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Abstract

This paper studies how an improved information environment a¤ects consumer

search and �rm competition. We �nd conditions for information improvement to

have unambiguous impacts on search duration, price, and consumer welfare. In

many cases consumers bene�t from information improvement regardless of how it

a¤ects the market price, but there are also cases where information improvement

raises price signi�cantly so that consumers su¤er from it. Our model provides a

uni�ed way to consider the market implications of various types of information

improvement such as search advertising, personalized recommendation, �ltering,

and new display technology.

Key words: consumer search, price competition, information improvement

1 Introduction

Over the past two decades consumers have experienced a signi�cantly improved in-

formation environment in their shopping process. For example, they often use online

platforms to gather product information such as search engines (e.g. Google), prod-

uct comparison websites (e.g. Expedia), and e-commerce marketplaces (e.g. Amazon).

These platforms not only help consumers save on the cost of �nding sellers, but also

often guide consumers toward better and more relevant products. For instance, person-

alized recommendation or �ltering enables consumers to encounter and consider more

relevant products �rst; using a better display technology or o¤ering customer reviews

�I am grateful to Mark Armstrong and Yongmin Chen for their helpful comments.
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makes the inspection and comparison of products more informative. A related trend is

that sellers make use of consumer data (e.g. via data brokers or social media) to target

their ads and sometimes even o¤er personalized products. This also makes consumers

face a search pool with more relevant products.

In this paper we study how product information improvement a¤ects consumer

search, �rm competition and consumer welfare. If product price is �xed and if con-

sumers have no intrinsic privacy concerns, consumers should bene�t from the afore-

mentioned information improvement. However, sellers usually have incentives to adjust

their prices given that consumer search behavior is in�uenced by the information envi-

ronment. This makes the impact of information improvement on consumers less clear.

We adopt the search framework developed in Wolinsky (1986) and Anderson and

Renault (1999), and consider a large number of sellers, each supplying a horizontally

di¤erentiated product. A product�s match utility for a consumer is a random draw

from some distribution, and the realization is independent across products and con-

sumers. Consumers search sequentially for both better product match and lower price.

The details of the model are presented in Section 2. We do not model the source of

information improvement, but instead focus on an exogenous change of the information

environment and explore its market implications. We model the information change by

assuming that consumers face a di¤erent match utility distribution. Two leading cases

are when the match utility distribution becomes either higher in the sense of �rst-order

stochastic dominance (FOSD) (e.g. when consumers face more relevant products), or

more dispersed in the sense of mean-preserving spread (MPS) (e.g. when the inspection

of each product becomes more informative). We aim to understand how such a change

of the match utility distribution a¤ects consumer search and the market performance.

In Section 3 we examine consumer search behavior. With improved information

consumers become �choosier� in the sense that they aim to �nd a higher match utility

before they stop searching. That is, consumers set a higher reservation match utility

in their optimal stopping rule. This, however, does not necessarily imply that they

search longer, as with the new distribution they might be able to �nd a high match

utility at each �rm more likely (e.g. when the distribution becomes higher in the sense

of FOSD). We show that consumers search longer when the new distribution is such

that the expected bene�t from one more search becomes greater for any given level of

the best match utility so far in terms of percentile. This de�nes �excess wealth order�

in the stochastic order literature, a requirement stronger than MPS when the mean

remains unchanged. Simpler conditions are derived in special cases such as when the
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search friction is small or when the new distribution is a truncation of the original

one from below. Consumer search duration is important for an information platform

if its revenue is from charging sellers per-click fees, and it also a¤ects sellers� pricing

incentive.

In Section 4 we study price. In our search model each �rm acts as a local monopolist

facing consumers who regard the continuation value of search as their outside option.

The equilibrium price is then the reciprocal hazard rate of the match utility distribution

(which re�ects the demand composition) evaluated at the reservation match utility

(which captures consumer search incentive). A change of the match utility distribution

has both a �demand composition e¤ect� and a �search e¤ect�, but oftentimes they go

in opposite directions. For instance, when the distribution becomes higher in terms

of having a smaller hazard rate, the price would go up if the reservation match utility

remained unchanged, but meanwhile the fact that consumers set a higher reservation

match utility yields an opposite force to drive price down whenever the hazard rate

function is increasing. We show that �rms price lower when the new distribution is such

that the expected bene�t from one more search becomes greater for any given level of

the best match utility so far in terms of hazard rate. As before, simpler conditions are

available in special cases. For instance, when the search friction is small, consumers

do not stop searching until they �nd a match utility close to the upper bound. If

information improvement does not change this upper bound, both FOSD and MPS

induce a new distribution with higher density around the upper bound, so they have a

similar e¤ect on search and price. It is shown that both induce less search and a lower

market price. Search duration and price can move in the same direction more generally

when the match utility distribution changes. This contrasts with the usual perception

that they move in opposite directions (e.g. when consumers search less, �rms compete

less intensely and so market price goes up).

In Section 5 we investigate consumer welfare. Consumers must bene�t from infor-

mation improvement if it induces a lower market price. More generally, we show that

information improvement bene�ts consumers when the induced new distribution is such

that the expected bene�t from one more search becomes greater for any given level of

the best match utility so far in terms of virtual value (which is the match utility minus

the reciprocal of the hazard rate). When the new distribution is a truncation of the

original one from below, information improvement bene�ts consumers regardless of its

impact on price (provided that the search market remains active). When the search

friction is small, if information improvement does not change the maximum possible
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match utility, both FOSD and MPS bene�t consumers since they reduce price. When

the search friction is relatively high, consumers can also su¤er from information im-

provement due to the rise of price. We conclude and discuss other possible ways to

model improved information in a search market in Section 6.

One branch of consumer search literature considers homogeneous products and aims

to explain price dispersion. The classic works include Diamond (1971), Varian (1980),

Burdett and Judd (1983), and Stahl (1989). They show that information heterogeneity

across consumers can generate price dispersion. The frameworks in those works, how-

ever, are not suitable for study product information improvement which motivates this

paper. The other branch uses a framework with di¤erentiated products which is more

suitable for studying our question. The classic works include Wolinsky (1986) and An-

derson and Renault (1999). This framework has been widely applied to study various

economic problems.1 Our paper can be regarded as a comparative static analysis with

respect to the match utility distribution in this framework, a question which has not

been studied systematically in the literature.

Special cases of a change of the match utility distribution have been studied in

various setups where a search engine controls the quality of displayed sellers (Eliaz and

Spiegler, 2011), or sellers or a search engine choose the degree of targeting in the context

of search advertising (de Corniere, 2016), or a platform chooses the match precision in

personalized recommendation (Zhong, 2018). We will discuss these existing works and

their connections in more detail in the next section. However, a common feature in

these works is that information improvement is modelled in a particular way so that

the hazard rate of the match utility distribution remains unchanged. According to our

analysis, this is crucial for their results that information improvement intensi�es price

competition unambiguously (when consumer search remains active). Our study is also

related to section 4 in Anderson and Renault (1999) which examines how the degree

of product di¤erentiation a¤ects price in a search market. They consider the Wolinsky

model with a �nite number of �rms and captures the degree of product di¤erentiation

by a multiplicative parameter in front of the match utility random variable. Given their

full-market coverage assumption, the change of product di¤erentiation is a special case

of the MPS relationship.

1They include, for example, prominence and ordered search (e.g. Armstrong et al., 2009), product

design and the long-tail phenomenon (e.g. Bar-Isaac et al., 2012), multiproduct search and retail

market structure (e.g. Zhou, 2014, and Rhodes and Zhou, 2019), price directed search (e.g. Choi et

al., 2018).
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2 The model

There is a continuum of �rms, each supplying a di¤erentiated product at a constant

marginal cost normalized to zero. There is a continuum of consumers, each having at

most a unit demand for one of the products. We normalize the measure of consumers

per �rm to one. Both �rms and consumers are risk neutral, and each consumer has a

zero outside option. In the benchmark case, a product�s match utility for a consumer,

denoted by XF , is a random draw from a distribution with CDF F (x) and support

[xF ; xF ]. The realization of XF is assumed to be i.i.d. across consumers and products.

This implies that �rms are ex ante symmetric.

We model an environment with improved information by assuming that consumers

face a new match utility distribution with CDF G(x). Let XG denote the associated

new random variable, and let [xG; xG] be the new support. Suppose both F and G are

di¤erentiable, and their associated densities are f and g, respectively. We often consider

the case where XG is an FOSD of XF (denoted by XG �FOSD XF ) or the case where

XG is an MPS of XF (denoted by XG �MPS XF ).
2 FOSD captures the scenario when

the products in a consumer�s search pool become more relevant to the consumer. MPS

captures the scenario when the inspection of each product becomes more informative

so that the distribution of the estimated match utility becomes more dispersed. More

generally, we assume the following:

Assumption 1 XG is greater thanXF in the �increasing convex order�, i.e., E[�(XG)] �
E[�(XF )] for any increasing and convex function � whenever the expectations exist.

Note that XG is greater than XF in the increasing convex order if XG �FOSD XF or

XG �MPS XF .
3

An implicit assumption in our model is that the improved search pool (even after

some less relevant products are removed, for example) still has many products, and the

products still appear symmetric ex ante to consumers. We will present examples later

where this assumption is plausible.

2Formally, XG �FOSD XF if G(x) � F (x) for all x, andXG �MPS XF if
R x
�1

G(~x)d~x �
R x
�1

F (~x)d~x

for all x and the equality holds at x = maxfxF ; xGg.
3See, for example, section 4.A in Shaked and Shanthikumar (2007) for a comprehensive discussion

of the increasing convex order. It implies that a risk-seeking decision maker prefers XG over XF . An

alternative de�nition is that there exists a random variable Y such that XG �FOSD Y �MPS XH or

XG �MPS Y �FOSD XH .
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In either case, consumers initially have imperfect information about each product�s

match utility and price. They can, however, search sequentially to gather information:

by incurring a cost s > 0 a consumer can visit a �rm and discover both its match utility

and price. During the search process, consumers know the common match utility distri-

bution across products and hold a rational belief of �rms� pricing strategy. Since there

are no common shocks across �rms, we assume that upon observing an o¤-equilibrium

price in a �rm, consumers believe that the other �rms still adopt their equilibrium pric-

ing strategy. As standard in the consumer search literature (and reasonable for online

shopping, for instance), we also assume that consumers have free recall, i.e. they can

return to retrieve a product inspected before without paying an extra cost. Firms set

their prices simultaneously to maximize their own pro�t given their rational expectation

of consumer search behavior, and consumers search optimally given the match utility

distribution and their rational expectation of �rms� pricing strategy. In either case we

look for a symmetric equilibrium where all �rms charge the same price and consumers

search actively and randomly. We aim to investigate how an improved search pool with

a new distribution G a¤ects consumer search behavior, market price and consumer

welfare.

In the following, we give a few examples which help connect our model with some

existing works.

(i) Quality control by search engines. Eliaz and Spiegler (2011) consider a variant

of the above Wolinsky model where each product is either a match or not for a con-

sumer, and conditional on being a match their match utility is a random draw from

a distribution with CDF, say, �(x). Products di¤er in their quality, denoted by q, in

terms of their chance of being a match for a consumer, and the quality is unobservable

to consumers.4 The trade can take place only via a search engine which can control

the quality of �rms displayed to consumers by setting a per-click fee. Since a higher-

quality �rm is more willing to join, only the products with a quality above a certain

threshold, say, q̂ will join and so be displayed to consumers. Consumers search in this

pool sequentially and randomly. This model di¤ers from ours as it has ex ante �rm het-

erogeneity, but its feature of binary match outcomes ensures symmetric pricing across

�rms, and so it is in fact the same as our model with F (x) = E[1 � q + q�(x)] and
G(x) = E[1� q + q�(x)jq � q̂], where the expectation is taken over q. Clearly here G

4This approach of modelling �rm quality heterogeneity in a search framework is from Chen and He

(2011). A similar framework has also been used to study, for example, targeted search and product

design in Yang (2013), and search and quality investment in Chen, Li, and Zhang (2020).
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is an FOSD of F .

(ii) Targeted search advertising. de Corniere (2016) considers a Salop circular model

where both a continuum of �rms/advertisers and a continuum of consumers are uni-

formly (but independently) distributed on the circle. In the benchmark, when a con-

sumer enters a query which reveals her taste location, the search engine displays all

the �rms randomly to her, and the consumer then conducts a sequential search in a

random order. This is a spatial version of the Wolinsky model (and it was developed

in Wolinsky, 1983). More precisely, since the disutility of buying a non-ideal product

is assumed to be weakly convex in the distance between the consumer�s taste location

and the product location, the model is equivalent to the Wolinsky model with a weakly

increasing match utility density function f (so that 1 � F is concave). de Corniere

is interested in the scenario where either the �rms or a search engine can control the

match precision. In particular, if a �rm chooses a match broadness d, it will appear

in a consumer�s search pool only if it is within the distance of d from the consumer�s

location. This is the same as the Wolinsky model with a truncated distribution where

a consumer sees a �rm only if its match utility is above a threshold, say, x̂. If all �rms

choose the same threshold or the search engine sets the same threshold for all �rms,

consumers infer that all the �rms in their search pool have a match utility distribution

with CDF

G(x) =
F (x)� F (x̂)
1� F (x̂) :

Here G is also an FOSD of F .5

(iii) Filtering and elimination by aspects. Suppose each product has two attributes

and the match utility of a product for a consumer is X = X1+X2, where Xj is attribute

j�s match utility. Suppose X1 and X2 are independent of each other, and let Fj be the

CDF of Xj. A popular heuristic decision rule studied in psychology and behavioral

economics is �elimination by aspects� (e.g. Tversky, 1972). Suppose consumers are

able to �lter products (e.g. via a product comparison website) according to attribute 1

and only consider those with X1 > x̂1. Then all the products in the consumer�s search

5Zhong (2018) studies a similar search engine design problem in the Wolinsky (1986) framework.

He assumes that personalized recommendation leads to a truncated distribution. More generally we

can consider a targeting or recommendation technology by which the platform sees a signal of each

product�s match utility for a consumer and only displays to the consumer the products with a signal

above a certain threshold. When the signal has the standard monotone likelihood ratio property,

the distribution of the expected match utility of the displayed products is an FOSD of the original

distribution.
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pool have a match utility distribution

G(x) =

Z
F1(x� x2)� F1(x̂1)

1� F1(x̂1)
dF2(x2) =

F (x)� F1(x̂1)
1� F1(x̂1)

:

Here again G is an FOSD of F .

(iv) More informative inspections. Suppose that when a consumer inspects a prod-

uct, she learns a signal of the true match utility. The signal is precise with probability �

and a pure noise with probability 1� �. Then conditional on a signal realization ~s, the
consumer�s estimate of the match utility is �~s+(1��)�, where � is the mean of the true
match utility which is distributed according to �(x). Suppose the inspection becomes

more informative in the sense that the signal precision rises from �1 to �2 (e.g. because

a comparison website starts o¤ering customer reviews or introducing 3D virtual online

shopping). This �ts our model with

F (x) = �

�
x� (1� �1)�

�1

�
and G(x) = �

�
x� (1� �2)�

�2

�
:

In this example G is an MPS of F . Note that this relationship remains true more

generally whenever the signal becomes more informative in the Blackwell sense.

In sum, in examples (i)-(iii) information improvement leads to a more �selective�

(random) search pool, and in example (iv) information improvement leads to a more

�informative� (random) search pool.

For convenience, for a random variable X with CDF H(x), we write

E[(X � u)+] �
Z x

x

maxf0; x� ugdH(x) =
Z x

u

[1�H(x)]dx ; (1)

where the second equality is from integration by parts. This expression captures the

expected bene�t from an additional search when the match utility distribution is H

and the best match utility so far is u. We call the price which maximizes p[1 �H(p)]
the standard monopoly price associated with the match utility distribution H.

In our analysis below we make the following technical assumptions:

Assumption 2 Both 1�F and 1�G are �1-concave (i.e., both 1=(1�F ) and 1=(1�G)
are convex), and the search cost s is less than mini=F;G E[(Xi� pMi )+], where pMi is the

standard monopoly price associated with distribution i.

It is ready to check that the assumption of �1-concavity is equivalent to both x �
1�F (x)
f(x)

and x� 1�G(x)
g(x)

being increasing functions. As we will see, this ensures that the
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equilibrium price in each case is determined by the corresponding �rst-order condition.

Notice also that the �1-concavity condition is weaker than the often assumed condition
in the literature that 1 � F and 1 � G are log-concave (or equivalently their hazard

rate functions are increasing),6 so it is satis�ed by many often used distributions. As

we will explain later, the search cost condition ensures an active search market in each

case.

2.1 Some preliminaries

We now characterize the equilibrium of the case with distribution F . (The analysis for

the case of G is analogous.) Let pF denote the symmetric equilibrium price, and let rF

denote the �reservation match utility� which uniquely solves

E[(XF � rF )+] =
Z xF

rF

[1� F (x)]dx = s : (2)

When �rms charge the same price, a consumer will then cease her search if and only if

the best match utility so far is greater than rF . Note that rF is interior (i.e. rF > xF )

under our search-cost assumption, so that some consumers will search beyond the �rst

encountered �rm.

It is convenient to denote by

�F � F (rF )

the probability that in equilibrium a consumer will continue to search after visiting a

�rm. We call it the �search propensity�. By changing the variable in (2) from x to

t = F (x), we can de�ne the search propensity directly as the solution to
Z 1

�F

1� t
f(F�1(t))

dt = s : (3)

Suppose now that a �rm unilaterally deviates to price p. If a consumer comes to

visit it, she will stop searching and buy its product immediately if the match utility of

its product is such that XF � p > rF � pF , where the latter is the continuation surplus
if the consumer chooses to search on (which is also the equilibrium consumer surplus).

Hence, the �rm�s deviation pro�t will be proportional to p[1 � F (rF � pF + p)]. In
equilibrium the �rm should have no incentive to deviate, which requires

pF =
1� F (rF )
f(rF )

: (4)

6Log-concavity is 0-concavity, and �-concavity is more stringent than �0-concavity when � > �0.

See, e.g., Caplin and Nalebu¤ (1991) for a detailed discussion of the concept of �-concavity.
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This �rst-order condition is also su¢cient for de�ning the equilibrium price when 1�F
is �1-concave.7 We can also express pF as a function of search propensity:

pF =
1� �F

f(F�1(�F ))
: (5)

Both expressions (4) and (5) for pF will be useful in the subsequent analysis.

Consumers are willing to participate into the market if rF � pF > 0, or equivalently
if rF � 1�F (rF )

f(rF )
> 0. Since the standard monopoly price pMF solves p = 1�F (p)

f(p)
, this

is equivalent to rF > pMF given the �1-concavity assumption. Therefore, from the

de�nition of rF we know that the primitive condition for an active market is s <

E[(XF � pMF )+], where the right-hand side is the consumer surplus in the monopoly
case.8 In this range of search costs, when s increases, the reservation match utility

rF becomes smaller and so does the search propensity. This increases the price if the

hazard rate function f

1�F
is increasing (or if 1 � F is log-concave), but decreases the

price if the hazard rate function is decreasing (or if 1�F is log-convex). Under the �1-
concavity condition, however, an increase of s always lowers consumer surplus rF � pF ,
regardless of how price varies.

An analogous analysis for the case of G applies when s < E[(XG � pMG )+]. In

particular, the reservation match utility rG in the new case solves E[(XG � rG)+] = s
and the search propensity is �G � G(rG). Then the new market price is

pG =
1�G(rG)
g(rG)

=
1� �G

g(G�1(�G))
: (6)

3 Consumer search behavior

We �rst examine how information improvement a¤ects consumer search behavior. Given

XG is greater than XF in the increasing convex order, we have

E[(XG � u)+] � E[(XF � u)+] for any u (7)

since (X � u)+ is an increasing and convex function of X.9 That is, for any given best
match utility so far, the expected bene�t from one more search is greater in the case

7When 1 � F is �1-concave, x � 1�F (x)
f(x) is an increasing function (or 2f2 + (1 � F )f 0 � 0), and

then it is easy to check that a �rm�s deviation pro�t is single-peaked at p = pF .
8When s is above this threshold, there will be no equilibrium with an active market. One way to

avoid that uninteresting outcome is to assume that the �rst search is free. In that case, consumers will

always buy from the �rst �rm they encounter and each �rm charges the monopoly price pMF .
9In fact (7) is an alternative de�nition of the increasing convex order, as any increasing convex

function can be approximated by a linear combination of (X � u)+ with di¤erent u�s.
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of G than in the case of F . From the de�nition of rF and rG, it is immediate that

consumers become �choosy� and set a higher reservation match utility in the case of G

(i.e., rF � rG).
This, however, does not mean that consumers necessarily search longer in the case

of G since the distribution changes at the same time. More precisely, the (expected)

consumer search duration is determined by the search propensity:

lF �
1

1� �F
and lG �

1

1� �G
; (8)

but how an information improvement a¤ects the search propensity is not that clear.

For example, when G is higher than F in the sense of FOSD, we have rG � rF but

meanwhile G(x) � F (x). That is, in the case of G consumers set a higher reservation
match utility but at the same time they are more able to �nd a high match utility, so

that the comparison of search propensity �F = F (rF ) and �G = G(rG) can go either

direction.

The following result reports conditions for a clear-cut comparison of search duration.

Proposition 1 (i) Consumers search longer in search pool G (i.e. lF � lG) if XG is

greater than XF in the �excess wealth order�, i.e. if

E[(XG �G�1(�))+] � E[(XF � F�1(�))+] for any � 2 (0; 1) . (9)

(ii) Suppose both f(xF ) and g(xG) are strictly positive. Then there exists ŝ such that

for s < ŝ, consumers search longer in search pool G if and only if g(xG) < f(xF ).

Proof. (i) From (3) and its counterpart for G, we have

Z 1

�F

1� t
f(F�1(t))

dt =

Z 1

�G

1� t
g(G�1(t))

dt :

Then �F � �G (i.e. consumers search longer in the case of G) if
Z 1

�

1� t
f(F�1(t))

dt �
Z 1

�

1� t
g(G�1(t))

dt (10)

for any � 2 (0; 1). This is an equivalent way to write condition (9) by changing variable
from x to F (x) or G(x).

(ii) It su¢ces to prove the result when s � 0. Recall that �F solves
R 1
�F

1�t
f(F�1(t))

dt =

s. When s is close to zero, �F is close to 1. Using the (second-order) Taylor expansion
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and f(F�1(1)) = f(xF ) > 0, we can approximate the integral term on the left-hand

side as 1
2
(�F � 1)2=f(xF ). Then

1� �F �
p
2sf(xF ) : (11)

Similarly, one can derive 1� �G �
p
2sg(xG) when s is close to zero. Then the desired

result follows immediately.10

A result similar to result (i) has also been pointed out in Chateauneuf, Cohen and

Meilijson (2004) (see its section 2.3.4). Excess wealth order is one way to compare

the degree of variability of two random variables. It is location-free as only percentiles

matter.11 Notice that E[(XF �F�1(�))+] is the expected bene�t from one more search
in the case of F when the best match utility so far has reached the 100tth percentile.

So (9) means that when the best match utility so far has reached a given percentile,

the consumer has a higher incentive to search in the case of G than in the case of F .

When XF and XG have the same mean, excess wealth order implies MPS, the more

familiar concept for comparing dispersion.12 But unfortunately MPS is not su¢cient

for a clear-cut comparison result concerning search duration.13

Result (ii) is more intuitive to understand. When s is close to zero, consumers

will cease their search only if they �nd a match utility close to the upper bound of the

distribution. Then basically the density of match utility at the upper bound determines

the likelihood of ceasing search. If F and G share the same upper bound x, both FOSD

and MPS imply that G(x) � F (x) for x close to x and so g(x) � f(x). Therefore, G
will induce consumers to search less when the search friction is small.

10For consistency we prove all the results for a small search friction in this paper by approximating

the search propensity. They can also be proven by approximating the reservation match utility.
11See Section 3.C in Shaked and Shanthikumar (2007) for a comprehensive discussion of the excess

wealth order.
12When two random variables have the same mean, excess wealth order therefore implies increasing

convex order. This, however, may not be true if they have di¤erent means. For example, suppose XF

is uniform on [0; 1] and XG is uniform on [k; 1] with k 2 (0; 1). It is easy to verify that XF is greater
than XG in the excess wealth order (i.e. XF is more dispersed), but XG is clearly greater than XF in

the increasing convex order since XG �FOSD XF .
13Here is one counterexample: Suppose F has a triangle density on [0; 1] (i.e. F (x) = 2x2 for

x 2 [0; 12 ] and 1 � 2(1 � x)2 for x 2 [ 12 ; 1]). Suppose G is the uniform distribution on [0; 1] and so it

is an MPS of F . When s < 1
12 , one can check that rF = 1 � ( 32s)1=3 and rG = 1 � (2s)1=2. Then

lF = [2(1� rF )2]�1 < lG = [1� rG]�1 if and only if s > 1
81 . In other words, whether consumers search

longer or not in the case of G depends on the magnitude of the search cost.
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A su¢cient condition for (9) or (10) is f(F�1(t)) � g(G�1(t)). One can check this
is equivalent to that G�1(t)�F�1(t) increases in t, i.e., the quantile di¤erence between
XG and XF increases in t. This is the de�nition of XG being greater than XF in the

�dispersive order�.14 Then we have the following result:

Corollary 1 Consumers search longer in search pool G (i.e. lF � lG) if XG is greater

than XF in the �dispersive order� (i.e. if G
�1(t)� F�1(t) increases in t).

A similar result is also shown in Choi and Smith (2019). Dispersive order is another

way to compare dispersion. It is a stronger requirement than excess wealth order but

is also easier to check. One special case of dispersive order is that �X + � is greater

than X in dispersive order for any constant � whenever � � 1. This implies, for

example, that if both F and G are normal distributions, consumers search longer in G

if it has a greater variance. (The way how Anderson and Renault, 1999, model product

di¤erentiation also belongs to this dispersive order relationship.)

Now we are ready to discuss whether consumers search longer or shorter in the four

examples we introduced before.

Corollary 2 In examples (i)-(iii), consumers search shorter in search pool G if 1� F
is log-concave and longer if 1 � F is log-convex. In example (iv), consumers always

search longer in search pool G.

Proof. We use the dispersive order result in Corollary 1 to prove this result. In

examples (i)-(iii) we have

G(x) = kF (x) + 1� k (12)

for x in the support of G, where k > 1 is a constant. Then

G�1(t) = F�1(1� 1� t
k
) (13)

for any t 2 (0; 1). One can check that F�1(t) � G�1(t) increases in t if kf(G�1(t)) >
f(F�1(t)) for k > 1, and otherwise decreases in t. Notice that kf(G�1(t)) = f(F�1(t))

at k = 1, and one can check that the derivative of kf(G�1(t)) with respect to k is

f(z) + k
f 0(z)

f(z)

1� t
k2

= f(z) +
f 0(z)

f(z)
[1� F (z)] ; (14)

14Dispersive order has been used to study various economics problems. See, for example, Ganuza

and Penalva (2010) for its application in information disclosure in auctions, Zhou (2017) and Choi,

Dai, and Kim (2018) for its application in oligopolistic competition.
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where z = G�1(t) and the equality used (13). When 1 � F is log-concave, we have

f 2+(1�F )f 0 � 0 and so (14) is positive. Then F�1(t)�G�1(t) increases in t and so F
is greater than G in the dispersive order. The opposite is true if 1� F is log-convex.15
In example (iv),XG can be written as kXF+(1�k)�, where k = E[�j� � �̂]=E[�] > 1.

Since dispersive order is location-free, XG is greater than XF in dispersive order and

so consumers search longer in the case of G.16

One implication of Corollary 2 is that if a platform aims to maximize consumer

search duration (e.g. because it makes money from per-click fees), it has an incentive to

make the search pool more �informative� as in example (iv), but not more �selective� as

in examples (i)-(iii) if the match utility distribution is regular in terms of log-concavity.

4 Market price

We now examine how information improvement a¤ects market price. (Pro�t comparison

is the same as price comparison since pro�t is proportional to price in our model given all

consumers buy in equilibrium.) A change of the match utility distribution often yields

two opposite forces on price. For example, suppose information improvement leads to a

higher distribution in terms of hazard rate (i.e. g(x)
1�G(x)

� f(x)
1�F (x)

). From (4) it is ready to

see that this increases the market price for a given reservation match utility. However, as

this improvement is a case of FOSD, we also have rG � rF and this is an opposite force to
lower the market price if the hazard rate functions are increasing. The price expression

in (5) helps illustrate a similar trade-o¤ when information improvement leads to a more

dispersed distribution in terms of dispersive order (i.e. g(G�1(t)) � f(F�1(t))). This
increases the price for a given search propensity, but as this change induces a greater

search propensity as shown in Corollary 1, there is also an opposite force to lower the

price if the hazard rate functions are increasing. For this reason, it is often hard to

obtain a clear-cut result on how a change of the match utility distribution a¤ects price

in the Wolinsky model.

15One may wonder, given F�1(t) � G�1(t) < 0 in the examples (i)-(iii) and F�1(1) � G�1(1) = 0
(if the upper bound of the distribution support is �nite), how F�1(t) � G�1(t) can be decreasing in
t. Notice, however, that the log-convexity of 1 � F requires the support of the distribution have an

in�nite upper bound, in which case limt!1[F
�1(t)�G�1(t)] should be �1.

16Notice that in example (iv) we have xG = �2x + (1 � �2)� and so g(xG) = �(x)=�2, where � is

the density function of �. Then g(xG) < f(xF ) and so the result here is consistent with result (ii) in

Proposition 1 when the search cost is small.
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The following result reports a few conditions for an unambiguous price comparison.

For convenience, let

�F (x) �
1� F (x)
f(x)

and �G(x) �
1�G(x)
g(x)

be the reciprocal hazard rate in the case of F and G, respectively. They are decreasing

(increasing) functions if and only if 1� F and 1�G are log-concave (log-convex).

Proposition 2 (i) Suppose both of the reciprocal hazard rates are monotonic. Price is

higher in search pool G (i.e. pF � pG) if

E[(XG � ��1G (p))+] � E[(XF � ��1F (p))+] for any p (15)

and at least one of the reciprocal hazard rates is decreasing. The opposite is true if one

of the two conditions is reversed.

(ii) Suppose XG is greater than XF in the �hazard rate order� (i.e. if �G(x) � �F (x))
or in the dispersive order. Then price is higher in search pool G if at least one of the

reciprocal hazard rates is increasing.

(iii) Suppose both f(xF ) and g(xG) are strictly positive. Then there exists ŝ such that

for s < ŝ, price is higher in search pool G if and only if g(xG) < f(xF ).

Proof. (i) It is more convenient to prove this result by using the price expression

with the reservation match utility. Suppose �F (x) is decreasing. Since pF = �F (rF )

and pG = �G(rG) and both �F (�) and �G(�) are monotonic functions, the de�nitions of
rF and rG imply that

E[(XG � ��1G (pG))+] = E[(XF � ��1F (pF ))+] :

On the other hand, letting p = pG in (15) yields

E[(XG � ��1G (pG))+] � E[(XF � ��1F (pG))+] :

Then we have

E[(XF � ��1F (pF ))+] � E[(XF � ��1F (pG))+]

or equivalently ��1F (pF ) � ��1F (pG). This implies pF � pG given �F (x) is decreasing. (If
�G(x) is decreasing, a similar argument applies by letting p = pF in (15).)

(ii) Suppose �F (x) is increasing (and so is
1�t

f(F�1(t))
). Then following the discussion

in the beginning of this section, we have

pG = �G(rG) � �F (rG) � �F (rF ) = pF
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in the case of hazard rate order where we have rG � rF , and

pG =
1� �G

g(G�1(�G))
� 1� �G
f(F�1(�G))

� 1� �F
f(F�1(�F ))

= pF

in the case of dispersive order where we have �G � �F .
(iii) It su¢ces to prove the result when s � 0. Notice that when � is close to 1 and

f(xF ) > 0, we have
1� �

f(F�1(�))
� 1� �
f(xF )

by using the Taylor expansion. This, together with (11), implies that when s is close

to zero, we have

pF =
1� �F

f(F�1(�F ))
�
s

2s

f(xF )
:

Similarly,

pG �
s

2s

g(xG)
:

Then the desired result follows.

Notice that E[(XF � ��1F (p))+] is the expected bene�t from one more search in the

case of F when the best match utility so far has reached a certain level in terms of

hazard rate. There are no existing stochastic order concepts which imply (15). A

simple case where (15) holds is when information improvement does not change the

hazard rate of the match utility distribution (which is true in examples (i)-(iii) as we

show below). The second result follows the discussion in the beginning of this section:

when at least one of the reciprocal hazard rates is increasing, the two forces discussed

before will work in the same direction. The third result for a small s is intuitive. When

the search friction is small, consumers will not stop searching until �nding an almost

perfect match. In other words, for each �rm their marginal consumers have a match

utility close to the upper bound. The density of these marginal consumers essentially

determines �rms� pricing incentive.

In the case of small s, together with result (ii) in Proposition 1, we can conclude

that search duration and price move in the same direction, which is opposite to the

usual intuition from search models that price is higher (lower) when consumers search

less (more). Intuitively, when the match utility distribution becomes, for example, more

concentrated around the upper bound, it is as if products become less di¤erentiated.
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This induces consumers to search less, but at the same time price competition is inten-

si�ed. This intuition, however, is not always right if the search cost is not small as we

will see below.

A related observation is that if pF � pG for any permitted s, we must have lF � lG.
To see that, notice that di¤erentiating both (3) and its counterpart for �G with respect

to s yields pF (�d�F
ds
) = pG(�d�G

ds
) = 1, and so pF � pG implies �d�G

ds
� �d�F

ds
. Since

�F = �G = 1 at s = 0 and both decrease in s, this leads to �G � �F and so search

duration is longer in the case of G for any permitted s.

Another implication of result (iii) in Proposition 2 is that if F and G share the same

upper bound x, G must induce a lower market price when s is small. This is because,

as we have pointed out before, both FOSD and MPS imply g(x) � f(x). However,

when F and G have di¤erent upper bounds (e.g. in example (iv)), the outcome can be

reversed as shown in the corollary below.

Corollary 3 In examples (i)-(iii), price and pro�t are lower in search pool G if 1� F
is log-concave and higher if 1 � F is log-convex. In example (iv), price and pro�t are

higher in search pool G at least when the search cost is su¢ciently small.

Proof. In examples (i)-(iii), as we have known G(x) = kF (x) + 1 � k for x in the
support of G, where k > 1 is a constant. Then we have

1�G(x)
g(x)

=
k(1� F (x))
kf(x)

=
1� F (x)
f(x)

;

and so the result follows from rG � rF . In example (iv), as we have pointed out before,
information improvement reduces the density of consumers at the top, so the result

follows from result (iii) in Proposition 2.

In the �rst three examples the hazard rate of the match utility distribution remains

unchanged when information improves. This special property leads to a clear-cut price

and pro�t comparison result.17 When this property does not hold, however, information

improvement with XG �FOSD XF can induce a higher market price even in the regular

case with log-concavity. Suppose F (x) = x and G(x) = x10. One can check, for

example, when s = 0:1, we have pG � 0:52 > pF � 0:45. (But given g(1) > f(1) > 0
in this example, price must go down with G if the search cost is su¢ciently small.) In

17Note that when 1 � F is log-convex, it must be the case that f(xF ) = 0 and so result (iii) in

Proposition 2 does not apply. Thus, the result that price rises in the case of G in the �rst three

examples does not contradict with Proposition 2.

17



this example, we also have lG � 1:16 < lF � 2:22, so when the search cost is not small,
search duration and price can move in opposite directions.

In example (iv), the same result can hold even for a larger search cost. Consider

the uniform example with �(x) = x. Then when the signal precision is �, the CDF

is 1
�

�
x� 1��

2

�
and it has support [1��

2
; 1+�
2
]. One can check that the reservation match

utility is 1
2
(1 + �) �

p
2�s and the equilibrium price is

p
2�s when s < minf �

2
; (1+�)

2

32�
g

(which is required by Assumption 1). Therefore, in this example price always increases

as information improves as long as the search market is active, and meanwhile consumers

search longer as we pointed out before.

If a platform aims to maximize industry pro�t (e.g. because it earns a percentage of

sellers� pro�t by charging commission fees), it has no incentive to make the search pool

more �selective� as in examples (i)-(iii) when the distribution is regular,18 but often

has an incentive to make the search pool more �informative� as in example (iv).

5 Consumer surplus

In our setup total welfare is simply the reservation match utility. Hence, information

improvement must enhance total welfare when G is greater than F in the increasing

convex order. Since consumer surplus is the reservation match utility minus price,

information improvement must also bene�t consumers if it induces a lower price.

More generally, let us de�ne two �virtual value� functions:

�F (x) � x�
1� F (x)
f(x)

and �G(x) � x�
1�G(x)
g(x)

:

Then consumer surplus is �F (rF ) and �G(rG), respectively. (Recall that both of the

� functions are increasing given the �1-concavity assumption.) Similar results as in
Proposition 2 follow if we replace the � functions there by the � functions.

Proposition 3 (i) Consumers are better o¤ in search pool G if

E[(XG � ��1G (v))+] � E[(XF � ��1F (v))+] for any v : (16)

(ii) Suppose both f(xF ) and g(xG) are strictly positive. Then there exists ŝ such that

18Notice, however, that the market is fully covered in our model due to the existence of an in�nite

number of �rms, so the potential e¤ect of information improvement on consumer participation is

ignored.
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for s < ŝ, consumers are better o¤ in search pool G if and only if

xG � 2
s

2s

g(xG)
> xF � 2

s
2s

f(xF )
:

Note that E[(XF � ��1F (v))+] is the expected bene�t from one more search in the

case of F when the best match utility so far has reached a given level in terms of the

virtual value �(x). There are no existing stochastic order concepts which imply (16).

As in the case of price comparison, a simple case where (16) holds is when information

improvement does not change the hazard rate function. Result (ii) follows immediately

from the proofs of result (ii) in both Proposition 1 and Proposition 2. It implies that

when the search cost is small and both F and G have the same upper bound, consumer

surplus comparison is simply the reverse of price comparison. However, the outcome

can be very di¤erent if F and G have di¤erent upper bounds. For instance, in example

(iv) information improvement can enhance both pro�t and consumer surplus.

Corollary 4 In examples (i)-(iii), consumers are better o¤ in search pool G. In ex-

ample (iv), consumers are better o¤ in search pool G at least when the search cost is

su¢ciently small.

Proof. In examples (i)-(iii), we have known that 1�F (x)
f(x)

= 1�G(x)
g(x)

. Then �F (x) =

�G(x) and so consumers must bene�t from information improvement given rF � rG and
�F (x) is increasing. In example (iv), when s � 0 one can check that consumer surplus
with signal precision � is approximately �x+ (1� �)�� 2

p
2s��(x). This is increasing

in � when s is small.

Note that in examples (i)-(iii), given the �1-concavity condition, information im-
provement bene�ts consumers regardless of how it a¤ects the price. The result in

example (iv) is not robust to a larger s. Consider the uniform example with �(x) = x.

Following the analysis before, one can check that consumer surplus in this example,

when the signal precision is �, is 1
2
(1 + �) � 2

p
2�s, which increases in � if and only if

s < �
8
. Recall that our solution is valid when s < minf �

2
; (1+�)

2

32�
g, and this search cost cap

is greater than �
8
for any �. Therefore, in this example, starting from any � improving

information bene�ts consumers if s � �
8
but harms consumers if �

8
< s < minf �

2
; (1+�)

2

32�
g.

That is, the negative price e¤ect dominates when the search cost is relatively high.

One implication of Corollary 4 is that if a platform aims to improve consumer

surplus (e.g. because it faces strong competition from other platforms), it has an

incentive to make the search pool more �selective� as in examples (i)-(iii) and also

more �informative� as in example (iv) at least when the search cost is small.
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6 Conclusion

This paper has studied how product information improvement a¤ects consumer search

duration, market price, and consumer welfare. Although in general the impact on each

variable can go either direction, we have derived conditions for an unambiguous assess-

ment. In particular, we show that when the search friction is small, search duration and

market price tend to move in the same direction, and information improvement bene�ts

consumers if it does not change the maximum possible match utility. Our setup also

provides a uni�ed perspective to consider various types of information improvement

which have been separately studied in the literature. This paper regards the infor-

mation improvement as exogenous. In practice, however, information improvement is

often strategically chosen by �rms or information platforms. This lack of endogenous

information in our model clearly limits the relevance of our welfare assessments.

There are other possible ways to model improved information in a search market. For

example, Anderson and Renault (2000) model information improvement by assuming

that in the Wolinsky model some consumers become informed (i.e. they know the match

utilities of all the products) before search. Since these consumers have no incentives

to search beyond the best matched product which they already know, their presence

relaxes price competition and harms other uninformed consumers. This is similar as

making some consumers informed of their best matched products (e.g. due to a perfect

personalized recommendation). If all consumers are informed of their best matched

products, then they will not search beyond the recommended product, and due to

Diamond (1971)�s argument each �rm will act as a monopolist conditional on being the

best matched supplier.19 A more general approach is to assume that consumers are

informed of several top matched products (but without their ranking). Since the top

matched products have an improved conditional match utility distribution, the situation

is similar to the FOSD case in this paper. There is an extra complication, however, when

the total number of �rms is �nite: the (conditional) match utilities of the top products

are correlated and this causes signi�cant complexity in the demand analysis.20 It is also

19More precisely each �rm will act a multiproduct monopolist which sells all the products in the

market. With an in�nite number of �rms, this will lead to a price equal to the maximum match utility

and so the market will collapse unless the �rst search is free. The outcome, however, will be very

di¤erent if each consumer is informed of the product with the highest surplus (i.e. match utility minus

price). In that case the outcome will be the same as in the perfect information case. See, e.g., Teh

and Wright (2019) for a model of recommendation with consumer search in this vein.
20A tractable case is studied in Burguet and Petrikaite (2019). They consider targeted advertising
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possible to consider information design in a search market. For example, Dogan and Hu

(2019) consider the same search framework and study how informative the inspection

of each product should be if we want to maximize consumer surplus. This is related

to example (iv) in Section 2 if we allow for a general signal structure. More broadly,

information design in a search market can consider not only the informativeness of each

product inspection, but also the disclosure of relative valuations across products, and

even the control of which sellers to display to consumers, of which Eliaz and Spiegler

(2011) and de Corniere (2016) are special cases.
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