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Abstract

A loss distribution of a credit portfolio in framework of AIRB is determines as a product
of Vasicek distribution function by an adjustment coefficient, which allows for the Loss
Given Default as an exogenous parameter LGD and the maturity of obligations T. This
coefficient depends also on probability of default (PD) in non-obvious way, which does not
explained in Basel documentation. It is not clear also what is the scope of validity of this
formula, though the form of this adjustment allows to suspect that it is approximation of
another formula, which id more and more complicated. In essence, the AIRB adjustment
is a kind of the “black box.” Authors tried to hack this black box using the generalized
Vasicek approach. Unlike the Vasicek model describing only the distribution of defaults,
the obtained in this paper Vasicek-Merton model describes the loss distribution and it
seems that the AIRB model is just an approximation of the Vasicek-Merton model.

Introduction

Vasicek model [7] describes a defaults’ distribution in a large homogeneous credit portfolio.
The risk-management, however, needs to estimate a loss distribution for this portfolio in case
of default. The AIRB-model uses an adjustment coefficient that applied to the Vasicek default
distribution function to determine a loss distribution on the base of the default distribution
function.

In fact, this coefficient is an approximation of Loss Given Default (LGD). The Basel docu-
mentation, however, does not explain the way of obtaining of this coefficient. In essence, this
coefficient, depending on a set of parameters is a kind of “black box”.

To estimate the loss given default instead of the share of defaults, it is reasonable to use a
portfolio consisting of the obligation of the Merton firms. This equivalent to the passage from
the binary European put options portfolio to the the vanilla European put options portfolio.
The expected loss of a credit portfolio is exactly the value of the option portfolio. The problem
of the value assessment for this portfolio may be solved in framework of Vasicek and Black-
Scholes approaches.

It turns out that the loss distribution of the Vasicek-Merton credit portfolio obtained by
this approach is very close to the AIRB loss distribution, at least for realistic values of basic
parameters. Given that it is naturally to hypothesize that the AIRB loss distribution is in
fact an approximation of Vasicek-Merton distribution function. It is shown, however, that this
approximation is well only in the neighborhood of the specific, though quite realistic, values of
basic parameters. Especially, this approximation is sensitive to the maturity parameter.
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Moreover, it is worth to stress that the Vasicek approach uses suggestion that all firm are
characterized by the same probability of default. In turn, the derivation of the Vasicek-Merton
distribution requires that sample of firms forming the credit portfolio should be characterized
additionally by the same volatility of assets. The AIRB approach does not account for the
volatility values, at least in its “visible” part, though the changes in volatility affects the loss
distribution.

Our suggestion is to exploit the “true” distribution formula instead of approximation that
is vulnerable to changes of “hidden” parameters, because from the technical point of view
the Vasicek-Merton loss distribution is not more complicated in comparison to the Vasicek
approach. Moreover, the Vasicek-Merton loss distribution function lacks the very questionable
feature of Vasicek distribution – the U-shape for the correlation values ρ > 1/2 being unimodal
for all ρ ∈ (0, 1).

The text of the paper is organized as follows. First we present the revised derivation of
Vasicek Loss Distribution function, followed by the more general approach to estimation of a
loss, based on the technique of the European put option instead of traditional approach, based
on binary put options. This more general class of the loss distribution functions includes the
vanilla Vasicek distribution as a special case. We prove also some technical results on the
CDF and PDF of this distribution, with comparison to the corresponding properties of Vasicek
distribution.

Literature Review

On the base of the Black–Scholes model [3], Merton in [6] has created a structural model of
credit risk. Vasicek in his seminal paper [7] implemented the Merton’s approach for a risk
valuation of a large credit portfolio. The Vasicek formula of credit portfolio loss distribution
was used in Basel II for calculation of regulatory capital. The AIRB assumes LGD to be
an exogenous constant. The results of econometric researches show that the AIRB does not
capture the variability in default data (see [5]).

The positive link between PD and LGD is well-documented, see the detailed survey [1] of
Altman et al. where authors pointed out that this is feature of the Merton-based models, thus
our paper is not a brand new invention. However, the close connection of the endogenization of
LGD in Vasicek-Merton model to AIRB mechanics is a novelty of this paper. As for different
approaches to the endogenization of LGD, it is worth to mention the paper [4] of J. Frye, where
he tried to present LGD as a function of the PD on the base of assumption on the Vasicek law
distribution of the conditionally expected default rate.

1 Vasicek Loss Distribution Revisited

First, we slightly modify the derivation of Vasicek Loss Distribution to facilitate the derivation
of Vasicek-Merton Loss Distribution. Vasicek Loss Distribution describes loss distribution of
a large homogenous credit portfolio. In case of default the firm pays nothing, i.e. the payout
of the i-th firm is equal to the payout of a portfolio of a riskless zero-coupon bond with the
face value 1 and maturity T , and a short binary European put option with the strike 1 and
the expiration T written on the assets of the firm. The i-th firm’s assets Ai(t) follow geometric
Brownian motion with trend r, volatility σi and initial value Ai(0) > 0

dAi(t) = rAi(t)dt+ σiAi(t)dWi

and Wi is a standard Wiener process. Hence

Ai(T ) = Ai(0)e
(r−σ2

i /2)T+σi

√
Tεi , (1)
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where εi∼N(0, 1) is a standard normal distributed random value. To save space, let

ai(T ) ≡ Ai(T )/Di, ai(0) ≡ Ai(0)/Di,

which implies that the payout function of the i-th firm is determined as:

PayoffV =

{

1 ai(T ) ≥ 1

0 otherwise
= 1− I{ai(T )<1},

where IS is characteristic function of the set S.
Assuming the initial size of portfolio is equal 1, the weight of all loans in the portfolio is the

same. Loss of a portfolio is equal

LV =
1

n

n
∑

i=1

I{ai(T )<1}.

The i-th firm’s default probability

pi = P(ai(1) < 1) = P

(

ai(0)e
(r−σ2

i /2)T+σi

√
Tεi < 1

)

,

which is equivalent to

pi = P(εi < −d−(i)) = Φ(−d−(i)), (2)

where

d−(i) ≡
ln ai(0) + (r − σ2

i /2)T

σi

√
T

.

Consider a portfolio consisting of n loans in amounts all equal to 1 and assume that the
probability of default on any one loan be p. An identity pi ≡ p implies that

d−(i) = d− = const,

where
d− ≡ −Φ−1(p)

Moreover, assume that the asset values of the borrowing companies are correlated with a
coefficient ρ for any two companies. Then the variable εi may be represented as a sum of
two independent shocks: yi is an idiosyncratic shock, z is a market shock with a correlation
coefficient ρ

εi =
√

1− ρyi +
√
ρz (3)

The distributions of shocks are the standard normal ones yi, z ∼ N(0, 1).
Consider the market shock z as a given parameter. Our aim is to derive the probability of

default p(z) conditional on the market shock z. Substituting (3) into formula (1) we obtain

ai(T ) = ai(z)e
(r−(

√
1−ρσi)

2/2)T+
√
1−ρσi

√
Tyi

where

ai(z) ≡ ai(0)e
− (

√
ρσi

√

T )2

2
+
√
ρσi

√
Tz > 0.

This means that the conditional on z stochastic with respect to yi is mathematically equivalent
to the previous one with the same trend r, the firm volatility

√
1− ρσi and with initial value

of assets Ai(z). Repeating, mutatis mutandis, the previous calculation, we obtain

p(i, z) = Φ(−d−(i, z)),
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where

d−(i, z) ≡
ln ai(0)− (

√
ρσi

√
T )2

2
+
√
ρσi

√
Tz + (r − (1− ρ)σi

2/2)T√
1− ρσi

=
ln ai(0) +

√
ρσi

√
Tz + (r − σi

2/2)T√
1− ρσi

.

Note that an assumption pi ≡ p ⇐⇒ d−(i) ≡ d− for all i implies that

d−(i, z) ≡ d−(z) =
d− +

√
ρz√

1− ρ

for all i, hence
p(i, z) ≡ p(z) = Φ(−d−(z)),

Given d− = −Φ−1(p), we obtain the binary option price conditional on z:

pV (z) = Φ

(

Φ−1(p)−√
ρz√

1− ρ

)

. (4)

An amazing feature of this formula is that the probability of default conditional on z does not
depend, in explicit form, neither on volatility σi, nor on the time T .

The loss probability P(L < x) for given x < 1 is equal to

P(pV (z) < x) = P

(

Φ

(

Φ−1(p)−√
ρz√

1− ρ

)

< x

)

= P

(

z >
Φ−1(p)−√

1− ρΦ−1(x)√
ρ

)

Hence Vasicek loss distribution

FV (x) = Φ

(√
1− ρΦ−1(x)− Φ−1(p)√

ρ

)

, (5)

while the PDF of this distribution is described by function

fV (x) =

√

1− ρ

ρ
exp

(

1

2

[

(Φ−1(x))2 −
(√

1− ρΦ−1(x)− Φ−1(p)√
ρ

)2
])

.

It is well-known (see. e.g. [8]) that the density function fV (x) is unimodal for ρ < 1/2 with
mode

xmode = Φ

(√
1− ρ

1− 2ρ
Φ−1(p)

)

,

monotone for ρ = 1/2 and it is U-shaped or bimodal for ρ > 1/2. Moreover, the expected share
of loss coincide with the probability of default

∫ 1

0

xfV (x; p, ρ)dx = p.

Basel Adjustments of the Vasicek Loss Distribution

Note that the loss distribution (5) in Vasicek model does not allow for maturity T , assuming
also that in case of firm’s default a creditor’s return is equal to zero, i.e., the Loss Given Default
(LGD) assumed to be equal to 1. However, these assumptions don’t meet the real praxis. To
overcome this irrelevance to reality, the Basel Committee on Banking Supervision suggests the
following adjustments to correct the drawbacks of the vanilla Vasicek approach, see [2] for
details.

Instead of theoretical value of loss, Basel uses an adjustment multiplier of the following
form:

LossB = lgd · 1 + (T − 2.5) · b(p)
1− 1.5 · b(p) · LossV ,

where
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• lgd is an exogenously given parameter of Loss Given Default1, that is estimated by

• Asset correlation2 ρ = 0.121−e−50p

1−e−50 + 0.24 ·
[

1− 1−e−50p

1−e−50

]

• T is maturity of the firm’s obligation

• Maturity adjustment coefficient b(p) = (0.11852− 0.05478 ln(p))2

Some intuition behind these adjustments is obvious, though the specific coefficients of the
formula are a kind of “black box, that simply works”. In what follows we develop the generalized
Vasicek model, which accounts for these feature without any additional adjustments and, highly
likely, may stay behind the Basel adjustments of Vasicek.

2 Merton firms

In this section we will follow the track outlined in the first section, allowing for the features that
were dropped down by the vanilla Vasicek approach. First of all assume that in case of default
the creditor will get the share w of the terminal firm’s assets Ai(T ), where 0 ≤ w ≤ 1. Note
that the case w = 0 is equivalent to the previously considered models, generating Vasicek loss
distribution function. The opposite case w = 1 as it assumed in Merton’s structural model [6].
Hence the payout of the i-th firm is equal to the payout of a portfolio of a riskless zero-coupon
bond with the face value 1 and maturity T , and a weighted combination of a short binary
European put option and short European put-option with the strike 1 and the expiration T
written on the assets of the firm

PayoffVM =

{

1 ai(T ) ≥ 1

wai(T ) otherwise
= 1−

[

(1− w)I{ai(T )<1} + w (1− ai(T ))
+
]

Pricing of binary options was considered in previous section. Since (1− ai(T ))
+ is a vanilla

European put option payout, hence a relative loss of portfolio of loans

LM =
1

n

n
∑

i=1

(1− ai(T ))
+

is equivalent to the payouts of a portfolio of vanilla European put options.
Consider the market shock z as a given parameter. Assuming n → ∞ and using to CLT

and Black-Scholes formula, see [1], for a put option, we obtain

pM(i, z) = Φ(−d−(i, z))− erTai(T )Φ (−d+(i, z))

where

d−(i) =
ln ai(0) + (r − σ2

i /2)
√
T

σi

√
T

, d+(i) =
ln ai(0) + (r + σ2

i /2)T

σi

√
T

= d−(i) + σi

√
T

d−(i, z) =
d−(i) +

√
ρz√

1− ρ
=

√
ρz − Φ−1(pi)√

1− ρ
.

d+(i, z) =
ln ai(0) + (r + (1− ρ)σ2

i /2)T√
1− ρσi

√
T

=
d+(i) +

√
ρz − ρσi

√
T√

1− ρ
.

1Here we use lowercase shape to distinguish this exogenous parameter from the endogenous LGD.
2Depending on the asset class, the correlation formula may be different, for example, for residential mortgages

the applied correlation is equal to ρ = 0.3
1−e

−35p

1−e
−35 + 0.16 ·

[

1− 1−e
−35p

1−e
−35

]
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Now consider the group of firms, satisfying the following conditions pi ≡ p ⇐⇒ d±(i) ≡ d±,
and σi ≡ σ, i.e., for all firms of this group both characteristics – probability of default and
volatility – are the same. This implies that for any given market shock z the identities

d−(i, z) = d−(z) ≡
√
ρz − Φ−1(p)√

1− ρ
, d+(i, z) = d+(z) ≡

d+ +
√
ρz − ρσ

√
T√

1− ρ

hold, which also implies that the asset-to-debt ratios

ai(0) ≡ a(0) = const.

Moreover,

pM(z) = Φ

(

Φ−1(p)−√
ρz√

1− ρ

)

− a(0)e(r−ρσ2)T/2+
√
ρσ

√
TzΦ

(

Φ−1(p)− (1− ρ)σ −√
ρz√

1− ρ

)

Note that
ln a(0) + (r − σ2/2)T

σ
√
T

= d− = −Φ−1(p),

which implies

ln a(0) = −
[

σ
√
TΦ−1(p) + (r − σ2/2)T

]

,

or, equivalently,

a(0) = e−[
√
TσΦ−1(p)+(r−σ2/2)T ]. (6)

Putting altogether,

pM(z) = Φ

(

Φ−1(p)−√
ρz√

1− ρ

)

−e
−
√

(1−ρ)σ
√
T

[

Φ−1(p)−
√
ρz

√

1−ρ
−
√

(1−ρ)σ
√
T/2

]

Φ

(

Φ−1(p)−√
ρz√

1− ρ
−
√

1− ρσ
√
T

)

,

thus the price of combined derivative is

pVM(z) = (1− w)pV (z) + wpM(z) = .

=Φ

(

Φ−1(p)−√
ρz√

1− ρ

)

− we
−
√

(1−ρ)σ
√
T

[

Φ−1(p)−
√
ρz

√

1−ρ
−√

1−ρσ
√
T/2

]

Φ

(

Φ−1(p)−√
ρz√

1− ρ
−
√

1− ρσ
√
T

)

(7)

Unlike the Vasicek case, this formula depends not only on the probability of default p, but also
on volatility σ and time period T , to be more precise, it depends on the product σ

√
T .

M-skewed Cumulative Distribution Function

Before to step further, consider the following function

M(y;α,w) = Φ(y)− we−αy+α2/2
Φ(y − α)

parametrized by α > 0 and 0 ≤ w ≤ 1.

Lemma 1. For any given α > 0 and 0 ≤ w ≤ 1 function M(y;α,w) satisfies the following
conditions:

lim
y→−∞

M(y;α,w) = 0, lim
y→+∞

M(y;α,w) = 1, m(y;α,w) ≡ dM

dy
(y;α,w) > 0, y ∈ R.
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Figure 1: CDF and PDF of M-skewed normal distribution for α = 0.5, 1, 2.

Proof. Note that

lim
y→−∞

M(y;α,w) = −weα
2/2 lim

y→−∞

Φ(y − α)

eαy
= −weα

2/2 lim
a→−∞

ϕ(y − α)

αeαy
=

weα
2/2

α
√
2π

lim
y→−∞

e−
1
2 [y2+α2] = 0

lim
y→+∞

M(y;α,w) = lim
y→+∞

Φ(y)− weα
2/2 lim

y→+∞

Φ(y − α)

eαy
= 1

Moreover,

m(y;α,w) = M ′(y;α,w) = ϕ(y) + αwe−αy+α2/2Φ(y − α)− we−αy+α2/2ϕ(y − α) =

= ϕ(y)+wαe−αy+α2/2Φ(y − α)− w√
2π

e−αy+α2/2e−
1
2
(y−α)2

=wαe−αyΦ(y − α) + (1− w)ϕ(y) > 0.

In other words, the functions M(y;α,w) and m(y;α,w) may be considered as CDF and,
respectively, PDF of some probability distribution parametrized by α > 0, 0 ≤ w ≤ 1. More-
over, if w = 0 we obtain a normal distribution function. In general case this distribution is
characterized the following characteristics :

• Mean value is equal to
w

α

• Variance is equal to 1 +
(2− w)w

α2

• Skewness is equal to
2w(w2 − 3w + 3)

((2− w)w + α2)3/2
> 0

• Kurtosis is equal to 3 +
6w(2− w)(w2 − 2w + 2)

(α2 + (2− w)w)2
, or, equivalently, excess is equal to

6w(2− w)(w2 − 2w + 2)

(α2 + (2− w)w)2
> 0

As result, the considered distribution is a positive skewed and leptokurtic.
Three examples of their plots for various values of parameter α and w = 1 are presented on

the Figure 1. We will call it the M-skewed normal distribution.
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Vasicek-Merton Distribution of Loss

Using the newly introduced distribution function M(y;w, α) with substituted

y =
Φ−1(p)−√

ρz√
1− ρ

, α =
√

1− ρσ
√
T

we can represent the formula (7) as follows

pVM(z) = M

(

Φ−1(p)−√
ρz√

1− ρ
, w

)

. (8)

Obviously, function pVM(z) increases with respect to p and decreases with respect to z, because
CDF M(y, w) strictly increases with respect to y. As result, the conditional loss function pVM(z)
positively correlated with the conditional share of defaults pV (z) for any given market shock z.
Indeed,

pV = Φ

(

Φ−1(p)−√
ρz√

1− ρ

)

⇐⇒ z =
Φ−1(p)−√

1− ρΦ−1(pV )√
ρ

,

which implies
pVM = M

(

Φ−1(pV ), w
)

,

while both M and Φ−1 are strictly increasing functions.
Lemma 1 implies that there exists inverse function M−1(x), which is well-defined for all

x ∈ (0, 1). Then the inverse function f(x) = p−1
VM for x ∈ (0, 1) is well-defined as unique

solution of equation pVM(z) = x, which implies

Φ−1(p)−√
ρz√

1− ρ
= M−1(x) ⇐⇒ z = f(x) =

Φ−1(p)√
ρ

−
√

1− ρ

ρ
M−1(x) (9)

Hence

FVM(x) = P (L < x) = P (z > f(x)) = Φ(−f(x)) =

=Φ

(
√

1− ρ

ρ
M−1(x)− Φ−1(p)√

ρ

)

(10)

is the Vasicek-Merton Loss distribution function.

Lemma 2. Given w < w′, the inequality FVM(x, w′) < FVM(x, w) holds for all x ∈ (0, 1). In
particular, Vasicek loss distribution FV (x) = FVM(x, 0) < FVM(x, w) for all positive recovery
rates w > 0.

Proof. Direct comparison of (4) and (7) shows that pVM(z, w′) > pVM(z, w) for all z, while
pVM(z) is strictly decreases functions, therefore p−1

VM(x, w′) > p−1
VM(x, w). CDF Φ is strictly

increasing, hence FVM(x, w′) = Φ(−p−1
VM(x, w′)) < Φ(−p−1

VM(x, w)) = FVM(x).

Figure 2 shows three example of CDFs for the recovery rate values w = 1 (solid curve), w =
0.5 (dashed curve) and dotted curve of the Vasicek loss distribution FV (x), which corresponds
to w = 0.

Now consider the corresponding PDF fVM(x) = F ′
VM(x). The case w = 0 corresponds to

the well-studied pure Vasicek distribution, thus in what follows we will assume that w > 0.

Lemma 3. Let w > 0, then probability density function satisfies the following conditions:

fVM(0) =

{

0 ρ < 1/2

+∞ ρ > 1/2
, fVM(1) = 0.

In case of ρ = 1/2, fVM(0) = 0 for p > 1/2 and fVM(0) = +∞ for p < 1/2. If ρ = 1/2,
p = 1/2 and w = 1, then fVM(0) = +∞, otherwise, 0 < fVM(0) < +∞.
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Figure 2: Vasicek-Merton CDFs for recovery rate values w = 1, w = 0.5, w = 0

Proof. Calculating the derivative directly, we obtain

fVM(x) = (−f ′(x))ϕ(−f(x)) = −f ′(x)√
2π

e−
1
2
f2(x) (11)

where f(x) is determined by (9). The derivative of an inverse function

f ′(x) = −
√

1− ρ

ρ

d

dx
M−1(x) = −

√

1− ρ

ρ

1

m(f(x))
=

=−
√

1− ρ

ρ

e−
√
1−ρσ

√
Ty(f(x))

w
√

(1− ρ)TσΦ(y(f(x))−
√

(1− ρ)Tσ/2) + (1− w)ϕ(y(f(x))−
√

(1− ρ)Tσ/2)
,

(12)

where

y(z) =
Φ−1(p)−√

ρz√
1− ρ

−
√

(1− ρ)Tσ

2

Combining (11) and (12) we obtain

fVM(x) =

√

1− ρ

2πρ
eΦ

−1(p)
√
Tσ− (1−ρ)Tσ2

2
G(f(x))

H(f(x))
,

where
G(z) = e−

1
2
z2−

√
ρTσz

H(z) = w
√

(1− ρ)TσΦ

(

Φ−1(p)−√
ρz√

1− ρ
−
√

(1− ρ)Tσ

)

+

+(1− w)ϕ

(

Φ−1(p)−√
ρf(x)√

1− ρ
−
√

(1− ρ)Tσ

)

Note that f(1) = −∞, therefore, G(f(1)) = 0, H(f(1)) = w
√

(1− ρ)Tσ > 0 if w > 0, then

fVM(1) =
G(f(1))

H(f(1))
= 0.
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Given f(0) = +∞, we have G(f(0)) = 0, H(f(0)) = 0, therefore using a L’Hospital rule, we
obtain

fVM(0) =

√

1− ρ

2πρ
eΦ

−1(p)σ
√
T− (1−ρ)σ2

T
2 lim

x→0

G(f(x))

H(f(x))
=

√

1− ρ

2πρ
eΦ

−1(p)σ
√
T− (1−ρ)σ2

T
2 lim

x→0

G′(f(x))

H ′(f(x))
.

Moreover,

G′(f(x))

H ′(f(x))
=

√

2π(1− ρ)

ρ
e

1
2

(

Φ−1(p)
√

1−ρ
−
√

(1−ρ)Tσ

)2

×

×

(

f(x) +
√
ρσ

√
T
)

e−
1
2
f(x)2 1−2ρ

1−ρ
−Φ−1(p)

√
ρ

1−ρ
f(x)

wσ
√
T + (1− w)

(
√

ρ
1−ρ

f(x)− Φ−1(p)√
1−ρ

+
√

(1− ρ)Tσ
)

First consider the special case w = 1, then

lim
x→0

G′(f(x))

H ′(f(x))
=

1

σT

√

2π(1− ρ)

ρ
e

1
2

(

Φ−1(p)
√

1−ρ
−
√

(1−ρ)Tσ

)2

lim
x→0

(

f(x) +
√

ρTσ
)

e−
1
2
f(x)2 1−2ρ

1−ρ
−Φ−1(p)

√
ρ

1−ρ
f(x)

If ρ < 1/2 ⇐⇒ 1−2ρ
1−ρ

> 0, then fVM(0) = 0, while ρ > 1/2 implies fVM(0) = +∞. If

ρ = 1/2, then result depends on sign of Φ−1(p), namely, p ≤ 1/2 ⇐⇒ Φ−1(p) ≤ 0 implies
fVM(0) = +∞, while p > 1/2 ⇐⇒ Φ−1(p) > 0 implies fVM(0) = 0.

Now assume w < 1, then

lim
x→0

G′(f(x))

H ′(f(x))
=

√
2π(1− ρ)

ρ(1− w)
e

1
2

(

Φ−1(p)
√

1−ρ
−
√

(1−ρ)Tσ

)2

lim
x→0

e−
1
2
f(x)2 1−2ρ

1−ρ
−Φ−1(p)

√
ρ

1−ρ
f(x)

which implies the rest statements of the Lemma.

One can see that if ρ < 1/2 the shapes of Vasicek fV (x; p, ρ) and Vasicek-Merton fVM(x;w, p, ρ, σ, T )
functions look similar, though, the density fVM is more “concentrated”, as it is shown in Figure
3.

On the other hand, it is well-known that in case of ρ > 1/2 the Vasicek density of loss
became U-shaped getting the second mode at x = 1, while the Vasicek-Merton density is
always unimodal. The Figure 4 shows the behavior of fV (x) and fVM(x) with w = 0.5 for
ρ = 0.65 in neighborhood of x = 1. To the difference more visible we use the logarithmic scale
for y-axis. The second mode at x = 1 is obvious for the Vasicek density, as well as for its
logarithm, while the Vasicek-Merton distribution the only mode is at x = 0.

3 Endogenous LGD in Vasicek-Merton Model vs Basel Ad-

justments

The basic assumption that the credit portfolio is homogeneous, i.e., for all firms the probability
of default p and volatility σ are the same, implies that the Loss Given Default

LGD =
1

p
E(1− wa(T )|a(T ) < 1).

Given
a(T ) = a(0)e(r−σ2/2)T+σ

√
Tε,

10
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Figure 3: PDFs of Vasicek-Merton loss distributions for ρ = 0.25 and w = 1 (solid curve),
w = 0.5 (dashed curve), w = 0 (dotted curve).
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Figure 4: Density plots in logarithm scale of Vasicek (a) and Vasicek-Merton (b) loss distribu-
tion for ρ = 0.65 .
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the condition a(T ) < 1 is equivalent to

ln a(0) + (r − σ2/2)T + σ
√
Tε < 0 ⇐⇒ ε < − ln a(0) + (r − σ2/2)T

σ
√
T

= −d−

which implies

LGD =
1

p

[
∫ −d−

−∞
1 · ϕ(t)dt− wa(0)e(r−σ2/2)T

∫ −d−

−∞
eσ

√
Tt 1√

2π
e−

1
2
t2dt

]

=

=
1

p

[

Φ(−d−)− wa(0)erT
∫ −d−

−∞

1√
2π

e−
1
2
(t−σ

√
T )2d(t− σ

√
T )

]

=

=
1

p

[

Φ(−d−)− wa(0)erT
∫ −d−−σ

√
T

−∞

1√
2π

e−
1
2
z2dz

]

=

=
1

p

[

Φ(−d−)− wa(0)erTΦ(−d+)
]

,

where

d+ = d− + σ
√
T =

ln a(0) + (r + σ2/2)T

σ
√
T

.

Given
p = Φ(−d−) ⇐⇒ d+ = σ

√
T − Φ−1(p)

and
a(0) = e−[

√
TσΦ−1(p)+(r−σ2/2)T ]

we obtain the following identity

LGD(p) = 1− w

p
e−σ

√
TΦ−1(p)+σ2T

2 Φ
(

Φ−1(p)− σ
√
T
)

.

Let

Ψ(x) ≡ Φ(x)

ϕ(x)
,

then the previous formula for LGD may be rewritten as

LGD(p) = 1− w
Ψ
(

Φ−1(p)− σ
√
T
)

Ψ(Φ−1(p))
(13)

In case of w = 0 we obtain the pure Vasicek model with LGD(p) ≡ 1. Moreover, in working
paper [Altman et al.] this formula (in terms of d±) was obtained for the case of w = 1.

Assume that w > 0, then the following statement holds.

Proposition 1. LGD(0) = 1 − w < 1, LGD(1) = 1 and LGD increases with respect p,σ and
T .

Proof. An identity LGD(1) = 1 is obvious. Let t = Φ−1(p), s = σ
√
T , then to prove that

LGD(0) = 1− w it is sufficient to show

lim
t→−∞

e−stΦ (t− s)

Φ(t)
= e−s2/2.

Note that

lim
t→−∞

e−stΦ (t− s) = lim
t→−∞

Φ (t− s)

est
= lim

t→−∞

ϕ(t− s)

sest
=

1√
2π

lim
t→−∞

e−
1
2
(t2+s2) = 0,

12



therefore, applying the L’Hospital rule we obtain

lim
t→−∞

e−stΦ (t− s)

Φ(t)
= lim

t→−∞

−se−stΦ (t− s) + e−stϕ(t− s)

ϕ(t)
= e−

1
2
s2 − s lim

t→−∞

e−stΦ (t− s)

ϕ(t)
=

=e−
1
2
s2 − s

√
2π lim

t→−∞

Φ (t− s)

e−
1
2
t2+st

= e−
1
2
s2 − s lim

t→−∞

e−
1
2
t2+st− 1

2
s2

(s− t)e−
1
2
t2+st

= e−
1
2
s2

To justify increasing with respect to σ and T , it is sufficient to prove that LGD increases
with respect to let s = σ

√
T . Indeed,

∂

∂s
LGD =

w

p
e−sΦ−1(p)+s2/2

[

ϕ(Φ−1(p)− s)− (s− Φ−1(p))Φ
(

Φ−1(p)− s
)]

.

Let x = s − Φ−1(p), then for x ≤ 0 an inequality ϕ(−x) − xΦ(−x) > 0 is obvious, while for
x > 0 an inequality ϕ(−x) = ϕ(x) > xΦ (−x) is well-known upper-tail property for standard
normal distribution.

Finally, an increasing of the function LGD(p) with respect to p is equivalent to inequality

∂

∂t

(

e−stΦ (t− s)

Φ(t)

)

< 0

Indeed,

∂

∂t

(

e−stΦ (t− s)

Φ(t)

)

= e−st−sΦ (t− s) Φ(t) + ϕ(t− s)Φ(t)− Φ (t− s)ϕ(t)

Φ(t)2

Let
G(t) = −sΦ (t− s) Φ(t) + ϕ(t− s)Φ(t)− Φ (t− s)ϕ(t),

then limt→−∞ G(t) = 0 and

G′(t) = (t− s)Φ (t− s)ϕ(t)− tϕ(t− s)Φ(t).

It is obvious, that G′(t) < 0 for all t ≤ s, assume t > s > 0, then ϕ(t) < ϕ(t − s) and
(tΦ(t))′ > 0, hence

G′(t) < ϕ(t− s) [(t− s)Φ (t− s)− tΦ(t)] < 0,

which implies G(t) < 0 for all t. In turn, this means that

∂

∂t

(

e−stΦ (t− s)

Φ(t)

)

< 0 ⇐⇒ d

dp
LGD > 0.

The Figure 3 illustrates the results of Proposition 1 showing three plots of the function
LGD(p) for T = 1 and three values of σ = 0.2, 0.5, 0.75.

where

λB(p, T ) = lgd · 1 + (T − 2.5) · b(p)
1− 1.5 · b(p) = lgd ·

[

1 + (T − 1) · b(p)

1− 1.5 · b(p)

]

b(p) = (0.11852− 0.05478 ln(p))2,

M−1(x) is inverse function to

M(y) = Φ(y)− we−αy+α2/2
Φ(y − α),

Ψ(x) =
Φ(x)

ϕ(x)
.

It worth to mention that CDF formula FB(x) implies that the corresponding PDF fB(x) =
F ′
B(x) satisfies fB(x) ≡ 0 for all x > λB(p, T ), in particular, fB(1) = 0 even if ρ > 1/2. This

means that the AIRB-adjusted Vasicek density of loss, likewise the Vasicek-Merton density and
unlike the vanilla Vasicek PDF, has no second mode at x = 1 in case of ρ > 1/2.
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Figure 5: How LGD depends on Probability of Default

Distribution CDF LGD

Vasicek FV (x) = Φ
(√

1−ρΦ−1(x)−Φ−1(p)√
ρ

)

1

AIRB FB(x) =







Φ

(√
1−ρΦ−1

(

x
λB(p,T )

)

−Φ−1(p)
√
ρ

)

, x < λB(p, T )

1, o/w

λB(p, T )

Vasicek-Merton FVM(x) = Φ
(√

1−ρM−1(x)−Φ−1(p)√
ρ

)

1− w
Ψ(Φ−1(p)−σ

√
T)

Ψ(Φ−1(p))
< 1

Table 1: Comparison of distributions
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Comparison with Basel adjustments

To compare the Basel and Vasicek-Merton approaches, note that the Basel adjustment coeffi-
cient

λB(p, T ) = lgd · 1 + (T − 2.5) · b(p)
1− 1.5 · b(p) = lgd ·

[

1 + (T − 1) · b(p)

1− 1.5 · b(p)

]

b(p) = (0.11852− 0.05478 ln(p))2

satisfies λB(p, 1) = lgd for all p, i.e., the exogenous parameter lgd is considered as a loss
given default in case of the maturity T = 1. This means that λB(p, T ) may be interpreted
as an expansion of the one-period lgd on an arbitrary maturity T , which also depends on the
probability of default p. On the other hand, the generalized Vasicek-Merton model implies the
following form of general Loss Given Default function

λVM(p, T ) = 1− w
Ψ
(

Φ−1(p)− σ
√
T
)

Ψ(Φ−1(p)))
,

where

Ψ(x) ≡ Φ(x)

ϕ(x)
,

Note that, generally speaking, λB(p, T ) and λVM(p, T ) are hardly comparable, because
λB(p, T ) depends on exogenous constant LGD, while λVM(p, T ) is based on another exogenous
constant w. To make them more close, assume that the following identity holds

lgd = λVM(p, 1) = 1− w
Ψ(Φ−1(p)− σ)

Ψ(Φ−1(p)))
.

Given that, let’s compare the distributions of loss, generated by Basel adjustments of loss and
by Vasicek-Merton model. The Vasicek-Merton cumulative distribution function

FVM(x) = Φ

(
√

1− ρ

ρ
M−1(x)− Φ−1(p)√

ρ

)

was derived in previous section, while the Basel CDF is obviously equal to

FB(x) = FV

(

x

λB(p, T )

)

= Φ

(
√

1− ρ

ρ
Φ−1

(

x

λB(p, T )

)

− Φ−1(p)√
ρ

)

It is worth to mention, that unlike the vanilla Vasicek loss distribution, the Basel PDF
fB(x) = F ′

B(x) is not U-shaped in case ρ > 1/2. Indeed, if λB(p, T ) < 1 then x
λB(p,T )

≥ 1 for

all x ∈ (λB(p, T ), 1], which implies FB(x) = 1 and fB(x) = 0 in some neighborhood of x = 1.
Note that for the Vasicek-Merton loss distribution the PDF fVM(1) = 0 due to Lemma 3.

The Figure 6 plots the corresponding PDF for the Basel distribution (solid curve), Vasicek-
Merton distribution (dotted curve) and non-adjusted Vasicek distribution (dashed curve) for
p = 0.05, σ = 0.2, w = 0.5, T = 1; the corresponding ρ is equal to

ρ = 0.12
1− e−50p

1− e−50
+ 0.24 ·

[

1− 1− e−50p

1− e−50

]

≈ 0.13.

The variation of model parameters results in more different curves. Figure 7 presents, ceteris
paribus, the cases T = 2 and T = 3. Hereafter we will skip a plotting of the vanilla Vasicek
graphs, filling the space between Vasicek-Merton and Basel curves for more visibility. As one
can see, the longer is a maturity T , the more is difference between curves. This means that the
linear with respect to T maturity adjustment does not fit well the Vasicek-Merton distribution.
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Figure 6: Density functions for Vasicek, AIRB-adjusted Vasicek and Vasicek-Merton distribu-
tions, p = 0.05, σ = 0.2, w = 0.5, T = 1
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Figure 7: Density functions for Vasicek, AIRB-adjusted Vasicek and Vasicek-Merton distribu-
tions, p = 0.05, σ = 0.2, w = 0.5, T = 2 (a) and T = 3 (b).
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Figure 8: Density functions for Vasicek, AIRB-adjusted Vasicek and Vasicek-Merton distribu-
tions, p = 0.05, σ = 0.2, T = 1, w = 0.1 (a) and w = 0.9 (b).

Other parameters variation

Figures 6 and 7 show that variation of maturity T results in difference between distributions of
loss in Basel and Vasicek-Merton approaches. On the other hand, in case of T = 1 variation of
of the parameters has no significant consequence. Figure 8 shows three example for w = 0.1, 0.9
, while p = 0.05, σ = 0.2, T = 1.

Figure 9 variates the probability of p = 0.01, 0.2, while, σ = 0.2, w = 0.5, T = 1.
Finally, the variation of σ = 0.1, 0.5, while p = 0.05, w = 0.5, T = 1 is presented on Figure

10. As before, only the unusually large value of parameter σ = 0.5 shows the visible difference
between Basel and Vasicek-Merton.

To measure a difference between distributions consider the threshold values of loss at the
confidence level 0.999 required by Basel, i.e., solutions of equation F (x) = 0.999 for the corre-
sponding CDFs. The vanilla Vasicek CDF provides the well-known solution

x∗
V = Φ

(

Φ−1(p) +
√
ρΦ−1(0.999)√

1− ρ

)

,

the Basel adjustments transforms the previous formula into

x∗
B = λB(p, T ) · Φ

(

Φ−1(p) +
√
ρΦ−1(0.999)√

1− ρ

)

,

while the Vasicek-Merton distribution determines

x∗
VM = M

(

Φ−1(p) +
√
ρΦ−1(0.999)√

1− ρ

)

,

where
M(y) = Φ(y)− w · e−

√
1−ρσ

√
Ty+(1−ρ)σ2T/2Φ(y −

√

1− ρσ
√
T ).

The Figure 11 presents the three plots of x∗
V (dashed curve), x∗

B (dotted curve) and x∗
VM (solid

curve) considered as functions of the default probability p. The other parameters are set as
follows: w = 1, σ = 0.2, T = 1, the correlation ρ is determined using the Basel procedure as

ρ = 0.12
1− e−50p

1− e−50
+ 0.24 ·

[

1− 1− e−50p

1− e−50

]
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Figure 9: Density functions for Vasicek, AIRB-adjusted Vasicek and Vasicek-Merton distribu-
tions, σ = 0.2, T = 1, w = 0.5, p = 0.01 (a) and p = 0.2 (b).
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Figure 10: Density functions for Vasicek, AIRB-adjusted Vasicek and Vasicek-Merton distribu-
tions, T = 1, w = 0.5, p = 0.05, σ = 0.1 (a) and σ = 0.5.
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Figure 11: Threshold plots for Vasicek, Vasicek-Merton and Basel distributions of loss at con-
fidence level 0.999 for w = 1, σ = 0.2, T = 1 (a) and T = 3 (b).

As one can see, Basel and Vasicek-Merton thresholds are very close to each other for T = 1,
while in case T = 3 thresholds differ significantly. Anyway, this difference is less substantial in
comparison with non-adjusted Vasicek case.

Conjecture. The Basel adjustment of Vasicek loss distribution is actually based on an approx-
imation of the endogenous Loss Given Default (13) in the neighborhood of T = 1.

4 Concluding Remarks

The Vasicek-Merton loss distribution, that is introduced and studied in this paper, may help
in solution of the “mystery of AIRB adjustments.” Due to the authors’ opinion, the theoreti-
cal basis behind these adjustments is exactly the Vasicek-Merton distribution approximated in
neighborhood of the typical values of parameters. There is an almost ideal coincidence of two
distribution where the first one was derived from the pure theoretical basis while the numerical
coefficients of the second one are obviously obtained by approximation and/or regression on
some date, which cannot be simply an accident. We believe that the Vasicek-Merton distri-
bution is a key to the “black box” of AIRB adjustment. On the other hand, in long-run, for
maturity T >> 1, the difference between these two distribution become significant, thus an
AIRB adjustment of Vasicek distribution cannot be considered as a good approximation of the
Vasicek-Merton distribution. This arises the second implication of the presented paper (pro-
vided that we accept the hypothesis on the theoretical key to AIRB adjustments): it should
use the exact Vasicek-Merton formula instead of its approximation. This does note arises too
large computational problem, because, from the technical point of view, the formula of the
Vasicek-Merton distribution involves a “skewed” normal distribution function instead of the
standard normal one.
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