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Abstract

Insurance and reinsurance live and die from the diversification benefits or lack

of it in their risk portfolio. The new solvency regulations allow companies to

include them in their computation of risk-based capital (RBC). The question is

how to really evaluate those benefits.

To compute the total risk of a portfolio, it is important to establish the rules

for aggregating the various risks that compose it. This can only be done through

modelling of their dependence. It is a well known fact among traders in financial

markets that “diversification works the worst when one needs it the most”. In other

words, in times of crisis the dependence between risks increases. Experience has

shown that very large loss events almost always affect multiple lines of business

simultaneously. September 11, 2001, is an example of such an event: when the

claims originated simultaneously from lines of business which are usually uncor-

related, such as property and life, at the same time that the assets of the company

were depreciated due to the crisis on the stock markets.

In this paper, we explore various methods of modelling dependence and their

influence on diversification benefits. We show that the latter strongly depend on

the chosen method and that rank correlation grossly overestimates diversification.

This has consequences on the RBC for the whole portfolio, which is smaller than

it should be when correctly accounting for tail correlation. However, the problem

remains to calibrate the dependence for extreme events, which are rare by defini-

tion. We analyze and propose possible ways to get out of this dilemma and come

up with reasonable estimates.

Keywords: Risk-Based Capital, Hierarchical Copula, Dependence, Calibration
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1 Introduction

The purpose of insurance or reinsurance is to offer sharing of risks among individuals.

It is thus in its nature to deal with a variety of risks on its balance sheet. Due to its core

business, the risks originating from the insurance business should dominate the other

risk factors. Nevertheless, building an internal model for such a company implies that

one is able to aggregate the risks in a portfolio. There are a number of purposes for

which an aggregate model of the insurance business is needed: risk management, cap-

ital management, business steering, and profitability analysis are just a few examples.

For building a business plan of the company only the expected value of the insurance

loss matters. In this case, the dependence between the lines of business is not relevant

since the relationship

E

[

∑
i

Xi

]

= ∑
i

E[Xi] (1)

holds for any vector X = (X1, . . . ,Xn) of random variables, independent of the relation

between them. However, as soon as other properties implying the probability distribu-

tion of the losses, such as a risk measure, are of importance, the dependence structure

is of utmost relevance. It will drive significantly the risk of the overall portfolio.

There are a variety of dependencies which influence insurance claims. There is the

whole class of the intuitive dependencies which are traditionally thought of when mod-

elling single risk factors. For instance, the dependence of natural catastrophe events

on the single property policies is a well studied discipline. Especially when analysing

large insurance claims, it becomes obvious that such events rarely trigger one policy

only, or even just a single line. Most large losses have a strong multi-line character and

trigger several product categories simultaneously.

The collapse of the World Trade Center towers on September 11 2001 has shown in

a dramatic way how insurance products of lines of business, which had thought to be

independent until then, can be triggered at once. The scenario of both towers collapsing

had been assumed to be impossible. 9/11 caused a human drama, many people lost

their lives in and around the Twin Towers. Several surrounding buildings have also

collapsed or suffered severe damages. Insurance-wise, several property policies were

triggered. Next to the damage to the buildings, there was a large amount of business

interruption claims, and several life policies were triggered, while cars parked under

the towers were also destroyed and triggered motor policies.

In times of human tragedies, insurance companies show a fair amount of goodwill.

This could, for instance, be seen when hurricane Katrina had destroyed New Orleans.

The wind had caused the city levees to break, and the city was flooded. Whereas most

of the property insurance policies covered wind, a vast number of policies did not cover

flood. However, a substantial part of the insurance loss was technically a flood loss.

Nevertheless, most insurance companies paid for the flood loss even when it was not

covered. This shows that, in extreme cases, insurance policies can also be triggered for

perils they do not even cover.

There are also less obvious but none the more harmless dependencies between lines
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of business. The most significant is probably the dependence of the product definition

and the legislation associated with the product. Due to the globalisation of the world

economy, product definitions adapt rather quickly across markets, and the legislation of

most countries is interlinked with the ones from other countries through an organisation

such as the European Union. The claims amounts can be influenced considerably by the

exclusions in the policy and by the court practice. This can be seen very prominently

in the case of the US liability products; insurance claims were exploding in the late

1990s.

Whilst it would be easy to find other examples of large multi-line losses, it is hard to

imagine why there should be a dependence between small losses. For instance, if a

given year has no large natural catastrophe events, why should it be a good year for fire

insurance? If not many severe car accidents happen, would we necessarily expect the

amount of medical malpractice claims to be low? The world seems to be asymmetric;

whereas large events can cumulate large claims, low claims in one line do not imply a

good year for another line. Moreover, as the subprime crisis is once again reminding us,

dependence also increases among financial markets when confidence decreases. Whilst

confidence is lost quickly, it takes much longer for the industry to regain confidence.

Asymmetry is also in this case very relevant. We will show in this article that the

asymmetry of the dependence is a driver for the capital, and that it is important to

take the asymmetry into account when modelling the dependence. We thus find it very

topical for a book about stress testing to study how to model changes in dependence

during stress situations.

The article is organized as follows: After a section dealing with the measurement of

dependence and risk, we briefly introduce the concept of copula and various forms of

them in Section 3. Section 4 deals with the set up of our model, the type of analysis

we perform and the methodology. The results are presented and discussed in Section

5. Because estimation of dependence parameters is crucial to portfolio modelling, we

present our approach to this problem in Section 6. Conclusions about this study are

drawn in Section 7.

2 Measuring and Modelling Risks

2.1 Measuring and Modelling Dependence between Risks

There are a variety of methods to measure and model dependence. For interested read-

ers, an excellent overview is provided in the work of the risklab of the ETH Zurich

around Paul Embrechts [Embrechts et al., 2002, Embrechts et al., 2003]. Here we shall

briefly mention few relevant points to our study. The most popular measure of depen-

dence between two random variables Xi and X j, whose standard deviations exist, is

probably the Pearson correlation, also known as linear correlation

ρi j =
E[(Xi −µi)(X j −µ j)]

σiσ j

, (2)
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where µi and µ j denote the mean and σi and σ j the standard deviation of Xi and X j

respectively. The expectation value in the numerator is also called the covariance of Xi

and X j.

Spearman’s rank correlation measures the correlation between the ranks of Xi and X j

rather than their nominal values:

RCi j = 12 ·E[(Ui −0.5)(U j −0.5)], (3)

where Ui is the relative rank, in other words the cumulative probability, of Xi. This is

a slightly more sophisticated measure, since it is independent of the distribution of the

individual random variables and the existence of their second moments. The separation

between the marginal distributions of Xi and X j and the correlation measure facilitates

the modelling of the risk.

A third popular risk measure is the Kendall τ

τi j = E[sign(Xi − X̃i)(X j − X̃ j)], (4)

where (X̃i, X̃ j) is a second pair of random variables with the same distribution as

(Xi,X j). It can be shown that, just as Spearman’s rank correlation, the Kendall τ does

not depend on the marginal distributions.

All those measures assume underlying a linear dependence model and do not sensitive

to inhomogenity of the dependence structure for low and high quantiles. We have just

argued above that claims in case of stress are more dependent on each other. To model

such a behaviour, we need to use more sophisticated concepts such as copulas. In this

article, we will model dependence through copulas. As some of the readers may not

be familiar with copula modelling, we will introduce the topic in Section 3.

2.2 Measuring Risk

Risk can be defined as the deviation of reality from the expectation. There are a number

of risk measures used in the financial industry. One of the most popular risk measures in

both banking and insurance is the value-at-risk (VaR), which is defined as the negative

quantile at a certain probability α:

VaR(α)(X) = −x(α)(X) = −sup{x|P[X ≤ x] ≤ α}. (5)

This definition corresponds to the question: which is the minimum loss in the α% worst

cases of the portfolio? The VaR has also been chosen as the central risk measure for

the European Solvency II regulation.

However, there are a number of shortcomings to the VaR as a risk measure, above all

that the VaR is not a coherent risk measure: It violates the axiom of subadditivity of a

risk measure ρ,

ρ(X1)+ρ(X2) ≤ ρ(X1 +X2), (6)

for certain types of probability distributions [Artzner et al., 1999].
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Translating this axiom into the language of business, this would mean that the diver-

sification gain when running two risks in one company as opposed to two separate

companies must be positive. This is an elementary property when calculating capital

requirements of legal entities and holdings. Due to the lack of subadditivity, it is not

possible to allocate the overall VaR to individual risk factors, which is a necessity in

companies with an active performance measurement and capital management process.

For these reasons, many insurance companies prefer to use as a risk measure the ex-

pected shortfall ES(α)(X) to the VaR. We follow the definition of the expected shortfall

as given in [Acerbi and Tasche, 2002]:

ES(α)(X) = − 1

α

(

E[X1{X≤x(α)}]− x(α)(P[X ≤ x(α)]−α)
)

. (7)

The expected shortfall is sometimes also called tail-value-at-risk, tVaR. The expected

shortfall is the answer to the question: what is the expected loss, given the loss is in

the worst α% cases of the portfolio? In contrast to the VaR, the expected shortfall is

a coherent risk measure [Artzner et al., 1999]. Furthermore, capital allocation to the

various risk factors can easily be done using the Euler principle: the overall shortfall is

subdivided into the contribution of each risk factor to the shortfall scenarios, i. e. the

worst α% loss scenarios of the portfolio. This yields a fair and consistent method for

allocating the capital, KX , to the risk X within the portfolio Z [Tasche, 2002]:

KX = −ES(α)(X | Z ≤ F−1
Z (α)) , (8)

where FZ is the cumulative probability distribution of the entire portfolio Z 1.

Going back to the risk-based capital (RBC) for each random variable X , we define it as

the risk above the expected:

RBC(X) = −ES(α)(X)−E[X ]. (9)

We can then define the diversification gain as the capital which can be saved when

running the risks together in a portfolio of a single company rather than each risk factor

in a separate company:

DG(X) ≡ 100%− RBC (∑i Xi)

∑i RBC(Xi)
. (10)

This is the main variable of interest for our study. We will analyse the effect of depen-

dence of random variables on the diversification gain.

3 Copula Modelling

One way of representing dependence between random variables are copulas. There

are a number of good introductory readings to copula modelling, see for instance

1Since the expected shortfall, the risk measure we will use,is negative, it has a negative sign in the capital

definition.
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[Nelsen, 1999, Embrechts et al., 2003, Genest and Favre, 2007]. The basic idea of a

copula is to translate any multivariate distribution F(x1,x2, . . . ,xn) into its marginal

distributions F1(x1),F2(x2), . . . ,Fn(xn) and its copula C(F1(x1),F2(x2), . . . ,Fn(xn)) de-

scribing the dependence between the random variables X1, . . . ,Xn. Sklar’s theorem

[Sklar, 1958] shows the equivalence of multivariate distributions and the copula ap-

proach.

For use of simplicity, we abbreviate (F1(x1),F2(x2), . . . ,Fn(xn)) by u = (u1,u2, . . . ,un)
throughout this article. The copulas will generally just be defined for u. In order to

obtain the realisation vector x = (x1, . . . ,xn), the quantile functions of the marginal

distributions will have to be applied on u: x = (F−1
1 (u1),F

−1
2 (u2), . . . ,F

−1
n (un)).

An n-dimensional copula C : [0,1]n → [0,1] is a function with the following properties

C(u) = 0 whenever u has at least one component equal to 0 (11)

C(u) = ui whenever u = (1, . . . ,1,ui,1, . . . ,1) (12)

VC(B) = ∑
u vertex of B

sgn(u)C(u) ≥ 0 for any B = [a,b]. (13)

In the last condition, VC(B) denotes the probability volume of B,which must not be

negative. The term sgn(u) is defined as

sgn(u) =

{

1 if uk = ak for an even number of k,

−1 if uk = ak for an odd number of k.
(14)

There exists a vast variety of copulas. However, there are only few families of them

used in practice. The following subsections give an overview of the most popular

families: the Archimedean and elliptical copulas.

3.1 Archimedean Copulas

There are a number of excellent papers on Archimedean copulas, see for instance

[Savu and Trede, 2006] or [Armstrong, 2003]. Archimedean copulas are defined through

their generating function φ:

C(u1, . . . ,un) = φ−1(φ(u1)+ · · ·+φ(un)). (15)

The function C is called an Archimedean copula if and only if

(−1)k ∂k

∂uk
φ−1(u) ≥ 0 for k ∈ N. (16)

Archimedean copulas are

• commutative, i.e. C(u1,u2) = C(u2,u1) for all u1,u2 ∈ [0,1],

• associative, i.e. C(C(u1,u2),u3) = C(u1,C(u2,u3)) for all u1,u2,u3 ∈ [0,1].
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Figure 1: Rank scatter plots of the bivariate Clayton copula for θ = 0.5, θ = 2, θ = 10.

3.1.1 The Clayton Copula

The Clayton copula, sometimes also called the Cook-Johnston copula, is defined by its

generating function

φ(t) =
1

θ

(

t−θ−1
)

. (17)

In the bivariate case, this leads to the cumulative copula density

C(u,v) = max

(

[

u−θ + v−θ−1
]−1/θ

,0

)

. (18)

Scatter plots of the bivariate Clayton copula are shown for various values of θ in Fig-

ure 1. It can be seen that the higher the value of θ, the more the two random variables

depend on each other. The limit θ → 0 corresponds to the uniform copula, i.e. the

random variables are independent.

The Clayton copula is asymmetric. In its defined form, the Clayton copula acts on the

lower tail of the distribution, whereas for upper tail the random variables are hardly

dependent on each other. In insurance, however, the dependence should be modelled

for the upper tails. This can easily be obtained by mirroring the copula by a transfor-

mation (u,v)→ (1−u,1−v). Throughout the following sections, we will consider the

Clayton copula in its mirrored form.

3.1.2 The Gumbel Copula

The Gumbel copula is another representative of the family of Archimedean copulas.

Its generating function is defined as

φ(t) = (− log t)θ. (19)

For the bivariate case, this leads to the cumulative copula density of

C(u,v) = exp

(

−
[

(− logu)θ +(− logv)θ
]1/θ

)

. (20)
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Figure 2: Scatter plots of the bivariate Gumbel copula for θ = 1.5, θ = 2, θ = 5.

Scatter plots of the bivariate Gumbel copula are shown for various values of θ in Fig-

ure 2. As in the case of the Clayton copula, the dependence of the random variables

grows with increasing value of θ. In contrast to the Clayton copula, the Gumbel depen-

dence acts on both upper and lower tail. Nevertheless, the Gumbel copula is asymmet-

ric: in its definition, the dependence of high quantiles is stronger than the one of low

quantiles.

3.2 Elliptical Copulas

Elliptical copulas are based on multivariate elliptical distributions, which are described

for instance in [Fang and Zhang, 1990]. Prominent members of the family of elliptical

copulas are the Gauss copula and the Student’s T copula. They will be described in the

following subsections.

3.2.1 The Gauss Copula

The Gauss copula is the copula representation of a rank correlation process. It is based

on the multivariate normal distribution. Assuming Z = (Z1, . . . ,Zn) to be a vector of

multivariate normally distributed random variables, the joint probability density func-

tion is defined as

f (z) =
1

(2π)n|Σ| exp

(

−1

2
z′Σ−1z

)

, (21)

where z = (z1, . . . ,zn) is a realisation of Z. The correlation matrix Σ is defined as

Σ =











1 ρ12 . . . ρ1n

ρ21 1 . . . ρ2n

...
...

...

ρn1 ρn2 . . . 1











, (22)

where ρi j denotes the correlation between the random variables Zi and Z j. The corre-

lation matrix is symmetric, i. e. ρi j = ρ ji.
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Figure 3: Rank scatter plot of the Gauss copula for ρ = 0.3, ρ = 0.6, and ρ = 0.9.

In order to obtain the cumulative probability of the marginal distributions, i. e. the

vector u as described above, the cumulative density function of the univariate standard

normal distribution has to be calculated:

ui = Φ(zi) =
1

2π

∫ zi

−∞
dt exp

(

− t2

2

)

. (23)

Scatter plots of the bivariate Gauss copula are shown for various values of the correla-

tion parameter ρ in Figure 3. The symmetry and linearity of the Gauss copula can also

be seen reflected in the scatter plots: the same dependence is homogeneous for low and

high quantiles, i. e. the rank correlation within any ellipsoid around the diagonal of the

scatter plot is the same. The Gauss copula has become popular in stochastic simula-

tion, mainly due to the simplicity of calibrating it by measuring the rank correlation.

Furthermore, the algorithms of simulating multivariate random variables using a Gauss

copula are well known. Nevertheless, as we will see in this article, the symmetry and

the linearity of the Gauss copula are strong restrictions for modelling the dependence;

assuming that in reality we observe an asymmetric dependence of insurance losses, as

we argue for in the introduction, the risk diversification gain is substantially overesti-

mated.

3.2.2 The Student’s T Copula

As the Gauss copula is based on the multivariate normal distribution, the Student’s T

copula is based on the multivariate Student’s T distribution. A detailed discussion of

the Student’s T copula can be found in [Demarta and McNeil, 2005].

Let Y = (Y1, . . . ,Yn) be a random variable with a multivariate Student’s T distribution

with ν degrees of freedom. The probability density function is given by

f (y) =
Γ

( ν+n
2

)

Γ
( ν

2

)√

(πν)n|Σ|

(

1+
y′Σ−1y

ν

)− ν+n
2

. (24)

The matrix Σ is the correlation matrix as defined also for the Gauss copula in Equa-

tion (22). The similarity between the Gauss copula and the Student’s T copula becomes
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Figure 4: Rank scatter plots for Student’s T copula with constant ν = 1 and increasing

ρ = 0.3, 0.6 and 0.9 shown in the top row; and for constant ρ=0.6 and increasing ν = 1,

3 and 9 in the lower row

even more apparent when looking at the representation

Y =
√

WZ, (25)

where Z is a random variable with a multivariate normal distribution as described in

Equation (21) and W is independent from Z and is inverse gamma distributed W ∼
Ig(ν/2,ν/2). The degree of freedom parameter ν can assume any positive real value.

However, it is more difficult to find fast numerical algorithms for non-integer values of

ν than for integer values. Thus, many modellers prefer to work with integer values of

ν.

Similarly to the case of the Gauss copula, the cumulative probability of the marginal

distributions u can be obtained by calculating the cumulative distribution function of

the univariate Student’s T distribution

ui =
Γ

( ν+1
2

)

Γ
( ν

2

)√
πν

∫ yi

−∞
dt

(

1+
t2

ν

)− ν+1
2

. (26)

Scatter plots of the bivariate Student’s T copula are shown for various values of the cor-

relation parameter ρ and the degree of freedom parameter ν are shown in Figure 4. As

in the case of the Gauss copula, the scatter plot of the Student’s T copula is symmetric:

the dependence of high quantiles is the same as the one of low quantiles. The additional

parameter ν allows for modelling a dependence orthogonal to the main dependence as

given by ρ. For low values of ν and ρ, the scatter plot resembles an X-shape.
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4 Setup of the Analysis and Methodology

4.1 Model Setup

In this article, we are interested in a variety of questions related to the estimation of

diversification benefits when combining multiple risk factors. Foremost, we want to

investigate the impact of the functional form of a copula. We will start our investigation

by defining a benchmark sample that we will use as the reference to compare results.

Let us consider a standard property reinsurer whose products cover two perils: fire and

windstorm. Our model reinsurer sells products in Germany and France. We will first

have to think about how to set up a dependence structure for this business.

The windstorm peril underlies a strong dependence between Germany and France, as

those are neighbouring countries, and the likelihood is big that a windstorm could pass

over both countries in the same event. In an advanced company, the natural catastrophe

peril windstorm would normally be modelled in an event set based way, which would

include its dependence. However, for the sake of our investigation, we will assume that

our model reinsurer has modelled the windstorm peril for both countries separately

in the form of lognormal distributions and wants to model the windstorm dependence

through a copula.

The fire peril underlies also a strong dependence between both countries. This may

seem surprising at first glance: Why should a fire break out in Germany when there is

a fire in France or vice versa? However, significant dependence between reinsurance

products do not arise through the underlying peril itself but are caused by changes in

legislation and insurance practice. Since both, France and Germany, are EU countries,

their legislation will move somewhat in parallel. This implies a dependence between

the fire losses.

Between the aggregate fire and windstorm perils, we want to model another depen-

dence. The origin of this dependence is in both the reasons mentioned above: When-

ever a windstorm event happens, it is likely to cause a number of fires in the correspond-

ing country. Furthermore, both perils usually underlie a similar product definition and

legislation and are therefore dependent. In conclusion, we model the dependence in the

form of a hierarchical tree as shown in Figure 5: we subdivide the property portfolio

of our model reinsurer into the perils fire and windstorm first and then into the peril

regions Germany and France. This hierarchical structure is a natural way of expressing

the dependence through our understanding of the business we are analysing. Moreover,

there is nothing in this approach that prevents us to use an event loss set based model

for windstorm to replace the lognormal model we will use throughout this article.

Since the main focus of this article is on modelling dependence rather than modelling

the perils themselves, we will simplify the problem to maximise the effect of our inves-

tigation. The biggest effect of dependence can be seen when aggregating equal risks.

Therefore, we choose equal marginal distributions for all our risk factors. A canoni-

cal type of aggregate loss model used in insurance is the lognormal distribution. Its
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Figure 5: Model hierarchy used as a reference for comparing models.

probability density function (PDF) is defined as

f (x) =
1

xσ
√

2π
exp

(

− (logx−µ)2

2σ2

)

. (27)

We choose µ = 10 and σ = 1 for each of the marginal distributions modelling our risk

factors. For our purposes, the choice of µ is hardly relevant; it is just a translational

shift of the lognormal distribution and will not change our considerations on the di-

versification gain. The parameter σ influences the width and also the skewness of the

distribution. The value of σ = 1 chosen for our study corresponds to a usual skewness

of an aggregate insurance loss distribution.

As described in the introduction, there is strong evidence that the dependence of in-

surance claims are asymmetric: Whereas it is less likely that low claim sizes in one

line lead to low claim sizes in the other, it is very likely that large claims in one line

trigger large claims in other lines. Therefore, we will choose the most asymmetric and

the most severe one of the four copulas we investigate for our reference model to pro-

duce our benchmark sample: the Clayton copula. We choose θ = 3 as the dependence

between the windstorm regions, θ = 2 as the dependence between the fire regions, and

θ = 1 as the dependence between fire and windstorm. These parameters are higher than

the ones observed in reality; the strong dependence of the reference model is chosen

to strengthen the effects studied in this article and to increase the understanding. We

deliberately choose an extreme case to better study the effect of dependence on the di-

versification gain. We want to see how the various methods fair in reproducing a rather

difficult case of dependent variables.

It is important to note that the dependence on top of the tree refers to the dependence be-

tween the aggregate loss of the two underlying baskets. This is in contradiction to other

definitions which can be found in the literature. For instance, [Savu and Trede, 2006]

define the dependence of a node between the cumulative copula densities of the un-

derlying nodes, which is not equivalent to the aggregate loss. The main advantage

of modelling dependence between aggregate losses is that it is more intuitive to think
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about aggregate losses than it is to think about copula densities.

In the following sections, we will investigate the behaviour of this reference model

structure and how it can be modelled under misspecification, i. e. using the ‘wrong’

functional form of the copula or using different hierarchies.

4.2 Methodology

The difficulty about our model setup is that many computational algorithms have to

be combined to a consistent set of methods. The essential features needed are the

generation of hierarchical random numbers and fitting methods for copulas. Both topics

are well documented in the literature.

Algorithms to generate random variables from multivariate Archimedean copulas can

be found for instance in [Whelan, 2004]. Gauss copulas are best sampled from using

the methodology described by [Wang, 1998]. Student’s T copulas can be generated

out of the Gauss copulas by extending Wang’s algorithm with the method described by

[Demarta and McNeil, 2005].

In our study, we do not only want to generate samples from multivariate copulas, but

from a hierarchical copula tree. The literature on this topic becomes sparser. Most

authors follow the definition and approach as defined in [Savu and Trede, 2006]. How-

ever, as mentioned above, our definition of a copula tree is slightly different: we define

dependence between aggregate losses rather than between cumulative copula densities

as in [Savu and Trede, 2006]. We have therefore developed a reordering schema to gen-

erate hierarchical copulas, the description of which would lead beyond the scope of this

article. It will be described in detail in a succeeding article [Bürgi and Müller, 2008].

In the study, we define a benchmark set of observations with small theoretical diversi-

fication benefits. We then fit those observations with various models of dependence. In

the following paragraphs, we describe which methods we use to fit the various depen-

dence model we presented in Section 3.

The fitting of Archimedean copulas was done with maximum likelihood estimation,

see for instance [Savu and Trede, 2008]. Given N vectors of observations U1, . . . ,UN,

the log-likelihood function of θ is defined as

logL(θ) =
N

∑
j=1

logc(Uj), (28)

where c(Uj) is the copula density of Uj. The estimator of θ is then given as the maxi-

mum of the log-likelihood function

θ̂ = max
θ

logL(θ). (29)

The correlation matrix of the Gauss copula was determined by measuring Spearman’s

rank correlation as given in Equation (3) and deriving the correlation coefficient ρi j as

ρi j = 2sin
(π

6
RCi j

)

. (30)
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Figure 6: Value scatter (top) and rank scatter (bottom) of the reference perils.

This procedure is described in detail in [Wang, 1998].

The correlation matrix of the Student’s T copula was estimated by estimating the

Kendall τi j between the random variables Xi and X j as given in Equation (4) and cal-

culating the correlation

ρi j = sin
(π

2
τi j

)

. (31)

The degree of freedom parameter ν is estimated using maximum likelihood estimation.

This method is described in more detail in [Demarta and McNeil, 2005].

5 Results and Discussion

To start the discussion on risk aggregation, we will analyse the reference model struc-

ture as described in Section 4.2. Value scatter plots of the risk factors of our refer-

ence model are shown in the top row of Figure 6. In the bottom row, the rank scatter

plots, i. e. the plot of the cumulative probabilities of the marginal distributions, are

shown. The left column is dedicated to the dependence between fire Germany and fire

France, the right column to the dependence between windstorm Germany and wind-

storm France. In the middle column, the scatter plot of fire France with windstorm

France can be seen. Note that the dependence on the latter perils is imposed through

the top-level dependence in the reference tree, acting on the aggregate fire and wind-

storm losses. Since it is difficult to see structures on the value scatter plots, we will

14



Table 1: Parameters of the Gumbel (first row), the Gauss (second row), and the Stu-

dent’s T (third row) hierarchies fitted to the Clayton reference model for fire Germany /

fire France (left), fire / windstorm (middle), and windstorm France / windstorm Germany

(right).

Fire Fire/Windstorm Windstorm

Gumbel θ̂ = 2.07 θ̂ = 1.54 θ̂ = 2.61

Gauss ρ̂ = 0.7 ρ̂ = 0.5 ρ̂ = 0.8
Student’s T ρ̂ = 0.71; ν̂ = 6 ρ̂ = 0.51; ν̂ = 9 ρ̂ = 0.81; ν̂ = 4

only use the rank scatter plots for the further discussions and we will call them simply

scatter plots dropping the ‘rank’.

5.1 Modelling under Misspecification

First of all, we will study the impact of the functional form for modelling dependence

on the risk. For this purpose, we generate 100’000 samples from the reference struc-

ture, our benchmark sample, which we will use as the realisations, i. e. the ‘observa-

tions’. The other copulas described in Section 3 are fitted to those realisations, one for

each node of the dependence tree.

The fitted parameters can be seen in Table 1. Since the reference hierarchy is cali-

brated with a strong Clayton copula, also the fitted copula types show high values of

their parameters. As a first analysis, let us look at the scatter plots in Figure 7. The

Gumbel copula models the Clayton reference quite well. Due to its asymmetry, the fit

of the upper tail looks optically similar. For low quantiles, the Gumbel copula models

a weak dependence, whereas the Clayton implies almost independence in the lower

tail. The Gauss and the Student’s hierarchies, however, deviate quite significantly from

the Clayton reference. Both these copulas are symmetric, and therefore, the fits of the

lower tail (striving to uncorrelated) and of the upper tail (striving to high correlation)

are competing with each other. Looking at the upper tail, which is of particular impor-

tance to us, we notice that the tail of the Clayton is much more pointed than the ones of

the elliptic copulas. Due to its additional degree of freedom parameter, the Student’s T

copulas model more points in the upper left and lower right corners of the scatter plot

than the Gauss copulas.

As a measure of the goodness of fit, let us analyse the quantile / quantile plots. They

are shown in Figure 8. The picture we have found in the scatter plots is confirmed:

The Gumbel fits the Clayton reference the best, whereas the Gauss and the Student’s

T deviate more pronouncedly from the Clayton reference. In the Gumbel plot, we no-

tice the stronger dependence up to around the 0.2 quantile, which gets corrected in the

upper range. In the case of the Gauss and the Student’s T copula, the dependence in

the lower left part of the quantile / quantile plot is much stronger, and therefore needs
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Figure 7: The hierarchical Clayton reference model (first row), and fitted Gumbel (sec-

ond row), Gauss (third row), and Student’s T (fourth row) hierarchies. In the columns,

the plots for fire Germany / fire France (left), fire France / windstorm France (middle),

windstorm Germany / windstorm France (right) are shown.
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Figure 8: Quantile / quantile plots for the Gumbel (top-left), Gauss (top-right), and Stu-

dent’s T (bottom-middle) hierarchies versus the Clayton reference hierarchy.
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Table 2: Key statistics for the Clayton reference and the fitted hierarchies. All figures,

except for the diversification gain, are in thousands.

in [thousands] Clayton Gumbel Student’s T Gauss

Mean 145 145 145 145

Std. Dev. 173 165 150 146

99.5% VaR 1’070 1’021 909 877

99% Shortfall 1’248 1’195 1’045 990

RBC 1’103 1’050 845 900

RH Div. Gain 8.2% 11.7% 25.0% 30.3%

LH Div. Gain 9.6% 5.7% 3.1% 3.9%

stronger correction in the upper part. It can be seen that the diagonal is approached at

a higher value than in the case of the Gumbel. There are a number of more sophisti-

cated goodness-of-fit methods used for copula fitting, as can be found for instance in

[Savu and Trede, 2008] or [Berg, 2007]. However, as we are mostly interested in the

diversification gain, we will focus on analysing the statistical properties of the fitted

models.

As the distribution to measure the statistical properties and the diversification gain,

we take the aggregate distribution as resulting from 250’000 simulations of the corre-

sponding dependency trees. The key statistics of the Clayton reference and the fitted

hierarchies can be found in Table 2. The mean of the aggregate distribution is in-

dependent of the dependence as is shown in Equation (1). However, in the standard

deviation it can be seen that the asymmetric Archimedean copulas show significantly

more volatility than the symmetric elliptical ones.

The left handed (LH) diversification gain is shown as a measure for the effect of the

dependence in the lower tail of the aggregate distribution. The LH diversification gain

of 9.6% of the Clayton reference may appear surprisingly low, since the risk factors are

nearly independent in the lower tail. This is due to the asymmetry of the lognormal

marginal distributions: The bulk of the risk of the lognormal distribution is in the

upper tail. Not surprisingly, the Gumbel (5.7%) underestimates the LH diversification

gain; this corresponds to the observation we have made for the scatter plots that the

Gumbel models a slight dependence in the lower tail. The symmetric elliptical copulas

underestimate the LH diversification gain considerably: The Gauss (3.9%) by 60% and

the Student’s T (3.1%) by almost 70%. However, the LH diversification gain is only of

limited importance to us. Let us now focus on the risk in the upper tail.

Considering the 99.5% value at risk (VaR), the differences in shapes of the copula mod-

els become even more apparent. Whereas the VaR of the Gumbel (1’021’000) deviates

only by a few percent from the Clayton reference (1’070’000), the Gauss (877’000)
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underestimates the 99.5% VaR by more than 20%. The Student’s T (909’000) fits

the Clayton reference slightly better than the Gauss due to its additional parameter ν.

However, the deviation is still more than 10%.

The picture is similar and even accentuated when considering the 99% shortfall: The

Gumbel (1’195’000) approximates the Clayton reference (1’248’000) the best, the Stu-

dent’s T (1’045’000) underestimates the shortfall by more than 10%, and the Gauss

(990’000) shows the lowest shortfall, deviating from the reference by more than 20%.

The deviations of the risk-based capital (RBC), being defined as the difference between

the shortfall and the mean in Equation (9), worsen the picture even more dramatically:

by subtracting the same constant of all the shortfalls, the relative deviations become

higher.

The diversification gain is defined as the gain in the capital when combining all four risk

factors in one company as opposed to running four companies with the risk factors in-

dividually, see Equation (10). In this projection of our capital figures, a highly relevant

projection for all insurance companies, the deviation becomes the worst: The Clayton

reference shows a diversification gain of 8.2%. The Gumbel (11.7%) overestimates the

diversification gain by over 40%, whereas the Student’s T (25%) overestimates it by

over 200%, and the Gauss (30.3%) overestimates it by 270%. Using the elliptical cop-

ulas to model the dependencies of the risk model would lead to a gross underestimation

of the risk of this company.

To illustrate the consequences such an underestimation of the risk based capital can

have, assume that our model reinsurance company has implemented an active capital

management. If the company calculated its capital using the wrong functional form of

the copula, it would pay back too much capital to its shareholders, up to 20% of its total

risk-based capital in the case of the Gauss. If reality follows the highly asymmetric

Clayton copula, the model company will need to increase its capital again when the

losses need to be paid. Since this capital increase is not foreseen, the company might

have to pay a high price to raise funds under financial distress.

5.2 The Effect of the Hierarchy

An important aspect when modelling dependence of insurance risks is to decide which

underlying risks can be modelled separately. The advanced (re)insurance companies

have integrated systems which can provide information about a high granularity of risk

factors. However, there is currently still a number of companies where risk factors are

classified in a higher level of aggregation. Most risk models will also contain a model

basket labelled ‘miscellaneous’ in which all the business is allocated that is too small

to be separately modelled. The ‘true’ dependence of these miscellaneous risk factors

is then often approximated by one dependence over the entire basket. Moreover, any

internal model will contain many risk factors, of the order of a few hundreds. Trying

to model the dependence of each factor with each other would require the modelling of

tens of thousands of parameters. This would be impracticable in terms of calibration,

and the interpretation of most of these parameters would make little economical sense.

A hierarchical tree reduces the number of parameters to estimate drastically. For all
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these reasons, the influence of the dependence structure is of high relevance. This is

what we study in this subsection.

Figure 9: Portfolio modelled with a flat dependence.

We will now investigate how our model portfolio behaves if the dependence is modelled

in one flat basket as shown in Figure 9 rather than the hierarchical tree as considered in

the previous section. First of all, we fit a single flat Clayton copula to the hierarchical

reference tree. We obtain θ̂ = 1.2. We repeat the same process for a flat Gumbel and

obtain θ̂ = 1.55. For the Gauss and Student’s T, we allow individual correlations for

each pair of risk factors, which are estimated as

Σ̂G =









1.0 0.7 0.45 0.46

0.7 1.0 0.45 0.46

0.45 0.45 1.0 0.8
0.46 0.46 0.8 1.0









; Σ̂S =









1.0 0.71 0.45 0.46

0.71 1.0 0.45 0.46

0.45 0.45 1.0 0.81

0.46 0.46 0.81 1.0









. (32)

The degree of freedom parameter of the Student’s T is estimated as ν̂ = 10.

For the elliptical copulas, the main difference between the hierarchy and the flat struc-

ture consists in the correlation between the fire and the windstorm risk factors. The

reason for this is that the original Clayton reference tree models a dependence be-

tween the sum of the fire and windstorm perils. The flat structure, however, assumes

a correlation between the underlying risk factors, and therefore, these correlations are

underestimated. Note also that the degree of freedom parameter of the Student’s T

is higher than in any of the three previous nodes of the hierarchical tree. Thus, the

Student’s T copula can compensate slightly for the underestimated correlations.

Looking at the scatter plots in Figure 10, we see that the flat Clayton and Gumbel

have the same scatter plot for all pairs of risk factors, since we have only allowed one

parameter in the model. The elliptical copulas show a similar scatter plot as shown in

Figure 7 for their hierarchical variants; the differences in their parameters are rather

small compared to the hierarchical case.

In Figure 11, we show the quantile / quantile plots for the flat fitted baskets versus the

hierarchical Clayton reference tree. It is interesting to note that, despite the flat Clayton
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Figure 10: The fitted flat Clayton (first row), flat Gumbel (second row), flat Gauss (third

row), and flat Student’s T (fourth row) hierarchies. The columns show the plots for

fire Germany / fire France (left), fire France / windstorm France (middle), windstorm

Germany / windstorm France (right).
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Figure 11: Quantile / quantile plots for the flat Clayton (top left), Gumbel (top right),

Gauss (bottom left), and Student’s T (bottom right) versus the Clayton reference hierar-

chy.
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Table 3: Key statistics for the Clayton reference and the fitted flat baskets. All figures,

except for the diversification gain, are in thousands.

in [thousands] Clayton ref. Clayton Gumbel Student’s T Gauss

Mean 145 145 145 145 145

Std. Dev. 173 173 163 151 144

99.5% VaR 1’070 1’078 1’029 902 870

99% Shortfall 1’248 1’251 1’189 1’043 978

RBC 1’103 1’106 1’044 898 832

RH Div. Gain 8.2% 7.8% 12.7% 25.4% 30.3%

LH Div. Gain 9.6% 9.14% 7.2% 3.2% 4.0%

having only one parameter, and despite the model difference of fitting the dependence

to all underlying risk factors rather then the sum of fire and windstorm, and despite

the obvious differences in the scatter plots, the flat Clayton model fits the hierarchical

reference tree almost perfectly. The quantile / quantile plots of the other fits resemble

the ones of their corresponding hierarchical variants shown in Figure 10, with slightly

amplified deviations due to the poorer modelling.

The key statistics of the Clayton reference and its fitted flat structures, sampled from

250’000 simulations, are shown in Table 3. The strong similarity observed in the quan-

tile / quantile plot can also be seen in the statistical figures: The flat Clayton (7.8%)

models the Clayton reference extremely accurately; it even underestimates the refer-

ence slightly as the only model. All other flat copulas yield slightly worse but very

similar results as seen for their hierarchical counterparts shown in Table 2. All devia-

tions between the flat and the hierarchical variants are below 10%.

In conclusion it can be said that the error of modelling flat structures rather than hier-

archical structures does not have a strong effect on the diversification gain, even when

three parameters are replaced by one as in the case of the Clayton and the Gumbel.

This shows that the choice of the functional form of the copula is the key driver of

the diversification gain. The asymmetry of the Archimedean copulas is the essential

property which allows for accurate representation of the asymmetric reference data.

Even though the flat Gauss and the flat Student’s T have more parameters than the flat

Clayton and the flat Gumbel, they overestimate the diversification gain considerably.

5.3 Extending the Reference Model

In section 5.2 we investigated the effect of misspecifying the hierarchical tree of de-

pendent risks with a flat model structure. The results indicated that, in the case of a

two-level hierarchy with four risk factors, the diversification benefit can be well mod-
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elled by a flat structure. In this section we extend the investigation to see under which

circumstances the modelling of the hierarchical structure as opposed to a flat model

matters.

First of all, we extend the model from four to eight risk factors. This increases the

variety of dependencies which can be modelled. We remain with the choice of equal

risk factors, all lognormal distributed with µ = 10 and σ = 1, as we are mostly interested

in the dependence. As the reference hierarchy, we choose a three-level tree as shown

in Figure 12.

The eight risk factors are grouped in four pairs, each with a separate dependence. The

four aggregate distributions are grouped in two pairs with a dependence, and their two

aggregate distributions underlie the top-level dependence.

We stick to the Clayton copula as the functional form of the copula of the reference

model to produce a benchmark sample. In order to find out where the misspecified flat

model becomes inaccurate, we investigate six different reference scenarios defined in

table 4 by various combinations of the Clayton θ. The goal is to see if some combina-

tions would have stronger effects than others.

Scenario 1 corresponds to a straight-forward extension of our original four risk-factor

model hierarchy, assigning θ = 1,2,3 to the nodes with θ decreasing towards the top

level. In Scenario 2, we leave the very strong dependencies at the bottom level of

the tree but relax the parameters considerably for higher aggregations. In Scenario 3

we choose generally lower θ values, which corresponds to a moderately dependent risk

model in insurance. Scenario 4 describes a highly asymmetric situation: one half of the

risk factors diversify much better than the other half of the risk factors; however, there

is a strong top-level dependency. In Scenario 5, we try a ‘sandwich’ hierarchy: high θ
for the bottom level, low θ for the middle level, and high θ for the top level. Scenario 6

is the reverse of Scenario 5: Low dependency at the bottom, strong dependency in the

middle, and low dependency on top.

As for the functional form of the flat, misspecified structure, we will reduce our inves-

tigation to the Clayton and the Gauss copulas. For the four risk factors, we have seen

Table 4: Clayton θ parameters for the six reference scenarios.

Scenarios Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Scenario 1 θ = 2.0 θ = 3.0 θ = 3.0 θ = 3.0 θ = 1.0 θ = 2.0 θ = 1.0
Scenario 2 θ = 2.0 θ = 3.0 θ = 3.0 θ = 4.0 θ = 0.75 θ = 0.5 θ = 0.3
Scenario 3 θ = 0.5 θ = 0.4 θ = 0.5 θ = 0.3 θ = 0.3 θ = 0.2 θ = 0.1
Scenario 4 θ = 0.1 θ = 0.2 θ = 2.0 θ = 3.0 θ = 0.5 θ = 3.0 θ = 3.0
Scenario 5 θ = 1.5 θ = 2.0 θ = 3.0 θ = 4.0 θ = 0.2 θ = 0.3 θ = 2.0
Scenario 6 θ = 0.1 θ = 0.2 θ = 0.1 θ = 0.3 θ = 2.5 θ = 3.0 θ = 0.1
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Figure 12: The hierarchical reference model setup. The eight risk factors are grouped

in pairs over three hierarchy levels. Each node can be modelled with a different copula.

that the flat Clayton structure matched the hierarchical reference almost perfectly in

terms of its aggregate distribution. We will investigate to which degree this similarity

holds for the six scenarios described in this subsection. The Gauss copula is chosen as

the one fitting the Clayton reference the worst. As for the other two copulas described

in this article, the Gumbel and the Student’s T, the results would be similar as the ones

of the four marginal cases: they are in between the Clayton and the Gauss, the Gumbel

closer to the Clayton, and the Student’s T closer to the Gauss.

The diversification gain of the hierarchical Clayton reference model, as well as the flat

Clayton and flat Gauss models, are shown for all six scenarios in Table 5. It is apparent

that all the diversification gains of the flat Clayton structures are in the same range as

the ones for the hierarchical reference models¡indexreference model. Most deviations

are of the order of 10%. The flat structure overestimates the diversification gain in

two scenarios and underestimates it in four scenarios. Nevertheless, the difference

Table 5: Diversification Gain results of the Clayton Hierarchy reference model and the

fitted flat Clayton and flat Gauss models.

Reference Clayton-Flat Deviation Gauss-Flat Deviation

Scenario 1: 12.1% 14.2% 17.4% 42.4% 250.0%

Scenario 2: 32.0% 29.3% -8.4% 54.3% 69.7%

Scenario 3: 55.6% 58.8% 5.8% 68.7% 23.6%

Scenario 4: 21.5% 19.9% -7.4% 44.9% 108.8%

Scenario 5: 26.7% 21.2% -20.6% 50.5% 89.1%

Scenario 6: 50.1% 45.3% -9.6% 63.4% 26.5%
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Figure 13: The absolute and relative deviation between the diversification benefit of the

Clayton and the Gauss for increasing dependency between two risk factors.

is more pronounced than in the simpler structure above indicating that if the structure

becomes more complex the flat scenario will deviate more and more from the structure.

Scenario 1, the one close to the one we have investigated for the case of four risk

factors, shows one of the biggest deviations of the flat Clayton versus the reference

structure: 17.4%. This is mainly due to the overall strong Clayton parameters chosen.

In Scenario 3, the one with moderately dependent risk factors, the deviation between

the hierarchical structure and its flat variant is only 5.8%.

As observed in all previous studies, the Gauss always overestimates the diversification

gain of the reference structure in all scenarios. In Scenario 1, the deviation of 250% is

similar to the one observed in the case of four risk factors. In Scenario 3, the deviation

of 23.6% is still considerable. Considering the rather strong deviations, it may also

be interesting to note that we have allowed for fitting 28 correlation parameters in the

case of the Gauss, as opposed to the single parameter in the case of the flat Clayton.

Nevertheless, the diversification gains of the flat Gauss models deviate generally more

than the ones of the flat Clayton models.

Concluding, the error of approximating a hierarchical Clayton reference model with

eight risk factors by a flat Clayton structure is small in terms of the overall diversifica-

tion gain. For moderately dependent risk factors, it is below 10%. Nevertheless, this

conclusion is to be taken with care: in this study, we have exclusively focused on the

aggregate distribution and the overall diversification gain. As soon as capital allocation

or the diversification gain by risk factor is of interest, the detailed dependencies of the
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hierarchical reference model would matter significantly. This can be easily seen when

considering that the capital allocation in the case of a flat Clayton structure would be

the overall capital divided by eight, whereas in the case of the hierarchical structure,

the risk factors with the stronger dependencies would attract by far more capital. More-

over, we see a tendency of increasing difference when we increase the complexity of

the structure.

In the above case we have examined the effect of complexity on diversification gain but

it is difficult to get a feel for how the strength of the dependence between risk factors

influences the ability of the models to cope. Generally we have modelled extreme

dependence between risk factors to demonstrate the significance of misspecification,

however, it is important to also understand the effect for weaker dependencies between

risk factors as these better reflect reality. To investigate this effect we show in Figure 13

how the diversification gain modelled by the Gauss deviates from the Clayton reference

as a function of increasing dependence between two risk factors. To help relate the

mathematical world of copulas to real-world situations; two risk factors are typically

considered to be strongly dependent when they are modelled with a tail-dependency

of 50%, which corresponds to a Clayton θ = 1. It is interesting to note that the largest

absolute deviation of 15.2% of RBC between the Gauss and the Clayton occurs for θ =

1. As the dependence increases further the absolute deviation between the Gauss and

the Clayton declines again as diversification gain of the Clayton tends towards zero.

For θ < 1, a region that can be considered to represent tail-dependencies for most other

real-world (re)insurance scenarios, there also exists a notable relative deviation that is

already at 10% at θ = 0.1. The relative deviation rapidly increase as the dependence

between the two risk factors grows stronger, reaching 237% at θ = 1 and 1044% at θ =

4!

We have so far demonstrated the importance of selecting the correct functional form

when selecting a copula for modelling and the effect of complexity on the ability to

obtain a good fit. We have also tried to relate these results to the real-world. In the

following two sections we now deal with the practical aspects of fitting; convergence

and error; and give some insights into how to go about deriving the correct dependence

between risk factors.

5.4 Fitting Copulas: How Many Points are Needed?

One of the big problems when calibrating internal models is the estimation of depen-

dence parameters. The data at hand in insurance are often sparse and it is difficult to

obtain relevant samples over more than a decade or two in the best cases. It is thus

important to explore what are the size of samples that are needed to reasonably fit cop-

ulas. This is the last question we are going to address in this study: how many points

are needed to fit the copulas? It is interesting to see if there is a systematic small sample

bias for certain copula types and whether certain copulas are easier to fit than others.

We investigate all the hierarchical as well as the flat structures described for four risk

factors in sections 5.1 and 5.2. The procedure is the following:
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1. Simulate N observations from the reference tree,

2. Fit the corresponding structure to the N observations,

3. Re-sample the fitted scenario with 100’000 simulations,

4. Measure the diversification gain,

5. Repeat 1. – 4. twenty times.

6. Measure the mean diversification gain and the standard deviation from the twenty

calculations.

The fitting convergence plot produced according to this procedure is shown in Figure 14

for all structures.

For each point, the diversification gain plus/minus one standard deviation is drawn

(top). Since it is difficult to read the error bars, the fitting errors, i.e. the standard

deviation of the diversification gain measurements, are plotted separately (bottom).

The main observation of the fitting convergence plot is a confirmation of our preceding

analysis: There is little difference between the hierarchical and the flat structures. The

choice of the functional form is by far more important than the number of observations

the copulas are fitted to.

The small sample bias seen in the plots is not significant. Not surprisingly, the di-

versification gain is slightly overestimated for a small number of observations, as not

sufficient extreme events are used for the fits. Nevertheless, the error bars are suffi-

ciently large to include the value of the diversification gain as fitted for a high number

of observations. When fitting the structures to 100 observations, the small sample bias

can be hardly seen in the average estimates.

In order to have a better understanding of the fitting error, let us analyse the bottom

chart of Figure 14. All errors decrease significantly when moving from 20 to 100

observations. There is still a considerable drop of the errors when moving from 100

to 500 observations, whereas the errors remain rather stable for higher numbers of

observations. It is interesting to note that the hierarchical Archimedean copulas have

significantly higher errors for a low number of observations than their flat variants. This

can be explained by the flat structures considering all observation points for fitting one

parameters, whereas the parameters of the hierarchical structures are fitted each on a

subset of the observation. These differences, however, vanish when moving to 100 and

to 500 observations.

The flat Archimedean copulas show in tendency a lower error for a low number of ob-

servations than the elliptical copulas. The reason for this is the following: Considering

any bivariate copula, and dividing the scatter plot into four quadrants, the probability

is point symmetric around the center point. This means that the probability mass in

the lower left and in the upper right quadrants, as well as the lower right and the up-

per left quadrants, are equal. For a low number of points, a slight shift of the number

of observations in the upper or lower tail can have a significant effect on the fit of a

symmetric elliptical copulas: more points in the upper tail will lead to high correlation,
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Figure 14: Fitting convergence plot (top) for the hierarchical and flat copula models.

The mean diversification gain ± one standard deviation is shown as a function of the

number of samples. The errors are shown separately (bottom).

more points in the lower tail to low correlation. The asymmetric Archimedean copulas

can absorb a shift in the number of lower and upper tail points better, since they can

account for the asymmetry.

In general, the convergence behaviour of the diversification gain when varying the

number of observations is similar for all copulas investigated. The average estimate

of the diversification gain when fitting to 20 observations is not significantly different

from the average fitting to a high number of observation. The errors of the estimates of

all structures converge quickly to a similar value.
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Figure 15: Example of an event set based wind model.

6 Estimating Dependence

When considering the hundreds of observations needed to fit the dependence of 4 risk

factors, in reality this would mean collecting (aggregate) loss experience during hun-

dreds of years. Even if we could wait to collect the observations needed, it would

be questionable what the significance of the fitted model is; the definitions and be-

haviour of insurance products would change significantly over this period of time, and

the assumption that these observations underlie the same model would not be valid.

Therefore, alternative ways of modelling dependence have to be sought.

An elegant means of modelling dependence is to use an explicit physical model when-

ever one is known. This is the case, for instance, for natural hazards. The contemporary

models are event loss set based, i. e. the single wind, earthquake, or flood events are

modelled together with a frequency of their occurrence. Given these events, the whole

portfolio of risks can be evaluated yielding the aggregate loss by event. Figure 15 il-

lustrates an example of an event set based wind model. Individual risk factors can be

considered by describing the vulnerability of the buildings, their insured value, as well

as their insurance conditions. By aggregating over all events, the dependence of the

risks is implicitly reflected.

The example of the natural catastrophe perils is the most prominent and most advanced

one in terms of modelling. However, many (re)insurance companies have started con-

structing similar individual risk or scenario models, for instance for pricing auto liabil-

ity policies. There is still a significant potential to establish further individual risk and

scenario based models for insurance products.

If no physical dependence model can be found, the dependence has to be described by

means of statistical properties, e. g. by using a copula. As discussed in this article, the

choice of the functional form is paramount even if the parameter can not be precisely
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Table 6: Relationship between the tail dependence and the θ-parameter for Clayton and

Gumbel copulas.

Tail dep. 1% 2% 5% 10% 20% 30% 40% 50% 60%

Clayton θ 0.15 0.18 0.23 0.30 0.43 0.58 0.76 1.00 1.36

Gumbel θ 1.01 1.02 1.04 1.08 1.18 1.31 1.48 1.71 2.06

estimated. The form of the hierarchical tree is fairly comfortable in its usage, as there

is an intuitive meaning associated with each node.

Since the copula parameters often lack an intuitive interpretation, considerations can

be made about the tail dependence of the lines aggregated in each node. The upper tail

dependence λU and lower tail dependence λL of a bivariate distribution are defined as

λU = lim
q→1

P(X2 > F−1
2 (q)|X1 > F−1

1 (q)), (33)

λL = lim
q→0

P(X2 < F−1
2 (q)|X1 < F−1

1 (q)). (34)

Detailed discussion on tail dependence can be found in [Embrechts et al., 2003]. It can

be shown that the tail dependence is a property of the bivariate copula only:

λU = lim
q→1

(1−2u+C(u,u))/(1−u), (35)

λL = lim
q→0

(2u−1+C(u,u))/u. (36)

The idea behind the tail dependence is to ask the question with which probability a

line of business has an extreme loss given that another line of business has an extreme

loss. The answer to this question can be given by thinking about adverse scenarios in

the portfolio. In this context, it might be especially interesting to investigate the causal

relations between the individual risk factors. Interviews with the risk specialists regard-

ing quantitative impact of adverse scenarios can help understanding extreme scenarios

and their dependence. This is stress testing by analysing possible outcomes of extreme

scenarios.

The relationship between the tail dependence and the copula parameters can be found

by evaluating Equations (35) and (36) for the given copula. For the Gauss copula, it can

be found that the tail dependence does not exist: the dependence implied by the rank

correlation is not strong enough to yield a value λU > 0. For the Clayton and Gumbel

copulas, however, the tail dependence does exist, and the parameters can be associated

with it as follows:

θClayton = − log2

logλ
, (37)

θGumbel =
log2

log(2−λ)
. (38)
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Table 6 shows a range of values of the tail dependence and the corresponding Clayton

and Gumbel θ values.

As an example, consider a product which is highly dependent on the legislation and

court practice, such as a professional liability product. Two legal entities within the

European Union write substantial volumes of this product in two different countries.

The specialists define an extreme scenario in which a change in legislation would cause

an extreme loss in the one of the countries. Since all the EU countries will develop their

legislation somewhat in parallel, the specialists estimate that – given the legislation is

changed in one country – the legislation would be changed in the other country with a

probability of 50%. If the risk modeller decides to use a Clayton copula to model the

dependence, the choice of the parameter would be around θ = 1.

7 Conclusions

In this article, we have analysed the impact of the functional form of a copula and the

hierarchical dependence structure on the risk-based capital and on the diversification

gain of a portfolio of risks, which is characterized by a strong dependence in the ex-

treme cases. This is a typical situation in insurance and as we have experienced it in

financial markets.

The main conclusion to be drawn is that the functional form of the copula chosen for

modelling has a significant impact on the diversification gain: Given an asymmetric

Clayton reference model (diversification gain of 8.2%), the use of symmetric copu-

las grossly overestimate the diversification gain (diversification gain of over 30% in

the case of the Gauss copula overestimating the ‘true’ diversification gain by 270%).

Even though the fitted parameters of the symmetric Gauss and Student’s T copulas are

perceived as rather conservative, they do not manage to compensate for the symmetry

effects and their lack of tail dependence in the shortfall. The Gumbel copula, which

models a slight dependence in the lower tail, still yields a fairly accurate diversification

gain, as it can deal better with the asymmetry of the reference model.

The impact of the hierarchy is less severe than the choice of the functional form. By

reducing the hierarchical structure of the reference model to one flat node, the result-

ing diversification gain is slightly higher than in the case of the hierarchical variants in

most cases. The only structure which slightly underestimates the diversification gain

is the flat Clayton structure, which manages to model the aggregate distribution almost

perfectly. In general, the asymmetric Archimedean copulas model the reference struc-

ture more accurately than the symmetric elliptical copulas even if they are reduced to a

single parameter, whereas many parameters are allowed for the elliptical copulas (three

and four in the case of four risk factors, 28 and 29 in the case of eight risk factors). The

functional form of the copula is the decisive choice and by far more important than the

dependence structure.

When varying the number of realisations based on which the copulas are fitted, we note

that the small sample bias is not significant. On average, the level of the diversification

gain is reached even when fitting to 20 observations, however with an error of 60% -
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100% of the reference diversification gain. The error drops considerably to around 20%

- 30% of the reference diversification gain when fitting to hundreds of observations,

which provides a reasonable basis for fitting dependence of four risk factors.

The conclusions of these observations are to be taken with care; let us bear in mind

that a book of business is often subdivided in significantly more than four risk factors.

Furthermore, we have only looked at the convergence of the overall diversification

gain. As soon as partial results are in the focus of interest, for instance the capital

allocation by risk factor, the detailed dependence structure of the risk model matters.

Also the convergence behaviour of the fits will be slower. Therefore, the number of

observations needed to fit the dependence of an entire risk model would increase. Thus

a hierarchical structure, which focuses on few dependencies, is well suited to calibrate

the internal model.

In practice, it is hardly possible to fit copulas for insurance risks based on historical

observations. Alternatives have to be sought for estimating dependence. For some of

the insurance products, it is possible to create explicit physical models which implicitly

contain their dependence structure. This is an elegant alternative to using copulas.

However, if no physical models can be found, the modelling with copulas is a good

option.

The tail dependence is an intuitive quantity relating probabilities as defined in extreme

scenarios with copula parameters. The modelling of scenarios is often easier for risk

specialists than the modelling of statistical properties. Since the Gauss copula, i. e. the

rank correlation, does not have tail dependence, this approach cannot be used. How-

ever, when using Clayton or Gumbel copulas, easy relationships between the tail de-

pendence and the copula θ can be found, and the extreme scenarios can be used to

calibrate the copulas. So much for stress testing!
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