals optimize their food intake by spreading out in response to the current 

heterogeneity of each feeding ground, our results suggests that the current situation is 

inefficient.  

To clearly understand result (ii), suppose that ( )F x  linearly increases with x, and that S3 

< 0 and S2 > 0. Then, if ( )F x  is larger (smaller) than its average, then the sign of the RHS 

of (32) is positive. Thus, the optimal 3 ( )At x  is larger (smaller) than the equilibrium 3 ( )At x . 

This means that in places with higher ( )F x , the equilibrium herbivore’s risk of 

encountering predators is smaller than the optimum level. When increasing 3 ( )At x  beyond 

the equilibrium level, in the steady state, there is a decrease in not only the number of 

herbivores but also the number of carnivores, resulting from the decrease in their prey 

species. To achieve the optimum, 3 ( )At x  is increased so that the social marginal benefit of a 

decline in carnivores equals the social marginal cost of a decline in the number of herbivores. 

In places with lower ( )F x , vice versa. 

 

5.2 Human population density 

According to (16), ( )hn x  is the reciprocal of housing lot size ( )f x . The social optimum 

condition with respect to ( )f x  at any [ ,  ]Hx X Z  is 
 

3 3
2 3 3 3 2 3

3 3

[11] Benefit or cost of increasing herbivores [12] Benefit or cost of decreasing herbivores

( ) ( ) ( ) ( )( ) ( ( )) ( ) .
( ) ( )

H H
Hh h h hU U n x t x n x t xr x S t x S k x

f x C x P P
  

 
 

   
   

 (33) 
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Since the RHS should equal zero at the equilibrium, we can obtain the following result. 
 

Proposition 5. If 3 3 3 3( ) ( ) ( ( )) 0 ( 0)Hx k x t x      then the optimal human population 

density ( )hn x  is larger (smaller) than the market equilibrium at any [ ,  ]Hx X Z . 
 

The interpretation of (33) is given as follows. When the human population density 

decreases, the carnivores will feed on less food. So, from (11), the population of herbivores 

will increase. The first term in the RHS of (33) represents the externality of an increase in 

the population of herbivores. On the other hand, the carnivores face less risk of being killed 

by humans. From (11), this makes the number of herbivores decrease. The second term in the 

RHS of (33) represents the externality of decreasing the population of herbivores.  

In Proposition 5, 3( ) ( )x k x  reflects the humans’ response to harmful carnivores: if the 

response is large, they try to exterminate them even if the harmful carnivores stay in the 

urban areas for a short time. 3 3( ( ))Ht x  indicates the carnivores’ availability of food. The 

intuition behind this assertion is that if humans are eager to exterminate the harmful 

carnivores and/or the carnivores’ availability of food is quite low, then the optimal human 

density is larger than the equilibrium. 

 

5.3 Risk-increase measures against carnivores  

The social optimum condition with respect to 3( )x  at any [ ,  ]Hx X Z  is 
 

2 3 3
3 2

3

[13]Benefit  or cost of 
increasing herbivores

( ) ( ) ( )H

h

g x t x k xp S
U C P




 
  

  
 (34) 

An interpretation of (34) is as follows. When giving more risk to carnivores such as 

preparing more sensitive alert system, then the carnivore’s net offspring decreases. From (11), 
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this leads to an increase in the number of herbivores in the steady state equilibrium. However, 

the number of carnivores does not increase at equilibrium because carnivores can eat more 

heribivores in the habitat instead of eating human-related sources of foods. 

The left hand side of (34) equaling zero is the equilibrium condition, and the sign of S2 

can be positive or negative from Proposition 1. Thus, we can obtain the following 

proposition.  

 

Proposition 6. The first-best optimal probability of extermination per time the carnivore 

spends within the city 3( )x  is larger or smaller than the equilibrium one at any 

[ ,  ]Hx X Z .  

 

5.4 City size   

The equilibrium condition with respect to ZH is given by (18). However, this condition does 

not hold in the social optimum because of the externality of changes in the number of 

animals and plants. In addition, S2 and S3 can be either positive or negative depending on the 

situation, as in Proposition 1. 
 

Proposition 7. The first best optimal city size can be larger or smaller than the market 

equilibrium city size. 

 

6. Numerical examples  
The purpose of numerical simulations is to understand how human–ecosystem interactions, 

such as the degree of human’s disutility to the encroachment of carnivores and the value of 

ecosystem services, would affect the first-best optimal city size. 
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Suppose the total length of an area consisting of a city plus a natural habitat is 60 km 

with a width of 1 km. We divide the city into four discrete areas and the natural habitat into 

five discrete areas. The total number of humans is normalized as 20hN   (thousands of 

humans).25 We specify the utility function as 1 2 3( ) ( ) ln ( ) ( ) ln ( )hv x C x b f x c M x c x     
3

1
i i

i
N



 , where b, c1, c2, and i  (  1,  2,  3i  ) are positive parameters. The parameters 

used in this simulation are collected from previous studies or real situations as much as 

possible. As in Kono and Kawaguchi (2015), the income per household per year is set at 

US$40,000. The housing parameter in the utility function b is set at 8,000, which results in 

20 percent of the income of US$40,000. We set the number of trips to the CBD as 225 round 

trips per year per person, average speed as 30 km/hour, travel cost including travel time as 

US$30/hour. Further, we set the cost of housing land development rH as US$20,000.  

Next, we set some ecosystem parameters in the Lotka-Volterra equations: i , i ,  mi  

 2,  3i , and ( )k x , and we specify some functions in the ecosystem model such as 

availability of food and plant density: ( )k x , 3 3( ( ))Ht x , 2 2( ( ))At x , and 1( )n x . Although 

these parameters and functions vary according to species, the number of carnivores is 

smaller than the number of the herbivores as long as these animals are in the same food 

chain. So, we set the ecosystem parameters so as to satisfy the food chain: 3 0.889  , 

2 0.604  , 2 1.43  , 3 0.244m  , 2 0.193m  , 1 1  , ( ) 1000k x  , 

2
2 2 2( ( )) 2( ( )) 0.5A At x t x    , and 3 3 3( ( )) exp(0.5 ( )) 1.32H Ht x t x    . We set the cost of the plant 

density control and the risk-increase-measure as p1 = 1 and p3 =1. 

Finally, we set some parameters representing the human-ecosystem interactions: i , c1, 

and c2. i  indicates the welfare effect of abundance of organism in species i, and c1 

 
25 Any unit of total number of households will do, as long as it is positive. For example, Eichner and Pethig 
(2006) used 100 as the total number of households. 
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represents the humans’ fear of encroaching carnivores. Therefore, 1 ic   represents the 

trade-off between them. We set 1 2 3       and c2 = 0.000117. Since these values vary 

according to the situation surrounding humans and ecosystems, we explore whether optimal 

city size is larger or smaller than the equilibrium city size according to 1c  . To conduct 

sensitivity analyses, we set the following combination of c1 and  : c1 = 2000, 5000, 8000, 

and  = 400, 500, 600.  

[Table 2 here] 

[Figure 4 here] 

Table 2 and Figure 4 present the results of how human-ecosystem interactions would 

affect the first-best optimal city size, number of species, and time density of carnivores 

within the city. Figure 4 shows that regardless of parameter c1 (see the solied lines), as 

parameter   decreases, the relationship between the equilibrium city size E
HZ  and optimal 

city size O
HZ  changes from E O

H HZ Z  to E O
H HZ Z . In other words, the optimal city size 

tends to be larger than the equilibrium city size as the value of ecosystem services   
decreases. Next, we focus on the changes in parameter c, taking parameter   as constant 

(see the dashed lines). Figure 4 shows that the larger c is, the smaller E O
H HZ Z  is. This 

implies that the optimal city size tends to be larger than the equilibrium city size as the 

human’s fear of encroaching carnivores increases. Table 2 shows that regardless of parameter 

c, the optimal numbers of the three species are greater than those at the equilibrium, and the 

optimal number increases with  . In addition, regardless of c1, the optimal time density of 

carnivores in the residential area is smaller than the equilibrium one, and it decreases as   

decreases. 

The intuitive interpretation is as follows. Since the value of ecosystem services is high, 

the city government should expand the natural habitat to enrich the quality of ecosystem 
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services. On the other hand, when the value of ecosystem services is small, the humans’ fear 

of encountering carnivores is more influential on the welfare. Therefore, the government 

should expand the city to lower the length of time carnivores stay in the residential area. 

 

7. Conclusions  
This paper developed a new model that considers spatial interactions between humans and 

wildlife in cities and studied the equilibrium and the first-best or practically unconstranted 

optimal land use where the social planner controls both household and animal behaviors. We 

summarize what we have learned in this paper. There is a unique land use equilibrium where 

humans and an ecosystem interacts. At the equilibrium, animals are ununiformly distributed 

in the city: the density of carnivores is increasing, then decreasing, towards the CBD. In the 

habitat, only if the plant density varies among locations, the animals are ununiformly 

distributed. This spatial heterogeneity generates the distortion of predator-prey interactions. 

Consequently, the steady state population equilibrium of animals is inefficient.  

One important question which is unanswered by the current paper is how the social 

planner should design policies subject to the practical constraint, that is, it is impossible for 

us to regulate the animal behavior directly. One of the useful policies is land use regulation 

intended to influence residents and animal behavior indirectly, such as controlling city size 

and plants densities in natural habitats. The model we have developed in this paper provides 

the bases for analyzing such location dependent policies which are needed to create society 

coexsisting with biological resources. Yoshida and Kono (in press) characterizes the 

second-best land use policies in this framework. Other policies can be explored in a similar 

framework. For example, if the number of kinds of species is increased, we can explore 

which species are extinct and how we should handle that situation. 
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Figure 1. A city adjacent to a natural habitat 

 

 

 

 

 

 

 
Figure 2. Best response functions of carnivores and humans at any [0, ]Hx Z . 

 

 

 

 

 

 

 
Figure 3. One example of equilibrium land use for humans and wildlife. 
Note: The left vertical axis indicates the human population density, the right vertical axis indicates the 
time density of animals, and the horizontal axis represents the distance from the CBD. The thin line, the 
bold line, and the double line represent the human population density ( )hn x , the time density of 
carnivores 3 ( )Ht x  on [ , ]HX Z  and 3 ( )At x  on [ , ]H AZ Z ), and the time density of herbivores 2 ( )At x , 
respectively. The time density of carnivores might be non-continuous at the urban boundary ZH. In the 
residential area with carnivores ( [ , ]Hx X Z ), the slope of ( )hn x  is steeper than that in the residential 
area without carnivores ( [0, ]x X ).  

Human zone (housing zone) 
 

Animal zone (covered by plants) 
 

ZH 

Urban 
boundary 

 

ZA 

Natural habitat  
boundary 

X 
Boundary of 

carnivores’ search 
range  

Carnivores’ search range  

0 
City 

center 

Herbivores’ search range  

    : ( )hn x  
       : 3 ( )jt x  
       : 2 ( )At x  

Width = 1 



34 
 

 

 

 

 

 

 

 

 
Figure 4. Numerical results: the location of urban boundary at the equilibrium and the 

first-best optimum 
Note: E

HZ  and O
HZ  denote the equilibrium and the optimal location of urban boundary, respectively. 

E O
H HZ Z   in vertical axis is the difference between them. c   in horizontal axis is the relation between 

the value of ecosystem services and the human’s fear of carnivores’ encroachment. The solied line in left, 
middle, and right indicate how E O

H HZ Z  changes as   changes, taking c = 2000, 5000, and 8000 as 
given, respectively. The dashed line in upper, middle, and lower indicates how E O

H HZ Z  changes as c 
changes, taking   = 400, 500, and 600 as given, respectively. 

c
   

 

E O
H HZ Z (km) 
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Table 1. Endogenous and exogenous variables for each agent 

 External variables for each agent 

 Population Population 
Density Per capita income Urban boundary  

Number of plants 
that grows 
naturally 

Human hN  nh(x) W ZH  

Plant N1 n1(x)   F(x) 

Animals  Ni     

  
 Choice variables for each agent  

 
Utility / 

Net 
offspring 

Composite 
goods / 

Intake of 
prey species 

Number of 
predators 

each agent 
meets 

Lot housing 
size / Time 

density 

Boundary of  
search range 
(carnivores) 

Land 
rent 

Strength of 
the risk 
increase 
measure 

Humans  v(x) C(x) Mh(x) f (x)  r(x) β3(x) 

Animals bi Qi
j Mi ti

j
(x) X   

 
Note: Except for hN , w, and F(x) all variables are endogenous to the model. 
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Table 2. Numerical results 

 (i) c = 2000 
 Laissez-faire equilibrium  First-best optimum 

 UGB 
(km) N1 N2 N3 3 ( )Ht x   UGB 

(km) N1 N2 N3 3 ( )Ht x  

400   14 36.5 10.6 2.3 0.091  16 39.3 11.6 2.8 0.034 

500   14 36.5 10.6 2.3 0.091  14 42.1 12.0 3.1 0.039 

600   14 36.5 10.6 2.3 0.091  10 46.7 13.2 3.4 0.051 
  

 (ii) c = 5000 
 Laissez-faire equilibrium  First-best optimum 

 UGB 
(km) N1 N2 N3 3 ( )Ht x   UGB 

(km) N1 N2 N3 3 ( )Ht x  

400   12 37.7 11.1 2.1 0.10  16 39.2 11.8 3.0 0.045  

500   12 37.7 11.1 2.1 0.10  14 42.0 12.3 3.2 0.045 

600   12 37.7 11.1 2.1 0.10  10 46.6 13.4 3.4 0.055 
  

 (iii) c = 8000 
 Laissez-faire equilibrium  First-best optimum 

 UGB 
(km) N1 N2 N3 3 ( )Ht x   UGB 

(km) N1 N2 N3 3 ( )Ht x  

400   12 37.7 11.3 2.0 0.095  18 37.2 11.7 2.9 0.044 

500   12 37.7 11.3 2.0 0.095  14 41.9 12.5 3.3 0.051 

600   12 37.7 11.3 2.0 0.095  10 46.5 13.6 3.4 0.057 
 
Note: i  and c indicates the positive welfare effect of biodiversity and the humans’ fear of encroaching 
carnivores, respectively. UGB is the location of urban growth boundary ZH.  
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Appendix A. First order conditions for the laissez-faire market equilibrium   

First, we set the Lagrangian function expressing the carnivore’s behavior in the laissez-faire 

equilibrium: 

3 3 3 3 3 3 3 3 3

3 3 3 2 2 3 3 3 3 3

3 3 3

( ) ( ( ) ( ) )

[ ( ) ( ) ] [ ( ) ( ( )) ( ) ]

[ ( ) ( ) ( ) ].

A H A H

A A A A H H H H
h

H
h

A H

H

A H

H

H

Z Z

Z X
Z Z

Z X
Z

X

L Q Q M m T t x dx t x dx

Q t x t x N dx Q t x t x n x dx

M t x k x n x dx

  

  



      

   

 

 

 



     (A.1) 

Differentiating (A.1) with respective variables, we obtain (A.2)–(A.7): 

3 3
3

0: 0A
A

L
Q

 
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
, (A.2) 

3 3
3

0: 0H
H

L
Q

 
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
,  (A.3) 

3 3
3

0: 0L
M

 
   


,  (A.4) 

3 3 3 3 3 3 3 3
3

0: ( )[ ( ( )) ( ) ( ( ))] ( ) ( ) 0
( )

H H H H
h hH

L n x t x t x t x k x n x
t x

         


, (A.5) 

3 3 2 2
3

0: ( ) 0
( )

A A
A

L t x N
t x

 
   


,  (A.6) 

3 3 3 3 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) 0H H H H
h h

L t X t X X n X t X k X n X
X

   
   


,  (A.7) 

where we use the boundary condition 3 ( ) 0Ht X  . 

Next, we set the Lagrangian function expressing the herbivore’s behavior in the laissez-faire 

equilibrium:  

2 2 2 2 2 2 2

2 2 2 2 2 1 2 2 2 3 3

( ( ) )

[ ( ) ( ( )) ( ) ] [ ( ) ( ) ].

A

A A A A
A A

H H

A

H

Z Z

Z Z

Z
Z

L Q M m T t x dx

Q t x t x n x dx M t x t x N dx

  

  

    

   



 
         (A.8) 

Differentiating (A-8) with respective variables, we obtain (A.9)–(A.11): 

2 2
2

0 : 0L
Q
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
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2 2
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
, (A.10) 
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2 1 2 2 2 2 2 2 3 3 2
2

0 : ( )[ ( ( )) ( ) ( ( ))] ( ) 0
( )

A A A A
A

L n x t x t x t x t x N
t x

         


.  (A.11) 

The first order conditions with respect to shadow prices are suppressed because they are obvious. 

 

Appendix B. Proof of Lemma 1, 2, and 3 

Proof of Lemma 1. We investigate the sign of the derivative of residents’ best response function with 

respect to the time density of carnivores: the sign of 3( ) ( )Hdf x dt x . The first order condition of the 

bid rent maximization problem (19) with respect to ( )f x  at any [ ,  ]Hx X Z , taking the 

carnivore’s time density 3 ( )Ht x  as given, is   
 

1 2 3( ) ( ( ) ( ( )) ( ( )), ( )) 0
( )

hw A x C V E g M x g x f x C
f x f

       
  


N   (B.1) 

 
Differentiating (B.1) with respect to ( )f x  and 3 ( )Ht x  yields 

 

 

2

2 2

3
1 2 3

( ) ( ) 1 ( ) ( )
( ) ( )

1 ( ) ( ) 0,
( ( ) ( ( )) ( ( )))

H
h h

h

w A x C C Cdf x df x
f x f x f f

C g M M x dt x
f V E g M x g x





      
    

  
   N

　　　　　　　　　　　　

(B.2) 

 

where 0f

C

UC
f U


  


,

1 2 3

1 0
( ( ) ( ( )) ( ( )))h C

C
V E g M x g x U


 

   N
, and 

2

2
ff

C

UC
f U


  


 

2( )
f

Cf
C

U
U

U
 (define h

C
UU
C





, h
f

UU
f





, 

2

2
h

ff
UU
f





, and 

2
h

Cf
UU

C f



 

).  

From the second order condition with respect to the bid rent maximization problem, 
 

2 2

2 2 2

( ) ( ) 1 0
( ) ( )

r w A x C C C
f f x f x f f

      
   

  
. (B.3) 

 

Hence we can obtain  



3
2

3 1 2 3
2 00

0

( ( ))( ) 1 0
( ) ( ( ) ( ( )) ( ( ))) ( )

h
H

h

g M x Ndf x C
rdt x V E g M x g x f x

f






  
        


N 
. (B.4) 

Next, we explore the monotonicity of the best response function 3( )H
resR t  at 3 [0,  1]Ht  . We 
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need to prove that to every t1 and t2 in [0, 1] such that t1 < t2 ⇒ 2 1( ) ( )res resR t R t . Combining 

3( ) ( ) 0Hdf x dt x   and the mean value theorem yields that 3( ( ))H
resR t x  is monotonically increasing 

in 3 ( )Ht x  on [0, 1]. 

Next, We investigate the sign of the derivative of the carnivores’ best response function with 

respect to the housing lot size: the sign of 3 ( ) ( )Hdt x df x . Substituting (23) into (22) with 

2 2( ) ( ) ( )A A H A Ht x T Z Z t Z    and (16) yields  
 

3 3 3 3 3 3 3 3 3 2 2
1 1[ ( ( )) ( ) ( ( ))] ( ) ( ) ( ) 0
( ) ( )

H H H A Ht x t x t x x k x t Z N
f x f x

         .  (B.5) 

 
Differentiating (B.5) with respect to ( )f x  and 3 ( )Ht x  yields  

3 3 3 3 3 33 3 3 3 3 3 3
32

2 ( ( )) ( ) ( ( ))( ( )) ( ) ( ( )) ( ) ( )
( ) ( ) 0

( ) ( )

H H HH H H
H

t x t x t xt x t x t x x k x
df x dt x

f x f x

                .26 (B.6) 

Then,  

3 3 3 3 3 3 33

3 3 3 3 3 3

00

( ( )) ( ) ( ( )) ( ) ( )( ) 1 0.
( ) ( )2 ( ( )) ( ) ( ( ))

H H HH

H H H

t x t x t x x k xdt x
df x f xt x t x t x

   

  




      
      

 (B.7) 

Similarly, from the mean value theorem, ( ( ))carR f x  is monotonically decreasing in ( )f x . || 

 

Proof of Lemma 2. At the carnivores’ search boundary within a city X, the time density is zero and 

unique. It is thus sufficient to prove that the determinant of the Jacobian matrix of a system of 

equilibrium conditions with respect to ( )f x , 3 ( )Ht x , and 3( )x  is different from 0 at all 

[ , ]Hx X Z . Then the system defines ( )f x , 3 ( )Ht x , and 3( )x  at all [ , ]Hx X Z  as Ck functions 

of x in some neighborhood of ( )f x , 3 ( )Ht x , and 3( )x  at all [ , ]Hx X Z  (from Sydsæter et al., 

2005, Chapter 6, 6.3). 

The system of equilibrium conditions with respect to ( )f x , 3 ( )Ht x , and 3( )x  is  
1 2 3[ ( ) ( ( ) ( ( )) ( ( )), ( ))] 0

( )
hw A x C V E g M x g x f x C

f x f
        

  


N  (B.7) 

 
26 2 3 3 3 3 3 3( ) ( )HN M Q m P     . However, even if you increase f (x) at a certain location x, the change in N2 
is zero because there is no width dx． 
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3 3 3 3 3 3 3 3 2 2( ( )) ( ) ( ( )) ( ) ( ) ( ) ( ) 0H H H A Ht x t x t x x k x t Z N f x           (B.8) 

2 3 3( ( )) 0Cg x p U    (B.9) 

Under the assumption that the choice of 3( )x  does not depend on the choice of f(x), totally 

differentiating this system with respect to endogenous variables ( )f x , 3 ( )Ht x , and 3( )x  at any 

location x yields 
 

3

3

3 2 3 3
2 3 3 2 30

2

2

1 0 10 0

( )

( )1 1( ) ( ) ( ( )) ( )
( ( ) ( ( ))) ( ) ( ( ) ( ( )))
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U U

g M N
U f

M xC Cg M dt x g x d x
f G x g x t x f G x g x

w A x C C
f x f x f
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


  



　　　　　 
2

2

2
0

0

( ) ( ) 0,

r
f

C df x x dx
f




 


 
   

 

3 3 3 3 3 3 3 3 2 2 3 3
0

0

2 ( ( )) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.H H H H A Ht x t x t x dt x t Z N df x x k x dx k x d x     




       
 

 

2 3 3

0

( ( )) ( ) 0g x d x 


   

In the matrix form, 
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( ) ( ( ))

( ) 2 ( ( )) ( ) ( ( )) ( )
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h

C C

A H H H H

A
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33

3

( ) ( )
( ) ( ) .( )

0( )

H

df x x
x k x dxdt x

d x






   
      

     



 

Under the assumption where 3( ) 0    and 3( ) 0    on 3 ( ) [0,  1]Ht x  , the determinant of the 

Jacobian matrix of the system is always negative: 



2
2 3 3 2 3

3 3 3 3 3 3 3 2 22

00 0 0 0

( ( )) ( ) ( ( ))2 ( ) ( ) ( ) 0H H H A Hh

C C C

g x g M N g xrA t t t t Z N
f U U U

    

   

           
     

. 

Hence, the equilibrium ( )f x , 3 ( )Ht x , and 3( )x  are continuous on [ , ]HX Z .  
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In addition, to investigate how ( )f x , 3 ( )Ht x , and 3( )x  change with x, we derive 


2 3 3 2 3

3 3 3 3 3 3
0 0 0

0 0 0

0 0

3
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  


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 
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 
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 
 
  




 

 

 

Since ( ) 0df x
dx

  at any [ , ]Hx X Z , the urban boundary ZH is uniquely determined. This implies 

that there is no sub-center and natural habitats within residential districts in a city.  

 

   Next, we consider the equilibrium path of the time density of both carnivores and herbivores 

within habitats: 3 ( )At x  and 2 ( )At x . Combining (23) and (4) at which i = 2 yields 

2 ( ) ( )A A Ht x T Z Z  , implying that the time density of herbivores is spatially uniform everywhere at 

the equilibrium. Since 2 ( ) ( )A A Ht x T Z Z   and the urban boundary ZH is uniquely determined, 

2 ( )At x  is unique at all [ , ]H Ax Z Z . Next, solving (24) for 3 ( )At x  after using (13) yields  
 

2 1 2 2 2 2 2 2 2 2
3

2 3

( ) ( ) ( ( )) ( ) ( ( ))
( )

A A A A
A

F x t x N t x t x t x
t x

N
    



          at any [ , ]H Ax Z Z . (B.3) 

Because of the unique equilibrium path of the carnivore’s time density within the city and the 

uniqueness of ZH, the carnivore’s total time spent in the natural habitat is uniquely determined. In 

addition, there is one variable depending on the location in (B.3): exogenous variable ( )F x , and it 

has a unique path on [ , ]H AZ Z  and ( ) 0F x   at all [ , ]H Ax Z Z . Hence, 3 ( )At x  is continuous on 

[ , ]H AZ Z . Combining the carnivore’s total time spent in the habitat (4) and (B.3) determines 3 ( )At x  

at all [ , ]H Ax Z Z  uniquely.|| 
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Proof of Lemma 3. V is determined such that (17) is satisfied, that is, 
( )

0
( , )h h

HZ V
N n V x dx  . (B.4) 

To show the uniqueness of V, it is sufficient to prove that the RHS of (B.4) monotonically changes in 

V. Let ( )V  be the RHS of (B.4). We can obtain  
 

( )

0
( ) ( )( ( )) 0.

H
H h

h

HZ V dnd V dZ Vn Z V dx
dV dV dV


     (B.5) 

The proof of (B.5) is given as follows. From the comparative static analysis of the bid rent 

maximization problem, ( ) 0df x dV  , given 3 ( )Ht x . This implies that the best response function of 

( )f x , shown as B-C line in Figure 2, shifts upward. So, we can obtain ( ) 0df x dV   at all 

[0,  ]Hx Z . From (16), ( , ) 0hdn V x dV  . The second term on the LHS of (B.5) is thus negative. 

To satisfy ( ) 0df x dV   at all x, the market land rent should decrease at all [0,  ]Hx Z . This 

implies that the city size becomes small: ( ) 0HdZ V dV  . The first term on the LHS of (B.5) is thus 

negative. Therefore, the LHS of (B.5) is monotonically decreasing in V. || 

Appendix C. First order conditions for the first-best optimum 
The Lagrangian function (26) can be rewritten as  
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Differentiating (C.1) with respective variables, we obtain (C.2)–(C.17): 

 2
( ) 10 : ( ) ( ) ( ) 0
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UL r xx x x

f x f x ff x
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0
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The first order conditions with respect to Lagrangian multipliers are omitted. 

Appendix D. Proof of Propositions 1, 2, and 7 

Proof of Proposition 1. Combining (C.3), (C.4), and (16) yields ( )( ) h

h

n xx
U C

 
 

, and plugging this 

into (C.8) yields ( ) ( ) h
h

h

g Mx n x
U C


 


 

. Substituting these equations into (C.9) and solving for S3 

yields (27). Likewise, solving (C.10) for S2 yields (28). Solving (C.11) for S1 with ( )( ) h

h

n xx
U C

 
 

 

yields 1
1 0

( )h
h

HZ E NS n x dx
U C
 


  . Substituting this equations into (C.12) and solving for 1( )s x  

yields (29).|| 
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Proof of Proposition 2. From (C.15), 2 3( )A Ot x   , where 32
2 3

NNS S
P P

    . Substituting 

this into (4) for i = 2, 3 ( )O A HT Z Z   , and then solving for 3
O   yields 

3 ( )O A HT Z Z    . Therefore, we can obtain the optimal time density of herbivores: 

2 ( ) ( )A A Ht x T Z Z  .|| 

Proof of Proposition 7. From the proof of Proposition 1, 1
1 0

( ) 0h
h

HZ E NS n x dx
U C
 

 
  . 

Arranging (C.13) yields  
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The market city boundary is determined at which r(ZH) = rH. Since S2 and S3 can be either positive or 

negative, the RHS of this equation can be either positive or negative. Hence, if the RHS of this 

equation is positive, then the social optimal city size is smaller than the equilibrium city size. If it is 

negative, then the social optimal city size is larger than the equilibrium city size.|| 

 

 

 


