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Abstract: Energy resources are an important material foundation for the survival and 

development of human society, and the relationship between energy and economy is 

interactive and complementary. This paper analyzes the energy consumption–economic 

growth nexus in Chinese provinces using novel and recent nonparametric time-series as 

well as panel data empirical approaches. The dataset covers 30 provinces over the period 

of 1980-2018. The empirical analysis indicates the presence of a nonlinear functional 

form and smooth structural changes in most of the provinces. The nonparametric 

empirical analysis validates the presence of a nonlinear unit root problem in energy 

consumption and economic growth, and nonlinear cointegration between the variables. 

Additionally, the nonparametric panel cointegration test reports evidence of convergence 

in energy consumption and economic growth patterns across the provinces. The 

nonparametric regression analysis finds economic growth to have a positive effect, on 

average, on energy consumption in all provinces, except for Beijing. Further, the energy 

environmental Kuznets curve exists between economic growth and energy consumption 

in 20 out of 30 Chinese provinces. The Granger causality analysis reveals the presence of 

a mixed causal relationship between economic growth and energy consumption. The 

empirical findings have important implications for Chinese authorities in planning for 

improving energy efficiency, decoupling between economic growth and energy 

consumption, and reducing the environmental footprint of provinces. 
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I. Introduction 

China has experienced unprecedented economic growth in the last four decades. China’s 

economic policy to prioritize high economic growth, however, has resulted in China’s becoming the 

largest carbon dioxide (CO2) emitter in the world. Future projections of China’s CO2 emissions 

indicate a continuous increase in carbon emissions until 2035/2040 (Andersson and Karpestam 2013, 

Yuan et al. 2014). The main driver of CO2 emissions and pollution in China is its increasing demand 

for energy that is mostly met through the combustion of fossil energy, particularly coal (Bloch et al. 

2012, Changhong et al. 2006, Yang et al. 2017). Therefore, any efforts to combat global warming 

critically depend on China’s growth trajectory and a deeper understanding of the decoupling 

relationship between economic growth and energy consumption. A deeper understanding of energy 

consumption and economic growth nexus in the context of China will also be crucial for developing 

effective energy and environmental policies that can put China on the path of sustainable 

development.  

Chinese leadership throughout most of the reform period after 1978 prioritized economic 

growth at the cost of substantial environmental degradation, resulting in severe air, water, and land 

pollution (He et al. 2012). Environmentally sustainable development was not emphasized in the first 

ten five-year plans, and only in the 11th Five Year Plan (2006–2011) that the Chinese government 

considered focusing on environmentally sustainable development (He et al. 2012, Eaton and Kostka 

2017). However, China experienced an uneven pattern of economic growth with coastal provinces 

leading in terms of economic growth and inland provinces lagging, especially in the early years of 

the reform period (Andersson et al. 2013). Coupled with this uneven economic growth, China also 

underwent a gradual capitalist transformation, whereby it became a hybrid economy with a mix of 

state-owned, private-owned and foreign-own firms instead of only relying on state-owned firms (Nee 

and Opper 2012). As a result of this uneven capitalist transformation, provinces having a larger share 

of private-owned firms are likely to more efficient and consume less energy than their counterparts 

having a smaller share of private-owned enterprises (Andersson et al. 2018). 

 Additionally, the Chinese government has made targeted efforts to enhance energy efficiency 

in China (Wang et al. 2018, Hao et al. 2018, Zheng et al. 2018). For instance, the Chinese 

government actively promoted industrial agglomeration, which had a positive effect on promoting 

energy efficiency, especially in central and western regions (Liu et al. 2017). The recent upgradation 

of industrial structure coupled with economic transformation has gradually slowed down the growth 

in electricity and energy consumption (Ge et al. 2017, Xia and Zhong 2016, Zhang et al. 2019). This 

indicates that energy consumption might be decoupling from economic growth, and possibly there 

exists an Energy Environmental Kuznets Curve (EEKC) for some of the Chinese provinces and 
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regions. The theory of EEKC implies that energy consumption is accompanied by economic growth 

at the early stages of economic development, and after a threshold level of income per capita, energy 

demand declines due to energy efficiency policies at later stages of economic development. Thus, the 

relationship between economic growth and energy consumption should be inverted U-shaped. 

Therefore, our study seeks to exploit the uneven pattern of economic progress across Chinese 

provinces to establish whether there exists a decoupling relationship between economic growth and 

energy consumption for Chinese provinces and the existence of EEKC, i.e., inverted U-shaped 

association.   

A growing number of studies have explored the relationship between economic growth, energy 

consumption, and the environment in the context of China and tested the existence of EEKC (Fei et 

al. 2011, Li et al. 2011, Xu et al. 2014, Wang et al. 2020, inter alia). These studies, however, provide 

mixed results in support of the existence of EEKC and the decoupling relationship between 

economic growth and energy consumption in the context of China and its provinces. One possible 

explanation for such diverse results is that most of the studies rely on parametric techniques to 

uncover the relationship between carbon emissions and economic growth. Parametric econometric 

methods necessitate the imposition of a, often inflexible, linearization of functional form to 

incorporate the nonlinearity of the EEKC (Li and Racine 2007, Shahbaz et al. 2017a). This involves 

the incorporation of a squared or other higher-order polynomial versions of the regressor (say per 

capita GDP) to account for the possible inverted U-shaped relationship between energy consumption 

and economic growth (see, e.g., Song et al. 2008). As a result, unlike earlier studies such as Li et al. 

(2011), Zhang and Xu (2012), Zhang et al. (2018), and Dong et al. (2019), this paper undertakes a 

comprehensive analysis of Chinese provincial data on energy consumption and economic growth by 

testing for model linearity, stability, non-stationarity, cointegration, and Granger causality. It also 

conducts regression estimations using only nonparametric techniques. 

We use nonparametric techniques because they offer several advantages over their parametric 

counterparts. Firstly, nonparametric estimators are better able to model cases of complex 

nonlinearities without making any changes to the functional form, which is often a characteristic of 

the causal relationship between energy consumption and economic growth (Wagner 2015, Shahbaz 

et al. 2017a). The nonlinearities in the data generating processes can often lead to over-rejection of 

the null hypothesis for parametric tests of unit root, cointegration, and direction of Granger causality. 

This can call into question the reliability and validity of the results, and the inferences made based on 

them, from parametric studies on the topic (Shahbaz et al. 2017a). Secondly, modeling nonlinearities 

such as abrupt and/or smooth structural breaks in parametric methods require the parametric 

specifications to be augmented by dummy variables, which poses a problem for the asymptotic 
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properties of estimation methods when employed to relatively small sample sizes. The nonparametric 

empirical methods can generate valid estimates in the presence of structural changes, smooth and/or 

abrupt, that are often characteristic of the energy landscape (Shahbaz et al. 2017a, Shahbaz et al. 

2019). Thirdly, nonparametric methods a-priori do not require a specification of functional form, 

which is particularly useful in examining, for example, the EEKC. Examining the EEKC using 

parametric methods requires the researcher to specify the functional form–whether quadratic, cubic, 

or polynomial of higher degree–which limits their ability to model phenomenon’s complex 

nonlinearity(ies) (Wagner 2015, Shahbaz et al. 2017a,b). Lastly, nonparametric methods do not 

necessitate satisfying restrictive regression assumptions such as homoscedasticity, residual 

normality, and absence of serial correlation, inter alia (Li and Racine, 2007). 

This paper contributes to the existing literature in four ways: (i) This paper examines the 

relationship between energy consumption and economic growth in 30 Chinese provinces by applying 

an energy demand function in a nonparametric estimation framework. (ii), In contrast to similar past 

studies, such as Li et al. (2011), Zhang and Xu (2012), Zhang et al. (2018), and Dong et al. (2019), it 

uses a longer and more recent dataset for the period of 1980-2018 which accounts for the more 

recent initiatives taken by the Chinese government in improving the country’s energy efficiency, 

emissions targets, and environmental impact of its remarkable growth over the past decades. (iii), 

This paper tests for and establishes the existence of nonlinearities in energy consumption-economic 

growth nexus in the Chinese provinces and implements appropriate nonparametric time series and 

panel tests for nonlinear cointegration, Granger causality, and the long-run correlation between the 

variables. Past studies such as Li et al. (2011), Zhang and Xu (2012), and Dong et al. (2019) apply 

parametric panel data estimation techniques to Chinese provincial data to summarize the overall 

presence of the EEKC for the entire country or select subregions. This study, in contrast, applies 

nonparametric time series tests to determine the unique nonlinear energy consumption-economic 

growth nexus in each of the 30 Chinese provinces. In addition, our study is the first to apply a 

nonparametric panel cross-unit cointegration test to ascertain any nonlinear convergence in either 

energy consumption, economic growth, or both across the Chinese provinces. (iv), The nonlinear 

cross-validated local linear (CVLL) nonparametric regression estimator is applied to visually identify 

the shape of energy consumption-economic growth nexus and identify any instance of the EEKC in 

each of China’s 30 provinces. (v), The nonlinear causality relationship between energy consumption 

and economic growth is examined by applying Hiemstra-Jones (1994) and Diks-Panchenko (2006) 

tests. 

Our empirical analysis confirms the nonlinear unit root problem in energy consumption and 

economic growth. The implementation of Pedroni et al. (2015) nonparametric panel cointegration 
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test discovers the first evidence of convergence in energy consumption and economic growth in the 

majority of Chinese provinces. Economic growth has a positive effect on energy consumption, but in 

Beijing, economic growth reduces energy consumption. Plotting the CVLL nonparametric 

regressions, the energy consumption-economic growth nexus displays a range of different and 

complex nonlinear shapes across the provinces. This study’s findings are novel and unique and in 

stark contrast to prior literature on the Chinese provinces by Li et al. (2011), Zhang and Xu (2012), 

and Dong et al. (2019) who do not test for the EEKC. In addition, the EEKC can be established in 

two-thirds of China’s province, which is more than the ten detected by Zhang et al. (2018). The 

empirical analysis is robust as each type of testing–unit root, cointegration, Granger causality, and 

regression analysis–are performed under two techniques, and the estimated results from both are 

identical. 

The rest of this paper is structured as the following: Section-II briefly reviews the relevant 

literature, Section-III describes the model and data. Section-IV explains the estimation strategies 

used in the empirical analysis. Section-V presents the empirical results and relevant discussions, and 

finally, Section-VI concludes the paper and outlines some policy implications. 

 

II. Literature Review 

There exists a dearth of literature on the existence of the Environmental Kuznets Curve (EKC), albeit 

with mixed results. Several studies provide evidence of the existence of EKC and conclude that there 

is an inverted U-shaped relationship between CO2 emissions and economic growth (Coondoo and 

Dinda 2008, Pao and Tsai 2010, Nasir and Rehman 2011, Riti et al. 2017, Olale et al. 2018). On the 

contrary, others have failed to find any evidence of the EKC hypothesis (Dijkgraaf and Vollebergh 

2005, Ajmi et al. 2013, Kaika and Zervas 2013, Al-Mulali et al. 2015). In addition to this, several 

other studies conclude that the validity of the inverted-U relationship between CO2 emissions and 

economic growth is sensitive to the selection of parameter and data source (Galeotti et al. 2006) as 

well as the methods used to estimate the relationship (Azomahu and Van Phu 2001, Lin and Jiang 

2009, Brajer et al. 2011, Ulucak and Bilgili 2018). Even in the context of China, no consensus on the 

existence of the EKC emerges. Several studies provide evidence of the existence of EKC hypothesis 

(Haisheng et al. 2005, Roumasset et al. 2008, Song et al. 2008, Jalil and Mahmud 2009, Yin et al. 

2015) while on the contrary others reject the existence of EKC hypothesis in the Chinese context (Du 

et al. 2012, Yaguchi et al. 2007, Llorca and Meunié 2009, Wang et al. 2011, Govindaraju and Tang 

2013, Onafowora and Owoye 2014, Yang et al. 2015). Amongst these, for instance, Yin et al. (2015) 

and Jalil and Mahmud (2009) provide evidence of the existence of the EKC hypothesis using 
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national-level data. In contrast, Yang et al. (2015), Du et al. (2007), and Yaguchi et al. (2007) fail to 

establish the existence of the EKC hypothesis.  

As highlighted by Luzzati and Orsini (2009, p. 291), however, that the EKC story “is explicitly 

acknowledged as a black box relationship between income per capita and environmental 

state/pressures, that is, as a reduced form that arises from a complicated web of determinants and 

relationships.” Given that a significant chunk of anthropogenic CO2 emissions is driven by energy 

consumption, more recent studies have started to use energy consumption as an indicator of the 

environmental pressure and test the existence of the EEKC hypothesis. Kraft and Kraft (1978) were 

the first ones to explore the energy consumption-economic growth nexus empirically. Their findings 

suggest that there is a unidirectional causality running from Gross National Product to energy 

consumption for the post-war period. Subsequently, other studies such as Suri and Chapman (1998), 

Pablo-Romero and De Jesús (2016), Luzzati and Orsini (2009), Agras and Chapman (1999), Saboori 

and Sulaiman (2013), Richmond and Kaufmann (2006) amongst others, have empirically explored 

the energy consumption-economic growth nexus. Ozturk (2010) and Tiba and Omri (2017) provide a 

comprehensive survey of energy consumption–economic growth and environmental degradation 

literature. 

The studies in the energy consumption-economic growth nexus have employed various 

econometric techniques for a range of countries and regions in different time periods. Yet so far, no 

unanimous consensus on the direction of causality. Several studies provide evidence of 

unidirectional causality running from energy consumption to economic growth for various regions 

and countries. For instance, Lee (2005) reports long-run and short-run causality from energy 

consumption to GDP for 18 developing for the period 1975 to 2001. Similar findings were reported 

by Lee and Chang (2008) for 18 Asian economies for the period 1971-2002. Others have found 

unidirectional causality running from energy consumption to economic growth for G-7 countries 

(Narayan and Smyth, 2008) and South America (Apergis and Payne, 2010). On the other end of the 

spectrum, several studies provide evidence of unidirectional causality running from economic growth 

to energy consumption (see, e.g., Soytas and Sari 2003, Lee 2006, Lee and Chang 2007, Lise and 

Van Montfort 2007, Mehrara 2007, Wolde-Rufael 2009, Ozturk et al. 2010). Another strand of 

literature finds that the causality runs both ways – i.e., there is bidirectional causality between energy 

consumption and economic growth. Oh and Lee (2004) find the bi-directional causality in the 

context of Korea, whereas Apergis and Payne (2009) report similar findings in the Commonwealth 

of Independent States over the period 1991–2005. Others have reported the existence of bi-

directional causality between energy consumption and economic growth for developed countries 

(Lee and Chang, 2007), developing countries (Mahadevan and Asafu-Adjaye, 2007), middle-income 
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countries (Ozturk et al. 2010) and OECD countries (Belke and Potrafke, 2012). Lastly, some studies 

concluded that there exists no causal relationship between energy consumption and economic growth 

(Huang et al. 2008, Acaravci and Ozturk 2010, Balcilar et al. 2010, Fallahi 2011). 

In the context of China also there is mixed evidence on the existence of EEKC and decoupling 

relationship between energy consumption and economic growth. Wu, Chen, Zhang, and Cheng 

(2008) and Fei, Dong, Xue, Liang, and Yang (2011) are one of the earlier studies exploring the 

relationship between energy consumption and economic growth. Fei et al. (2011) adopt a dynamic 

panel data approach to investigate the relationship between energy consumption and economic 

growth for 30 provinces in mainland China from 1985 to 2007. Their results show that there is a 

positive long-run relationship between real GDP per capita and energy consumption. Moreover, they 

show that economic growth in east China is more energy-dependent compared to west China. 

Shahbaz et al. (2013) reported a bidirectional causality between energy demand and economic 

growth. Zhang and Xu (2012), using Chinese provincial panel data from 1995 to 2008, report that 

economic growth increases energy consumption in China. This result not only holds at the national 

level but also at regional and sectoral levels with the Eastern Region and industrial sector, indicating 

a bidirectional causality between energy consumption and economic growth. Dong et al. (2019), 

using provincial-level data from 1985–2014 and the panel threshold regression model, find no 

evidence of a nonlinear relationship for the whole country. However, they find a single threshold for 

both eastern and non-eastern regions with the elasticity of GDP not varying significantly before and 

after the threshold. This result lends little support for an EEKC and the decoupling hypothesis.  

Rahman et al. (2020) explore the relationship between energy production, energy consumption, 

and gross domestic product (GDP) growth in China for the period 1981–2016. Their results of 

Hatemi-J and FMOLS tests supported long term cointegration in the consumption and production of 

coal, oil, and natural gas. Further, they confirm the presence of the long-term positive impact of the 

consumption and production of coal, oil, and natural gas on GDP growth. Hao et al. (2016) provide 

strong evidence for the “inverted-U” shaped relationship between per capita coal consumption and 

the GDP per capita. On the other hand, Zhang et al. (2018) find the heterogeneous relationship 

between energy consumption per capita and GDP per capita across provinces. Their results show that 

for most provinces, there is a linear relationship with no presence of the inflection point of energy 

consumption per capita. Whereas, for some provinces, they report that the estimated relationship is 

“inverted-U” or “inverted-N” shaped, suggesting the existence of decoupling of energy consumption 

per capita and GDP per capita. This result is mostly in line with the investigation of EKC 

relationship by Liu et al. (2008) and Song et al. (2013) who find that at the provincial level, there 

exist remarkable differences in the inflection point of EKC hypothesis across regions and provinces, 



7 

 

indicating that some regions and provinces in China already passed the inflection point whereas, 

some regions still require years to reach it.  

In view of the inconclusive empirical support for the EEKC hypothesis, specifically in the case 

of China, there is a need to re-investigate the EEKC relationship between energy consumption and 

economic growth (Table-A1 in Appendix A summarizes the findings of earlier studies). One of the 

main drawbacks of earlier studies is that they rely on parametric approaches to uncover the 

relationship. That means making specific assumptions regarding the shape of the relationship. This 

study takes a different approach by estimating the EEKC hypothesis using non-parametric techniques 

that enable us to estimate the relationship without making any prior assumptions. Hence, our 

approach is likely to provide a more holistic perspective on the existence of EEKC between energy 

consumption and economic growth in the regions and provinces in China. 

 

III. Model and Data 

The empirical analysis involves evaluating the relationship between energy consumption (𝐸𝐶) and 

economic growth (𝑌), using data for 30 Chinese provinces
1
 covering the period of 1980-2018

2
. We 

also assess whether the EEKC hypothesis, i.e., the inverted-U shaped association between economic 

growth and energy consumption, is present at the provincial level in China. The provincial energy 

consumption is measured in tons of coal equivalent per capita and calculated using data on total 

energy consumption and the average annual population of each province. These data are compiled 

from various sources such as China Statistical Yearbooks, China Energy Statistical Yearbooks, 

China Population Yearbooks, China Population & Employment Statistics Yearbook, and National 

Bureau of Statistics of China
3
. The proxy for regional economic growth is the gross regional product 

(GRP) per capita in the Chinese Yuan, which is obtained from different regional statistical yearbooks 

as well as the National Bureau of Statistics of China. 

A bivariate approach to modeling the energy-growth nexus may appear underspecified. 

However, provincial data on other factors affecting energy us remains elusive. In addition, the 

versatility and all-encompassing (of economic activities) nature of GRP, like GDP, renders the 

inclusion of other commonly used determinants of energy consumption, such as industrial 

production, quite redundant. As a result, often, a bivariate approach is the only viable option for 

empirical modeling of regional-level energy usage, pollution, etc. Prior studies of the EEKC/EKC in 

Chinese provinces, including Song et al. (2008) and Li et al. (2016), have also implemented a 

                                                 
1 Tibet is excluded from the econometric analysis due to insufficient data. 
2 The estimable datasets for Chongqing and Hainan are for the periods 1997-2018 and 1990-2018, respectively. 
3 http://data.stats.gov.cn/easyquery.htm?cn=E0103 
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bivariate approach to econometric analysis. As such, and in accordance with similar past studies such 

as Soytas and Sari (2003), Pao and Tsai (2010), Boden et al. (2011), and Shahbaz et al. (2016, 2017a, 

b), we take natural logarithmic transformations of 𝐸𝐶 and 𝑌, and specify equation-1 as provincial 

energy demand function. A logarithmic transformation of the data also allows us to interpret GRP 

per capita as ‘economic growth’ and the coefficient estimates of model-1 as elasticities.  

ln𝐸𝐶௧ ൌ 𝑓ሺln𝑌௧ሻ (1) 

Table-1 presents the summary statistics of the variables for each of the 30 Chinese provinces. 

As can be seen, the mean values of ln𝐸𝐶௧ range between –0.430 in Guangxi to 1.201 in Shanghai. 

The maximum values of ln𝐸𝐶௧ vary between 0.756 in Guanxi and 2.196 in Ningxia. The highest and 

lowest minimum values of ln𝐸𝐶௧  are 0.811 (Beijing) and –2.522 (Guangdong), respectively. The 

measure of the variation of ln𝐸𝐶௧, standard deviation, can be seen to range between 0.154 in Beijing 

to 0.928 in Guangdong. The mean value of ln𝑌௧  is highest, at 9.956, in Shanghai and lowest in 

Gansu, at 8.196. ln𝑌௧  takes maximum values between a high of 11.753 in Tianjin and a low of 

10.390 in Gansu. The minimum values of ln𝑌௧ are within the range of 4.836 in Hubei to 7.910 in 

Shanghai. Measuring the variation of ln𝑌௧, its standard deviation is found to be the highest in Inner 

Mongolia and lowest in Shanghai, with respective values of 1.773 and 1.304. Lastly, the computed 

Jarque-Bera test statistics and corresponding probabilities (p-values) indicate that both variables are 

normally distributed in the 30 Chinese provinces at the 5% level of significance. 

 

Table-1: Summary Statistics of Provincial Data 

Province Variable  Mean  Maximum  Minimum  Std. Dev.  Jarque-Bera**  Probability 

Anhui ln𝐸𝐶௧  -0.182 0.759 -1.098 0.599 2.837 0.242 

 ln𝑌௧ 8.342 10.704 5.673 1.559 2.373 0.305 

Beijing ln𝐸𝐶௧  1.089 1.344 0.811 0.154 1.980 0.372 

 ln𝑌௧ 9.755 11.737 7.330 1.466 3.316 0.191 

Chongqing ln𝐸𝐶௧  0.614 1.152 -0.140 0.472 2.619 0.270 

 ln𝑌௧ 8.601 11.092 6.073 1.601 2.470 0.291 

Fujian ln𝐸𝐶௧  0.012 1.237 -1.284 0.841 3.508 0.173 

 ln𝑌௧ 8.909 11.337 5.852 1.739 2.894 0.235 

Gansu ln𝐸𝐶௧  0.340 1.135 -0.261 0.463 4.248 0.120 

 ln𝑌௧ 8.196 10.390 5.905 1.454 2.682 0.262 

Guangdong ln𝐸𝐶௧  0.055 1.042 -2.522 0.928 5.247 0.073 

 ln𝑌௧ 9.118 11.294 6.176 1.626 3.005 0.223 

Guangxi ln𝐸𝐶௧  -0.430 0.756 -1.552 0.801 3.485 0.175 

 ln𝑌௧ 8.288 10.666 5.628 1.612 2.555 0.279 

Hainan ln𝐸𝐶௧  -0.129 0.852 -1.683 0.734 1.701 0.427 

 ln𝑌௧ 8.664 10.830 5.869 1.510 2.457 0.293 

Hebei ln𝐸𝐶௧  0.569 1.426 -0.425 0.632 3.724 0.155 
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Table-1: Summary Statistics of Provincial Data 

Province Variable  Mean  Maximum  Minimum  Std. Dev.  Jarque-Bera**  Probability 

 ln𝑌௧ 8.647 10.735 6.057 1.570 3.077 0.215 

Heilongjiang ln𝐸𝐶௧  0.630 1.202 0.150 0.339 4.086 0.130 

 ln𝑌௧ 8.800 10.723 6.542 1.387 2.913 0.233 

Henan ln𝐸𝐶௧  0.101 0.923 -0.509 0.557 4.864 0.088 

 ln𝑌௧ 8.412 10.766 5.759 1.631 2.842 0.242 

Hubei ln𝐸𝐶௧  0.205 1.120 -0.652 0.587 3.770 0.152 

 ln𝑌௧ 8.556 11.058 4.836 1.676 1.721 0.423 

Hunan ln𝐸𝐶௧  0.036 0.928 -0.645 0.559 4.680 0.096 

 ln𝑌௧ 8.463 10.877 5.900 1.604 2.645 0.266 

Inner Mongolia ln𝐸𝐶௧  0.774 2.074 -0.416 0.888 4.537 0.103 

 ln𝑌௧ 8.780 11.328 5.889 1.773 2.790 0.248 

Jiangsu ln𝐸𝐶௧  0.366 1.374 -0.735 0.689 3.308 0.191 

 ln𝑌௧ 9.147 11.587 6.293 1.703 2.754 0.252 

Jiangxi ln𝐸𝐶௧  -0.308 0.808 -1.218 0.615 3.606 0.165 

 ln𝑌௧ 8.349 10.718 5.835 1.575 2.655 0.265 

Jilin ln𝐸𝐶௧  0.567 1.417 -0.153 0.401 1.685 0.431 

 ln𝑌௧ 8.739 11.037 6.098 1.563 2.497 0.287 

Liaoning ln𝐸𝐶௧  1.013 1.680 0.494 0.401 4.139 0.126 

 ln𝑌௧ 9.101 11.275 6.023 1.527 2.192 0.334 

Ningxia ln𝐸𝐶௧  0.889 2.196 -0.551 0.842 3.084 0.214 

 ln𝑌௧ 8.521 10.867 6.071 1.567 2.646 0.266 

Qinghai ln𝐸𝐶௧  0.692 2.080 -0.945 0.857 1.896 0.387 

 ln𝑌௧ 8.526 10.841 6.129 1.504 2.432 0.296 

Shaanxi ln𝐸𝐶௧  0.122 1.210 -0.753 0.646 4.051 0.132 

 ln𝑌௧ 8.455 11.007 5.811 1.667 2.502 0.286 

Shandong ln𝐸𝐶௧  0.378 1.393 -0.777 0.730 3.767 0.152 

 ln𝑌௧ 8.912 11.259 5.996 1.676 2.838 0.242 

Shanghai ln𝐸𝐶௧  1.201 1.602 0.634 0.326 3.678 0.159 

 ln𝑌௧ 9.956 11.689 7.910 1.304 3.678 0.159 

Shanxi ln𝐸𝐶௧  0.928 1.697 -0.103 0.592 2.739 0.254 

 ln𝑌௧ 8.551 10.553 6.091 1.485 2.993 0.224 

Sichuan ln𝐸𝐶௧  -0.070 0.937 -1.408 0.649 2.267 0.322 

 ln𝑌௧ 8.343 10.724 5.768 1.591 2.588 0.274 

Tianjin ln𝐸𝐶௧  1.115 1.780 0.288 0.426 2.043 0.360 

 ln𝑌௧ 9.577 11.753 7.213 1.535 3.175 0.204 

Xinjiang ln𝐸𝐶௧  0.794 2.111 -0.132 0.671 3.347 0.188 

 ln𝑌௧ 8.654 10.816 6.016 1.509 2.553 0.279 

Yunnan ln𝐸𝐶௧  -0.146 0.809 -1.308 0.693 3.015 0.221 

 ln𝑌௧ 8.233 10.509 5.587 1.529 2.392 0.302 

Zhejiang ln𝐸𝐶௧  0.224 1.325 -1.313 0.858 3.363 0.186 

 ln𝑌௧ 9.163 11.425 6.155 1.700 3.105 0.212 

Notes: Std. Dev. is abbreviation for standard deviation. Jarque-Bera: 𝐻଴: Normality of Variable. ** Reject 𝐻଴ if probability <0.050. 
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IV. Empirical Estimation Strategy 

IV.I Nonparametric Unit Root Tests 

We perform the Bierens (1997a) and Breitung (2002) nonparametric unit root tests to determine the 

stationarity properties of energy consumption (ln𝐸𝐶௧ ) and economic growth (ln𝑌௧). We use the 

nonparametric unit root tests as the parametric unit root tests can often fail to reject the null 

hypothesis (of non-stationarity) due to the presence of nonlinearities. The Bierens (1997a) unit root 

test estimates the following auxiliary function-2 for a variable 𝑧௧: 
 𝑧௧ െ 𝑧௧ିଵ ൌ 𝑎 ∙ 𝑧௧ିଵ ൅ 𝑏ଵ ∙ ሺ𝑧௧ିଵ െ 𝑧௧ିଶሻ ൅ ⋯൅ 𝑏௣ ∙ ൫𝑧௧ି௣ െ 𝑧௧ି௣ିଵ൯ ൅ 𝑏௣ାଵ ൅ 𝑏௣ାଶ∙ 𝑃௧,ଵ ൅⋯൅ 𝑏௣ା௠ାଵ ∙ 𝑃௧,௠ ൅ 𝑢௧ (2) 

 

where, 𝑡 is expressed as 𝑡 ൌ 𝑝 ൅ 2, … ,𝑛, 𝑢௧ denotes a white noise, and 𝑃௧,௞ represent the detrended 

Chebishev time polynomials in which 𝑃௧,ଵ is the standardized time 𝑡. The null hypothesis under the 

Bierens (1997a) test considers the variable 𝑧௧ as a unit root with an intercept process: 

 𝑎 ൌ 𝑏௣ାଶ ൌ ⋯𝑏௣ା௠ାଵ ൌ 0 (3) 

 

while under the alternative it considers 𝑧௧ as a stationarity process with a nonlinear trend: 𝑎 ൏ 0. We 

also perform the nonparametric unit root test developed by Breitung (2002) to verify whether the 

results provided by the Bierens (1997a) unit root test are robust. The advantage of Breitung (2002) 

procedure is that it can handle nonlinearity as well as structural changes in the time series. Breitung 

(2002) nonparametric unit root test can be explained by considering the following unit root process: 

 𝑦௧ ൌ 𝑦௧ିଵ ൅  𝑢௧ (4) 

 

for 𝑡 ൌ 1, … ,𝑛, and 𝑢௧ is a zero-mean stationary process. The following partial sums are computed 

as: 𝑌௧ ൌ  𝑦ଵ ൅ 𝑦ଶ ൅⋯൅ 𝑦௧ (5) 

followed by the ratio of equation-6: 
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𝐵௡ ൌ ሾ𝑌ଵଶ ൅ 𝑌ଶଶ ൅⋯൅ 𝑌௡ଶሿ𝑛ଶሾ𝑦ଵଶ ൅ 𝑦ଶଶ ൅⋯൅  𝑦௡ଶሿ𝑛  (6) 

Breitung (2002) unit root test specifies virtually identical null and alternative hypotheses as that of 

Bierens (1997a) approach, which are outlined as follows: 

 𝐻଴: 𝑦௧ is a unit root with an intercept process 𝐻ଵ: 𝑦௧ is a trend stationary process 

 

IV.II Nonparametric Cointegration Tests 

Any presence of nonstationary variables as detected by unit root tests warrants testing for 

cointegration or long-run equilibrium. Here too, the parametric cointegration test procedures often 

fail to provide accurate results due to the presence of structural breaks and/or other sources of 

nonlinearities in the data-generating process. Against this backdrop, we perform Bierens (1997b) and 

Pedroni et al. (2015) nonparametric cointegration testing approaches, which are capable of 

accounting for nonlinearity in cointegrating vector to verify the long-run equilibrium in the model. 

Bierens (1997b) cointegration approach is a time-series cointegration rank test, which is determined 

by identifying two random matrices, in equation-7, from the specified empirical model-1: 

 𝐴௠ 𝐵௠ ൅ 𝑐 ቈ𝐴௠ିଵ𝑛ଶ ቉ (7) 

 

where 𝑚 ൒ 𝑞, 𝑚 is a natural number, and 𝑞 is the number of variables in the model. The empirical 

time series model’s weighted averages are denoted as 𝑦௧ and 𝑦௧ െ 𝑦௧ିଵ, and the outer products of 

these weighted averages can be summed up as matrices 𝐴 and 𝐵. The eigenvectors of these two 

matrices are then used to compute the test statistic: 𝜆௠௜௡ , which is the ordered solution of the 

generalized eigenvalue. The hypothesized null is of zero cointegration rank (𝑟 ൌ 0), while the 

alternative hypothesis is a rank of at least 1 (𝑟 ൒ 1). The cointegration analysis is then extended by 

the panel nonparametric cointegration test of Pedroni et al. (2015). The Pedroni et al. (2015) method 

is also a rank test for panel cointegration. However, it tests the number of ‘cross-unit’ cointegration 

(𝑐 ൌ?), i.e., the number of cross-sections (provinces) that are cointegrated with each other in the 

panel. This allows us to see the cross-unit cointegration of each variable–ln𝐸𝐶௧ and ln𝑌௧–as well as 
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the energy-growth model-1: ln𝐸𝐶௧ ൌ 𝑓ሺln𝑌௧ሻ. In addition, it also acts as a robustness check for the 

Bierens (1997b) cointegration, verifying any presence of cointegration across cross-sections and 

within the panel dataset of 30 Chinese provinces. Furthermore, Pedroni et al. (2015) test allows us to 

determine whether there is convergence–due to cross-unit cointegration–with regards to either 

energy consumption, economic growth, or both. 

Under Pedroni et al. (2015) approach, a terminal cointegration rank (i.e., 𝑐 ൌ 𝑁ሺൌ 30ሻ) is 

assumed by the null hypothesis against the alternative of rank lesser than under the null (𝑐ଵ ൏ 𝑁). In 

addition to this innovative characteristic, the panel cointegration test by Pedroni et al. (2015) can 

account for dependence amongst cross-sections, as well as any interplay across them. Furthermore, 

unlike other nonparametric estimators, Pedroni (2015) approach’s power is greater, and there is no 

need for the bandwidth or lag lengths to be elected a-priori. For the test statistic, Pedroni et al. 

(2015) modified the inverse of Breitung’s (2002) time-series 𝜚ො் statistic, which is denoted as the 

MIB in equation-8: 

𝑀𝐼𝐵 ൌ 2𝑇෍𝜆መ௜ே
௜ୀଵ  (8) 

Pedroni et al. (2015) aptly named this modified test statistic as the following MMIB statistic. In 

equation-9, 𝜆መ௜  denotes the eigenvalues of 𝜆መேି௖ାଵ  to 𝜆መே  whereas 𝑇 symbolizes the maximum time 

period for each cross-section: 

 

𝑀𝑀𝐼𝐵 ൌ 2𝑇 ෍ 𝜆መ௜ே
௜ୀேି௖ାଵ  (9) 

IV.III Nonparametric Regression Estimates 

The long-run correlation between ln𝐸𝐶௧ and ln𝑌௧ needs to be estimated if cointegration is detected 

in each province. To that end, we implement the nonparametric kernel smoothing regression to 

estimate the long-run relationship between energy consumption and economic growth. The 

nonparametric local linear regression estimators allow the data to determine the functional form: that 

is, whether to fit (or smooth) a linear or a nonlinear regression line through the data. Such methods 

can estimate complex nonlinear models such as higher-order polynomial functions and those 

involving structural breaks, which are characteristic of the EEKC hypothesis (Wagner 2015, Shahbaz 

et al. 2017a). Nevertheless, the nonparametric estimators retain the ability to smooth linear 

regressions. The scalar coefficients smoothed by these nonparametric local linear regressions are an 
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average of the (first) derivative, or slope/gradient, smoothed for each ln𝐸𝐶௧  and ln𝑌௧  observation 

pair, and represent the average or overall effect of the latter on the former. 

Since a standard nonparametric kernel smoothing regression is limited to reporting the average 

effect of ln𝑌௧ on ln𝐸𝐶௧, it is, thus, inappropriate for substantiating the EEKC hypothesis between 

economic growth and energy consumption. We overcome this by applying Li and Racine’s (2004) 

CVLL nonparametric regression to examine the shape of ln𝐸𝐶௧ ൌ 𝑓ሺln𝑌௧ሻ for each province. Like 

standard nonparametric kernel smoothers, it allows the data to determine the functional form (shape). 

In addition, the CVLL nonparametric approach smoothens the gradient vector of each regressor: 𝛽ሺ𝑥ሻ , and presents it as a plot of ln𝐸𝐶௧  against ln𝑌௧ . An estimation of the gradient requires 

decomposing the specified empirical model as equation-10: 

 𝑦௝ ൌ 𝑔൫𝑥௝൯ ൅ 𝑢௝,   j = 1, …, n (10) 

 

The nonparametric estimator under the CVLL approach, 𝛿ሺ𝑥ሻ, is implemented using the cross-

validation selections of ൫ℎ෠ ൌ ℎ෠ଵ, … ,ℎ෠௤൯, by the following formula: 

 𝛿መሺ𝑥ሻ ൌ ൬𝑔ොሺ𝑥ሻ𝛽መሺ𝑥ሻ൰
 ൌ ൥෍𝑊௛෡,௜௫ ൬ 1 ሺ𝑥௜ െ 𝑥ሻ′𝑥௜ െ 𝑥, ሺ𝑥௜ െ 𝑥ሻሺ𝑥௜ െ 𝑥ሻ′൰௡

௜ୀଵ ൩ିଵ෍𝑊௛෡,௜௫ ൬ 1𝑥௜ െ 𝑥൰𝑦௜௡
௜ୀଵ

 (11) 

 

where 𝑊௛෡,௜௫ ൌ  𝛱௦ୀଵ௤ ℎ෠௦ି ଵ𝑤ቆ𝑥௜௦ െ 𝑥௦ℎ෠௦ ቇ (12) 

and 𝑔ሺ𝑥ሻ is estimated by equation-13: 𝑔ොሺ𝑥ሻ ൌ 𝑒ଵᇱ𝛿መሺ𝑥ሻ (13) 

 

Here, 𝑒ଵ is a ሺ𝑞 ൅ 1ሻ ൈ 1 vector whose first element is 1, while all other elements amount to zero (0). 

 

IV.IV Nonparametric Granger Causation Tests 

The presence of cointegration in the nonlinear context also mandates the testing of the direction of 

Granger causality between energy consumption and economic growth. We apply the nonparametric 
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techniques of Hiemstra-Jones (1994) and Diks-Panchenko (2006) to test for the direction of 

nonlinear Granger causality between the variables by using a bivariate setting. Contrarily, 

conventional (parametric) Granger causality tests may incorrectly reject the null hypothesis (of non-

causation) due to nonlinearities. The Hiemstra-Jones (1994) approach tests for the direction of 

nonlinear causality between two-time series variables, ሼ𝑋௧ሽ and ሼ𝑌௧ሽ, and involves evaluating the 

following null hypothesis: 

 𝑓௑,௒,௓ሺ𝑥,𝑦, 𝑧ሻ𝑓௒ሺ𝑦ሻ ൌ 𝑓௑,௒ሺ𝑥,𝑦ሻ𝑓௒ሺ𝑦ሻ ∙ 𝑓௒,௓ሺ𝑦, 𝑧ሻ𝑓௒ሺ𝑦ሻ  (14) 

 

Where 𝑍௧ ൌ 𝑌௧ ൅ 1 and 𝑓 represent the joint probability distribution function. Equation-(14) can be 

extended to estimate the correlation integrals 𝐶௏ሺ𝜀ሻ as in equation-(15): 

 ஼೉,ೊ,ೋሺఌሻ஼೉,ೊሺఌሻ ൌ ஼ೊ,ೋሺఌሻ஼ೊሺఌሻ   when 𝜀 ൐ 0 (15) 

These correlation integrals are estimated by the following formula: 

 𝐶ௐ,௡ሺ𝜀ሻ ൌ 2𝑛ሺ𝑛 െ 1ሻ෍෍𝐼௜௝ௐ௜ழ௝  (16) 

where 𝐼௜௝ௐ ൌ 𝐼 ቀቚห𝑊௜ െ𝑊௝หቚቁ ൑ 𝜀 (17) 

 

The right- and left-hand side values of the sample correlation integrals from equation-(15) are tested 

for equality as part of the Hiemstra-Jones (1994) method. 

According to Diks-Panchenko (2005, 2006), Hiemstra-Jones (1994) ‘mis-specified’ their null 

hypothesis which leads to its over-rejection. Consequently, Diks-Panchenko (2006) modified 

equation-(14), using a positive weight function: 𝑔ሺ𝑥,𝑦, 𝑧ሻ. If 𝑔ሺ𝑥, 𝑦, 𝑧ሻ ൌ 𝑓௒ଶሺ𝑦ሻ, the resulting null 

hypothesis function 𝑞 can be identified as equation-(18): 

 

𝑞 ൌ 𝐸ൣ𝑓௑,௒,௓ሺ𝑋,𝑌,𝑍ሻ𝑓௒ሺ𝑌ሻ െ 𝑓௑,௒ሺ𝑋,𝑌ሻ𝑓௒,௓ሺ𝑌,𝑍ሻ൧ (18) 

 

Here, the local density estimators of a 𝑑ௐ-variate random vector 𝑊 at 𝑊௜ is identified as: 
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𝑓መௐሺ𝑊௜ሻ ൌ ሺ2𝜀ሻିௗೈ𝑛 െ 1
෍ 𝐼௜௝ௐ௝,௝ஷ௜  (19) 

 

The Diks-Panchenko (2005, 2006) test statistic is derived from equation-18 and re-formulated as 

equation-(20): 

 

𝑇௡ሺ𝜖௡ሻ ൌ 𝑛 െ 1𝑛ሺ𝑛 െ 2ሻ ൈ෍ቀ𝑓መ௑,௒,௓ሺ𝑋௜ ,𝑌௜ ,𝑍௜ሻ𝑓መ௒ሺ𝑌ሻ െ 𝑓መ௑,௒ሺ𝑋௜ ,𝑌௜ሻ𝑓መ௒,௓ሺ𝑌௜ ,𝑍௜ሻቁ௡
௜ୀଵ  (20) 

 

The test statistics under Hiemstra-Jones (1994) and Diks-Panchenko (2006) approaches require 

choosing an appropriate bandwidth, 𝜖௡ , based on the sample size 𝑛 . Note that Diks-Panchenko 

(2006) argues against any empirical choice of bandwidth beyond the bounds: ሾ0.5, 1.5ሿ. 
 

V. Empirical Results 

We primarily test whether linearity is present between the variables or not. Table-2 provides the 

estimated test statistic and simulated p-value for the nonparametric kernel-based Hsiao et al. (2007) 

test for linearity applied on model-1 for each of the 30 Chinese provinces. The test statistics are 

unable to reject the null of linearity, at the standard significance levels, for Sichuan and Tianjin. In 

contrast, the test statistic rejects the null at 5% level in Shanxi and at 1% level for the remaining 

provinces. Accordingly, we can conclude that in Chinese provinces, with the exception of Sichuan 

and Tianjin, the functional form of the relationship between energy consumption and economic 

growth is nonlinear. 

 

Table-2: Hsiao et al. (2007) Test for Linearity 

Province 𝐽መ௡-statistic p-value 

Anhui 5.886586*** 0.000000 

Beijing 3.281871*** 0.000000 

Chongqing 1.655651*** 0.007519 

Fujian 3.936054*** 0.000000 

Gansu 5.550317*** 0.000000 

Guangdong 2.577342*** 0.002506 

Guangxi 5.691589*** 0.000000 

Guizhou 2.984445*** 0.000000 

Hainan 3.500776*** 0.000000 

Hebei 3.810957*** 0.000000 

Heilongjiang 5.569949*** 0.000000 

Henan 4.956317*** 0.000000 

Hubei 4.631561*** 0.000000 
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Table-2: Hsiao et al. (2007) Test for Linearity 

Province 𝐽መ௡-statistic p-value 

Hunan 3.898865*** 0.000000 

Inner Mongolia 4.782587*** 0.000000 

Jiangsu 4.742567*** 0.000000 

Jiangxi 3.866591*** 0.000000 

Jilin 3.351876*** 0.000000 

Liaoning 4.800094*** 0.000000 

Ningxia 3.356480*** 0.000000 

Qinghai 4.454670*** 0.000000 

Shaanxi 3.856178*** 0.000000 

Shandong 3.420953*** 0.000000 

Shanghai 4.427813*** 0.000000 

Shanxi 1.213408** 0.045113 

Sichuan -0.503885 0.238100 

Tianjin 1.000144 0.175440 

Xinjiang 4.584644*** 0.000000 

Yunnan 5.428832*** 0.000000 

Zhejiang 4.758238*** 0.000000 
Notes: Exogeneous term: intercept. 𝐻଴: Linearity of function. Simulated p-values are from 399 replications. *** Reject 𝐻଴ when p-

value <0.010000. ** Reject 𝐻଴ when p-value <0.050000. 

 

Table-3 provides the simulated p-values of the heteroskedasticity robust version of Chow (𝐶መ) 
and Hausman (𝐻෡) tests performed as part of Chen-Hong (2012) procedure for testing a smooth 

structural change in model-1 using nonparametric regressions. This test can detect known and 

unknown smooth and abrupt structural changes, without forcing a rigid functional form by estimating 

model-1 using nonparametric kernel smoothing. The p-values are lower than 0.01 under Chow and 

Hausman tests in Anhui, Beijing, Gansu, Guangdong, Guangxi, Hainan, Hebei, Heilongjiang, Hunan, 

Jiangsu, Jiangxi, and Sichuan. These tests’ statistics reject the null hypothesis of no smooth structural 

change in model-1 can be rejected at a 1% level in 12 provinces. In Hubei and Ningxia, the p-values 

fall under 0.05 for Chow and Hausman versions of Chen-Hong (2012) test, rejecting the null at 5% 

level of significance. The null is also rejected at 10% level in Liaoning where the simulated p-value 

is less than 0.10. In other regions–Guizhou, Inner Mongolia, Qinghai, Shandong, and Shanghai, the 

null hypothesis is rejected at different significance levels by the respective p-values of Chow and 

Hausman tests. In Fujian, however, the p-value for the Chow test fails to reject the null at usual 

significance levels (1%, 5%, and 10%) while the Hausman test rejects the null at 5% level. In the 

remaining nine provinces–Chongqing, Henan, Jilin, Shaanxi, Shanxi, Tianjin, Xinjiang, Yunnan, and 

Zhejiang, Chow and Hausman tests fail to the reject the null at any standard significance level. 

Accordingly, we can conclude that there is a presence of abrupt and/or smooth structural change in 

the function of energy consumption with respect to economic growth in 21 of 30 Chinese provinces. 
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In the remaining nine provinces, Chen-Hong (2012) test finds no evidence of any structural change–

smooth or otherwise. 

 

Table-3: Chen-Hong (2012) Test for Smooth Structural Change 

Province 𝐶መ-het 𝐻෡-het 

Anhui 0.0039003900*** 0.0015001500*** 

Beijing 0.0022002200*** 0.0010001000*** 

Chongqing 0.1758175800 0.1016101600 

Fujian 0.1171117100 0.0126012600** 

Gansu 0.0053005301*** 0.0034003400*** 

Guangdong 0.0004000400*** 0.0000000000*** 

Guangxi 0.0047004700*** 0.0093009301*** 

Guizhou 0.0752075210* 0.0100010000*** 

Hainan 0.0000000000*** 0.0000000000*** 

Hebei 0.0027002700*** 0.0031003100*** 

Heilongjiang 0.0003000300*** 0.0018001800*** 

Henan 0.2568256800 0.2692269200 

Hubei 0.0185018500** 0.0207020700** 

Hunan 0.0031003100*** 0.0082008201*** 

Inner Mongolia 0.0092009201*** 0.0116011600** 

Jiangsu 0.0033003300*** 0.0034003400*** 

Jiangxi 0.0010001000*** 0.0021002100*** 

Jilin 0.4434443400 0.5060506100 

Liaoning 0.0860086010* 0.0832083210* 

Ningxia 0.0446044600** 0.0129012900** 

Qinghai 0.0167016700** 0.0036003600*** 

Shaanxi 0.4128412800 0.1954195400 

Shandong 0.0371037100** 0.0649064910* 

Shanghai 0.0052005201*** 0.0147014700** 

Shanxi 0.1261126100 0.2013201300 

Sichuan 0.0000000000*** 0.0000000000*** 

Tianjin 0.3870387000 0.3988398800 

Xinjiang 0.4810481000 0.3968396800 

Yunnan 0.1704170400 0.1093109300 

Zhejiang 0.8480848100 0.3293329300 

Notes: 𝐻଴ : Model is devoid of smooth structural change. 𝐶መ -het and 𝐻෡ -het denote the generalized Chow and Hausman tests, 

respectively. These two tests are robust to heteroskedasticity. The bootstrap, B=9999, simulate the p-values. *** Reject 𝐻଴ when p-

value <0.0100000000. ** Reject 𝐻଴ when p-value <0.0500000000. * Reject 𝐻଴ when p-value <0.10. 

 

The empirical findings in Tables-2 and 3 indicate that, for all but one province, model-1 suffers 

from either nonlinearity, or smooth and/or abrupt structural change, or both. Tianjin is the only 

province which exhibits a linear functional form and a lack of any structural change. The findings of 

nonlinearity and structural change are unique in contrast to prior studies, such as Li et al. (2011), 

Zhang and Xu (2012), Zhang et al. (2018), and Dong et al. (2019), who do not conduct such tests. In 

such a situation, nonparametric econometric methods are more appropriate for an empirical analysis 

as they do not require a-priori assumptions that are essential for parametric estimations. Moreover, 

nonparametric methods are better able to model nonlinearities, including structural breaks and 
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higher-order polynomial functions than their parametric counterparts. Furthermore, in the absence of 

nonlinearity, the nonparametric estimator simply allows the data to fit a linear model. This is useful 

for Tianjin, as the province does not appear to exhibit any of the various forms of nonlinearity. These 

characteristics of provincial-level data motivate the use of nonparametric methods, which allow for 

consistent, efficient, and comparable estimates across 30 Chinese provinces. 

The empirical analysis of the energy consumption-economic growth nexus continues with the 

nonlinear tests for unit root. Table-4 provides the estimated test statistics and simulated p-values 

from the nonparametric Bierens (1997a) and Breitung (2002) unit root tests for the two model-(1) 

variables–ln𝐸𝐶௧  and ln𝑌௧–from each of 30 provinces. It can be observed that the test statistics 

estimated from the variables their respective level forms have p-values that exceed all the standard 

significance levels (1%, 5%, and 10%) in 30 Chinese provinces. The test statistics are, thus, unable 

to reject the null of non-stationarity, and the variables are found to contain unit-roots. The Breitung 

(2002) test, in particular, provides evidence that the variables are nonstationary, and that this non-

stationarity is not due to any structural changes in the time series. We proceed with two unit root 

tests on the first differenced form of the two variables. The test statistics for Bierens (1997a) and 

Breitung (2002) now have p-values lower than 0.05 and reject the null in favor of the alternative for 

all 30 provinces. This indicates that our variables are stationary in the first difference form. Based on 

the two nonparametric unit root test results, we can robustly conclude that our variables are 

nonstationary and integrated of order 1 i.e., I(1). Therefore, we can now apply the nonparametric 

tests for cointegration, Granger causality, and estimate the long-run equations based on model-(1). 

Our findings of nonlinear unit-roots are similar to Li et al. (2011) and Zhang and Xu (2012), who 

performed panel unit root tests. However, other provincial studies such as Zhang et al. (2018) and 

Dong et al. (2019) do not test their datasets (time series and panel, respectively) for unit root. 

 

Table-4: Bierens (1997a) and Breitung (2002) Tests for Unit Root 

Province Variable 
Level 1

st
 difference 

Bierens Breitung Bierens Breitung 

Anhui ln𝐸𝐶௧ -12.7281(0.6200) 0.0140(0.3000) -29.9916(0.0300)** 0.0045(0.0000)** 

 ln𝑌௧ -4.6858(0.7800) 0.0058(0.2000) -28.9741(0.0400)** 0.0024(0.0000)** 

Beijing ln𝐸𝐶௧ 1.2614(0.9800) 0.0172(0.6000) -42.4007(0.0400)** 0.0050(0.0000)** 

 ln𝑌௧ 2.6272(1.0000) 0.0205(0.9000) -31.7766(0.0300)** 0.0054(0.0000)** 

Chongqing ln𝐸𝐶௧ -29.0977(0.2900) 0.0119(0.4000) -94.6050(0.0300)** 0.0063(0.0000)** 

 ln𝑌௧ -17.6636(0.3300) 0.0035(0.1500) -24.3767(0.0300)** 0.0029(0.0400)** 

Fujian ln𝐸𝐶௧ -12.0106(0.5700) 0.0119(0.8000) -28.4405(0.0000)** 0.0056(0.0000)** 

 ln𝑌௧ -4.5166(0.7700) 0.0193(0.9000) -21.5826(0.0300)** 0.0030(0.0000)** 

Gansu ln𝐸𝐶௧ -4.3774(0.9300) 0.0207(1.0000) -27.3804(0.0100)** 0.0043(0.0000)** 

 ln𝑌௧ -19.5094(0.1800) 0.0053(0.3000) -23.6181(0.0350)** 0.0035(0.0000)** 

Guangdong ln𝐸𝐶௧ -5.4043(0.7300) 0.0157(0.5000) -29.3127(0.0400)** 0.0048(0.0000)** 

 ln𝑌௧ -1.9592(0.8900) 0.0218(1.0000) -30.3636(0.0325)** 0.0034(0.0000)** 
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Table-4: Bierens (1997a) and Breitung (2002) Tests for Unit Root 

Province Variable 
Level 1

st
 difference 

Bierens Breitung Bierens Breitung 

Guangxi ln𝐸𝐶௧ -29.9000(0.3300) 0.0117(0.6000) -22.1917(0.0300)** 0.0060(0.0000)** 

 ln𝑌௧ -18.1406(0.3000) 0.0099(0.4000) -375.8493(0.0463)** 0.0042(0.0000)** 

Guizhou ln𝐸𝐶௧ -7.1989(0.7550) 0.0102(0.5000) -49.2059(0.0400)** 0.0045(0.0333)** 

 ln𝑌௧ -7.6498(0.6700) 0.0132(0.6000) -23.6296(0.0340)** 0.0032(0.0000)** 

Hainan ln𝐸𝐶௧ -4.5644(0.7300) 0.0115(0.5000) -39.3035(0.0000)** 0.0044(0.0000)** 

 ln𝑌௧ -47.8641(0.1200) 0.0047(0.3000) -568.5295(0.0300)** 0.0004(0.0000)** 

Hebei ln𝐸𝐶௧ -14.0164(0.4600) 0.0083(0.3333) -22.3841(0.0250)** 0.0036(0.0000)** 

 ln𝑌௧ -3.8411(0.7600) 0.0172(0.8000) -18.3709(0.0400)** 0.0048(0.0000)** 

Heilongjiang ln𝐸𝐶௧ -3.9569(0.7800) 0.0144(0.6000) -50.7624(0.0100)** 0.0038(0.0000)** 

 ln𝑌௧ -9.9413(0.4900) 0.0142(0.8000) -717.1599(0.0200)** 0.0040(0.0000)** 

Henan ln𝐸𝐶௧ -11.5636(0.3700) 0.0120(0.5000) -35.2965(0.0350)** 0.0017(0.0000)** 

 ln𝑌௧ -19.3150(0.2500) 0.0102(0.5000) -1209.5087(0.0100)** 0.0047(0.0333)** 

Hubei ln𝐸𝐶௧ -10.9594(0.5500) 0.0107(0.3000) -25.0688(0.0420)** 0.0038(0.0000)** 

 ln𝑌௧ -7.2685(0.6800) 0.0045(0.8000) -1771.9743(0.0100)** 0.0004(0.0000)** 

Hunan ln𝐸𝐶௧ -8.4780(0.6100) 0.0112(0.5000) -25.4739(0.0300)** 0.0038(0.0000)** 

 ln𝑌௧ -24.8781(0.1600) 0.0057(0.2000) -413.3709(0.0100)** 0.0048(0.0000)** 

Inner Mongolia ln𝐸𝐶௧ -6.4208(0.8100) 0.0140(0.8000) -34.7117(0.0100)** 0.0046(0.0000)** 

 ln𝑌௧ -18.4933(0.2600) 0.0068(0.2000) -259.5942(0.0200)** 0.0048(0.0000)** 

Jiangsu ln𝐸𝐶௧ -10.0441(0.5400) 0.0112(0.4000) -32.9061(0.0300)** 0.0055(0.0000)** 

 ln𝑌௧ -5.9411(0.6900) 0.0144(0.7000) -33.5989(0.0000)** 0.0037(0.0000)** 

Jiangxi ln𝐸𝐶௧ -3.3945(0.9200) 0.0191(1.0000) -29.8204(0.0100)** 0.0039(0.0000)** 

 ln𝑌௧ -22.7459(0.1900) 0.0073(0.4000) -19.7395(0.0400)** 0.0047(0.0000)** 

Jilin ln𝐸𝐶௧ -3.1617(0.9100) 0.0075(0.3000) -34.7618(0.0383)** 0.0041(0.0000)** 

 ln𝑌௧ -22.0852(0.1650) 0.0065(0.3000) -33.9103(0.0375)** 0.0029(0.0000)** 

Liaoning ln𝐸𝐶௧ -11.1217(0.5300) 0.0129(0.5000) -29.1438(0.0100)** 0.0048(0.0000)** 

 ln𝑌௧ -19.1369(0.3300) 0.0066(0.8000) -810.5544(0.0363)** 0.0006(0.0000)** 

Ningxia ln𝐸𝐶௧ -4.6993(0.8800) 0.0114(0.6000) -43.1974(0.0200)** 0.0038(0.0000)** 

 ln𝑌௧ -15.9031(0.2800) 0.0056(0.2000) -25.3869(0.0300)** 0.0038(0.0429)** 

Qinghai ln𝐸𝐶௧ -5.3312(0.8200) 0.0115(0.5000) -258.3354(0.0000)** 0.0043(0.0000)** 

 ln𝑌௧ -10.3852(0.5100) 0.0059(0.2000) -26.7139(0.0200)** 0.0034(0.0000)** 

Shaanxi ln𝐸𝐶௧ -7.6012(0.8600) 0.0185(1.0000) -23.1137(0.0350)** 0.0035(0.0000)** 

 ln𝑌௧ -16.7947(0.2800) 0.0058(0.2000) -19.6927(0.0300)** 0.0045(0.0000)** 

Shandong ln𝐸𝐶௧ -10.3444(0.6500) 0.0082(0.2000) -26.7581(0.0300)** 0.0044(0.0250)** 

 ln𝑌௧ -8.3464(0.5600) 0.0164(0.7000) -625.8048(0.0200)** 0.0042(0.0000)** 

Shanghai ln𝐸𝐶௧ 0.4931(0.9600) 0.0158(0.7000) -28.8662(0.0050)** 0.0043(0.0000)** 

 ln𝑌௧ -3.3112(0.8600) 0.0182(0.6000) -327.2537(0.0200)** 0.0033(0.0000)** 

Shanxi ln𝐸𝐶௧ -22.1533(0.4100) 0.0076(0.4000) -196.3888(0.0000)** 0.0007(0.0000)** 

 ln𝑌௧ -13.1601(0.4200) 0.0091(0.6000) -23.4347(0.0300)** 0.0040(0.0000)** 

Sichuan ln𝐸𝐶௧ -52.3770(0.1867) 0.0164(1.0000) -3831.0354(0.0000)** 0.0003(0.0000)** 

 ln𝑌௧ -16.7342(0.3400) 0.0071(0.3000) -194.3471(0.0275)** 0.0049(0.0000)** 

Tianjin ln𝐸𝐶௧ -16.8077(0.1450) 0.0091(0.2000) -117.4881(0.0380)** 0.0014(0.0000)** 

 ln𝑌௧ -64.1587(0.1625) 0.0095(0.3000) -15000.4185(0.0000)** 0.0048(0.0333)** 

Xinjiang ln𝐸𝐶௧ -4.2421(0.9800) 0.0185(1.0000) -50.3222(0.0100)** 0.0012(0.0000)** 

 ln𝑌௧ -0.5605(0.9700) 0.0183(0.9000) -32.5853(0.0400)** 0.0023(0.0000)** 

Yunnan ln𝐸𝐶௧ -8.1506(0.7700) 0.0068(0.2000) -29.1545(0.0400)** 0.0037(0.0000)** 

 ln𝑌௧ -7.3773(0.6800) 0.0163(0.9000) -21.8191(0.0417)** 0.0037(0.0000)** 

Zhejiang ln𝐸𝐶௧ -17.5203(0.2600) 0.0113(0.7000) -23.7544(0.0400)** 0.0029(0.0300)** 

 ln𝑌௧ -4.6492(0.7100) 0.0207(0.9000) -31.1835(0.0400)** 0.0037(0.0000)** 

Notes: p-values are in parentheses. 𝐻଴: Series is nonstationary with an intercept. 𝐻ଵ: Series is a nonlinear trend stationary process. 

Bierens (1997a): Test statistic = 𝐴መ𝑚; p-values are simulated for the relevant sample size using 100 replications. 

Breitung (2002): p-values are simulated for the relevant sample size using 10 replications. 

** Reject 𝐻଴ if p-value < 0.05. 
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Table-5 provides the respective null hypothesis (𝐻଴), estimated test statistic (𝜆௠௜௡), 5% level 

critical values, and cointegration rank (𝑟) from the Bierens (1997b) cointegration test performed on 

model-(1) for each Chinese province. As can be seen, the null of zero cointegrating equation (𝑟 ൌ 0) 

is rejected as the relevant test statistic fall below the corresponding critical value at the 5% level for 

each of 30 provinces. The null of one cointegrating equation (𝑟 ൌ 1) cannot be rejected as the 

respective test statistics exceed the corresponding 5% level critical values in every province. As 

such, we can conclude that model-(1) has a nonlinear cointegration rank of one (𝑟 ൌ 1) for all 30 

Chinese provinces according to the Bierens (1997b) test results. 

 

Table-5: Bierens (1997b) Test for Cointegration 

Province H0 m=? Test statistic (𝜆௠௜௡) Critical value (α=5%) Rank, r=? 

Anhui r=0 3 0.00398** 0.017  

 r=1 2 0.12943 0.054 1 

Beijing r=0 3 0.00419** 0.017  

 r=1 2 1.41643 0.054 1 

Chongqing r=0 3 0.00106** 0.017  

 r=1 2 0.46724 0.054 1 

Fujian r=0 3 0.00143** 0.017  

 r=1 2 1.75733 0.054 1 

Gansu r=0 3 0.01505** 0.017  

 r=1 2 0.13243 0.054 1 

Guangdong r=0 3 0.00510** 0.017  

 r=1 2 8.24578 0.054 1 

Guangxi r=0 3 0.00101** 0.017  

 r=1 2 0.33085 0.054 1 

Guizhou r=0 3 0.00455** 0.017  

 r=1 2 0.61089 0.054 1 

Hainan r=0 3 0.00213** 0.017  

 r=1 2 0.71628 0.054 1 

Hebei r=0 3 0.00365** 0.017  

 r=1 2 3.12234 0.054 1 

Heilongjiang r=0 3 0.00590** 0.017  

 r=1 2 0.55596 0.054 1 

Henan r=0 3 0.00472** 0.017  

 r=1 2 1.67832 0.054 1 

Hubei r=0 3 0.00941** 0.017  

 r=1 2 1.88282 0.054 1 

Hunan r=0 3 0.00368** 0.017  

 r=1 2 2.76910 0.054 1 

Inner Mongolia r=0 3 0.00720** 0.017  

 r=1 2 1.06180 0.054 1 

Jiangsu r=0 3 0.00340** 0.017  

 r=1 2 5.07284 0.054 1 

Jiangxi r=0 3 0.00420** 0.017  

 r=1 2 2.03105 0.054 1 

Jilin r=0 3 0.01644** 0.017  

 r=1 2 0.74532 0.054 1 

Liaoning r=0 3 0.00227** 0.017  
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Table-5: Bierens (1997b) Test for Cointegration 

Province H0 m=? Test statistic (𝜆௠௜௡) Critical value (α=5%) Rank, r=? 

 r=1 2 1.82936 0.054 1 

Ningxia r=0 3 0.00889** 0.017  

 r=1 2 1.42593 0.054 1 

Qinghai r=0 3 0.00724** 0.017  

 r=1 2 1.89782 0.054 1 

Shaanxi r=0 3 0.01120** 0.017  

 r=1 2 0.85530 0.054 1 

Shandong r=0 3 0.00925** 0.017  

 r=1 2 3.12205 0.054 1 

Shanghai r=0 3 0.00426** 0.017  

 r=1 2 1.52941 0.054 1 

Shanxi r=0 3 0.01334** 0.017  

 r=1 2 1.03553 0.054 1 

Sichuan r=0 3 0.00023** 0.017  

 r=1 2 0.19327 0.054 1 

Tianjin r=0 3 0.00266** 0.017  

 r=1 2 0.28505 0.054 1 

Xinjiang r=0 3 0.00025** 0.017  

 r=1 2 1.24426 0.054 1 

Yunnan r=0 3 0.00253** 0.017  

 r=1 2 1.31895 0.054 1 

Zhejiang r=0 3 0.00357** 0.017  

 r=1 2 1.68362 0.054 1 
Notes: Exogenous term: intercept. Rank, r is the number of cointegrating vectors. ** Reject 𝐻଴ at the 5% level of significance if test 

statistic < the 5% critical value. 

 

Table-6 displays the estimated test statistics and corresponding critical value at the 5% level of 

significance from Pedroni et al. (2015). This procedure tests for cross-unit cointegration in energy 

consumption, economic growth, across the different Chinese provinces. This allows us to observe the 

long-run equilibrium in each variable and gauge any possible convergence in energy consumption 

and economic growth patterns in the Chinese provinces. Panel-A exhibits the test for cross-unit 

cointegration for energy consumption ln𝐸𝐶௧  across 30 provinces. The estimated test statistic 

(𝑀𝑀𝐼𝐵) exceeds the critical value at the 5% level. This results in the rejection of the null hypothesis 

of 30 cointegrated cross-sections (𝑐 ൌ 30). The sequential rank test finds a cointegration rank of 26 

(𝑐 ൌ 26), meaning there is a long-run equilibrium in energy consumption patterns across 26 of the 

30 provinces
4
. This allows us to argue in favor of convergence in energy usage across the majority of 

China’s provinces. As various provinces in development, economic growth is to meet the needs of 

the people for survival and development. Energy consumption is the necessary condition for 

                                                 
4 The list of these cointegrated provinces is indeterminate from the Pedroni et al. (2015) test procedure. It may be 

possible to determine which provinces are non-convergent, but this would not yield enough insight into the matter and 

would unduly lengthen our discussion. 
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sustaining the continuous operation of the regional economy and basic carrier for meeting production 

and living needs. Therefore, provinces are bound to improve the quality of economic development by 

adjusting and optimizing the industrial structure and improving energy efficiency, thereby achieving 

the convergence of energy consumption among Chinese provinces. 

Panel-B (Table-6) provides the Pedroni et al. (2015) estimates for provincial economic growth 

(ln𝑌௧). Here too, the test statistic is greater than the corresponding 5% level critical value, thereby 

rejecting the null of full cross-unit cointegration (𝑐 ൌ 30). However, the sequential trace test of 

Pedroni et al. (2015) procedure finds a cross-unit cointegration rank of 27 (𝑐 ൌ 27), indicating that 

economic growth patterns are converging in most of the Chinese provinces. With the continuous 

deepening of China’s reform and opening up, especially the acceleration of the marketization 

process, the quality and efficiency of China’s provincial economic growth have been significantly 

improved. The rational allocation of production factors such as capital and labor under the guidance 

of market mechanisms has greatly improved social production efficiency and reduced the economic 

growth gap between provinces. As a result, there has been a convergence in economic growth 

patterns in Chinese provinces. Panel-C of Table-6 presents cross-unit cointegration test results for 

model-(1). The null of rank (𝑐 ൌ 30) is rejected due to the estimated test statistic exceeding the 

critical value (at 5% level) in magnitude. Further, the sequential trace test indicates cross-unit 

cointegration in 23 of 30 provinces, i.e., 𝑐 ൌ 23 . While the rank is lower than for individual 

variables, this demonstrates convergence in the nexus between energy consumption and economic 

growth in the majority of Chinese provinces. It also provides further evidence of long-run 

equilibrium in the energy-growth nexus across most of the 30 Chinese provinces. The evidence of 

nonlinear long-run equilibrium in the energy-growth nexus in our empirical analysis resembles that 

of Li et al. (2011) and Zhang and Xu (2012) who performed panel cointegration tests, but not Zhang 

et al. (2018) and Dong et al. (2019) who did not perform such tests. 

 

Table-6: Pedroni et al. (2015) Test for Panel Cointegration 

Panel A: Cross unit cointegration of ln𝐸𝐶௧  
Indicator Value 

Test statistic (𝑀𝑀𝐼𝐵) 78,332** 

Critical value (α=5%) 57,032 

Sequential 𝑀𝑀𝐼𝐵 Rank (𝑐=?) 26 

Panel B: Cross unit cointegration of ln𝑌௧ 
Indicator Value 

Test statistic (𝑀𝑀𝐼𝐵) 74,976** 

Critical value (α=5%) 57,032 

Sequential 𝑀𝑀𝐼𝐵 Rank (𝑐=?) 27 

Panel C: Cross unit cointegration of ln𝐸𝐶௧ ൌ 𝑓ሺln𝑌௧ሻ 
Indicator Value 
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Table-6: Pedroni et al. (2015) Test for Panel Cointegration 

Test statistic (𝑀𝑀𝐼𝐵) 211,296** 

Critical value (α=5%) 155,348 

Sequential 𝑀𝑀𝐼𝐵 Rank (𝑐=?) 23 

Notes: Exogenous term: intercept. 𝑐 refers to the number of cointegrated cross-sections. 𝐻଴ : 𝑐 ൌ 30 vs. 𝐻ଵ : 𝑐ଵ ൏ 30. The critical 

values are estimated by the response surface regressions. ** Reject 𝐻଴ if test statistic > 5% critical value. 

 

Table-7 provides the provincial effect estimates as well as the corresponding standard error, p-

value, effect bandwidth, and 𝑅ଶ  from the nonparametric local linear regressions performed on 

model-(1) for each province. The estimated effect represents the average of the gradient (or 

derivatives) of ln𝐸𝐶௧  with respect to ln𝑌௧  for each province. The effect estimates are statistically 

significant at the 1% level of significance in 24 of 30 Chinese provinces. The effect estimates are 

significant at the 5% level in Heilongjiang and Ningxia, and at the 10% level in Beijing, Henan, 

Hunan, and Tianjin. The effect estimates can be interpreted as the implied nonlinear elasticity of 

energy consumption with respect to economic growth, averaged for all values of both variables in the 

respective province. As an example, the effect estimate of 0.3603 in Anhui implies that a 1% 

increase in economic growth results in an average of some 0.36% increase in energy consumption. 

The largest elasticity value of 0.7802 is registered in Hainan, while the smallest value of –0.0995 is 

seen in Beijing. The reason is that the secondary industry with high energy consumption and low 

added value has a lower proportion in Beijing, and tertiary industry with low energy consumption 

and high added value accounts for a larger proportion. A positive relationship (linear as well as 

threshold) between energy consumption and economic growth in Chinese provinces has been noted 

by Li et al. (2011), Zhang and Xu (2012), and Dong et al. (2019). A negative relationship between 

such variables is observed, especially in Beijing, by Zhang et al. (2018). 

The estimated nonparametric local linear regression estimates exhibit very good fits with the 

respective 𝑅ଶ values higher than 0.95 for the lion’s share of the provinces. The highest 𝑅ଶ value, at 

0.9996, is found for Jiangsu while the lowest, at 0.6936, is recorded for Sichuan. The bandwidths 

used in smoothing the nonparametric local linear regressions are less 0.5 for most provinces, with the 

exceptions being Hubei, Jilin, and Sichuan. This implies the estimator did not require over-

smoothing of kernel density functions for the majority of 30 Chinese provinces. 

 

Table-7: Nonparametric Local Linear Regression Estimates 

 Model: ln𝐸𝐶௧ ൌ 𝑓ሺln𝑌௧ሻ 
Province Effect ሺln𝑌௧ሻ estimate Effect std. err. Effect p-value Effect bandwidth 𝑅ଶ 

Anhui 0.3603*** 0.0345 0.0000 0.2264 0.9995 

Beijing -0.0995* 0.0552 0.0710 0.2483 0.9487 

Chongqing 0.4696*** 0.0995 0.0000 0.4832 0.9218 
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Table-7: Nonparametric Local Linear Regression Estimates 

 Model: ln𝐸𝐶௧ ൌ 𝑓ሺln𝑌௧ሻ 
Province Effect ሺln𝑌௧ሻ estimate Effect std. err. Effect p-value Effect bandwidth 𝑅ଶ 

Fujian 0.5196*** 0.0676 0.0000 0.2500 0.9984 

Gansu 0.3116*** 0.0395 0.0000 0.1931 0.9984 

Guangdong 0.6778*** 0.1429 0.0000 0.2006 0.9988 

Guangxi 0.4263*** 0.0625 0.0000 0.1654 0.9994 

Guizhou 0.5258*** 0.0967 0.0000 0.1865 0.9982 

Hainan 0.7802*** 0.1083 0.0000 0.2929 0.9974 

Hebei 0.3113*** 0.1002 0.0020 0.1559 0.9985 

Heilongjiang 0.1582** 0.0705 0.0250 0.1564 0.9969 

Henan 0.2652* 0.1533 0.0840 0.1604 0.9945 

Hubei 0.3331*** 0.0306 0.0000 1.1628 0.9710 

Hunan 0.2354* 0.1239 0.0570 0.1515 0.9939 

Inner Mongolia 0.3518*** 0.0918 0.0000 0.1607 0.9983 

Jiangsu 0.3728*** 0.0574 0.0000 0.1822 0.9996 

Jiangxi 0.4899*** 0.0961 0.0000 0.1425 0.9986 

Jilin 0.4263*** 0.0344 0.0000 5319258 0.9288 

Liaoning 0.2297*** 0.0391 0.0000 0.6233 0.9802 

Ningxia 0.6889** 0.2723 0.0110 0.1425 0.9980 

Qinghai 0.6508*** 0.1010 0.0000 0.2361 0.9960 

Shaanxi 0.3519*** 0.1000 0.0000 0.1538 0.9980 

Shandong 0.3672*** 0.1199 0.0020 0.1788 0.9961 

Shanghai 0.1813*** 0.0488 0.0000 0.1733 0.9973 

Shanxi 0.3738*** 0.0404 0.0000 0.4330 0.9704 

Sichuan 0.3388*** 0.0463 0.0000 2.4843 0.6936 

Tianjin 0.1465* 0.0815 0.0720 0.2563 0.9699 

Xinjiang 0.5059*** 0.1394 0.0000 0.1615 0.9960 

Yunnan 0.4363*** 0.0614 0.0000 0.2336 0.9978 

Zhejiang 0.4848*** 0.0602 0.0000 0.1821 0.9994 
Notes: Std. err. refers to the standard error of effect estimates. These are robust standard errors simulated by 100 bootstrap replications. 

Effect estimates are averages of derivatives of the regressor in question. The kernel is Epanechnikov and the bandwidth is based on 

cross validation. ***, **, & * represent statistical significance of effect estimates at 1%, 5%, & 10% levels, respectively. 

 

Figure-1 presents the plots of the estimated CVLL regressions for model-(1) from each 

province. The plot depicts the dynamic and/or nonlinear relationship between energy consumption 

and economic growth in the respective provinces. The shape of the plot allows us to determine 

whether the energy Kuznets curve holds in a particular province. A quick inspection indicates the S-

shape, in its many variations, describes the relationship between economic growth and energy 

consumption in the majority of Chinese provinces. The S-shape is particularly evident in Chongqing, 

Fujian, Gansu, Hainan, Hebei, Heilongjiang, Inner Mongolia, Jiangsu, Jiangxi, Jilin, Qinghai, 

Shaanxi, Shandong, Yunnan, and Zhejiang. The probable reason is that these provinces had a 

relatively low level of economic development at the early stage, and energy consumption was mainly 

used to maintain basic living needs. With the upgrading of industrial structure, the secondary 

industry represented by the manufacturing industry occupied a dominant position. At this stage, 

energy consumption has increased rapidly with economic growth. After a period of high-speed 
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industrialization, the proportion of tertiary industry providing financial security, technical support, 

and support services for the industry has increased significantly. When industrialization enters into 

the mature stage, the economy develops to a higher level. With the replacement of high-energy-

consumption secondary industries by low-energy-consumption tertiary industries, energy 

consumption will remain at a certain level, which may then show a slow decline. Therefore, there is 

an S-shaped relationship between economic growth and energy consumption. In provinces including 

Anhui, Guangxi, and Shanxi, the S-shape is faint but apparent in their respective plots. This may be 

due to the relatively weak level of economic development of these provinces, and the relationship 

between economic growth and energy consumption in different periods is not strong. In others, such 

as Hubei and Ningxia, a hybridized version of an S-shaped association between energy consumption 

and economic growth can be observed. Economic development levels of such provinces fluctuate 

greatly, so the relationship between economic growth and energy consumption is more complicated. 

The estimated model-(1) in Hubei has an S-shape with a ‘kinky’ trough with respect to ln𝑌௧ value at 

slightly under 6, giving an appearance of a ‘U+S’ shaped association between the two variables. This 

may be due to heavy industry development in Hubei Province at an early stage of development and 

the reduction of heavy industry development at a later stage. Therefore, an inverted U-shaped curve 

appears between economic growth and energy consumption at an early stage of economic 

development. In Liaoning, however, the S-shape appears to be supplemented by a W-shape for the 

low values of economic growth ( ln𝑌௧ ). Liaoning is a heavy industry province dominated by 

secondary industry. The relationship between economic growth and energy consumption is closely 

linked to the exploitation of fossil energy. With the continuous upgrading of industrial structure, a 

W-shaped fluctuation state is shown between economic growth and energy consumption. 

A more complex relationship between energy consumption and economic growth can be 

observed in other provinces. An M-shape between economic growth and energy consumption is 

apparent in Hunan, Ningxia, and Tianjin. The industrial structure of these provinces has changed 

greatly, so an M-shape is present between economic growth and energy consumption. The only 

instance of an independent W-shape is found in Henan. This is probably due to the significant 

changes in the industrial structure of Henan Province, and the gradual transition from agriculture to 

resource-based industries. Beijing exhibits a complex nexus between energy consumption and 

economic growth with multiple instances of an inverted U-shape with respect to higher values of 

ln𝑌௧. Before the concept of ecological civilization construction was put forward, Beijing’s economic 

growth was accompanied by fluctuating energy consumption. The most prominent inverted U-shape 

in Beijing occurs when ln𝑌௧ exceeds ~10.5 in magnitude. The multiple instances of an inverted U-
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shape in Beijing are perhaps behind the average negative effect of economic growth on energy 

consumption in the province. With the emphasis on the ecological environment, clean energy 

production has significantly reduced energy consumption, while economic growth remains strong. 

The more traditional shapes can be found in the remaining five Chinese provinces. The nexus 

between energy use and economic growth is U-shaped in Xinjiang, while it is inverted U-shaped in 

Guangdong, Guizhou, and Shanghai. The U-shape relationship in Xinjiang may be due to the 

relatively slow development of Xinjiang exhibiting a gradual increase in energy consumption as the 

economy grows, but the ecological environmental protection has not yet been paid attention to. 

While the other three provinces have proposed the concept of ecological civilization construction, 

while realizing economic growth, they also pay attention to reducing energy consumption to achieve 

coordinated development of economy and ecological environment. Sichuan remains the only 

province where the relationship between economic growth and energy consumption is an upward 

sloping straight line. This may be because Sichuan has always been a tourism-oriented development 

model, and the relationship between economic growth and energy consumption is relatively stable. 

Similar to the average effects estimates from the local linear regressions in Table-7, the estimated 

CVLL regression plots exhibit very good fits, as all, but one province (Sichuan), provinces have 

respective 𝑅ଶ in excess of 0.95. The highest value of 𝑅ଶ is recorded in Jiangsu at 1.000 while the 

lowest is recorded in Sichuan at 0.689. In addition, the bandwidths employed for estimating the 

CVLL regressions are all less than 0.5, with the exception of Sichuan. This implies that the 

nonparametric CVLL estimator, like the local linear estimator in Table-7Table-7, did not over-

smooth the kernel density function. These attributes of the CVLL results are virtually identical to that 

of local linear regressions from Table-7. 

In determining the presence of the EEKC, we look for a visible inverted U-shaped relationship 

between energy consumption and economic growth. The inverted U-shape may stand independently 

or be contained–but will be clearly visible with the curve bending downwards–within the more 

complex shapes such as S, M, W, and multiple inverted U’s. Based on these criteria, we find visible 

evidence of EEKC hypothesis in a total of 20 provinces, namely Beijing, Chongqing, Guangdong, 

Guizhou, Hebei, Heilongjiang, Henan, Hubei, Hunan, Inner Mongolia, Jiangsu, Jiangxi, Jilin, 

Liaoning, Ningxia, Shaanxi, Shandong, Shanghai, Tianjin, and Yunnan. These provinces began to 

attach importance to the protection of the ecological environment as the economy grew to a certain 

stage, so energy consumption was reduced to a certain extent. We find the EEKC to hold in twice as 

many countries as Zhang et al. (2018) due to the nonparametric CVLL regression estimator’s 

capability to model complex nonlinearities and our dataset comprising more recent data and a longer 
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time period. Other studies such as Li et al. (2011), Zhang and Xu (2012), and Dong et al. (2019) did 

not perform any test for the EEKC. 

Figure-1: Plots of Estimated Cross Validated Local Linear Regressions 
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Figure-1: Plots of Estimated Cross Validated Local Linear Regressions 
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Figure-1: Plots of Estimated Cross Validated Local Linear Regressions 
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Figure-1: Plots of Estimated Cross Validated Local Linear Regressions 
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Figure-1: Plots of Estimated Cross Validated Local Linear Regressions 
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Notes: Bandwidth is abbreviated as BW and is fixed type. The continuous Kernel is second-order Gaussian. 

 

Table-8Tables-8 and 9 provide the estimated Hiemstra-Jones (1994) and Diks-Panchenko 

(2006) test statistics as well as the respective p-values and bandwidths for each direction between 

ln𝐸𝐶௧  and ln𝑌௧  in each of 30 provinces. The null hypothesis of non-causation is rejected for the 

direction ln𝑌௧ ⇒ ln𝐸𝐶௧  in eight provinces: Anhui, Fujian, Gansu, Shanghai, Sichuan, Xinjiang, 

Yunnan, and Zhejiang. This indicates that unidirectional Granger causality runs from economic 

growth to energy consumption in these provinces. Energy consumption will increase with the growth 

of economic aggregate, and the increase in energy consumption will not bring economic growth. 

Reflecting that these provinces are currently focusing more on single economic growth, they have 

not paid attention to improving energy efficiency and protecting the ecological environment. In the 

direction ln𝐸𝐶௧ ⇒ ln𝑌௧, the null hypothesis is rejected for an additional eight provinces: Beijing, 

Chongqing, Guangxi, Hainan, Hunan, Jiangsu, and Tianjin. This shows the presence of 

unidirectional causation from energy consumption to economic growth in these eight provinces. 

Economic growth will increase with the growth of energy consumption, and energy consumption 

will not increase with economic growth, reflecting that the energy quality of these provinces (such as 

energy structure, new energy varieties, etc.) has been greatly improved.  

The null hypothesis is rejected for both the directions between ln𝐸𝐶௧ and ln𝑌௧ in 14 provinces, 

which include Guangdong, Guizhou, Hebei, Heilongjiang, Henan, Inner Mongolia, Jiangxi, Jilin, 

Liaoning, Ningxia, Qinghai, Shaanxi, Shandong, and Shanxi. Accordingly, bidirectional causality 

exists between energy consumption and economic growth in these 14 Chinese provinces. For these 

provinces, energy as a factor input, an increase in energy consumption will lead to an increase in 

economic output, at the same time, when economic aggregate expands, the demand for energy 

elements will also increase. The Granger causality findings are robust as the estimated results from 
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Hiemstra-Jones (1994), and Diks-Panchenko (2006) tests are identical. The bandwidths used in 

applying both the testing procedures are identical for most provinces and are inside the bandwidth 

bounds advised by Diks-Panchenko (2006). This study’s findings relating to the direction of 

nonlinear causality in each Chinese province are novel and unique as past studies– Li et al. (2011), 

Zhang et al. (2018), and Dong et al. (2019)–do not perform the Granger causality tests by province. 

Zhang and Xu (2012) segregate Chinese province into three regions–Eastern, Central, and Western–

and test for the direction of linear causality between energy consumption and economic growth. 

They find causality to be bidirectional in the Eastern region, unidirectional from economic growth to 

energy consumption in the Central and Western regions. While not directly comparable, a quick look 

indicates that our results are in some agreement with that of Zhang and Xu (2012). Any difference 

between our results and that of Zhang and Xu (2012) can be accounted for by the Hiemstra-Jones 

(1994) and Diks-Panchenko (2006) tests’ ability to detect the direction of nonlinear Granger 

causality as well as the more recent and longer dataset that we use. 

 

Table-8: Hiemstra-Jones (1994) Test for Direction of Granger Causality 

Province Direction Test Statistic (𝑇) p-value Bandwidth (𝜖௡) 

Anhui ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.658789** 0.048579 1.300000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 0.526665 0.299213 1.300000 

Beijing ln𝑌௧ ⇏ ln𝐸𝐶௧ 0.881971 0.188896 0.550000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.676178** 0.046852 0.550000 

Chongqing ln𝑌௧ ⇏ ln𝐸𝐶௧ 0.553434 0.289983 1.400000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.332661* 0.091322 1.400000 

Fujian ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.450081* 0.073518 1.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 0.486813 0.313195 1.500000 

Gansu ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.423129* 0.077349 0.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 0.686154 0.246308 0.500000 

Guangdong ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.512619* 0.065188 0.900000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.637554* 0.050757 0.700000 

Guangxi ln𝑌௧ ⇏ ln𝐸𝐶௧ 1.158728 0.123284 0.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.451524* 0.073317 0.500000 

Guizhou ln𝑌௧ ⇒ ln𝐸𝐶௧ 2.117812** 0.017096 0.600000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.346276* 0.089107 0.800000 

Hainan ln𝑌௧ ⇏ ln𝐸𝐶௧ -1.134215 0.871648 1.200000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.342383* 0.089736 1.500000 

Hebei ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.406533* 0.079783 1.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.446372* 0.074036 0.500000 

Heilongjiang ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.541535* 0.061593 1.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.645117** 0.049973 0.500000 

Henan ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.596158* 0.055227 1.400000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 2.200419** 0.013889 0.900000 

Hubei ln𝑌௧ ⇏ ln𝐸𝐶௧ 0.945418 0.172223 0.730000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.399591* 0.080818 0.620000 

Hunan ln𝑌௧ ⇏ ln𝐸𝐶௧ 1.081539 0.139729 0.700000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.903676** 0.028476 0.700000 

Inner Mongolia ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.907581** 0.028223 0.700000 
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Table-8: Hiemstra-Jones (1994) Test for Direction of Granger Causality 

Province Direction Test Statistic (𝑇) p-value Bandwidth (𝜖௡) 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.541287* 0.061624 1.100000 

Jiangsu ln𝑌௧ ⇏ ln𝐸𝐶௧ 0.674230 0.250083 0.600000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.396478* 0.081285 0.600000 

Jiangxi ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.725805** 0.042191 1.400000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.338324* 0.090395 0.800000 

Jilin ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.554377* 0.060047 1.300000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.423958* 0.077229 0.900000 

Liaoning ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.826419** 0.033894 0.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.669520** 0.047507 0.600000 

Ningxia ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.308637* 0.095329 1.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.648553** 0.049620 0.900000 

Qinghai ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.345606* 0.089215 1.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.711550** 0.043490 1.000000 

Shaanxi ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.471392* 0.070593 1.000000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.552190* 0.060308 1.000000 

Shandong ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.330267* 0.091715 1.400000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.526241* 0.063475 0.630000 

Shanghai ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.351446* 0.088276 1.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 0.722473 0.235002 1.500000 

Shanxi ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.518200* 0.064482 1.000000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.490614* 0.068031 1.000000 

Sichuan ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.327190* 0.092223 1.400000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ -0.716477 0.763151 1.500000 

Tianjin ln𝑌௧ ⇏ ln𝐸𝐶௧ 1.132485 0.128715 0.800000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.543412* 0.061365 0.800000 

Xinjiang ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.421949* 0.077521 1.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ -0.724469 0.765611 1.500000 

Yunnan ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.375226* 0.084531 0.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 1.148586 0.125363 0.500000 

Zhejiang ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.542707* 0.061451 1.000000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ -1.424674 0.922874 1.000000 

Notes: 𝐻଴: No causation in the direction. ** When p-value < 0.050000, reject 𝐻଴ at 5% level. * When p-value < 

0.100000, reject 𝐻଴ at 10% level. 

 

Table-9: Diks-Panchenko (2006) Test for Direction of Granger Causality 

Province Direction Test Statistic (𝑇௡ሺ𝜖௡ሻ) p-value Bandwidth (𝜖௡) 

Anhui ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.551* 0.06047 1.300000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 0.652 0.25731 1.300000 

Beijing ln𝑌௧ ⇏ ln𝐸𝐶௧ 0.796 0.21315 0.550000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.538* 0.06199 0.550000 

Chongqing ln𝑌௧ ⇏ ln𝐸𝐶௧ 0.682 0.24754 1.400000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.310* 0.09503 1.400000 

Fujian ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.494* 0.06759 1.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 0.623 0.26649 1.500000 

Gansu ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.359* 0.08713 0.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 0.863 0.19401 0.500000 

Guangdong ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.369* 0.08554 0.900000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.441* 0.07478 0.700000 

Guangxi ln𝑌௧ ⇏ ln𝐸𝐶௧ 0.982 0.16317 0.800000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.431* 0.07614 0.800000 
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Table-8: Hiemstra-Jones (1994) Test for Direction of Granger Causality 

Province Direction Test Statistic (𝑇) p-value Bandwidth (𝜖௡) 

Guizhou ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.661** 0.04832 0.600000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.434* 0.07581 0.800000 

Hainan ln𝑌௧ ⇏ ln𝐸𝐶௧ -0.992 0.83950 1.200000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.340* 0.09008 1.500000 

Hebei ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.415* 0.07857 1.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.385* 0.08296 0.500000 

Heilongjiang ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.584* 0.05664 1.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.572* 0.05801 0.500000 

Henan ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.610* 0.05372 1.400000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 2.146** 0.01595 0.900000 

Hubei ln𝑌௧ ⇏ ln𝐸𝐶௧ 1.031 0.15118 0.730000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.354* 0.08784 0.730000 

Hunan ln𝑌௧ ⇏ ln𝐸𝐶௧ 0.695 0.24361 0.700000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.924** 0.02719 0.700000 

Inner Mongolia ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.424* 0.07728 0.700000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.496* 0.06730 1.100000 

Jiangsu ln𝑌௧ ⇏ ln𝐸𝐶௧ 0.677 0.24907 0.600000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.464* 0.07165 0.600000 

Jiangxi ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.714** 0.04328 1.400000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.455* 0.07281 0.800000 

Jilin ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.498* 0.06712 1.300000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.505* 0.06616 0.900000 

Liaoning ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.297* 0.09737 0.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.380* 0.08385 0.800000 

Ningxia ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.330* 0.09169 1.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.759** 0.03928 0.800000 

Qinghai ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.429* 0.07651 1.500000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.600* 0.05477 1.000000 

Shaanxi ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.352* 0.08823 1.000000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.500* 0.06687 1.000000 

Shandong ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.341* 0.09002 1.400000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.317* 0.09390 0.600000 

Shanghai ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.328* 0.09206 1.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 0.701 0.24172 1.500000 

Shanxi ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.316* 0.09413 1.000000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.475* 0.07012 1.000000 

Sichuan ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.395* 0.08154 1.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ -0.703 0.75883 1.500000 

Tianjin ln𝑌௧ ⇏ ln𝐸𝐶௧ 1.042 0.14877 0.700000 

 ln𝐸𝐶௧ ⇒ ln𝑌௧ 1.772** 0.03822 0.700000 

Xinjiang ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.474* 0.07018 1.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ -0.622 0.73309 1.500000 

Yunnan ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.405* 0.07998 0.500000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ 0.997 0.15946 0.500000 

Zhejiang ln𝑌௧ ⇒ ln𝐸𝐶௧ 1.338* 0.09039 1.000000 

 ln𝐸𝐶௧ ⇏ ln𝑌௧ -0.972 0.83445 1.000000 

Notes: 𝐻଴: No causation in the direction. ** When p-value < 0.05000, reject 𝐻଴ at 5% level. * When p-value < 0.10000, 

reject 𝐻଴ at 10% level. 
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VI. Conclusion and Policy Implications 

This paper is the first attempt at implementing appropriate and novel nonparametric econometric 

methods to analyze the energy-growth nexus at the provincial level in China. We implement an 

exhaustive array of nonparametric analysis, including tests for nonlinearity, structural change, unit 

root, cointegration, the direction of Granger causality, and long-run correlation on a dataset covering 

30 Chinese provinces from 1980 to 2018. The empirical estimates find evidence of nonlinearity and 

structural change (smooth and/or abrupt) in most of the Chinese provinces. Tests also establish 

nonlinear unit roots in energy consumption and economic growth data as well as nonlinear 

cointegration between these two variables in each province. The nonparametric panel cointegration 

tests reveal convergence in energy usage and growth patterns among most of the Chinese provinces. 

The nonparametric local linear regression analysis reveals a positive effect of economic growth 

on energy consumption, on average, is positive in all provinces, apart from Beijing, where the effect 

is found to be negative. The nonparametric CVLL regression plots present a multitude of shapes of 

the energy-growth nexus amongst the provinces, including the more traditional shapes such as linear, 

U- and inverted U-shaped, as well as more intricates shapes resembling S, M, W, and multiple 

inverted U’s. In addition, the CVLL plots indicate that the EEKC is present in Beijing, Chongqing, 

Guangdong, Guizhou, Hebei, Heilongjiang, Henan, Hubei, Hunan, Inner Mongolia, Jiangsu, Jiangxi, 

Jilin, Liaoning, Ningxia, Shaanxi, Shandong, Shanghai, Tianjin, and Yunnan (20 of the 30 

provinces). The Granger causality tests find unidirectional causality from economic growth to energy 

consumption in eight provinces, unidirectional causality from energy consumption to economic 

growth in further eight provinces, and bidirectional causality between economic growth and energy 

consumption in remaining 14 provinces. The robustness of these estimated results is given by 

performing each type of testing–unit root, cointegration, Granger causality, and regression analysis–

using two techniques, the results from which are identical in all cases. 

Based on the above empirical conclusions, we offer the following policy recommendations. 

China is a country with a per capita energy shortage. Energy supply is an important bottleneck that 

affects China’s economic growth. Energy consumption is a rigid factor in economic growth. With the 

acceleration of urbanization and the upgrading of consumption structure in China, it is obviously 

unrealistic to expect a “cliff-like” decline in energy consumption in the short term, and the task of 

energy conservation and emission reduction in the future is still severe. In view of the characteristics 

of EEKC in most of China’s provinces, the current priority is to optimize the industrial structure, 

prioritize the development of modern service industries, continuously increase the proportion of the 

tertiary industry, promote optimization and upgrading of secondary industry, and gradually adopt 

high-tech industries with low energy consumption. Replace metallurgical, building materials, and 
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chemical industries with high energy consumption. At the same time, China should accelerate the 

optimization of its energy structure, vigorously develop and increase the proportion of clean energy 

and alternative energy in primary energy consumption. Through the guidance of economic structural 

adjustment of the transformation and upgrading of traditional industries, encourage the development 

and adoption of new energy sources, such as nuclear power, wind power and solar energy use 

multiple paths to dig the potential of energy conservation and emissions reduction, on the supply side 

to drive the development strategy of structural reform and innovation, relying on technological 

progress and economic structure adjustment to realize green growth. Thereby accelerating the 

process to the right of the EEKC inflection point is achieving economic growth while reducing 

energy consumption. 

Regarding the different results of Granger causality in different provinces, different provinces 

should make good use of this research conclusion according to local conditions, so as to delay or 

slow down the restrictive effect of energy supply on economic growth. The Chinese government 

should encourage the introduction of foreign advanced technology and independent innovation, and 

realize the non-linear impact of economic growth on energy consumption via technological progress. 

At the same time, the local government’s performance appraisal system that simply inspects GDP 

will be changed, and indicators such as major pollutant emissions, total energy consumption, and 

energy utilization efficiency will be included in the appraisal system. To reduce energy intensity and 

pollution emissions as the goal of environmental policy, including efforts to improve the efficiency 

and demand side of the control policy, in a short period of time is bound to be some negative impact 

on China’s economic activity, but in the long run, the negative effect will be weakened, and the 

energy conservation and emissions reduction policy can be implemented for a long time, so as to 

ultimately achieve coordinated development of energy conservation and economic growth. 

Though this study has covered the panel data of 30 provinces in China from 1980 to 2018, the 

analysis is not comprehensive owing to data limitations given the microdata at the prefecture-level as 

well as the city level. In the future, it is necessary to study the energy consumption–economic growth 

nexus at the micro level to find more phenomena worth discussing from the micro perspective. 

 

Appendix A. Supplementary data 

Supplementary data to this article can be found online.  
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Appendix A. Supplementary Data 

Table A1: Summary of the studies in literature review 

Study Time Period Countries/Regions Methodology Results 

Acaravci and 

Ozturk (2010) 

1990-2006 15 Transition 

Countries (Eastern 

Europe) 

Pedroni Panel 

Cointegration (PPC) 
EC ⇎ GDP. 

Agras and 

Chapman 

(1999) 

1950-1988 34 Countries  AR Lag Model EEKC not supported. 

Ajmi et al. 

(2013) 

1960-2010 G7 Countries Time-Varying Granger 

Causality Test. 
EC ⟹ GDP, GDP ⟹ EC, EC ⟹ 

GDP  

EC ⟹ CO2 emissions, EC ⟹ CO2 

emissions, GDP ⟹ CO2 emissions.  

EEKC not supported. 

Al-Mulali et 

al. (2015) 

1981-2011 Vietnam Autoregressive 

Distributed Lag Model 

(ARDL) 

EEKC not supported. 

Andersson 

and 

Karpestam 

(2013) 

1973-2007 10 Countries  

(8 High, 2 Emerging) 

Band Spectrum 

Regression 

Short-run: 

Business Cycles/External Shocks ⟹ 

Emissions. 

Long-run: 

Capital Growth ⟹ Emissions. 

 

Productivity Growth ⟹ Lower 

Emissions. 

Andersson et 

al. (2013) 

1978-2009 China Principal Component 

Analysis (PCA) 

S-R: Province Growth Divergence. 

L-R: Converging province growth 

groups. 

Andersson et 

al. (2018) 

1992-2010 China Band Spectrum 

Regression 

Public Sector Emissions > Private 

Sector Emissions 

Apergis and 

Payne (2009) 

1991-2005 11 Countries 

(Commonwealth of 

Independent States) 

Pedroni Panel 

Cointegration 

Error Correction Model 

(ECM) 

Short-Run: EC ⟹ GDP 

Long-Run: EC ⟹ GDP 

Apergis and 

Payne (2010) 

1980-2005 9 Countries  

(South America) 

Pedroni Panel 

Cointegration 

ECM 

Granger Causality 

Short-Run: EC ⟹ GDP 

Long-Run: EC ⟹ GDP 

Azomahou 

and Van Phu 

(2001) 

1960-1996 100 countries  Non-Parametric 

Specification 

Constancy between GDP and CO2 

emissions. 

EEKC not supported. 

Balcilar et al. 

(2010) 

1960-2006 G7 Countries 

(excluding Germany) 

Bootstrap Granger 

Non-Causality Test. 

Bootstrap Rolling 

Window  

EC ⟹ GDP (only for some 

subsamples). 

No consistent causal links for EC 

and GDP. 
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Table A1: Summary of the studies in literature review 

Study Time Period Countries/Regions Methodology Results 

Bloch et al. 

(2012) 

1965-2008 China Cointegration 

VECM 

Supply Side: (Short-Run and Long-

Run) 

Coal Consumption ⟹ GDP 

Demand Side: (Short-Run and Long-

Run) 

Output ⟹ Coal Consumption 

 

Short-Run and Long-Run: 

Coal Consumption ⇔ Emissions 

Brajer et al. 

(2011) 

1990-2006 China GLS Estimator 

(Random Effects) 

EEKC supported. 

Govindaraju 

and Tang 

(2013) 

1965-2009 China and India Cointegration Test 

(Bayer and Hanck). 

Granger Causality 

China:  

GDP ⟹ CO2 emissions. 

Short-Run and Long-Run: 

GDP⇔ Coal consumption 

Coal consumption ⇔ CO2 

emissions. 

 

India: (Only Short-Run causalities) 

GDP⇔ CO2 emissions 

CO2 emissions ⇔ Coal 

Consumption 

GDP ⟹ Coal Consumption 

Changhong et 

al. (2006) 

1995-2005 China MARKAL Model 

Forecasting 

Shanghai will see a continuous 

increase in energy consumption but 

with a changing energy structure. 

Coondoo and 

Dinda (2008) 

1960-1990 88 Countries Johansen Cointegration 

Analysis. 
Country income inequality ⟹ 

country mean emission. 

EEKC supported. 

Dijkgraaf and 

Vollebergh 

1960-1997 OECD Countries Polynomial Reduced 

Form Specification 

(Fixed Effects). 

EEKC not supported. 

Dong et al. 

(2019 

1985-2014 China Panel Threshold 

Regression Model 

No nonlinear relationship between 

EC and GDP. 

EEKC not supported. 

Du et al. 

(2012) 

1995-2009 China Static and Dynamic 

Panel Data Models 

Optimal Forecasting 

Model 

EEKC not supported. 

Fallahi (2011) 1960-2005 USA Markov-Switching 

VAR 
1st Regime:  EC ⇔ GDP 

2nd Regime: No Granger Causality 

Fei et al. 

(2011) 

1985-2007 China Panel Unit Root 

Panel Cointegration 

Panel-Based Dynamic 

OLS 

Positive long-run cointegrated 

relationship between GDP per capita 

and Energy Consumption. 
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Table A1: Summary of the studies in literature review 

Study Time Period Countries/Regions Methodology Results 

Ge et al. 

(2017) 

2000-2015 China Augmented Dickey-

Fuller (ADF) 

Engle and Granger 

Cointegration Test 

Multivariate 

Regression 

Real GDP positive factor of energy 

consumption. 

Industrial structure major 

contributor to EC. 

Haisheng et 

al. 2005 

1990-2002 China Panel Data Model 

(FE and RE) 
FDI ⟹ Pollutant Emission. 

No direct impact on EEKC from 

trade. 

EEKC supported. 

Hao et al. 

(2016) 

1995-2012 China Spatial Durbin Model EEKC Supported 

(for Coal Consumption) 

Hao et al. 

(2018) 

1995-2014 China Logarithmic Mean 

Divisia Index (LDMI) 
GDP ⟹ Electricity Consumption. 

EC ⟹ Electricity Consumption. 

Energy Intensity ⟹ Electricity 

Consumption. 

Population Growth ⟹ Electricity 

Consumption. 

Hao et al. 

(2018) 

1995-2010 China VECM 

Fully Modified OLS 

(FMOLS) 

Rural GDP⇔ Rural Investment 

Rural EC ⟹ Rural GDP 

Rural EC ⟹ Rural Investment 

Short-Run: 

Rural GDP ⟹ Rural Investment 

Rural GDP⇔ Rural EC 

Huang et al. 

(2008) 

1972-2002 82 Countries GMM-SYS 

Panel VAR 
Low Income Countries: EC ⇎ GDP 

Middle Income Countries: GDP ⟹ 

EC. 

High Income Countries: GDP ⟹ 

EC (negative). 

Jalil and 

Feridun 

(2011) 

1953-2006 China ARDL Financial Development ⟹ 

Pollution(negative). 

EEKC supported 

Jalil and 

Feridun 

(2014) 

1952-2008 China ARDL EC ⟹ GDP 

Jalil and 

Mahmud 

(2009) 

1975-2005 China ARDL 

Granger Causality 
GDP ⟹ CO2 Emissions 

EEKC supported. 

Kraft and 

Kraft (1978) 

1947-1974 USA Sims Distributed Lag 

Estimation 
GNP ⟹ Energy Consumption 

Lee (2005) 1975-2001 18 Developing 

Countries 

Panel Unit Root 

Panel Cointegration 

ECM 

Long-run and Short-run: 

EC ⟹ GDP 

Lee (2006) 1960-2001 11 Developed 

Countries 

Granger Non-Causality 

Testing (Toda and 

Yamamoto). 

EC ⇔ GDP 

GDP ⟹ EC 

EC ⇎ GDP 
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Table A1: Summary of the studies in literature review 

Study Time Period Countries/Regions Methodology Results 

Lee and 

Chang (2007) 

1965-2002 22 Developed 

Countries 

18 Developing 

Countries 

Panel Data Stationarity 

Testing (Carrion-i-

Silvestre et al.) 

Developed Countries: 

EC per Capita ⇔ GDP per Capita 

Developing Countries: 

GDP per Capita ⟹ EC per Capita 

Lee and 

Chang (2008) 

1971-2002 16 Countries (Asia Panel Unit Root 

Panel Cointegration 

ECM 

LR: EC ⟹ GDP 

SR: EC ⇎ GDP 

Li et al. 

(2011) 

1985-2007 China Panel Unit Root 

Panel Cointegration 

Panel-Based Dynamic 

OLS 

GDP ⟹ EC (Long-Run) 

Li et al. 

(2016) 

1996-2012 China ARDL 

GMM 

EEKC supported. 

Lise and Van 

Montfort 

(2007) 

1970-2003 Turkey Cointegration Analysis 

VECM 
GDP ⟹ EC 

EEKC not supported. 

Liu et al. 

(2017) 

2004-2013 China Spatial Autocorrelation 

Test 

Industrial agglomeration promotes 

energy efficiency. 

Liu et al. 

(2008) 

1987-2005 China Time-Series 

Regression (ADF) 

Panel Data Regression 

(FE) 

EEKC supported. 

Llorca and 

Meunié 

(2009) 

1985-2003 China Panel Data Regression 

(FE) 

EEKC Framework 

EEKC supported. 

(N-Shaped) 

Luzzati and 

Orsini (2009) 

1971-2004 113 Countries Pooled Country 

Analysis 

EEKC Framework 

Parametric/Semi-

Parametric 

EEKC not supported. 

Mahedavan 

and Asafu-

Adjaye 

(2007) 

1971-2002 20 Countries 

(Net Energy 

Importers/Exporters) 

Panel VECM HDL's (LR and SR): 

GDP⇔ EC 

LDL's (SR): EC ⟹ GDP 

Narayan and 

Smith (2008) 

1972-2002 G7 Countries Panel Unit Root 

Panel Cointegration 

Granger Causality 

Long-Run Structural 

Estimation 

EC ⟹ GDP 

Nasir and Ur 

Rehman 

(2011) 

1972-2008 Pakistan Johansen Cointegration 

Analysis 

EEKC supported. 

Oh and Lee 

(2004) 

1970-1999 South Korea VECM LR: EC ⇔ GDP 

SR: EC ⟹ GDP 

Olale et al. 

(2018) 

1990-2014 Canada Pooled Regression 

Fixed Effects 

Regression 

EEKC supported. 
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Table A1: Summary of the studies in literature review 

Study Time Period Countries/Regions Methodology Results 

Onafowora 

and Owoye 

(2014) 

1970-2010 8 Countries ARDL 

CUMSUMQ 

U-shape: Japan and South Korea 

N-shape: Other 6 countries 

EEKC supported. 

Ozturk et al. 

(2010) 

1970-2010 51 Countries Pedroni Panel 

Cointegration 

Panel Causality Test 

GDP ⟹ EC 

GDP⇔ EC 

Pablo-

Romero and 

De Jesús 

(2016) 

1990-2011 22 Countries  

(Latin America and the 

Caribbean) 

Cubic EEKC 

Specification 

EEKC not supported. 

Pao and Tsai 

(2010) 

1971-2005 BRIC Countries ECM EEKC supported. 

Rahman et al. 

(2020) 

1981-2016 China (FM-OLS) 

Hatemi-J Cointegration 

VECM 

Long-Run: 

Coal, Oil, Gas ⟹ GDP 

Richmond 

and 

Kaufmann 

(2006) 

1978-1997 16 OECD Countries Quadratic Specification 

Semi-Log Specification 

Double-Log 

Specification 

Augmented Dickey-

Fuller (ADF) 

Including energy prices in EEKC 

framework reduces support for 

EEKC hypothesis. 

EEKC not supported. 

Riji et al. 

(2017) 

1970-2015 China ARDL 

FM-OLS 

Dynamic OLS 

EEKC supported. 

Saboori and 

Sulaiman 

(2013) 

1980-2009 Malaysia ARDL 

Johansen-Juselius ML 

VECM 

Granger Causality 

EEKC not supported for aggregate 

EC. 

EEKC supported for coal, gas, oil 

and electricity. 

Long-Run: GDP⇔ CO2 emissions. 

Shahbaz et al. 

(2013) 

1971-2011 China ARDL Bounds Testing EC ⟹ GDP 

Financial Development ⇔ EC 

International Trade ⇔ EC 

Shahbaz et al. 

(2016) 

1971-2012 India ARDL 

Cointegration Test 

(Bayer-Hanck) 

Globalisation leads to less energy 

demand. 

Financial Development ⟹ EC 

(negative). 

Long-Run: GDP ⟹ EC 

Shahbaz et al. 

(2017a) 

1820-2015 G7 Countries Non-Parametric 

Cointegration and 

Causality Tests 

EEKC supported in all countries 

except Japan. 

Shahbaz et al. 

(2017b) 

1960-2015 India Non-Linear ARDL 

Bounds Testing. 

Asymmetric Causality 

Test. 

Only negative EC shocks impact 

GDP. 

Song et al. 

(2013) 

1993-2010 China Copeland Model EEKC supported in provinces. 
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Table A1: Summary of the studies in literature review 

Study Time Period Countries/Regions Methodology Results 

Song et al. 

(2008) 

1985-2005 China Panel Cointegration 

Dynamic OLS 

Within OLS 

EEKC supported. 

Soytas and 

Sari (2003) 

1950-1992 G7 Countries and 

Emerging Markets 

Dickey- Fuller 

ADF 

Unit Roots 

EC ⟹ GDP in Turkey, France, 

Germany and Japan 

GDP ⟹ EC in Italy and Korea 

EC ⇔ GDP in Argentina 

 

Suri and 

Chapman 

(1998) 

1971-1991 33 Countries FE Model 

Feasible GLS 

EEKC supported. 

Industrialized countries import 

manufactured goods to reduce EC. 

Ululcak and 

Bilgili (2018) 

1961-2013 15 Countries CUP-FM Model 

CUP-BC Model 

EEKC supported  

(High, Medium and Low Income 

Countries). 

Voigt et al. 

(2017) 

1995-2007 40 Countries LMDI Technological change a bigger 

driver of energy efficiency than 

structural change. 

Wagner 

(2015) 

1870-2000 10 Developed 

Countries 

FM-OLS  

(Cointegration 

Polynomial 

Regression) 

EEKC not supported. 

Wang et. Al 

(2011) 

1995-2007 China Cointegration Analysis 

VECM 
EC ⇔ GDP 

Wang et al 

(2020) 

2001-2016 China Tapio Decoupling 

Model 

Causal-Chain 

Decomposition Model 

Grey Verhulst Model 

GDP and CO2 emissions have 

mostly weak decoupling in industrial 

steel industry. 

Wolde-Rufael 1971-2004 17 Countries (Africa) Multivariate Modified 

Granger Causality 

Does not support neutrality 

hypothesis of EC-Income 

Xu et al. 

(2014) 

1996-2011 China LMDI GDP ⟹ Emissions 

Yaguchi et al. 

(2007) 

1975-1999 China and Japan OLS (Fixed Effects) 

Cointegration 

ECM 

EEKC supported for SO2 emissions 

(Japan). 

EEKC not supported (China) 

Yang et al. 

(2015) 

1995-2010 China Extreme Bound 

Analysis 

EEKC not supported (all 7 pollutant 

indicators). 

Yin et al. 

(2015) 

1999-2011 China GLS Estimator 

(Random Effects) 

Supports EEKC for CO2 emissions 

due to environmental regulation. 

Zhang and Xu 

(2012) 

1995-2008 China Panel Unit Root 

Panel Cointegration 

Granger Causality 

GDP ⟹ EC 

Zhang et al. 

(2019) 

1990-2016 China Index Decomposition 

Analysis Decoupling 

Analysis 

GDP ⟹ Electricity Consumption 
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Study Time Period Countries/Regions Methodology Results 

Zhang et al. 

(2018) 

1978-2014 China ARDL EEKC supported (10 provinces). 

EEKC not supported (20 provinces 

with no peak EC per capita). 

Zhang et al. 

(2019) 

2000-2014 China LMDI 

Decoupling Analysis 

Xinjiang: Industrial growth and CO2 

emissions went through stages of 

negative, weak and negative 

decoupling. 

Zhang and 

Cheng (2009) 

1960-2007 China Augmented VAR 

(Toda and Yamamoto) 
GDP ⟹ EC 

EC ⟹ CO2 emissions 

CO2 emissions and EC don’t lead to 

GDP growth. 

Zheng et al. 

(2018) 

2011-2015 China Data Envelopment 

Analysis 

EC policies more effective in North 

West China and North East China 

than East China. 

Note: ⟹ implies uni-directional causality, ⇔ implies bi-directional causality and ⇎ implies no causality. 

GDP ⟹ EC implies that causality runs from growth to energy consumption. EC ⟹ GDP implies that causality runs 

from energy consumption to growth. EC ⇔ GDP implies bidirectional causality between growth and energy 

consumption. EC ⇎ GDP implies absence of causality between growth and energy consumption. 


