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  Abstract: Without the assumption on the factor linear growth equation and keeping 

other assumptions in the endogenous growth theory, we prove the growth rate and 

interest rate endogenous, and then we give general conditions for the existence and 

uniqueness of the growth rate. Under the condition of the constant returns to scale, the 

growth rate of every variable and interest rate are constant in the steady state. In addition, 

we give primary analyses on the stochastic economy with growth. 
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1. Introduction 

   The Endogenous Growth Theory pioneered by Lucas (1988) and Romer (1990) 

makes the growth rate endogenous and emphasizes the unique growth rate for every 

variable. In the theory, the growth rate of one of factors is pre-expressed by the linear 

equation, and the growth rate exists in the compact convex set. Because the domain of 

the convex set of growth rate is positive, the positive growth rate can be solved by the 

dynamic optimal conditions. To guarantee the uniqueness of the growth rate, Lucas 

(1988) and Romer (1990) both pre-assume that one production factor grows with the 

linear growth equation3. After optimization of the variable of the linear growth equation, 

the theory can obtain the unique the growth rate. In other words, to ensure the existence 

and uniqueness of the growth rate, the endogenous growth theory relies on the 

definition of the exogenous linear growth equation of a production factor, that’s why 

Jones (1995) regards it semi-endogenous. 

  The following researches go mainly in two directions. The first one follows 

deterministic framework as Lucas and Romer’s framework, the dynamic equation of 

one factor is defined semi-endogenous linear, such as Jones (1995), Peretto (1998), 

Segerstrom (1998), Antonio, Salvador and Manuel (1999), Huffman (2007), and 

Kaboski (2009). The second direction follows the stochastic growth framework setup 

by Grossman and Helpman (1991), Aghion and Howitt (1992). Taking Aghion and 

Howitt’s work as an example, they assume the arrival of new innovation in the leading 

firm stochastic, and the expectation of the innovation allows the productivity to increase 

fixed 𝛾𝛾 times in every period exogenously, similar works are Aghion, et al. (2001), 

Acemoglu, et al. (2015), Kerr (2018), and Grossman and Helpman (2018). However, 

Kortum (1997) checks that when arrivals of innovation with Pareto, exponential, and 

uniform distributions, the correlation between the arrival of new innovation and 

productivity fails to reconcile with assumptions in Grossman and Helpman (1991), 

Aghion and Howitt (1992). 

  Lucas and Moll (2014) supposes that individuals can increase their productivities 

through learning effect (individuals with lower level productivities can search and learn 

from those with higher level productivities, not vice versa). When the individual’s 

income expectation of the individual is the mean-field game process, and the 

individual’s productivity increment through the learning effect is inexhaustible, the 

growth rate of productivity is non-decreasing. Thus Lucas and Moll (2014) must 

assume the growth of productivity exists, and it is unchangeable in the balanced growth 

path analysis. Similar works in recent stochastic growth studies, such as Figuières et al. 

(2013), Akcigit et al. (2016), Lentz and Mortensen (2016), Akcigit and Kerr (2018) also 

assume the growth rate exist and can be parameterized. 

  In addition, the uniqueness of the growth rate should be studied in the endogenous 

growth theory. Since the uniqueness of the growth rate can ensure the uniqueness of the 

 
3 Lucas (1988) allows human capital (ℎ𝑎𝑎) grow following: ℎ̇𝑎𝑎,𝑡𝑡 = (1 − 𝜇𝜇𝑡𝑡) ∙ 𝛿𝛿 ∙ ℎ𝑎𝑎,𝑡𝑡 with 𝜇𝜇𝑡𝑡 , 𝛿𝛿 > 0. Romer 

(1990) assumes the aggregate stock of designs (𝐴𝐴) evolves as: �̇�𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡 ∙ 𝛿𝛿 ∙ 𝐻𝐻𝐴𝐴,𝑡𝑡 with 𝛿𝛿 > 0，𝐻𝐻𝐴𝐴,𝑡𝑡 > 0. 
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interest rate, it guarantees the steady state Arrow-Debreu allocations non-zero and 

constant in the infinite horizon (Stokey and Lucas with Prescott, 1989) when given 

proper initial values.  

  In summary, the endogenous growth theory is not fully complete. The theory 

presumes the exogenous positive growth rates of one factor so as to ensure the existence 

of the growth rate along the balanced path. Relaxing the assumption that growth rate of 

one factor is exogenously given, this paper proves when the factor is in-exhaustive, its 

growth rate exists and is unique. This paper is organized as follow: the section I is the 

introduction; the second II provides a complete endogenous growth model; the section 

III is the extension; section IV gives the primary analysis on the convergence of growth 

rate in the stochastic environment; section V demonstrates general conditions on the 

existence and uniqueness of the growth rate; and section VI is the conclusions.                       

                  II. the Complete Endogenous Growth Model 

  In this section, we setup the analysis in the infinite horizon framework, and make the 

growth rate and interest rate endogenous. We relax the presumption of the exogenous 

growth equation of the factor, and provide a proof on the existence and uniqueness of 

the growth rate as well as those of the interest rate under the condition of the factor 

reusable. 

 

1. Labor 

  The representative family has 𝑙𝑙𝑡𝑡 number of members at period t with each member 

endowed with one-unit labor. The family allocates her total labor (𝑙𝑙𝑡𝑡) among final goods 

production and human capitals accumulation, respectively 𝑙𝑙1,𝑡𝑡, 𝑙𝑙2,𝑡𝑡. At the period t, the 

number of family’s members should be finite, defined 𝐿𝐿𝑡𝑡�  , therefore 𝐿𝐿𝑡𝑡� = 𝑙𝑙𝑡𝑡 . If the 

family member increases with the growth rate 𝑛𝑛𝑡𝑡 at period t, the family member at 

period t+1, 𝐿𝐿�𝑡𝑡+1  is (1 + 𝑛𝑛𝑡𝑡) ∙ 𝐿𝐿�𝑡𝑡 . We define 𝑛𝑛𝑡𝑡  constant (the analyses of the 

situation when 𝑛𝑛𝑡𝑡 is stochastic will be provided in Section IV). 

 

2. Skills and Human Capital Accumulation 

  Skills are free to access in every period, and the stock of skills per capita in period t-

1 (𝑆𝑆𝑡𝑡−1) is combined with labor 𝑙𝑙2,𝑡𝑡 in the period t to form the skilled labor (𝑆𝑆𝑡𝑡−1 ∙ 𝑙𝑙2,𝑡𝑡) 
in the period t. The stock of the skills at the period t is dependent on the skill labors at 

period t-1 and the job training (𝐽𝐽t) at the period t. Skills formation mechanism at the 

period t can be shown as following: 

    𝑆𝑆𝑡𝑡 = 𝐽𝐽𝑡𝑡𝜈𝜈 ∙ �𝑆𝑆𝑡𝑡−1 ∙ 𝑙𝑙2,𝑡𝑡�1−𝜈𝜈                 0 <  𝜈𝜈 < 1                                    (1) 

Where ν represents the elasticity of skills with respect to job training. In addition, 𝐽𝐽t, 𝑆𝑆𝑡𝑡−1 ∈ 𝑅𝑅+ , 𝑡𝑡 = 1,2,3, …. It is worth to mentioning that skills, which are very similar 

to knowledge, are reusable as human capitals in Lucas (1988) and designs in Romer 

(1990). The stock of human capitals per capita at the period t can be shown as the 

following equation. 

           𝐻𝐻𝑡𝑡 = 𝐻𝐻𝑡𝑡−1𝜃𝜃 ∙ 𝑆𝑆𝑡𝑡1−𝜃𝜃           0 <  𝜃𝜃 < 1                  (2) 

Where 1 − 𝜃𝜃  is the elasticity of human capitals with respect to skills at period t. 
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Similarly, assume 𝐻𝐻𝑡𝑡−1 ∈ 𝑅𝑅+, 𝑡𝑡 = 1,2,3, …. Obviously, equation (2) is the production 

of human capitals with the constant returns to scale. Strictly speaking, the equal signs 

in equation (1) and (2) should be replaced by “≦” , when both equations are interpreted 

as production frontiers of skills and human capitals at period t.  

 

3. Final Goods Production  

  There are many homogenous firms that produce final goods by using capital (𝐾𝐾𝑡𝑡), 
human capital (𝐻𝐻𝑡𝑡 ) and labor (𝑙𝑙1,𝑡𝑡 ), and the final goods production is also constant 

returns to scale. The final good production function is as following: 𝐹𝐹�𝐾𝐾𝑡𝑡,𝐻𝐻𝑡𝑡 , 𝑙𝑙1,𝑡𝑡� = 𝐾𝐾𝑡𝑡𝛼𝛼 ∙ �𝐻𝐻𝑡𝑡 ∙ 𝑙𝑙1,𝑡𝑡�1−𝛼𝛼          0 <  𝛼𝛼 < 1                    (3) 

Where 𝛼𝛼 is the output elasticity of capitals. The production function in here is similar 

as Romer (1990), where part of human capitals goes into the final good production. 

Because of the constant returns to scale, we can obtain 𝐹𝐹 = 𝑟𝑟 ∙ 𝐾𝐾 + 𝑤𝑤 ∙ 𝐻𝐻𝑙𝑙1 , where 𝑟𝑟 

and 𝑤𝑤 are interest rate and wage, respectively. As in Romer (1990), Human capitals 

are not exclusive between the final goods production and their accumulation (The 

exclusive situation as in Lucas (1988) 4 will be discussed in the section III). It is worth 

to mentioning that skills entering into the final goods production at the period t are still 

available in their accumulation as equation (1) at the period t+1. 

 

4. Family 

  The representative family maximizes her long term utility function, and the utility at 

the period 𝑡𝑡 is 𝑈𝑈 (𝐶𝐶𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡). The maximization of the family is given as following: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝛽𝛽𝑡𝑡𝑈𝑈(𝐶𝐶𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡)∞
𝑡𝑡=0                  0 < 𝛽𝛽 < 1                   (4) 

where 𝛽𝛽  represents the family’s discount factor. Assuming a constant population 

growth rate (n), then we have 𝛽𝛽 = 𝜌𝜌 ∙ (1 + 𝑛𝑛) , where 𝜌𝜌  is the family member’s 

discount rate. Let 𝑈𝑈 (𝐶𝐶𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡) = 𝑙𝑙𝑛𝑛𝐶𝐶𝑡𝑡 − 𝛾𝛾1𝑙𝑙𝑛𝑛𝑙𝑙1,𝑡𝑡 − 𝛾𝛾2𝑙𝑙𝑛𝑛𝑙𝑙2,𝑡𝑡 and 𝛾𝛾1 , 𝛾𝛾2 > 0 , 𝐶𝐶𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡 ∈ 𝑅𝑅+. In addition, though labors provided by the family between the final 

goods production and the human capital accumulation are thought homogeneous, the 

family’s preferences to labors allocated into these two sections are different. For 

example, if the family prefers labors in the human capital accumulation to those labors 

in the final goods production, 𝛾𝛾1 should be larger than 𝛾𝛾2. the budget constraint of the 

family is as following: 𝐾𝐾𝑡𝑡+1 = 𝐹𝐹�𝐾𝐾𝑡𝑡,𝐻𝐻𝑡𝑡 , 𝑙𝑙1,𝑡𝑡� + (1 − 𝛿𝛿)𝐾𝐾𝑡𝑡 − 𝐶𝐶𝑡𝑡 − 𝐽𝐽𝑡𝑡                            (5) 

Where 𝛿𝛿 is the rate of capitals depreciation, and 0 < 𝛿𝛿 < 1. 

 

5. Competitive Markets 

  Markets of final goods, capitals and human capitals are competitive. Because the 

 
4 In Lucas (1988), firms can only use 𝜇𝜇 human capitals supplied by the family, and 1 − 𝜇𝜇 human capitals will be 

used in the human capitals accumulation. That is to say, human capitals should be exclusively allocated between 

the final goods production and human capitals accumulation. In Romer (1990), Designs, as the in-exhaustive factor, 

will be used in the final goods production and its accumulation simultaneously.  
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final goods production function is homogeneous of the first degree, the competitiveness 

of markets makes all final goods aggregated. Under the condition of competitive 

markets, firms are price takers and their profits are zero, and family owns all products. 

 

6. The Equilibrium 

  Optimization problem of the representative family can be shown as following: 

         𝑀𝑀𝑀𝑀𝑀𝑀∑ 𝛽𝛽𝑡𝑡𝑈𝑈�𝐶𝐶𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡�∞𝑡𝑡=0                    

         𝐾𝐾𝑡𝑡+1 = 𝐹𝐹�𝐾𝐾𝑡𝑡,𝐻𝐻𝑡𝑡 , 𝑙𝑙1,𝑡𝑡� + (1 − 𝛿𝛿)𝐾𝐾𝑡𝑡 − 𝐶𝐶𝑡𝑡 − 𝐽𝐽𝑡𝑡  

         𝐻𝐻𝑡𝑡 = 𝐻𝐻𝑡𝑡−1𝜃𝜃 ∙ 𝑆𝑆𝑡𝑡1−𝜃𝜃                                (P1) 

               𝑆𝑆𝑡𝑡 = 𝐽𝐽𝑡𝑡𝜈𝜈 ∙ (𝑆𝑆𝑡𝑡−1 ∙ 𝑙𝑙2,𝑡𝑡)1−𝜈𝜈  

               𝑌𝑌𝑡𝑡 = 𝐹𝐹�𝐾𝐾𝑡𝑡,𝐻𝐻𝑡𝑡 , 𝑙𝑙1,𝑡𝑡� = 𝐾𝐾𝑡𝑡𝛼𝛼 ∙ (𝐻𝐻𝑡𝑡 ∙ 𝑙𝑙1,𝑡𝑡)1−𝛼𝛼 

         𝐶𝐶𝑡𝑡 > 0, 𝐽𝐽𝑡𝑡 > 0, 𝑆𝑆𝑡𝑡 > 0,𝐻𝐻𝑡𝑡 > 0,𝐾𝐾𝑡𝑡+1 > 0,   𝑡𝑡 = 0,1,2, …  

The Lagrange function of the above problem can be represented as following: 𝐿𝐿�𝐶𝐶𝑡𝑡 ,𝐾𝐾𝑡𝑡 ,𝐻𝐻𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝐽𝐽𝑡𝑡 , 𝜆𝜆1,𝑡𝑡 , 𝜆𝜆2,𝑡𝑡 , 𝜆𝜆3,𝑡𝑡� = ∑ 𝛽𝛽𝑡𝑡 �𝑙𝑙𝑛𝑛𝐶𝐶𝑡𝑡 − 𝛾𝛾1𝑙𝑙𝑛𝑛𝑙𝑙1,𝑡𝑡 − 𝛾𝛾2𝑙𝑙𝑛𝑛𝑙𝑙2,𝑡𝑡 − 𝜆𝜆1,𝑡𝑡�𝐾𝐾𝑡𝑡+1 −∞𝑡𝑡=0𝐹𝐹�𝐾𝐾𝑡𝑡 ,𝐻𝐻𝑡𝑡 , 𝑙𝑙1,𝑡𝑡� − (1 − 𝛿𝛿)𝐾𝐾𝑡𝑡 + 𝐶𝐶𝑡𝑡 + 𝐽𝐽𝑡𝑡� − 𝜆𝜆2,𝑡𝑡�𝐻𝐻𝑡𝑡 − 𝐻𝐻𝑡𝑡−1𝜃𝜃 ∙ 𝑆𝑆𝑡𝑡1−𝜃𝜃� − 𝜆𝜆3,𝑡𝑡 �𝑆𝑆𝑡𝑡 − 𝐽𝐽𝑡𝑡𝜈𝜈 ∙�𝑆𝑆𝑡𝑡−1 ∙ 𝑙𝑙2,𝑡𝑡�1−𝜈𝜈��                                                                                                              (6)  

the first order conditions are: 

 ∂𝐿𝐿∂𝐶𝐶𝑡𝑡 =
1𝐶𝐶𝑡𝑡 − 𝜆𝜆1,𝑡𝑡 = 0                                                                 (7) 𝜕𝜕𝐿𝐿𝜕𝜕𝑙𝑙1,𝑡𝑡 = −𝛾𝛾1 1𝑙𝑙1,𝑡𝑡 + (1 − 𝛼𝛼)

𝑌𝑌𝑡𝑡𝑙𝑙1,𝑡𝑡 𝜆𝜆1,𝑡𝑡 = 0                                (8) 𝜕𝜕𝐿𝐿𝜕𝜕𝑙𝑙2,𝑡𝑡 = −𝛾𝛾2 1𝑙𝑙2,𝑡𝑡 + (1 − 𝑣𝑣)
𝑆𝑆𝑡𝑡𝑙𝑙2,𝑡𝑡 𝜆𝜆3,𝑡𝑡 = 0                                  (9) ∂𝐿𝐿∂𝐾𝐾𝑡𝑡 = 𝜆𝜆1,𝑡𝑡 �𝛼𝛼 𝑌𝑌𝑡𝑡𝐾𝐾𝑡𝑡 + (1 − 𝛿𝛿)� − 𝜆𝜆1,𝑡𝑡−1 1𝛽𝛽 = 0                      (10) ∂𝐿𝐿∂𝐻𝐻𝑡𝑡 = 𝜆𝜆1,𝑡𝑡(1 − 𝛼𝛼)

𝑌𝑌𝑡𝑡𝐻𝐻𝑡𝑡 − 𝜆𝜆2,𝑡𝑡 + 𝜆𝜆2,𝑡𝑡+1𝛽𝛽𝜃𝜃𝐻𝐻𝑡𝑡+1𝐻𝐻𝑡𝑡 = 0           (11) ∂𝐿𝐿∂𝐽𝐽𝑡𝑡 = −𝜆𝜆1,𝑡𝑡 + 𝜆𝜆3,𝑡𝑡𝜈𝜈 𝑆𝑆𝑡𝑡𝐽𝐽𝑡𝑡 = 0                                                    (12) 

Equation (7), (8), (9), and (12) are conditions on the static equilibrium, and equation 

(10) and (11) are the intertemporal conditions for the dynamic equilibrium. In the 

following part, we will prove the existence and uniqueness of the growth rate, and 

obtain other variables’ relationship in the steady state by using the unique growth rate.  

  Define the growth rate of the variable 𝑋𝑋𝑡𝑡  as 𝑔𝑔𝑋𝑋,𝑡𝑡+1 = 𝑋𝑋𝑡𝑡+1/𝑋𝑋𝑡𝑡 . Therefore, 𝑋𝑋𝑡𝑡 
increases when 𝑔𝑔𝑋𝑋 > 1; 𝑋𝑋𝑡𝑡 converges to some non-zero value when 𝑔𝑔𝑋𝑋 = 1; and 𝑋𝑋𝑡𝑡 
converges to 0 when 𝑔𝑔𝑋𝑋 < 1 . The problem (P1) obviously does not allow the 

occurrence of the third case, thus we let 𝑔𝑔𝑋𝑋 ≥ 1 and assume 𝑔𝑔𝑋𝑋,𝑡𝑡+1 ≤ �̅�𝑔 where �̅�𝑔 is 
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a real number far greater than 1. Then 𝑔𝑔𝑋𝑋,𝑡𝑡+1 ∈ [1, �̅�𝑔] ≡ 𝐴𝐴 , where 𝐴𝐴  is a compact 

convex set. 

6.1 The Static Equilibrium 

  Because labors of the representative family are homogeneous, the marginal utilities 

of labors used in final goods production and human capitals accumulation must be equal. 

Thus we have 𝛾𝛾1/𝑙𝑙1 = 𝛾𝛾2/𝑙𝑙2 . When the growth rate of family members remains 

constant, the total labor supplied by the family can be normalized as one (𝑙𝑙1 + 𝑙𝑙2 = 1). 

In addition, firms pay α ∙ 𝑌𝑌 for capitals and (1 − α)  ∙ 𝑌𝑌 for the 𝐻𝐻 ∙ 𝑙𝑙1. Labors 𝑙𝑙1and 

labor 𝑙𝑙2 in family can get  𝛾𝛾1 ∙ (1 − 𝛼𝛼)  ∙ 𝑌𝑌/(𝛾𝛾1 + 𝛾𝛾2) and  𝛾𝛾2 ∙ (1 − 𝛼𝛼)  ∙ 𝑌𝑌/(𝛾𝛾1 +𝛾𝛾2) payment, respectively.  

6.2 The Dynamic Equilibrium 

  In this part, we will show that the growth rate of every variable is same. The first step 

is to obtain the dynamic relationships of variables by using first order conditions. Based 

on equation (8) and (9), we can obtain: 𝑌𝑌𝑡𝑡𝐶𝐶𝑡𝑡 =
𝛾𝛾1

1 − 𝛼𝛼                                                     (13) 

Since 𝛾𝛾1 and 𝛼𝛼 are constant, the growth rate of 𝑌𝑌𝑡𝑡 and 𝐶𝐶𝑡𝑡 must be equal: 𝑔𝑔𝑌𝑌 = 𝑔𝑔𝐶𝐶. 

Then equations (9), (12) and (13) imply: 𝐽𝐽𝑡𝑡𝐶𝐶𝑡𝑡 =
𝛾𝛾2∙𝜈𝜈

1 − 𝑣𝑣                                                     (14) 

Similarly, both γ2  and 𝑣𝑣  are constant, implying 𝑔𝑔𝐽𝐽 = 𝑔𝑔𝐶𝐶 . Equation (13) and (14) 

imply:  

  
𝑌𝑌𝑡𝑡𝐽𝐽𝑡𝑡 =

𝛾𝛾1
1 − 𝛼𝛼 ∙  1 − 𝑣𝑣𝛾𝛾2∙𝑣𝑣                                         (15) 

Equation (11) implies: 

      𝜆𝜆1,𝑡𝑡(1 − 𝛼𝛼)𝑌𝑌𝑡𝑡 − 𝜆𝜆2,𝑡𝑡𝐻𝐻𝑡𝑡 + 𝜆𝜆2⋅𝑡𝑡+1𝐻𝐻𝑡𝑡+1𝛽𝛽𝜃𝜃 = 0           (16) 

Define 𝑀𝑀𝑡𝑡+1 = 𝜆𝜆2,𝑡𝑡+1𝐻𝐻𝑡𝑡+1  and 𝑀𝑀𝑡𝑡 = λ2,t𝐻𝐻𝑡𝑡 . The definition of equation (2) and 

Problem (P1) imply that 𝜆𝜆2,𝑡𝑡 > 0, 𝑡𝑡 = 1,2, …, and 𝜆𝜆2,𝑡𝑡𝐻𝐻𝑡𝑡 ∈ 𝑅𝑅+, 𝑡𝑡 = 1,2, …, therefore, 𝑀𝑀𝑡𝑡+1 is the continuous operator defined on 𝑅𝑅+. According to Theorem 18.E in Zeidler 

(1990, p68-69), equation (16) implies there is a unique fixed point in equation (16), 

such as 𝑀𝑀𝑡𝑡 = 𝑀𝑀𝑡𝑡+1 = 𝑀𝑀, so 𝑀𝑀 = 𝛾𝛾1/(1 − 𝛽𝛽𝜃𝜃). 

  In the next part, we prove the growth rate is unchangeable. According to equation 

(10), we obtain 𝐶𝐶𝑡𝑡+1𝐶𝐶𝑡𝑡 = 𝛽𝛽 ∙ �𝛼𝛼𝑌𝑌𝑡𝑡+1／𝐾𝐾𝑡𝑡+1 + (1 − 𝛿𝛿)�            (17) 

Combining with equation (13) and (17), we can obtain  𝑔𝑔𝑌𝑌,𝑡𝑡 − 𝛽𝛽(1 − 𝛿𝛿)𝑔𝑔𝑌𝑌,𝑡𝑡−1 − 𝛽𝛽(1 − 𝛿𝛿)
=
𝑔𝑔𝑌𝑌,𝑡𝑡𝑔𝑔𝐾𝐾,𝑡𝑡                               (18) 

In addition, equation (5) indicates: 𝑔𝑔𝐾𝐾,𝑡𝑡+1 − (1 − 𝛿𝛿)𝑔𝑔𝐾𝐾,𝑡𝑡 − (1 − 𝛿𝛿)
=
𝑔𝑔𝑌𝑌,𝑡𝑡𝑔𝑔𝐾𝐾,𝑡𝑡                               (19) 

Now we get critical conditions to prove growth rates of all variables equal and 
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unchangeable.   

   

  Proof: 

The proof has two parts, the first part shows the situation of the same growth rates of 

capital and output is true; the second part shows the situation of different growth rates 

of capital and output is wrong.  

  Situation 1. if 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡 , we can obtain that 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡−1 = 𝑔𝑔  by 

equation (18). it is straightforward that capitals and output have the same unchangeable 

growth rate. Then equation (13), (14), and (15) imply 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝐶𝐶,𝑡𝑡 = 𝑔𝑔𝐽𝐽,𝑡𝑡 = 𝑔𝑔. 

In addition, equation (1) implies 𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔𝐽𝐽,𝑡𝑡 = 𝑔𝑔 , and equation (3) implies 𝑔𝑔𝑌𝑌,𝑡𝑡 =𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝐻𝐻,𝑡𝑡 = 𝑔𝑔 . Therefore, all variables’ growth rate are same when 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡 . 
Moreover, since the consumption of the family grows at the constant rate, the long term 

utility will converge. 

Situation 2. Assume 𝑔𝑔𝐾𝐾,𝑡𝑡 ≠ 𝑔𝑔𝑌𝑌,𝑡𝑡, then equation (18) and (19) can be rewritten as: 𝑔𝑔𝑌𝑌,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡𝑔𝑔𝐾𝐾,𝑡𝑡 𝑔𝑔𝑌𝑌,𝑡𝑡−1 = 𝛽𝛽(1 − 𝛿𝛿)
𝑔𝑔𝐾𝐾,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡𝑔𝑔𝐾𝐾,𝑡𝑡                       (𝐴𝐴. 1)  𝑔𝑔𝐾𝐾,𝑡𝑡+1 − 𝑔𝑔𝑌𝑌,𝑡𝑡𝑔𝑔𝐾𝐾,𝑡𝑡 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝛽𝛽(1 − 𝛿𝛿)
𝑔𝑔𝐾𝐾,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡𝑔𝑔𝐾𝐾,𝑡𝑡                          (𝐴𝐴. 2)   

Define 𝑔𝑔𝑌𝑌,𝑡𝑡/𝑔𝑔𝐾𝐾 ,𝑡𝑡 = 𝛥𝛥𝑡𝑡, (1 − 𝛿𝛿)(𝑔𝑔𝐾𝐾,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡)/𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝛤𝛤𝑡𝑡 and put them into equations 

of  (𝐴𝐴. 1)  and (𝐴𝐴. 2). After eliminating terms including 𝛤𝛤𝑡𝑡, we obtain  

            𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡+1 + �∏ 𝛥𝛥𝑡𝑡+1−𝑗𝑗𝑡𝑡𝑗𝑗=1 )(𝑔𝑔𝑌𝑌,0 − 𝛽𝛽𝑔𝑔𝐾𝐾,1�                (𝐴𝐴. 3) 

if 𝑔𝑔𝑌𝑌,0 = 𝛽𝛽𝑔𝑔𝐾𝐾,1  in (𝐴𝐴. 3)  is true, the equation 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝛽𝛽 ∙ 𝑔𝑔𝐾𝐾,𝑡𝑡+1 , 𝑡𝑡 = 1,2,3, …  holds. 

(Appendix I and II show analyses under the condition of 𝑔𝑔𝑌𝑌,𝑡𝑡 ≠ 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡+1 ). Taking 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝛽𝛽 ∙ 𝑔𝑔𝐾𝐾,𝑡𝑡+1 into equation (18), we obtain the following equation, 

(1 − 𝛽𝛽)𝑔𝑔𝑌𝑌,𝑡𝑡𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝛽𝛽(1 − 𝛿𝛿)�𝑔𝑔𝐾𝐾,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡�,                              (𝐴𝐴. 4) 

Since 𝑔𝑔𝑌𝑌,𝑡𝑡 > 0 and 𝑔𝑔𝐾𝐾,𝑡𝑡>0, the left side of equation (A4) is positive, then 𝑔𝑔𝐾𝐾,𝑡𝑡 > 𝑔𝑔𝑌𝑌,𝑡𝑡. 
Define 𝜅𝜅 = 𝑆𝑆𝑆𝑆𝑆𝑆 {𝑔𝑔𝑌𝑌,𝑡𝑡/𝑔𝑔𝐾𝐾,𝑡𝑡 , 𝑡𝑡 = 1,2, … } , and know that 𝜅𝜅 < 1 . Furthermore, the 

growth rate of any variable lies in 𝐴𝐴 = [1, �̅�𝑔] as previously discussed. Define the norm 𝜌𝜌 (𝑀𝑀,𝑦𝑦)  = |𝑀𝑀 − 𝑦𝑦|, where 𝑀𝑀,𝑦𝑦 ∈ 𝐴𝐴. It is then implied that (𝐴𝐴, 𝜌𝜌) is a complete metric 

space. Equation (18) 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝜅𝜅�𝑔𝑔𝑌𝑌,𝑡𝑡−1 − 𝛽𝛽(1 − 𝛿𝛿)� + 𝛽𝛽(1 − 𝛿𝛿) , defines a contract 

mapping 𝐿𝐿 ∶ 𝐴𝐴 → 𝐴𝐴  with modulus 𝜅𝜅  which satisfies 0 < 𝜅𝜅 < 1 . According to the 

contraction mappings theorem, there must exist 𝑔𝑔𝑌𝑌,𝑡𝑡−1 = 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝑔𝑔𝑌𝑌 . Similarly, 

equation (19) also implies a contraction mapping on 𝑔𝑔𝐾𝐾,𝑡𝑡 and 𝑔𝑔𝐾𝐾,𝑡𝑡+1, and 𝑔𝑔𝐾𝐾,𝑡𝑡+1 =𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝐾𝐾. Solving fixed points of 𝑔𝑔𝑌𝑌,𝑡𝑡 and 𝑔𝑔𝐾𝐾,𝑡𝑡, we can obtain  𝑔𝑔𝑌𝑌 = 𝛽𝛽(1 − 𝛿𝛿) <

1, 𝑔𝑔𝐾𝐾 = (1 − 𝛿𝛿) < 1, and 𝑔𝑔𝑌𝑌,𝑔𝑔𝐾𝐾 ∉ 𝐴𝐴, which contradict to the fact that growth rates 

of capital and output should be in 𝐴𝐴 = [1, �̅�𝑔]. Therefore, the situation of 𝑔𝑔𝐾𝐾,𝑡𝑡 ≠ 𝑔𝑔𝑌𝑌,𝑡𝑡 
and 0 < 𝛿𝛿 < 1 must be false. 

  In the economic interpretation, 𝑔𝑔𝑌𝑌 = 𝛽𝛽(1 − 𝛿𝛿) < 1 and 𝑔𝑔𝐾𝐾 = (1 − 𝛿𝛿) < 1 mean 

that the output and capital decrease and converge to zero, which causes other variables 

converge to zero. Under such circumstance, the maximal value of the family’s objective 

does not exist when the consumption converges to zero. The present value of utility 
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approaches to negative infinity when the period runs to the infinity (the discount value 

of objective function in the steady state will be negative infinity when the consumption 

converges to the zero). In the other words, the maximal value of the long term utility in 

the situation 𝑔𝑔𝐾𝐾,𝑡𝑡 ≠ 𝑔𝑔𝑌𝑌,𝑡𝑡 is less than that of the long term utility in the situation 𝑔𝑔𝐾𝐾,𝑡𝑡 =𝑔𝑔𝑌𝑌,𝑡𝑡, so the rational family will not choose the situation of 𝑔𝑔𝐾𝐾,𝑡𝑡 ≠ 𝑔𝑔𝑌𝑌,𝑡𝑡. In conclusion, 

it is impossible for the situation with 𝑔𝑔𝐾𝐾,𝑡𝑡 ≠ 𝑔𝑔𝑌𝑌,𝑡𝑡 to exist, and the following equation 

must hold true. 

     𝑔𝑔𝐽𝐽,𝑡𝑡 = 𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔𝐻𝐻,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝐶𝐶,𝑡𝑡 = 𝑔𝑔               (20)   

Furthermore, since 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔 and the interest rate at period t is 𝑟𝑟𝑡𝑡 = 𝛼𝛼𝑌𝑌𝑡𝑡/𝐾𝐾𝑡𝑡, it 
follows that the interest rate in steady state is also invariant: 𝑟𝑟𝑡𝑡+1 = 𝑟𝑟𝑡𝑡 = 𝑟𝑟 > 0 . So 

steady state prices at each period exist and be invariant, and the Arrow-Debreu 

allocations in the steady state share the same equilibrium. Therefore, we obtain       

Proposition 1.                                               Q.E.D. 

Proposition 1. Given conditions that skills are free to reuse and the human capitals 

are not exclusive between the production of final goods and the human capitals 

accumulation. If the accumulation of human capitals, the accumulation of skills, and 

the production of final goods are all constant returns to scale, all variables’ growth rates 

converge to the same and constant value, and the interest rate converges as well.     

   We can obtain the steady state growth rate and interest rate as following:   𝑔𝑔 = 𝛽𝛽 �𝛼𝛼 ∙ (1 − 𝛿𝛿)(1 − 𝛽𝛽)𝐷𝐷 + (1 − 𝛿𝛿)�                     (21) 

where 𝐷𝐷 = �𝛽𝛽𝛼𝛼 +
(1−𝛼𝛼)𝛾𝛾1 +

𝛾𝛾2𝜐𝜐(1−𝛼𝛼)𝛾𝛾1(1−𝜈𝜈)
− 1�. The steady state interest rate as following: 𝑟𝑟 = 𝛼𝛼 ∙ 𝑌𝑌𝐾𝐾 = 𝛼𝛼 ∙ (1 − 𝛿𝛿)(1 − 𝛽𝛽)𝐷𝐷                                        (22) 

and the linear relationships of other variables in the steady state can be shown as 

following: 𝑌𝑌𝐽𝐽 =
𝛾𝛾1(1 − 𝜈𝜈)𝛾𝛾2𝜐𝜐(1 − 𝛼𝛼)

                                                                   (23) 𝑌𝑌𝐾𝐾 =
(1 − 𝛿𝛿)(1 − 𝛽𝛽)𝐷𝐷                                                          (24) 𝐽𝐽𝑆𝑆 = 𝑔𝑔1−𝜐𝜐 𝜐𝜐� ∙ � 𝛾𝛾2𝛾𝛾1 + 𝛾𝛾2�𝜐𝜐−1𝜐𝜐                                                (25) 

𝑌𝑌𝐻𝐻 =
𝛾𝛾1(1 − 𝜈𝜈)𝛾𝛾2𝜐𝜐(1 − 𝛼𝛼)

∙ (
𝛾𝛾2𝛾𝛾1 + 𝛾𝛾2)

𝜐𝜐−1𝜐𝜐 ∙ 𝑔𝑔(1−𝜐𝜐)(1−𝜃𝜃)−𝜐𝜐
(1−𝜃𝜃)𝜐𝜐            (26) 

𝑃𝑃1 =
𝛾𝛾1(1 − 𝜈𝜈)𝛾𝛾2𝜐𝜐 ∙ (

𝛾𝛾2𝛾𝛾1 + 𝛾𝛾2)
𝜐𝜐−1𝜐𝜐 ∙ 𝑔𝑔(1−𝜐𝜐)(1−𝜃𝜃)−𝜐𝜐

(1−𝜃𝜃)𝜐𝜐               (27) 

𝑃𝑃2 =
𝛾𝛾2(1 − 𝜈𝜈)𝛾𝛾2𝜐𝜐 ∙ (

𝛾𝛾2𝛾𝛾1 + 𝛾𝛾2)
𝜐𝜐−1𝜐𝜐 ∙ 𝑔𝑔(1−𝜐𝜐)(1−𝜃𝜃)−𝜐𝜐

(1−𝜃𝜃)𝜐𝜐                 (28) 
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Where 𝑃𝑃1 and 𝑃𝑃2 represent payments for every unit labor of 𝑙𝑙1 and 𝑙𝑙2, respectively.  

  Proposition 2. The steady state growth rate is larger than 1. 

  Proof: 

  According to equations (13) -(15) and (23) -(26), every two variables shares linear 

equation in the steady state, the equation (5) can be represented as following: 𝑔𝑔 = (
𝐻𝐻𝐾𝐾)1−𝛼𝛼𝑙𝑙11−𝛼𝛼 −𝑚𝑚                                                        (𝐴𝐴. 7) 

where 𝑚𝑚 is a positive constant consisting of 𝐶𝐶/𝐾𝐾, 𝐽𝐽/𝐾𝐾 and 1 − 𝛿𝛿. Since 𝑔𝑔 ≥ 1, and  𝑙𝑙1 is a constant smaller than 1, it’s easy to check 𝐾𝐾/𝐻𝐻 < 1.Rewritting the equation (3) 

as 𝑌𝑌/𝐻𝐻 = (𝐾𝐾/𝐻𝐻)𝛼𝛼𝑙𝑙11−𝛼𝛼 ,  it implies 𝑌𝑌/𝐻𝐻 ≤ 1. 

  Based on the equation (23), the inequality 𝛾𝛾1(1 − 𝜈𝜈)/𝛾𝛾2𝜐𝜐(1 − 𝛼𝛼) > 1 must hold 

true. Because 𝑔𝑔  lies in [1, �̅�𝑔]  , and 𝛾𝛾2/(𝛾𝛾1 + 𝛾𝛾2)  is smaller than 1, the inequality 𝑔𝑔(𝜐𝜐−1)/𝜐𝜐 ∙ [𝛾𝛾2/(𝛾𝛾1 + 𝛾𝛾2)](𝜐𝜐−1)/𝜐𝜐 > 1 must hold true. Put these two inequalities into the 

equation (26), the following inequality is true: 𝑔𝑔 −1
(1−𝜃𝜃) < 1                                                                      (𝐴𝐴. 8) 

because of the condition of 0 <  𝜃𝜃 < 1, 𝑔𝑔 must be a constant larger than 1.  Q.E.D. 

 

7. Calibration 

We define �̅�𝑔 = 𝑔𝑔 − 1  and use the interest rate expression of equation (22) to 

calibrate. In addition, the range of parameters’ values need to be determined. According 

to the equation (13) and (15), we have 𝛾𝛾1 > 1 − 𝛼𝛼, 𝛾𝛾1(1 − 𝜈𝜈) > 𝛾𝛾2𝜐𝜐(1 − 𝛼𝛼)and 0 <𝐷𝐷 < 1. Together they imply that [𝛾𝛾2𝜐𝜐 + (1 − 𝑣𝑣)]/𝛾𝛾1(1 − 𝜈𝜈) > (1 − 𝛼𝛼𝛽𝛽)/(1 − 𝛼𝛼) and 𝛾𝛾1 > (1 − 𝛼𝛼)/(1 − 𝛼𝛼𝛽𝛽). Thus we set 𝛼𝛼 = 0.33，𝛽𝛽 = 0.98，𝛿𝛿 = 0.05，𝜈𝜈 = 0.30，𝛾𝛾2 ∈ [0.45,0.55]， and 𝛾𝛾1  to be 1, 0.99, or 0.98 to obtain Figure 1, which shows 

trajectories of �̅�𝑔 and 𝑟𝑟. 

 

         Figure 1. Trajectories of the growth rate, �̅�𝑔, and the interest rate, 𝑟𝑟. 

 

                            III. Extension 

  The idea in the above section shows human capitals can be used simultaneously in 
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the final goods production and human capitals accumulation, which shows the 

nonexclusive property of human capitals. In this section, we analyze the situation that 

human capitals are exclusive as in Lucas (1988), in which family will allocate her 

human capitals between the final goods production and human capitals accumulation.  

  Let human capitals in period t-1enter the economy in period t have no depreciation 

(the depreciation rate of human capital does not affect the result). The representative 

family allocates (1 − 𝜇𝜇𝑡𝑡) ∙ 𝐻𝐻𝑡𝑡−1 of human capitals in the final goods production, the 

rest of human capitals, 𝜇𝜇𝑡𝑡𝐻𝐻𝑡𝑡−1, will be used in their accumulation in period t. Therefore, 

the family optimization problem as following: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝛽𝛽𝑡𝑡𝑈𝑈(𝐶𝐶𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡)∞
𝑡𝑡=0      0 < 𝛽𝛽 < 1 

𝐾𝐾𝑡𝑡+1 = 𝐹𝐹�𝐾𝐾𝑡𝑡,𝐻𝐻𝑡𝑡 , 𝑙𝑙1,𝑡𝑡� + (1 − 𝛿𝛿)𝐾𝐾𝑡𝑡 − 𝐶𝐶𝑡𝑡 − 𝐽𝐽𝑡𝑡 
                𝐻𝐻𝑡𝑡 = (𝜇𝜇𝑡𝑡𝐻𝐻𝑡𝑡−1)𝜃𝜃 ∙ 𝑆𝑆𝑡𝑡1−𝜃𝜃                           (P2) 

                𝑆𝑆𝑡𝑡 = 𝐽𝐽𝑡𝑡𝜈𝜈 ∙ (𝑆𝑆𝑡𝑡−1 ∙ 𝑙𝑙2,𝑡𝑡)1−𝜈𝜈 

                𝑌𝑌𝑡𝑡 = 𝐹𝐹�𝐾𝐾𝑡𝑡,𝐻𝐻𝑡𝑡 , 𝑙𝑙1,𝑡𝑡� = 𝐾𝐾𝑡𝑡𝛼𝛼 ∙ ((1 − 𝜇𝜇𝑡𝑡) ∙ 𝐻𝐻𝑡𝑡−1 ∙ 𝑙𝑙1,𝑡𝑡)1−𝛼𝛼 

                𝑙𝑙𝑡𝑡 = 𝑙𝑙1,𝑡𝑡 + 𝑙𝑙2,𝑡𝑡 
The first order conditions of problem (P2) are very similar to those of problem (P1), 

except the additional condition on 𝜇𝜇𝑡𝑡 and the condition on 𝐻𝐻𝑡𝑡, which are shown as 

following: 𝜕𝜕𝐿𝐿𝜕𝜕𝜇𝜇𝑡𝑡 = −𝜆𝜆1,𝑡𝑡 (1 − 𝛼𝛼)𝑌𝑌𝑡𝑡
1 − 𝜇𝜇𝑡𝑡 + 𝜆𝜆2,𝑡𝑡 ∙ 𝜃𝜃 𝐻𝐻𝑡𝑡𝜇𝜇𝑡𝑡 = 0                                                       (29) 

 
𝜕𝜕𝐿𝐿𝜕𝜕𝐻𝐻𝑡𝑡 = 𝜆𝜆1,𝑡𝑡+1𝛽𝛽 (1 − 𝛼𝛼)𝑌𝑌𝑡𝑡+1𝐻𝐻𝑡𝑡 − 𝜆𝜆2,𝑡𝑡 + 𝜆𝜆2,𝑡𝑡+1 ∙ 𝛽𝛽𝜃𝜃 𝐻𝐻𝑡𝑡+1𝐻𝐻𝑡𝑡 = 0                       (30) 

Other first order conditions remain same. We start to analyze from the equation (30), 

similarly, let 𝑀𝑀𝑡𝑡+1 = λ2,𝑡𝑡+1𝐻𝐻𝑡𝑡+1 and 𝑀𝑀𝑡𝑡 = λ2,t𝐻𝐻𝑡𝑡，𝑀𝑀𝑡𝑡 ∈ 𝑅𝑅+, 𝑡𝑡 = 1,2, …, according to 

Zeidler (1990), there exists a unique fixed point 𝑀𝑀 = 𝛽𝛽𝛾𝛾1/(1 − 𝛽𝛽𝜃𝜃) . Then we can 

rewrite equation (30) as following: 𝛾𝛾1
1 − 𝜇𝜇𝑡𝑡   = 𝜃𝜃 𝑀𝑀𝜇𝜇𝑡𝑡                                                                                                 (31) 

Equation (31) implies 𝜇𝜇𝑡𝑡/(1 − 𝜇𝜇𝑡𝑡)   = 𝜃𝜃/(1 − 𝛽𝛽𝜃𝜃) , and it shows that 𝜇𝜇𝑡𝑡 = 𝜇𝜇 =𝜃𝜃/[1 + (1 − 𝛽𝛽)𝜃𝜃] . Therefore, the optimal share of human capitals allocated in 

accumulation is also constant. Similarly, we can show that all variables grow with the 

same constant rate: 𝑔𝑔𝐽𝐽,𝑡𝑡 = 𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔𝐻𝐻,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝐶𝐶,𝑡𝑡 = 𝑔𝑔                                          (32) 

In addition, equation (22) implies 𝛼𝛼𝑌𝑌𝑡𝑡/𝐾𝐾𝑡𝑡 = 𝑟𝑟𝑡𝑡. Combining with equation (32), we 

can obtain 𝑟𝑟𝑡𝑡+1 = 𝑟𝑟𝑡𝑡 = 𝑟𝑟. Therefore, we obtain the following proposition. 

  Proposition 3. Given conditions that skills are free to reuse and human capitals are 

exclusive in the final good production and human capitals accumulation. If the 

accumulation of human capitals, the accumulation of skills, and the production of final 
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goods are all constant returns to scale, all variables’ growth rates converge to the same 

and constant value, and the interest rate converges as well.                  

IV. Stochastic Growth Analysis 

  In this section, we analyze the stochastic economy with growth. Stochastic process 

can be introduced into economy as two situations. In the first situation, one variable in 

economy is stochastic with the stationary intertemporal transitional probability, which 

is the fundamental assumption in the dynamic stochastic general equilibrium. In the 

second situation, the supply of labor can be stochastic, and we assume the stochastic 

labor supply in every period has identical numerical characteristics of the stochastics. 

   All variables in our framework are endogenous, so we introduce the new random 

variable, 𝜑𝜑𝑡𝑡, into the equation (1) and rewrite equation as following: 𝑆𝑆𝑡𝑡 = 𝜑𝜑𝑡𝑡𝐽𝐽𝑡𝑡𝜈𝜈 ∙ �𝑆𝑆𝑡𝑡−1 ∙ 𝑙𝑙2,𝑡𝑡  �1−𝜈𝜈                                     (33) 

the 𝜑𝜑𝑡𝑡 can be regarded as an exogenous shock of the productivity of skills. Similarly, 

let 𝑔𝑔𝑋𝑋 be the steady growth rate of variable 𝑋𝑋𝑡𝑡. In addition, we define the deviate of 

the growth rate of variable 𝑋𝑋𝑡𝑡  as 𝑔𝑔�𝑋𝑋,𝑡𝑡 = 𝑙𝑙 𝑛𝑛(𝑔𝑔𝑥𝑥,𝑡𝑡/𝑔𝑔𝑋𝑋) . Let 𝑙𝑙𝑛𝑛𝜑𝜑𝑡𝑡  be a stochastic 

recursive sequence which satisfies 𝑙𝑙𝑛𝑛(𝜑𝜑𝑡𝑡+1/𝜑𝜑𝑡𝑡) = 𝜌𝜌1 ∙ 𝑙𝑙𝑛𝑛(𝜑𝜑𝑡𝑡/𝜑𝜑𝑡𝑡−1) + 𝜀𝜀𝑡𝑡 , and 𝜀𝜀𝑡𝑡~(0, 𝛿𝛿2) , |𝜌𝜌1| < 1. Then equation (33), (2), and (3) imply the deviate of the growth 

rates of the stock of skill accumulation, human capitals accumulation, and production 

output are: 𝑔𝑔�𝑆𝑆𝑡𝑡 = 𝑔𝑔�𝜑𝜑𝑡𝑡 + 𝑣𝑣𝑔𝑔�𝐽𝐽𝑡𝑡 + (1 − 𝑣𝑣)𝑔𝑔�𝑆𝑆𝑡𝑡−1                            (34) 

             𝑔𝑔�𝐻𝐻𝑡𝑡 = 𝜃𝜃𝑔𝑔�𝐻𝐻𝑡𝑡−1 + (1 − 𝜃𝜃)𝑔𝑔�𝑆𝑆𝑡𝑡                                      (35) 

             𝑔𝑔�𝑌𝑌𝑡𝑡 = 𝛼𝛼𝑔𝑔�𝐾𝐾𝑡𝑡 + (1 − 𝛼𝛼)𝑔𝑔�,𝑔𝑔�𝐻𝐻𝑡𝑡                                       (36) 

Based on equation (5), we have: 

  𝑔𝑔𝐾𝐾,𝑡𝑡+1𝑔𝑔�𝐾𝐾,𝑡𝑡+1 = 𝑚𝑚𝑟𝑟�̃�𝑟𝑡𝑡                                                   (37) 

where m = [1 − (1 − α)/ γ1 − γ2v(1 − α)/(γ1(1 − v)]/α. In addition, according to 

conditions: α(YtgY,t+1)/(gK,tKt+1) = rt+1 , Yt−1gY,t = Yt−1 ∙ g�Y,t ∙ (1 + g�Yt) , and 

 Kt−1gK,t = Kt−1g�K,t(1 + g�Kt) , we can obtain that �1 + g�Yt� = (1 + g�Kt) ∙ (1 + r�t) , 

which can be simplified as following: 

 𝑔𝑔�𝑌𝑌𝑡𝑡 − 𝑔𝑔�𝐾𝐾𝑡𝑡 = �̃�𝑟𝑡𝑡                                                            (38) 

Combining equation (36) and (37), we can obtain 

     𝑔𝑔𝑔𝑔�𝐾𝐾,𝑡𝑡+1 = 𝑚𝑚𝑟𝑟[𝛼𝛼−1)𝑔𝑔�𝐾𝐾𝑡𝑡 + (1 − 𝛼𝛼)𝑔𝑔�𝐻𝐻𝑡𝑡]             (39) 

Define state variable vector as 𝑍𝑍𝑡𝑡 = (𝑔𝑔�𝑆𝑆𝑡𝑡  ,𝑔𝑔�𝐻𝐻𝑡𝑡 ,𝑔𝑔�𝐾𝐾𝑡𝑡+1)𝑇𝑇  and the exogenous shock 

vector as Φ = (𝑙𝑙𝑛𝑛(𝜑𝜑𝑡𝑡/𝜑𝜑𝑡𝑡−1),0,0). Then we can express equations (34)- (39) as the 

matrix form 𝑀𝑀𝑡𝑡[𝐹𝐹𝑍𝑍𝑡𝑡 + 𝐺𝐺𝑍𝑍𝑡𝑡−1 + 𝐿𝐿Φ𝑡𝑡 + 𝑀𝑀Φ𝑡𝑡−1] = 0 where: 
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𝐹𝐹 = � 1 0 −𝑣𝑣𝜃𝜃 − 1 1 0

0 0 𝑔𝑔 �                                           (40) 

𝐺𝐺 = �𝑣𝑣 − 1 0 𝑔𝑔−𝜃𝜃 0 0

0 𝑚𝑚𝑟𝑟(𝛼𝛼 − 1) 𝑚𝑚𝑟𝑟(1 − 𝛼𝛼)
�          (41) 𝐿𝐿 = [−1 0 0] 𝑇𝑇                                                 (42)  𝑀𝑀 = [0 0 0] 𝑇𝑇                                                   (43) 

 𝑀𝑀Φ𝑡𝑡 = 𝑁𝑁 ∙ Φ𝑡𝑡−1,    𝑁𝑁 = [𝜌𝜌 0 0] 𝑇𝑇                  (44) 

In addition, the system formed by equation (34) - (39) can be expressed as 𝑍𝑍𝑡𝑡 =𝑃𝑃𝑍𝑍𝑡𝑡−1 + 𝑄𝑄Φ𝑡𝑡  where 𝑃𝑃 = 𝐹𝐹−1𝐺𝐺 , and 𝑄𝑄  satisfies 𝑉𝑉𝑣𝑣𝑉𝑉𝑉𝑉(𝑄𝑄) = −𝑣𝑣𝑉𝑉𝑉𝑉(𝐿𝐿𝑁𝑁 + 𝑀𝑀)  with 𝑉𝑉 = 𝑁𝑁𝑇𝑇⨂𝐹𝐹. Based on parameters in the previous section, we have the eigenvalues of 𝑃𝑃: 𝑉𝑉𝑒𝑒𝑔𝑔(𝑃𝑃) = �−0.67 0 0

0 −0.23 0

0 0 0.02

�                     (45) 

all state variables eigenvalues’ absolute values in the system less than 1, and the control 

variables and state variables are linear. Therefore, the dynamics of all variables in this 

system will converge to steady states when the exogenous shock, 𝜑𝜑𝑡𝑡, goes into the 

economy and makes variables impulse response.  

  As mentioned in the section II, labor supply of the family can be stochastic. Such 

scenario is similar to the assumption in t Mirrless (1971) , Werning (2002), Golosov et 

al. (2003), Kocherlakota (2005), Albenesi and Sleet (2006), Golosov and Tsyvinski 

(2006), and Golosov et al. (2016). However, the difference between our scenario and 

above works’ scenario is that, in our analysis, the family makes optimal allocations, and 

there is no central planner who can design the tax table to affect allocations of the 

stochastic family labor supply. Therefore, the labor supply expectation can be 

normalized as 𝑀𝑀(𝑙𝑙1 + 𝑙𝑙2) = 1 in our scenario. Define the variance of the stochastic 

labor supply as 𝐷𝐷(𝑙𝑙1 + 𝑙𝑙2) = 𝜎𝜎2. The family will allocate labor supply according to 𝑀𝑀(𝑙𝑙1/𝑙𝑙2) = 𝛾𝛾1 ∙ (1 − α)/[𝛾𝛾2 ∙ (1 − α)]. Following similar steps in section II, it can be 

concluded that the expected growth rates of variables and the expected interest rate 

behave similarly to those in the deterministic economy. 

 

         V. General Conditions on Existence and Uniqueness of the Growth Rate 

  Section II and section III give mathematical functions of skills, human capitals 

accumulation, production, and utility, and show the unique growth rate and interest rate. 

In this section, we provide general conditions on the existence and uniqueness of the 

growth rate in the endogenous growth theory. 

   Similarly, the growth rate of family members is constant, without loss generality, 

we assume the population growth rate is zero, so let 𝑙𝑙1,𝑡𝑡 +  𝑙𝑙2,𝑡𝑡 = 1, 𝑡𝑡 = 1,2,3, …; and 

define the utility function as 𝑈𝑈( 𝐶𝐶𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡) , 𝐶𝐶𝑡𝑡 ∈ 𝑅𝑅+ , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡 ∈ 𝐿𝐿 , 𝐿𝐿  is a compact 

convex set in 𝑅𝑅+. 𝑈𝑈 is bounded and 𝑈𝑈′ > 0, 𝑈𝑈′′ < 0 for every variable in the utility 

function. We provide additional assumptions as followings： 
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  Assumption 1. functions of skill accumulation, human capitals accumulation, and the 

final goods production are homogeneous of degree one on the first two variables, and 

let 𝑓𝑓𝑖𝑖 , where 𝑒𝑒 = 1, 2, 3 , represent the production functions for skills accumulation, 

human capitals accumulation and final goods, respectively. In particular, the function 

of skills accumulation satisfies: 𝑓𝑓1: 𝑆𝑆 × 𝐽𝐽 × 𝐿𝐿 → 𝑆𝑆 and 𝑆𝑆𝑡𝑡 ∈ 𝑆𝑆 ⊂ 𝑅𝑅+, 𝐽𝐽𝑡𝑡 ∈  𝐽𝐽 ⊂ 𝑅𝑅+, the 

function of human capitals accumulation satisfies: 𝑓𝑓2:𝐻𝐻 × 𝑆𝑆 → 𝐻𝐻  and 𝐻𝐻𝑡𝑡 ∈ 𝐻𝐻 ⊂𝑅𝑅+, 𝑆𝑆𝑡𝑡 ∈ 𝑆𝑆 ⊂ 𝑅𝑅+ ; and the function of the final goods production satisfies: 𝑓𝑓3:𝐾𝐾 × 𝐻𝐻 × 𝐿𝐿 → 𝑅𝑅+ and 𝐾𝐾𝑡𝑡 ∈ 𝐾𝐾 ⊂ 𝑅𝑅+,𝐻𝐻𝑡𝑡 ∈  𝐻𝐻 ⊂ 𝑅𝑅+, 𝑙𝑙1,𝑡𝑡 ∈  𝐿𝐿. 

  Assumption 2. 𝑓𝑓𝑖𝑖(0,∙,∙ ) = 0 , and 𝑓𝑓𝑖𝑖(∙ ,0,∙) = 0  for 𝑒𝑒 = 1,3 ; 𝑓𝑓𝑖𝑖(0,∙ ) = 0 , and 𝑓𝑓𝑖𝑖(∙ ,0) = 0 for 𝑒𝑒 = 2. 

  Assumption 3. 𝑓𝑓𝑖𝑖  is twice differentiable, and satisfies: 𝑓𝑓𝑖𝑖′(𝑀𝑀,∙) > 0, 𝑓𝑓𝑖𝑖′(∙, 𝑀𝑀) > 0,𝑓𝑓𝑖𝑖′′(𝑀𝑀,∙) < 0, 𝑓𝑓𝑖𝑖′′(∙, 𝑀𝑀) < 0, for 𝑒𝑒 = 1,2,3.  

  Assumption 4. 𝑓𝑓1satisfies Inada conditions: lim𝑥𝑥→0𝜕𝜕𝑓𝑓1/𝜕𝜕 𝑀𝑀 → ∞ and lim𝑥𝑥→∞𝜕𝜕𝑓𝑓1/𝜕𝜕𝑀𝑀 →
0, 𝑀𝑀 ∈ 𝑆𝑆, 𝑀𝑀 ∈ 𝐽𝐽, and the condition: ∂ [𝑓𝑓1(1/𝑧𝑧, 𝑀𝑀)  ∙ 𝑧𝑧]/𝜕𝜕𝑧𝑧 > 0. 

  Based on the above assumption, we can prove  

  𝑔𝑔𝑆𝑆,𝑡𝑡+1 = 𝑔𝑔𝐽𝐽,𝑡𝑡+1 = 𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔                       (46) 

  Proof: 

 Let 𝑙𝑙1,𝑡𝑡∗  and 𝑙𝑙2,𝑡𝑡∗  be optimal values which keep the utility function maximal. Because 

the utility function is strictly concave for every variable, and 𝑙𝑙1,𝑡𝑡 ,  𝑙𝑙2,𝑡𝑡 ∈  L, there is 

unique value for 𝑙𝑙1,𝑡𝑡∗   and 𝑙𝑙2,𝑡𝑡∗  , respectively. The homogeneity of 𝑓𝑓1  implies: 𝑔𝑔𝑆𝑆,𝑡𝑡+1𝑆𝑆𝑡𝑡/𝐽𝐽𝑡𝑡+1 = 𝑓𝑓1(𝑆𝑆𝑡𝑡/𝐽𝐽𝑡𝑡+1, 1) . We define 𝑆𝑆𝑡𝑡/𝐽𝐽𝑡𝑡+1 = 1/𝑧𝑧𝑡𝑡 , then 𝑔𝑔𝑆𝑆,𝑡𝑡+1 = 𝑓𝑓1(1/𝑧𝑧𝑡𝑡 , 1) ∙ 𝑧𝑧𝑡𝑡 ≝ 𝑚𝑚(1/𝑧𝑧𝑡𝑡) ∙ 𝑧𝑧𝑡𝑡. According to the assumption 3, we can obtain 𝑔𝑔𝑆𝑆,𝑡𝑡+1/𝑑𝑑𝑧𝑧𝑡𝑡 >

0𝑑𝑑and −𝑚𝑚′ �1𝑧𝑧𝑡𝑡� ∙ �1𝑧𝑧𝑡𝑡� + 𝑚𝑚�1𝑧𝑧𝑡𝑡� > 0                     (47) 

and integrate inequality (46), we obtain ∫Ω(1/𝑧𝑧𝑡𝑡)/𝑚𝑚(1/𝑧𝑧𝑡𝑡)𝑑𝑑𝜇𝜇 > ∫Ω𝑛𝑛𝑡𝑡𝑑𝑑𝜇𝜇  and 

1/𝑧𝑧𝑡𝑡 ∈ 𝛺𝛺 =  (0,∞) , which implies 𝑚𝑚(1/𝑧𝑧𝑡𝑡) > 1/𝑧𝑧t . Therefore, 𝑔𝑔𝑆𝑆,𝑡𝑡+1 > 1 . Twice 

derivative of 𝑔𝑔𝑆𝑆 ,𝑡𝑡+1 with respect to 𝑑𝑑𝑧𝑧𝑡𝑡 is 𝑑𝑑2𝑔𝑔𝑆𝑆,𝑡𝑡+1𝑑𝑑𝑧𝑧𝑡𝑡2 = 𝑚𝑚′′ �1𝑧𝑧𝑡𝑡� ∙ �1𝑧𝑧𝑡𝑡�3 > 0                     (48) 

According to the definition 𝑓𝑓1(1/𝑧𝑧𝑡𝑡 , 1) ≝ 𝑚𝑚(1/𝑧𝑧𝑡𝑡) and the assumption 3, we obtain 𝑚𝑚′′ > 0  which implies 𝑑𝑑𝑓𝑓12(1/𝑧𝑧𝑡𝑡 , 1)/(𝑑𝑑𝑧𝑧𝑡𝑡)2 > 0 , 𝑔𝑔𝑆𝑆,𝑡𝑡+1 = 𝑓𝑓1(1, 𝑧𝑧𝑡𝑡) , 𝑑𝑑𝑓𝑓1′(1, 𝑧𝑧𝑡𝑡)/𝑑𝑑𝑧𝑧𝑡𝑡 > 0, and 𝑑𝑑𝑓𝑓1′′(1, 𝑧𝑧𝑡𝑡)/(𝑑𝑑𝑧𝑧𝑡𝑡)2 < 0. In addition, based on the assumption 2 and 4, 

we can obtain a unique 𝑧𝑧𝑡𝑡 which makes 𝑚𝑚(1/𝑧𝑧𝑡𝑡) ∙ 𝑧𝑧𝑡𝑡 = 𝑔𝑔𝑆𝑆,𝑡𝑡+1 = 𝑓𝑓1(1, 𝑧𝑧𝑡𝑡). Therefore, 𝑔𝑔𝑆𝑆  exists and is unique, and then we can obtain the equation  𝑔𝑔𝑆𝑆,𝑡𝑡+1 = 𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔 . 

Figure 2 provides a graphic explanation on the existence and uniqueness of the growth 

rate.  
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         Figure 2.  The Existence and Uniqueness of 𝑔𝑔𝑆𝑆,𝑡𝑡+1 

 

Since 𝑔𝑔𝑆𝑆,𝑡𝑡+1 = 𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔 and 𝑧𝑧 is uniquely determined, it is obvious for the equation 𝑔𝑔𝑆𝑆,𝑡𝑡+1 = 𝑔𝑔𝐽𝐽,𝑡𝑡+1 = 𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔  to be true. Similarly, we can prove the equation 𝑔𝑔𝐽𝐽,𝑡𝑡 =𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔𝐻𝐻,𝑡𝑡 = 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝑔𝑔  to be true. The equation of the family resource 

constraint implies 𝑔𝑔 = 𝑌𝑌𝑡𝑡/𝐾𝐾𝑡𝑡 + (1 − 𝛿𝛿) − 𝐶𝐶𝑡𝑡/𝐾𝐾𝑡𝑡 − 𝐽𝐽𝑡𝑡/𝐾𝐾𝑡𝑡 . And because 𝑌𝑌𝑡𝑡/𝐾𝐾𝑡𝑡  and 𝐽𝐽𝑡𝑡/𝐾𝐾𝑡𝑡 are both constant in the steady state, the following equation to be true, 𝑔𝑔𝐽𝐽,𝑡𝑡 = 𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔𝐻𝐻,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝐶𝐶,𝑡𝑡 = 𝑔𝑔                     (49) 

Additionally, let 𝑌𝑌/𝐻𝐻 = 𝑓𝑓3(𝐾𝐾/𝐻𝐻, 1) , then 𝑑𝑑𝑓𝑓3(𝐾𝐾/𝐻𝐻, 1)/𝑑𝑑(𝐾𝐾/𝐻𝐻)  = 𝜕𝜕𝑓𝑓3(𝐾𝐾,𝐻𝐻)/𝜕𝜕(𝐾𝐾) = 𝑟𝑟𝑡𝑡 , which implies that 𝑑𝑑𝑓𝑓3(𝐾𝐾/𝐻𝐻, 1)/𝑑𝑑(𝐾𝐾/𝐻𝐻)  is monotonous, therefore, 𝑓𝑓3(𝐾𝐾/𝐻𝐻, 1)/𝑑𝑑(𝐾𝐾/𝐻𝐻)  = 𝑓𝑓3′|𝐾𝐾/𝐻𝐻 is constant in the steady state, so 𝑟𝑟𝑡𝑡 in the steady state 

must be invariant as well.  

The next part shows the form of the utility function. Firstly, we prove that the growth 

rates of Lagrange multipliers in the optimization are the same constant. Secondly, we 

use the constant growth rates of Lagrange multipliers to show that the utility function 

is the power function with respect to 𝐶𝐶𝑡𝑡. The general first order conditions are shown 

as following: ∂𝐿𝐿∂𝐶𝐶𝑡𝑡 = 𝑈𝑈𝑐𝑐𝑡𝑡′ − 𝜆𝜆1,𝑡𝑡 = 0                                                                          (50) ∂𝐿𝐿∂𝐾𝐾𝑡𝑡 = 𝜆𝜆1,𝑡𝑡 ∙ [𝑓𝑓3′(𝐾𝐾𝑡𝑡 ,∙) + (1 − 𝛿𝛿)] − 𝜆𝜆1,𝑡𝑡−1 ∙ 1𝛽𝛽 = 0                       (51) ∂𝐿𝐿∂𝐻𝐻𝑡𝑡 = 𝜆𝜆1,𝑡𝑡 ∙ 𝑓𝑓3′(∙,𝐻𝐻𝑡𝑡) − 𝜆𝜆2,𝑡𝑡 + 𝜆𝜆2,𝑡𝑡+1 ∙ 𝛽𝛽 ∙ 𝑓𝑓2′(𝐻𝐻𝑡𝑡 ,∙) = 0                (52) 

 
∂𝐿𝐿∂𝐽𝐽𝑡𝑡 = −𝜆𝜆1,𝑡𝑡 + 𝜆𝜆3,𝑡𝑡 ∙ 𝑓𝑓1′(𝑆𝑆𝑡𝑡 ,∙) = 0                                                       (53) 

Based on the homogeneity of 𝑓𝑓𝑖𝑖 in Assumption 1, 𝐹𝐹𝐻𝐻𝑡𝑡′ , and 𝑆𝑆𝐽𝐽𝑡𝑡′  are constants, thus, 𝑔𝑔𝜆𝜆1,𝑡𝑡 = 𝑔𝑔𝜆𝜆3,𝑡𝑡. According the equation (51), the condition of 𝑔𝑔𝜆𝜆1,𝑡𝑡 = 𝑔𝑔𝜆𝜆3,𝑡𝑡 = 𝑔𝑔𝜆𝜆 holds 

true, in which 𝑔𝑔𝜆𝜆 is a constant. The equation (52) can be transformed as following: 
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𝑔𝑔𝜆𝜆1,𝑡𝑡 = 𝑔𝑔𝜆𝜆2,𝑡𝑡 ∙ 1 + 𝑔𝑔2,𝑡𝑡+1 ∙ 𝛽𝛽 ∙ 𝐻𝐻𝐻𝐻𝑡𝑡+1′
1 + 𝑔𝑔2,𝑡𝑡 ∙ 𝛽𝛽 ∙ 𝐻𝐻𝐻𝐻𝑡𝑡′                                                    (54) 

If 𝑔𝑔𝜆𝜆1,𝑡𝑡 = 𝑔𝑔𝜆𝜆 > 𝑔𝑔λ2,𝑡𝑡 , ∃ 𝑡𝑡 , inequality 𝑔𝑔𝜆𝜆2,𝑡𝑡 < 𝑔𝑔𝜆𝜆2,𝑡𝑡+1 ,∀ 𝑡𝑡 + 𝑒𝑒, 𝑒𝑒 = 1,2,3, …  must be 

true which means 𝑔𝑔𝜆𝜆2,𝑡𝑡  converges to 𝑔𝑔𝜆𝜆1,𝑡𝑡  for 𝑡𝑡 + 𝑒𝑒 , 𝑒𝑒 = 1,2,3, … ; Similarly, the 

situation of 𝑔𝑔𝜆𝜆1,𝑡𝑡 = 𝑔𝑔𝜆𝜆 < 𝑔𝑔𝜆𝜆2,𝑡𝑡, ∃𝑡𝑡, 𝑔𝑔𝜆𝜆2,𝑡𝑡 converges to 𝑔𝑔𝜆𝜆1,𝑡𝑡 for 𝑡𝑡 + 𝑒𝑒, 𝑒𝑒 = 1,2,3, … . 

The solution of the difference equation (54)  with respect to 𝑔𝑔2,𝑡𝑡  and 𝑔𝑔2,𝑡𝑡+1  has a 

global stability point. We have the conclusion: 𝑔𝑔𝜆𝜆1,𝑡𝑡 = 𝑔𝑔𝜆𝜆2,𝑡𝑡 = 𝑔𝑔𝜆𝜆3,𝑡𝑡 = 𝑔𝑔𝜆𝜆 . Let 

(𝜆𝜆1,𝑡𝑡+∆𝑡𝑡 − 𝜆𝜆1,𝑡𝑡)/𝜆𝜆1,𝑡𝑡 = Δ𝑡𝑡 ∙ 𝑔𝑔𝜆𝜆, the following equation holds true, 𝜆𝜆1,𝑡𝑡+𝛥𝛥𝑡𝑡 − 𝜆𝜆1,𝑡𝑡𝜆𝜆1,𝑡𝑡 =
𝑈𝑈′′(𝐶𝐶𝑡𝑡) ∙ 𝐶𝐶𝑡𝑡 ∙ 𝑔𝑔𝑈𝑈′(𝐶𝐶𝑡𝑡) = 𝑔𝑔𝜆𝜆                   (55) 

We can obtain the equality 𝑈𝑈′′(𝐶𝐶𝑡𝑡) ∙ 𝐶𝐶𝑡𝑡/𝑈𝑈′(𝐶𝐶𝑡𝑡) = 𝑔𝑔𝜆𝜆/𝑔𝑔, and let 𝑈𝑈′′(𝐶𝐶𝑡𝑡) ∙ 𝐶𝐶𝑡𝑡/𝑈𝑈′(𝐶𝐶𝑡𝑡) =−𝜎𝜎 . Integrating the equality 𝑈𝑈′′(𝐶𝐶𝑡𝑡) ∙ 𝐶𝐶𝑡𝑡/𝑈𝑈′(𝐶𝐶𝑡𝑡) = −𝜎𝜎 , the utility function with 

respect to 𝐶𝐶𝑡𝑡 is the power function. Especially, the utility function has the constant 

relative risk aversion coefficient 𝜎𝜎. The relationship between the growth rate and the 

interest rate in the steady state satisfies 𝑔𝑔−𝜎𝜎/𝛽𝛽 − 1 + 𝛿𝛿 = 𝑟𝑟. 

Example 1 

  Let 𝑈𝑈� 𝐶𝐶𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡� = 𝐶𝐶𝑡𝑡1−𝜎𝜎/(1 − 𝜎𝜎)  ∙ 𝑙𝑙1,𝑡𝑡𝛾𝛾1 ∙ 𝑙𝑙2,𝑡𝑡𝛾𝛾2 , where 𝜎𝜎 > 1 , 0< 𝛾𝛾1,  𝛾𝛾2 < 1 ; 

and keep other functions as those of in section II. We can find out that all ratios of two 

variables are constant which implies all variables share the same steady state growth 

rate. The equation with respect to the steady state growth rate is as following: 𝐷𝐷𝑔𝑔−𝜎𝜎 − 𝛼𝛼𝛽𝛽𝑔𝑔 + 𝐶𝐶 = 0                                                                         (56) 

where𝐷𝐷 = 1 − (1 − 𝛼𝛼)/𝛾𝛾1 − 𝛾𝛾2𝜐𝜐(1 − 𝛼𝛼)/𝛾𝛾1(1 − 𝜈𝜈) ,  𝐶𝐶 = 𝛽𝛽(𝛼𝛼 − 𝐷𝐷)(1 − 𝛿𝛿)  . The 

equation (56) is the high order equation with respect to 𝑔𝑔 . It’s difficulty to get the 

explicit solution if 𝜎𝜎 ≠ 2. In here, we assign 𝛼𝛼 = 0.33，𝛽𝛽 = 0.98，𝛿𝛿 = 0.05，𝜈𝜈 =

0.35，𝛾𝛾1 = 1  and 𝛾𝛾2 = 0.45  to calculate the trajectory of 𝐷𝐷𝑔𝑔−𝜎𝜎 − 𝛼𝛼𝛽𝛽𝑔𝑔 + 𝐶𝐶 . The 

figure with respect to 𝜎𝜎 =  2, 3, 4, 5, respectively is shown as following: 

 

 

 

 

 

 

 

                       

                        Fig 3. the trajectory of 𝐷𝐷𝑔𝑔−𝜎𝜎 − 𝛼𝛼𝛽𝛽𝑔𝑔 + 𝐶𝐶 

  The Fig 3 shows that trajectories of 𝐷𝐷𝑔𝑔−𝜎𝜎 − 𝛼𝛼𝛽𝛽𝑔𝑔 + 𝐶𝐶 are all monotonous under 
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conditions of 𝜎𝜎 =  2, 3, 4, 5, respectively. All growth rates are larger than 1 when the 

condition of 𝐷𝐷𝑔𝑔−𝜎𝜎 − 𝛼𝛼𝛽𝛽𝑔𝑔 + 𝐶𝐶 = 0 holds. 

Example 2 

Let the long term utility function be Epstein-Zin utility function as 𝑈𝑈� 𝐶𝐶𝑡𝑡 , 𝑙𝑙1,𝑡𝑡 , 𝑙𝑙2,𝑡𝑡� =

{[𝐶𝐶𝑡𝑡1−𝜎𝜎/(1 − 𝜎𝜎)  ∙ 𝑙𝑙1,𝑡𝑡𝛾𝛾1/𝛾𝛾1 ∙ 𝑙𝑙2,𝑡𝑡𝛾𝛾2/𝛾𝛾2]𝜙𝜙 + [∑ 𝛽𝛽𝑡𝑡𝑈𝑈� 𝐶𝐶𝑡𝑡+1, 𝑙𝑙1,𝑡𝑡+1, 𝑙𝑙2,𝑡𝑡+1�]∞𝑡𝑡=1 𝜙𝜙
}1/𝜙𝜙 , and 

keep other functions as those of in section II. The steady state growth rate satisfies the 

equation as following: 𝐷𝐷𝑔𝑔(𝜙𝜙−𝜙𝜙𝜎𝜎−1) − 𝛼𝛼𝛽𝛽1−𝜙𝜙𝑔𝑔 + 𝑀𝑀 = 0                                                      (57) 

where 𝐷𝐷 is the same as that in the example 1, 𝑀𝑀 = 𝛽𝛽1−𝜙𝜙(𝛼𝛼 − 𝐷𝐷)(1 − 𝛿𝛿). In here, we 

assign 𝛼𝛼 = 0.33，𝛽𝛽 = 0.98，𝛿𝛿 = 0.05，𝜈𝜈 = 0.35，𝛾𝛾1 = 1, 𝛾𝛾2 = 0.45 and 𝜎𝜎 = 0.35 

to calculate the trajectory of 𝐷𝐷𝑔𝑔(𝜙𝜙−𝜙𝜙𝜎𝜎−1) − 𝛼𝛼𝛽𝛽1−𝜙𝜙𝑔𝑔 + 𝑀𝑀 . The figure 4 shows the 

different trajectories under conditions of 𝜙𝜙 = −2,−3,−4,−5 as following: 

 Fig 4. the trajectory of 𝐷𝐷𝑔𝑔(𝜙𝜙−𝜙𝜙𝜎𝜎−1) − 𝛼𝛼𝛽𝛽1−𝜙𝜙𝑔𝑔 + 𝑀𝑀 

  The Fig 4 shows that trajectories of 𝐷𝐷𝑔𝑔(𝜙𝜙−𝜙𝜙𝜎𝜎−1) − 𝛼𝛼𝛽𝛽1−𝜙𝜙𝑔𝑔 + 𝑀𝑀  are all 

monotonous under conditions of 𝜙𝜙 = −2,−3,−4,−5, respectively. All growth rates 

are larger than 1 when the condition of 𝐷𝐷𝑔𝑔(𝜙𝜙−𝜙𝜙𝜎𝜎−1) − 𝛼𝛼𝛽𝛽1−𝜙𝜙𝑔𝑔 + 𝑀𝑀 = 0 holds. 

                           VI. Conclusions 

  We make the growth rate and interest rate endogenous without using the assumption 

that one of factors’ dynamics should be consistent with the exogenous linear growth 

equation. By keeping other assumptions in the endogenous growth theory, we prove 

that the growth rate of every variable and interest rate exist, and are unique by using 

the fixed point theorem. This is to say, the endogenous growth theory is complete 

without the assumption of in-exhaustive factor with exogenous linear growth function. 

Given proper coefficients, the growth rate and interest rate are calibrated. In the steady 

state, all variables share the same and constant growth rate, and the Arrow-Debreu 

allocations in every period can be explicitly expressed exponentially by the constant 

growth rate and initial values. In addition, we give primary analyses on the stochastic 

economy with growth and briefly discuss the convergence of variables. The last part of 
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our paper discusses the general conditions on the existence and uniqueness of the 

growth in the steady state.  

 

                         

                          Appendix I 

  In the appendix I, we use the recursive method to analyze the growth rates in the 

situation of 𝑔𝑔𝑌𝑌,𝑡𝑡 ≠ 𝛽𝛽 ∙ 𝑔𝑔𝐾𝐾,𝑡𝑡+1 . Putting definitions of 𝑔𝑔𝑌𝑌,𝑡𝑡/𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝛥𝛥𝑡𝑡  and (1 −𝛿𝛿)(𝑔𝑔𝐾𝐾,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡)/𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝛤𝛤𝑡𝑡 into equations (𝐴𝐴. 1) and (𝐴𝐴. 2), these two equations can 

be rewritten by the recursive forms as following: 

   𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝛥𝛥𝑡𝑡𝑔𝑔𝑌𝑌,𝑡𝑡−1 + 𝛽𝛽𝛤𝛤𝑡𝑡                                                                         (𝐵𝐵. 1) 

       𝑔𝑔𝐾𝐾,𝑡𝑡+1 = 𝛥𝛥𝑡𝑡𝑔𝑔𝐾𝐾,𝑡𝑡 +  𝛤𝛤𝑡𝑡                                                                          (𝐵𝐵. 2) 

The above two equations can be transformed recursively as following:  

          𝑔𝑔𝑌𝑌,𝑡𝑡 = (∏ 𝛥𝛥𝑡𝑡+1−𝑗𝑗𝑡𝑡−1𝑗𝑗=1 )𝑔𝑔𝑌𝑌,1 + 𝛽𝛽�∑ (∏ 𝛥𝛥𝑡𝑡−𝑗𝑗𝑖𝑖𝑗𝑗=1 )𝛤𝛤𝑡𝑡−𝑖𝑖 +𝑡𝑡−1𝑖𝑖=1 𝛤𝛤𝑡𝑡�      (𝐵𝐵. 3)     

          𝑔𝑔𝐾𝐾,𝑡𝑡+1 = (∏ 𝛥𝛥𝑡𝑡+1−𝑗𝑗𝑡𝑡−1𝑗𝑗=1 )𝑔𝑔𝐾𝐾,1 + ∑ (∏ 𝛥𝛥𝑡𝑡−𝑗𝑗𝑖𝑖𝑗𝑗=1 )𝛤𝛤𝑡𝑡−𝑖𝑖 +𝑡𝑡−1𝑖𝑖=1 𝛤𝛤𝑡𝑡        (𝐵𝐵. 4)     

combine (𝐵𝐵. 3) and (𝐵𝐵. 4) to eliminate ∑ (∏ 𝛥𝛥𝑡𝑡+1−𝑗𝑗𝑖𝑖𝑗𝑗=1 )𝛤𝛤𝑡𝑡−𝑖𝑖 +𝑡𝑡𝑖𝑖=1 𝛤𝛤𝑡𝑡, and obtain 

            𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡+1 + �∏ 𝛥𝛥𝑡𝑡−𝑗𝑗𝑡𝑡−1𝑗𝑗=1 )(𝑔𝑔𝑌𝑌,1 − 𝛽𝛽𝑔𝑔𝐾𝐾,2�                        (𝐵𝐵. 5) 𝛥𝛥𝑡𝑡+1−𝑗𝑗 > 0 , 𝑗𝑗 = 1,2,3 … , 𝑡𝑡  in the equation  (𝐵𝐵. 5) . If 𝑔𝑔𝑌𝑌,1 ≠ 𝛽𝛽𝑔𝑔𝐾𝐾,2  holds, then 

inequality 𝑔𝑔𝑌𝑌,𝑡𝑡 ≠ 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡+1  must be true. The following is the analysis under the 

condition of 𝑔𝑔𝑌𝑌,1 ≠ 𝛽𝛽𝑔𝑔𝐾𝐾,2. The situation 2 of the proof in section II is the analysis under 

the condition of 𝑔𝑔𝑌𝑌,1 = 𝛽𝛽𝑔𝑔𝐾𝐾,2. 

 

  According to equations (18) and (19), the following equation must hold true: 

 𝑔𝑔𝑌𝑌,𝑡𝑡 − 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡+1𝑔𝑔𝑌𝑌,𝑡𝑡−1 − 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡 =
𝑔𝑔𝑌𝑌,𝑡𝑡𝑔𝑔𝐾𝐾,𝑡𝑡   ,     𝑡𝑡 = 1,2,3, …,                                              (𝐵𝐵. 6) 

Obviously, the equation(𝐵𝐵. 6) should satisfy the condition of 𝑔𝑔𝑌𝑌,𝑡𝑡−1 − 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡 ≠ 0, 𝑡𝑡 =

1,2,3, …, and multiplying both sides of equation (𝐵𝐵. 6) by (𝑔𝑔𝑌𝑌,𝑡𝑡−1 − 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡) and 𝑔𝑔𝐾𝐾,𝑡𝑡, 
we can obtain the following equation: 

        𝑔𝑔𝑌𝑌,𝑡𝑡�𝑔𝑔𝐾𝐾,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡−1� = 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡�𝑔𝑔𝐾𝐾,𝑡𝑡+1 − 𝑔𝑔𝑌𝑌,𝑡𝑡� ,   𝑡𝑡 = 1,2,3, …,        (𝐵𝐵. 7)   

Defining 𝑔𝑔𝐾𝐾,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡−1 = 𝑁𝑁 𝑡𝑡 , the above equation can be transformed as following: 

  𝑔𝑔𝑌𝑌,𝑡𝑡𝑁𝑁 𝑡𝑡 = 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡𝑁𝑁 𝑡𝑡+1                                                                               (𝐵𝐵. 8) 

Equation (𝐵𝐵. 8) shows the correspondence 𝑚𝑚:𝑁𝑁 𝑡𝑡 → 𝑁𝑁 𝑡𝑡+1. Now we should prove the 

lemma 1 to show the correspondence 𝑚𝑚:𝑁𝑁 𝑡𝑡 → 𝑁𝑁 𝑡𝑡+1 is monotonous.  

   Lemma 1: Under the condition of 𝑔𝑔𝑌𝑌,𝑡𝑡−1 − 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡 ≠ 0, the ratio of 𝑔𝑔𝑌𝑌,𝑡𝑡/𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡 , 𝑡𝑡 =

1,2,3, … is larger than 1 or smaller than 1. 

   Proof:  
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   Since 𝑔𝑔𝑌𝑌,𝑡𝑡  and 𝑔𝑔𝐾𝐾,𝑡𝑡  both belong to 𝐴𝐴 = [1, �̅�𝑔] , 𝑔𝑔𝑌𝑌,𝑡𝑡/𝑔𝑔𝐾𝐾,𝑡𝑡 > 0 . According to 

(𝐵𝐵. 6) , if the condition of 𝑔𝑔𝑌𝑌,𝑡𝑡−1 − 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡 > 0  ( < 0 ), ∃ 𝑡𝑡  is true, the inequality 𝑔𝑔𝑌𝑌,𝑡𝑡 − 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡+1 > 0 (< 0) for ∀ 𝑡𝑡 must be true.                                  

                                                         Q.E.D. 

   Thus, under the condition of 𝑔𝑔𝑌𝑌,𝑡𝑡−1 − 𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡 ≠ 0, no matter whether the 𝑔𝑔𝑌𝑌,𝑡𝑡−1 −𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡 > 0 or < 0, the correspondence 𝑚𝑚:𝑁𝑁 𝑡𝑡 → 𝑁𝑁 𝑡𝑡+1 is monotonous.  

   To use the Brouwer Fixed Point Theorem in Zeidler (1986, p52), we firstly prove 

the next two lemmas. Let 𝑁𝑁 𝑡𝑡 ∈ 𝐵𝐵, 𝑡𝑡 = 1,2,3, … , lemma 2 shows the set 𝐵𝐵  is a 

nonempty, convex, compact subset of 𝑅𝑅 , and lemma 3 shows the correspendence 𝑚𝑚:𝑁𝑁 𝑡𝑡 → 𝑁𝑁 𝑡𝑡+1 is continuous.  

  Lemma 2: the set 𝐵𝐵 is a nonempty, convex, compact subset of 𝑅𝑅. 

  Proof: By the condition of 𝑔𝑔𝑌𝑌,𝑡𝑡−1 , 𝑔𝑔𝐾𝐾,𝑡𝑡 ∈ 𝐴𝐴 = [1, �̅�𝑔], 𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁 𝑡𝑡 = �̅�𝑔 − 1, 𝐼𝐼𝑛𝑛𝑓𝑓 𝑁𝑁 𝑡𝑡 =

1 − �̅�𝑔 , so the 𝐵𝐵  is bounded. Obviously, 𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁 𝑡𝑡  and 𝐼𝐼𝑛𝑛𝑓𝑓 𝑁𝑁 𝑡𝑡 ∈ 𝐵𝐵 , so 𝐵𝐵  is closed, 

thus 𝐵𝐵  is compact set. Since 𝑔𝑔𝑌𝑌,𝑡𝑡−1  and 𝑔𝑔𝐾𝐾,𝑡𝑡  are both real numbers, 𝑁𝑁 𝑡𝑡  is real 

number, so 𝐵𝐵  is nonempty. Let 𝐵𝐵 = 𝐴𝐴 − 𝐴𝐴 =  {𝑔𝑔𝐾𝐾,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡−1|𝑔𝑔𝐾𝐾,𝑡𝑡 ∈ 𝐴𝐴,𝑔𝑔𝑌𝑌,𝑡𝑡−1 ∈ 𝐴𝐴, } 

and 0 < 𝜆𝜆 < 1.  

     (1 − 𝜆𝜆)𝑁𝑁′ + 𝜆𝜆𝑁𝑁 = (1 − 𝜆𝜆)�𝑔𝑔𝐾𝐾,𝑡𝑡′ − 𝑔𝑔𝑌𝑌,𝑡𝑡−1′ � + 𝜆𝜆(𝑔𝑔𝐾𝐾,𝑡𝑡 − 𝑔𝑔𝑌𝑌,𝑡𝑡−1) 

                   = (1 − 𝜆𝜆)𝑔𝑔𝐾𝐾,𝑡𝑡′ + 𝜆𝜆𝑔𝑔𝐾𝐾,𝑡𝑡 − (1 − 𝜆𝜆)𝑔𝑔𝑌𝑌,𝑡𝑡−1′ + 𝜆𝜆𝑔𝑔𝑌𝑌,𝑡𝑡−1      (𝐵𝐵. 12)  

By the convexity of 𝐴𝐴 , if 𝑔𝑔𝐾𝐾,𝑡𝑡 ,𝑔𝑔𝐾𝐾,𝑡𝑡′ ,𝑔𝑔𝑌𝑌,𝑡𝑡−1,𝑔𝑔𝑌𝑌,𝑡𝑡−1′ ∈ 𝐴𝐴 , (1 − 𝜆𝜆)𝑔𝑔𝐾𝐾,𝑡𝑡′ + 𝜆𝜆𝑔𝑔𝐾𝐾,𝑡𝑡 ∈ 𝐴𝐴 , 

(1 − 𝜆𝜆)𝑔𝑔𝑌𝑌,𝑡𝑡−1′ + 𝜆𝜆𝑔𝑔𝑌𝑌,𝑡𝑡−1 ∈ 𝐴𝐴, (1 − 𝜆𝜆)𝑁𝑁′ + 𝜆𝜆𝑁𝑁 ∈ 𝐴𝐴 − 𝐴𝐴, 𝐴𝐴 − 𝐴𝐴 is a convex set.  

                                                            Q.E.D. 

   Lemma 3. the correspondence 𝑚𝑚:𝑁𝑁 𝑡𝑡 → 𝑁𝑁 𝑡𝑡+1 is continuous. 

   Proof: 𝐴𝐴 is bounded, and 𝑔𝑔𝐾𝐾,𝑡𝑡 ≠ 0, 𝑔𝑔𝑌𝑌,𝑡𝑡/𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡 is bounded. Let 𝐿𝐿 = 𝑆𝑆𝑆𝑆𝑆𝑆 {𝑔𝑔𝑌𝑌,𝑡𝑡/𝛽𝛽𝑔𝑔𝐾𝐾,𝑡𝑡 ,     𝑡𝑡 = 1,2,3 … , } , the distance between 𝐿𝐿𝑁𝑁′  and 𝐿𝐿𝑁𝑁 , 𝑑𝑑(𝐿𝐿𝑁𝑁′, 𝐿𝐿𝑁𝑁) → 0  when 

the distance between 𝑁𝑁′ and 𝑁𝑁, 𝑑𝑑(𝑁𝑁′,𝑁𝑁) → 0. 

      Q.E.D. 

  Now we can use the Brouwer Fixed Point Theorem to show 𝑚𝑚 has fixed point 𝑁𝑁∗. 
Because 𝑚𝑚:𝑁𝑁 𝑡𝑡 → 𝑁𝑁 𝑡𝑡+1 is monotonous, and 𝑚𝑚 has fixed point 𝑁𝑁∗, there is only one 

fixed point 𝑁𝑁∗ = 0 which implies 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡−1.  

 

Appendix II 

  In the Appendix II, we show all variables share the same growth rate under the 

condition of 𝑔𝑔𝐾𝐾,𝑡𝑡+1 = 𝑔𝑔𝑌𝑌,𝑡𝑡. Putting the condition of 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡−1 into the equation 

(3), we can obtain:  

              𝑙𝑙𝑛𝑛𝑔𝑔𝐾𝐾,𝑡𝑡+1 = 𝛼𝛼𝑙𝑙𝑛𝑛𝑔𝑔𝐾𝐾,𝑡𝑡 + (1 − 𝛼𝛼)𝑙𝑙𝑛𝑛𝑔𝑔𝐻𝐻,𝑡𝑡            (𝐵𝐵. 9) 

where 𝑙𝑙𝑛𝑛𝑔𝑔𝐾𝐾,𝑡𝑡+1 , 𝑙𝑙𝑛𝑛𝑔𝑔𝐻𝐻,𝑡𝑡 ∈  [0, 𝑙𝑙𝑛𝑛�̅�𝑔] , 𝑡𝑡 = 1,2,3, …,  and recursively transform the 

equation (𝐵𝐵. 9), the following equation should be true: 

             𝑙𝑙𝑛𝑛𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝛼𝛼𝑡𝑡𝑙𝑙𝑛𝑛𝑔𝑔𝐾𝐾,0 + ∑ 𝛼𝛼𝑖𝑖𝑡𝑡𝑖𝑖=0 (1 − 𝛼𝛼)𝑙𝑙𝑛𝑛𝑔𝑔𝐻𝐻,𝑡𝑡                  (𝐵𝐵. 10)  

the first term of right side converges to 0 as 𝑡𝑡 → ∞. Because 𝑔𝑔𝑋𝑋,𝑡𝑡, 𝑡𝑡 = 1,2,3, … lies in 

the set of [0, 𝑙𝑙𝑛𝑛�̅�𝑔], and [0, 𝑙𝑙𝑛𝑛�̅�𝑔] is the subset of the positive real number set 𝑅𝑅+, the 

following inequality is true:      
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            0 ≤ ∑ 𝛼𝛼𝑖𝑖𝑡𝑡𝑖𝑖=0 (1 − 𝛼𝛼)𝑙𝑙𝑛𝑛𝑔𝑔𝐻𝐻,𝑡𝑡 ≤ �∑ 𝛼𝛼𝑖𝑖𝑡𝑡𝑖𝑖=0 (1 − 𝛼𝛼)𝑙𝑙𝑛𝑛�̅�𝑔� 
          = (1 − 𝛼𝛼𝑡𝑡)𝑙𝑙𝑛𝑛�̅�𝑔 < 𝑙𝑙𝑛𝑛�̅�𝑔                                      (𝐵𝐵. 11)        

Since �𝛼𝛼𝑖𝑖(1 − 𝛼𝛼)𝑙𝑙𝑛𝑛𝑔𝑔𝐻𝐻,𝑡𝑡� ≤ �𝛼𝛼𝑖𝑖(1 − 𝛼𝛼)𝑙𝑙𝑛𝑛�̅�𝑔� , 𝑒𝑒 = 1,2,3, …,  and ∑ 𝛼𝛼𝑖𝑖𝑡𝑡𝑖𝑖=0 (1 − 𝛼𝛼)𝑙𝑙𝑛𝑛�̅�𝑔 

converges to the 𝑙𝑙𝑛𝑛�̅�𝑔 , ∑ 𝛼𝛼𝑖𝑖𝑡𝑡𝑖𝑖=0 (1 − 𝛼𝛼)𝑙𝑙𝑛𝑛𝑔𝑔𝐻𝐻,𝑡𝑡  converges as 𝑡𝑡 → ∞ . Thus we can 

obtain the equality 𝑔𝑔𝐾𝐾,𝑡𝑡 =  𝑔𝑔𝐾𝐾,𝑡𝑡+1 as 𝑡𝑡 → ∞. With the analytical step in the situation 

1 of the section II, the equation of 𝑔𝑔𝐽𝐽,𝑡𝑡 = 𝑔𝑔𝑆𝑆,𝑡𝑡 = 𝑔𝑔𝐻𝐻,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡 = 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝐶𝐶,𝑡𝑡 = 𝑔𝑔 must 

hold true under the condition of 𝑔𝑔𝐾𝐾,𝑡𝑡 = 𝑔𝑔𝑌𝑌,𝑡𝑡−1. 
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