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Alexander Harin  
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Modern University for the Humanities  

 
An introduction to a sub-interval analysis (SI analysis or SIA) 

namely to a SI arithmetic is presented. Prerequisites and possible 
applications of the SIA are reviewed. A system of definitions of the 
SIA is formulated. New basic formulae are obtained. Some examples 
are considered including estimations of the minimal values of 
forbidden zones for measurements in behavioral economics. The 
article is concentrated mainly on estimations for the centers of gravity.  
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1.  Introduction  

 
A sub-interval analysis (SI analysis or S-I analysis or SIA or S-IA) was 

founded in 2011-2012 in reports and working papers of the author of the present 
article (see, e.g., Harin 2011.a-2011.d and Harin 2012.a-2012.e) as a new branch of 
the interval analysis (see, e.g., Moore 1966 and Shary 2020). At present the sub-
interval analysis is only partially intersected with the traditional interval analysis, is 
essentially beyond its scope and is developed independently from it.  

This article begins a systematic introduction to the basics of the SI analysis. 
The basics of a SI arithmetic are considered here in particular.  

The prerequisites of the sub-interval analysis are the interval analysis and the 
needs of the tools for consideration of a lot of situations that are far beyond the 
scope of the traditional interval analysis.  

Possible fields of applications of the SIA can include, e.g., accounting and 
audit, decision theory, databases, econometrics, image analysis and pre-recognition, 
long-term processes, micro- and macroeconomics, etc. The realized considerations 
have confirmed the usefulness of the applications of the SIA.  
 
 

2.  Main definitions, notations, and expressions  

2.1.  Main definitions and notations  
 

Consider an interval  X = [a, b] : 0 < (b-a) < ∞.  Consider a set of points  {xs} : 
s =0, 1, …, S : 1, 0 < S < ∞,  on this interval such that  

bxxxxxxa Sss ≡<<<<<<<≡ + ...... 1210 .  

This set of points divides the interval  X  into a set of  S  adjacent sub-intervals  
{Xs}.  Due to this division, the interval  X  may be denoted as  X1..S.   

The boundaries of  {Xs}  can be defined by various manners, for example by  
Xs ≡ [xs-1, xs)  except of the far right sub-interval  XS ≡ [xS-1, xS] ≡ [xS-1, b].  The 
main condition of such definitions of the division is that any point of the interval 
should unambiguously belong to only one sub-interval.  

So the interval  X1..S  is divided into a set of adjacent sub-intervals  {Xs}.   
The lengths of the sub-intervals may be denoted as  Ls.  They can be 

normalized by the length of the whole interval  L1..S = b-a  and we have  ls = Ls/L1..S  
and  l1..S ≡ 1.   

Suppose a set of quantities  {Ws} : Ws≥0,  s =1, 2, … S : 1<S<∞  and   

∞<≡=∑
=

S

S

s

s WWW ..1
1

.  

For the purposes of the SI analysis, the quantities  {Ws}  may be named as 
weights of the sub-intervals and may be normalized by the whole weight  W1..S  as  
ws = Ws/W1..S  and  w1..S ≡ 1.  The normalized (or relative) weights and also  W1..S ≡ 1 
will be used here as a rule due to their convenience.  

Generally  Ws  may be assumed as, e.g., pointwise (see also the Section 4).  
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2.2.  Main natural expressions  

2.2.1. Center of gravity  
 

One of the main natural expressions of the interval analysis is the rule for 

summation  k1X1 + k2X2 = [ ,2211 XkXk + 2211 XkXk + ].   

The main natural expressions of the sub-interval arithmetic describe the 
coordinates of the interval  G1..S  for the center of gravity and are determined 

analogously to the interval analysis. The bottom (left) boundary  SG ..1   of the 

interval  G1..S  for the center of gravity is  

∑
=

=
S

s

ssS XwG
1

..1 .  

The top (right) boundary  SG ..1   of the interval  G1..S  for the center of gravity is  

∑
=

=
S

s

ssS XwG
1

..1 .  

The length of the interval for the center of gravity  ΔG1..S ≡ leng G1..S  is equal to the 

difference between its top  SG ..1   and bottom  SG ..1   boundaries  

SSS GGG ..1..1..1 −=∆ .  

The expressions for center of gravity can be normalized by the length of the 
whole interval  L1..S  and we have  g1..S = G1..S/L1..S  and  Δg1..S = ΔG1..S/L1..S.   
 

2.2.2. Analogs of the moments  
 

One may define analogs of the moments of  n-th order for a set of quantities  
{w(xk)}  relative to a point  xreference,  where  1 ≤ n < ∞  and  1 ≤ k < ∞,  as  

1

( ) ( )( )
K

n n

reference k k reference

k

M x w x x x
=

= −∑ .  

The bottom (left) boundary  n
M   of the interval  Mn  for the moments of  n-th 

order of  {w(xs)}  relative to a point  xreference  is  

1

( ) ( )( )
K

n n

reference k k reference

k

M x w x x x
=

= −∑ .  

The top (right) boundary  n
M   of the interval  Mn  for the moments of  n-th 

order of the set of quantities  {ws}  relative to a point  xreference  is  

1

( ) ( )( )
K

n n

reference k k reference

k

M x w x x x
=

= −∑ .  

The center of gravity corresponds to an analog of the expectation. If  {ws}  is 
the distribution of a random quantity then the above formulae determine the 
boundaries for the intervals for its moments.  
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3.  Main equalities  

3.1.  Novosyolov formula  
 

Let us estimate the length of the interval for the center of gravity of an interval 
that is divided by some sub-intervals. This length may be treated as a measure of 
precision of determination of the center of gravity. On that ground I will use a 
notation  ΔG1..S  for the length of the interval for the center of gravity.  

The length of the interval for the center of gravity  ΔG1..S  can be easily 
transformed to a new formula  

( ) ∑∑∑∑
====

=−=−=−≡∆
S

s

ss

S

s

sss

S

s

ss

S

s

ssSSS LwXXwXwXwGGG
1111

..1..1..1 .  

I have named the formula  

∑
=

=∆
S

s

ssS LwG
1

..1         (1)  

in honor of my mentor A.A. Novosyolov. It is referred to as the Novosyolov 

formula or shortly N-formula.  
Let us try to derive one more formula.  
The simplest case for a preliminary consideration is an interval  X1..2  divided 

by two sub-intervals  X1  and  X2  under the condition that the weight of only one of 
the sub-intervals is known.  However this example is not correct because we should 
know also the whole weight for the Novosyolov formula.  

So let us start from the simplest correct case of three sub-intervals  X1, X2,  
and  X3  of an interval  X1..3.   
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3.2. Weight-formula  

 
The maximal possible length  ΔG1..3  of the interval for the center of gravity of 

an interval  X1..3  is the length  L1..3  of the whole interval. Let us consider this length  
L1..3  as the limit point of overestimation.  

The Novosyolov formula for the three sub-intervals is the sum of the three 
summands  

3322113..1 lwlwlwG ++=∆ .  

Let us start from the statement that only one of the weights, e.g. the first one is 
known (and the total weight and all the lengths are known), and transform it 
equivalently to the limit point of overestimation  

31213..11312131211111 lwlwLwlwlwlwlwlwlw −−=−−++≡ .  

Such equivalent transformation for the total sum is  

)()()(

)()()(

2133123213..1

213312321

3..133..123..11

3322113..1

llwllwllwL

llwllwllw

LwLwLw

lwlwlwG

+−+−+−=
=+−+−+−

−++=
=++=∆

.  

So we can obtain the formula for the general case  

∑ ∑
= ≠∈

−=∆
S

s smSm

msSS lwLG
1 |],,1[

..1..1 .      (2)  

In proper cases it can be written also in a simplified form as  

∑
=

−−=∆
S

s

sSsSS lLwLG
1

..1..1..1 )( .  

This equality, formula may be named as a Weight-formula of mass formula or 
shortly M-formula.  
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3.3. Length-formula  

 
The Novosyolov formula includes not only the weights but the lengths as 

well. We may try to obtain one more formula.  
Consider once more the same example of three sub-intervals but from the 

point of view of the lengths  

lwwllwwlWlwlwlwlwlwlw )()( 32113213..1131213121111 +−=+−=−−++≡ .  

Such equivalent transformation for the total sum is  

3212311323..1

321231132

33..123..113..1

3322113..1

)()()(

)()()(

lwwlwwlwwL

lwwlwwlww

lWlWlW

lwlwlwG

+−+−+−=
=+−+−+−

−++=
=++=∆

.  

The formula differs from  the case of the weights. 
The Novosyolov formula for the three sub-intervals is the sum of the three 

summands  

3322113..1 lwlwlwG ++=∆ .  

Let us consider the case when only one of the lengths, e.g. the first one is known 
(and the total length and all the weights are known), and transform it equivalently to 
the limit point of overestimation. The equivalent transformation for the total sum is  

3212311323..13..1 )()()( lwwlwwlwwLG +−+−+−=∆ .  

So we can obtain the formula for the general case  

∑ ∑
= ≠∈

−=∆
S

s spSp

psSS wlLG
1 |],,1[

..1..1 .       (3)  

In proper cases it can be written also in a simplified form as  

∑
=

−−=∆
S

s

sSsSS wWlLG
1

..1..1..1 )( .  

This equality, formula may be named as a Length-formula or exPanse-formula 
or sPace-formula or shortly P-formula.  
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3.4. Ring of formulae  

 
So we can write an ensemble of the formulae  

∑ ∑

∑ ∑

∑

= ≠∈

= ≠∈

=

−=

=−=

==∆

S

p psSs

spS

S

m msSs

smS

S

n

nnS

wlL

lwL

lwG

1 |],,1[
..1

1 |],,1[
..1

1
..1

.       (4)  

I have named it as a “Ring of formulae”.   
In proper cases it can be written also in a simplified form as  

∑∑∑
===

−−=−−==∆
S

s

sSsS

S

s

sSsS

S

s

ssS wWlLlLwLlwG
1

..1..1
1

..1..1
1

..1 )()( .  
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4. Limited density situations  

 
The above considerations I have assumed that the weights of the considered 

quantities can be pointwise. But actually the pointwise values are an abstraction, 
idealization or approximation. As a rule, real values cannot be pointwise even in the 
microcosm of the elementary particles.  

In particular, the densities of the pointwise values of the considered quantities 
are assumed to be infinite. Or, these densities are assumed to be sufficiently high to 
neglect the lengths that are occupied by these quantities in comparison with the 
lengths of the sub-intervals.  

Maximal densities  ρmax < ∞  of the weights can be introduced for real 
considerations of real situations. Such limited densities decrease evidently the 
interval uncertainty that is the inherent feature of the sub-intervals. The less the 
maximal density, the less the interval uncertainty. In the limit when  

S

S

L

W

..1

..1
max =ρ ,  

the interval uncertainty is equal to zero.  
The densities of the weights of the considered quantities can be also limited 

from below by a certain minimal density  ρmin > 0.  This minimal density can be 
considered as a non-zero background. Such a limited density decreases evidently 
the interval uncertainty of the sub-intervals as well. The more the minimal density, 
the less the interval uncertainty. In the limit when  

S

S

L

W

..1

..1
min =ρ ,  

the interval uncertainty is equal to zero too.  
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5. Situations with incomplete information  

 
A valuable feature of the SI arithmetic is the possibility to estimate situations 

with incomplete information. Let us consider basic manifestations of this feature.  
 
 

5.1. Theorem of interval character of incomplete knowledge  
 

Let us consider and prove one of possible variants of a general theorem about 
interval character of incomplete knowledge. It can be useful, e.g., to analyze and 
estimate long-term processes and unfinished series of measurements.  

Theorem of interval character of incomplete knowledge. Discrete finite 

case. Suppose that a set of quantities  {w(xk)} : w(xk) > 0,  is defined on a discrete 
set of points  {xk} : k = 1, 2, … K : K < ∞,  of an interval  X=[a, b].  If the quantities  
{w(xk)}  are exactly known in a subset  {xk.exact}  of the set  {xk},  that will be 
referred to as the subset of “exact” point (we denote the subset of these “exact” 
points as  {xk.exact}),  except of at least two points that will be referred to as the 
“inexact” points  xinexact1  and  xinexact2,  that is  

. 1 2{ ( )} { ( )} ( ) ( )k k exact inexact inexactw x w x w x w x=   ,  

the distance between these two “inexact” points is  |xinexact2 -xInexact1| ≥ 2lmin > 0  and  
the quantities  w(xinexact1)  and  w(xinexact2)  may vary in a certain non-zero interval  Δ  
such that  max(w(xinexact1)) - min(w(xinexact1)) ≥ Δw > 0  and  max(w(xinexact2)) - 
min(w(xinexact2)) ≥ Δw > 0,  then any analog of finite moment for the set  {w(xk)}  is 
known within the accuracy not better than a non-zero interval.  

Proof. As long as the distance between the two “inexact” points is non-zero  
|xinexact2 -xInexact1| ≥ 2lmin > 0,  then for any point reference point  xreference  at least one 
of two “inexact” points, say  xinexact1,  is evidently remoted from this point not less 
than  |xinexact1 - xreference| ≥ lmin.   

Let us denote the exactly known parts of moment analogs  M(xreference)n  as   
2

. .
1

( ) ( )( )
K

n n

exact reference k exact k exact reference

k

M x w x x x
−

=

= −∑ .  

The general expression for the analogs of the moments can be rewritten as  

1 1 2 2

( ) ( )

( )( ) ( )( )

n n

reference exact reference

n n

inexact inexact reference inexact inexact reference

M x M x

w x x x w x x x

=

+ − + −
.  

As long as the distance  |xreference - xinexact1|  is not less than  l,  then we obtain  

1 1 1

( ) | ( ) ( ) |

[max( ( )) min( ( ))] | |

0

n n n

reference reference reference

n

inexact inexact inexact reference

n

min

M x M x M x

w

w x w x x x

l

∆ ≡ −

≥

×

− −

∆≥ >

.  

Taking into account any additional “inexact” point can only increase these 
uncertainties.           □  
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5.2. Underestimation and overestimation formulae.  

Main chain of inequalities  
 

Let us consider the obtained formulae once more. Consider the simplest case 
of certain three sub-intervals  X1, X2,  and  X3  of an interval  X1..3.   

Suppose that only l1, w1, L1..3  and  W1..3  are known.  
The Novosyolov formula gives  

1..3 1 1G w l∆ ≥ .  

So it can be named as an underestimation formula.  
The Weight-formula gives  

1..3 1..3 1 1..3 1( )G L w L l∆ ≤ − − .  

The Length-formula gives  

1..3 1..3 1..3 1 1( )G L W w l∆ ≤ − − .  

So the two last formulae can be named as overestimation formulae.  
So when we know  P ≤ S  lengths, M ≤ S  weights, and  N ≤ min(M, P)  known 

both lengths and weights, we can write  











−≤∆≤

∑ ∑

∑ ∑
∑

= ≠∈

= ≠∈

=
P

p psSs

sp

M

m msSs

sm

SS

N

n

nn

wl

lw

LGlw

1 |],,1[

1 |],,1[

..1..1
1

max ,    (5)  

This ensemble of inequalities is the main chain of inequalities of the SI-
arithmetic for situations of incomplete information.  

In proper cases it can be written also in a simplified form as  










−

−
−≤∆≤

∑

∑
∑

=

=

=
P

p

pSp

M

m

mSm

SS

N

n

nn

wWl

lLw

LGlw

1
..1

1
..1

..1..1
1 )(

)(

max .  
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6. Examples  

6.1. Statements for minimal and maximal densities  
 

A theorem of existence of restrictions (forbidden zones) for measurements in 
the behavioral economics was proved, e.g., in Harin ().The theorem may help to 
explain basic utility paradoxes such as the underweighting of high and the 
overweighting of low probabilities, risk aversion, the Allais paradox, risk premium, 
etc.. In particular, taking into account these restrictions diminishes the absolute 
values of the paradoxes and may help to partially explain them.   

Sub-interval versions of this theorem are given here in addition to other 
considerations. Here are sub-interval versions of this theorem.   
 

6.1.1. Limited minimal density  
 

Consider situations when the weight density  ρ ≡ ρw = ρweight  is not less than 
some non-zero minimal value  ρmin.   

Statement of existence of forbidden zones for the minimal density. 
Suppose there is an interval  [a, b] : 0 < (b-a) < ∞,  and a quantity (weight)  w(x) ≥ 0  
(of the total weight  Wtotal) is defined on  [a, b].  If the density  ρ  of  w(x)  is not less 
than  ρmin > 0,  then certain forbidden zones of the non-zero width exist near the 
boundaries  a  and  b  of  [a, b]  for the total center of gravity  Gtotal  of  w(x).   

Proof. Consider separately the centers of gravity for the minimal filling of the 
quantity and for the rest part. The minimal filling gives the center of gravity of the 

value  )(min ab −×ρ   in the center of the interval. The weight of the rest part is  

)(min abW −×− ρ .  If the center of gravity  Grest  of the rest part is located at  Grest = 

x  then (assuming, e.g.,  a = 0)  the total center of gravity  Gtotal  is located at  

)(
2

)]([ minmin ab
ab

abWxGtotal −×
−

+−×−×= ρρ .  

When the rest part is located at one of its limit points that is at one of the boundaries 
of  [a, b], e.g., at  a = 0  then  Gtotal  is located at its limit point  

)(
2

minmin. ab
ab

Gtotal −×
−

= ρ .  

The difference between the coordinates of this limit point and the nearest boundary  
a  can be named a forbidden zone for the center of gravity. The consideration for 
the boundary  b  is evidently the same. So, the width of forbidden zones (or 
restriction)  rrestrict  is  

2

min

( )
0

2
restrict

b a
r ρ−

= > .       □  

This statement is true for both the total interval and all its sub-intervals. 
Naturally the widths of the forbidden zones for the sub-intervals are determined by 
their lengths. One can say that such a minimal density restricts an “effective” length 
of both the interval and sub-intervals by these forbidden zones. The more the 
minimal density, the less the uncertainty for the center(s) of gravity. There is no 
uncertainty at the maximal density.  
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6.1.2. Limited maximal density  

 
Consider situations when the weight density  ρ ≡ ρw = ρweight  is not more than 

some non-zero maximal value  ρmax.   
Statement of existence of forbidden zones for the maximal density. 

Suppose there is an interval  X  such that at least one of its boundaries, e.g., the left 
boundary  a  is finite and a quantity (weight)  w(x) ≥ 0  (of the total weight  Wtotal)  
is defined on  X.  If the density  ρ  of  w(x)  is not more than  ρmax < ∞,  then the 
certain forbidden zone of the non-zero width exist near the boundaries  a  and  b  of  
X  for the total center of gravity  Gtotal  of  w(x).   

Proof. The existence of the maximal finite density means that the total weight 
cannot be concentrated in a single point and it can be concentrated only within the 
length not less than  Wtotal / ρmax.  Due to this restriction the total center of gravity 
cannot be located with respect to  a  nearer than a half of  the above length. So the 
width  rrestrict  of the forbidden zone is  

max

0
2

total
restrict

W
r

ρ
= > .        □  

 
 

6.2. Weights versus lengths  
 

Let us compare the results that we can obtain by means of the Weights-
formula and Length-formula. Let us consider the case when the weight and length 
of only one sub-interval (and the total weight and length of the whole interval) are 
known.  

Suppose we know the relative weight and length  w1 = 0.2  and  l1 = 0.1.   
The weight formula gives  

82.09.02.01)( ..11..1
1 |],,1[

..1..1 =×−=−−=−=∆ ∑ ∑
= ≠∈

sSS

S

s snSn

nsSS lLwLlwLG .  

The length formula gives  

92.08.01.01)( 1..11..1..1 =×−=−−=∆ wWlLG SSS .  

Suppose the known the values of the relative weight and length are inversed 
and equal  w1 = 0.1  and  l1 = 0.2.   

The weight formula gives  

92.08.01.01)( ..11..1..1 =×−=−−=∆ sSSS lLwLG .  

The length formula gives  

82.09.02.01)( 1..11..1..1 =×−=−−=∆ wWlLG SSS .  

So we see that the both of the formulae can be applied here and the exactness 
of the results of their application depends on the particular values of the weight and 
length and on the proportion between the weight and length.  
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6.3. Weights  

 
Equal weights. Suppose we know that the weights of all the sub-intervals are 

equal to each other, that is they equals  Ws = W1..s/S  or  ws = 1/S.  Then we have  

S

L
L

S
LwG S

S

s

s

S

s

ssS
..1

11
..1

1
===∆ ∑∑

==

.  

Minimal weight. Suppose we know the minimal weight  Wmin  or  wmin   for 
the sub-intervals.  Then we have  

S

SS

S

s

s

S

s

ssS
W

W
LLwLwLwG

..1

min
..1..1min

1
min

1
..1 ==≥=∆ ∑∑

==

.  

Maximal weight. Suppose we know the maximal weight  Wmax  or  wmax   for 
the sub-intervals.  Then we have  

S

SS

S

s

s

S

s

ssS
W

W
LLwLwLwG

..1

max
..1..1max

1
max

1
..1 ==≤=∆ ∑∑

==

.  

The only weight. Suppose we know the only weight  Wonly  or  wonly ≡ wo  of a 
certain sub-interval.  Then we can draw easily from the weight-formula (2)  

∑
≠∈

−≤∆
omSm

moSS LwLG
|],,1[

..1..1 .  

Note that to draw such deductions we do not need any information on the 
length of the sub-intervals.  
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6.4. Lengths and general formulae  

 
Equal lengths. Suppose we know that the lengths of all the sub-intervals are 

equal to each other, that is they equals  Ls = L1..s/S.  Then we have  

S

L
w

S

L
LwG S

S

s

s
S

S

s

ssS
..1

1

..1

1
..1 ===∆ ∑∑

==

.  

Minimal length. Suppose we know the minimal length  Lmin  for the sub-
intervals.  Then we have  

min
1

min
1

..1 LwLLwG
S

s

s

S

s

ssS =≥=∆ ∑∑
==

.  

Maximal length. Suppose we know the maximal length  Lmax  for the sub-
intervals.  Then we have  

max
1

max
1

..1 LwLLwG
S

s

s

S

s

ssS =≤=∆ ∑∑
==

.  

The only length. Suppose we know the only length  Lonly ≡ Lo  of a certain 
sub-interval.  Then we can draw easily from the weight-formula (2)  

∑
≠∈

−≤∆
omSm

moSS wLLG
|],,1[

..1..1 .  

Note that to draw such deductions we do not need any information on the 
weights of the sub-intervals.  

So we can write the following general formulae.  
Equality. If we know that the lengths or weights of all the sub-intervals are 

equal to each other, then we have  
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L
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S
..1

..1 )( =∆        (6).  

Minimum. If we know the minimal length or weight for the sub-intervals then 
we have  
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Maximum. If we know the maximal length or weight for the sub-intervals 
then we have  
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The only value. Suppose we know the only value either weight  Wonly  (or  
wonly ≡ wo)  or length  Lonly ≡ Lo  of a certain sub-interval.  Then we have  
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7. Conclusions  

 
This article starts the systematic introduction to the sub-interval analysis. The 

first part of the introduction is devoted to the SI arithmetic and estimations for the 
centers of gravity.  

Such estimations can be used to calculate or exactly evaluate intervals for the 
centers of gravity for time (year, month, day, …) or spatial (island, continent, state, 
province, city, …) or other characteristics of various objects and systems.  

The valuable field of applications of SI arithmetic is the analysis and 
estimations for situations with incomplete information.  
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