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plementation, and pure public goods are integrated here to address the

problem of voting over income taxes and public goods. In contrast with

previous articles, general nonlinear income taxes that affect the labor-

leisure decisions of consumers who work and vote are allowed. Uncer-

tainty plays an important role in that the government does not know

the true realizations of the abilities of consumers drawn from a known

distribution, but must meet the realization-dependent budget. Even

though the space of alternatives is infinite dimensional, conditions on

primitives are found to assure existence of a majority rule equilibrium
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1 Introduction

1.1 Background

The theory of income taxation has been an important area of study in eco-

nomics. Interest in a formal theory of income taxation dates back to at least

J.S. Mill (1848), who advocated an equal sacrifice approach to the normative

treatment of income taxes. In terms of the modern development, Musgrave

(1959) argued that two basic approaches to taxation can be distinguished: the

benefit approach, which puts taxation in a Pareto efficiency context; and the

ability to pay approach, which puts taxation in an equity context. Some of

the early literature, such as Lindahl (1919) and Samuelson (1954, 1955), made

seminal contributions toward understanding the benefit approach to taxation

and tax systems that lead to Pareto optimal allocations. Although the im-

portance of the problems posed by incentives and preference revelation were

recognized, scant attention was paid to solving them, perhaps due to their

complexity and difficulty.

Since the influential work of Mirrlees (1971), economists have been quite

concerned with incentives in the framework of income taxation. The model

proposed there postulates a government that tries to collect a given amount

of revenue from the economy. For example, the level of public good provi-

sion might be fixed. Consumers have identical utility functions defined over

consumption and leisure, but differing abilities or wage rates. The govern-

ment chooses an income tax schedule that maximizes some objective, such as

a utilitarian social welfare function, subject to collecting the needed revenue,

resource constraints, and incentive constraints based on the knowledge of only

the overall distribution of wages or abilities. The incentive constraints derive

from the notion that individuals’ wage levels or characteristics (such as pro-

ductivity) are unknown to the government. The optimal income tax schedule

must separate individuals as well as maximize welfare and therefore is gener-

ally second best.1 The necessary conditions for welfare optimization generally

include a zero marginal tax rate for the highest wage individual. Intuitive and

algebraic derivations of this result can be found in Seade (1977), where it is

also shown that some of these necessary conditions hold for Pareto optima as

well as utilitarian optima. Existence of an optimal tax schedule for a modified

1If the government knew the type of each agent, it could impose a differential head tax.

As is common in the incentives literature, one must impose a tax that accomplishes a goal

without the knowledge of the identity of each agent ex ante.
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model was demonstrated in Kaneko (1981), and then for the classical model

in Berliant and Page (2001, 2006). An alternative view of optimal income tax-

ation is as follows. Head taxes or lump sum taxes are first best, since public

goods are not explicit in the model and therefore Lindahl taxes cannot be used.

Second best are commodity taxes, such as Ramsey taxes. Third best are in-

come taxes, which are equivalent to a uniform marginal tax on all commodities

(or expenditure). In our view, it is not unreasonable to examine these third

best taxes, since from a pragmatic viewpoint, the first and second best taxes

are infeasible.

1.2 A Positive Political Model

How can we explain (or model) the income tax systems we observe in the

real political world? We shall attempt to answer this question with a voting

model, a positive political model, in combination with the standard income

tax model described above. As noted in the introduction of Roberts (1977),

one does not need to believe that choices are made through any particular

voting mechanism; one need only be interested in whether choices mirror the

outcomes of some voting process. Thus, what is described below is an attempt

to construct a potentially predictive model with both political and economic

content. It contains elements of the optimal income tax literature as well as

positive political theory (an excellent survey of which can be found in Calvert

(1986)).

Although much of the optimal income tax literature and most of the work

cited above deals with the normative prescriptions of an optimal income tax,

there is a relatively small literature on voting over income taxes. Most of

this literature is either restricted to consideration of only linear taxes, or does

not consider problems due to information (adverse selection and moral haz-

ard), or both. Examples that might fit primarily into the linear tax category

which also involve no labor disincentives on the part of agents are Foley (1967),

Nakayama (1976) and Guesnerie and Oddou (1981). Aumann and Kurz (1977)

use personalized lump sum taxes in a one commodity model. Hettich and

Winer (1988) present an interesting politico-economic model in which candi-

dates seek to maximize their political support by proposing nonlinear taxes.

Work disincentives are not present in the model. Chen (2000) extends their

work to the more standard optimal income tax model in the context of proba-

bilistic voting. Romer (1975), Roberts (1977), Peck (1986), and Meltzer and

Richard (1981, 1983) use linear taxes in voting models with work disincentives.
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Roemer (1999) restricts to quadratic tax functions with no work disincentives

but with political parties. Perhaps the model closest in spirit to the one we

propose below is in Snyder and Kramer (1988), which uses a modification of

the standard (nonlinear) income tax model with a linear utility function. The

modification accounts for an untaxed sector, which actually is a focus of their

paper. This interesting and stimulating paper considers fairness and progres-

sivity issues, as well as the existence of a majority equilibrium when individual

preferences are single peaked over the set of individually optimal tax schedules.

(Sufficient conditions for single peakedness are found.) Röell (1996) considers

the differences between individually optimal (or dictatorial) tax schemes and

social welfare maximizing tax schemes when there are finitely many types of

consumers. Of particular interest are the tax schedules that are individually

optimal for the median voter type. This interesting work uses quasi-linear

utility and restricts voting to tax schedules that are optimal for some type.

Brett and Weymark (2017) push this further in a continuum of types model

by characterizing individually optimal tax schedules. Then they show, un-

der conditions including quasi-linear utility, that if the set of tax schedules is

restricted to individually optimal ones, the individually optimal tax for the

median voter is a Condorcet winner.

We propose in this paper to allow general nonlinear income taxes with

work disincentives in a voting model. The main problem encountered in

trying to find a majority equilibrium, as well as the reason that various sets

of restrictive assumptions are used to obtain such a solution in the literature,

is as follows. The set of tax schedules that are under consideration as feasible

for the economy (under any natural voting rule) is large in both number and

dimension. Thus, the voting literature such as Plott (1967) or Schofield (1978)

tells us that it is highly unlikely that a majority rule winner will exist. Is

there a natural reduction of the number of feasible alternatives in the context

of income taxation?

1.3 The Role of Uncertainty and Feasibility

The answer appears to be yes. The (optimal) income tax model has a natural

uncertainty structure that has yet to be exploited in the voting context. As in

the classical optimal income tax model, all worker/consumers have the same

well-behaved utility function, but there is a nonatomic distribution of wages

or abilities. In standard models, such as the Mirrlees model or its modern

descendants, the distribution of consumers by type is known by all and the
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aggregate revenue requirement is fixed at a scalar; it is 0 in models of pure re-

distribution. (This applies whether the number of consumer/workers is finite

or a continuum.) Suppose that a finite sample is drawn from this nonatomic

distribution.2 The finite sample will be the true economy, and the revenue

requirement imposed by the government can depend on the draw. In fact

this dependence is just a natural extension of the standard optimal income

tax model. In that model, the amount of revenue to be raised (the revenue

requirement in our terminology) is a fixed parameter, something that makes

perfect sense since the population in the economy and the distribution of the

characteristics of that population are both fixed, and thus we can take public

expenditures also as fixed. But consider now the optimal tax problem for the

cases when the characteristics of the actual population are unknown. That is

exactly what happens when we consider that the true population is a finite

draw from a given distribution. In such circumstances, it is not reasonable to

fix the revenue requirement at some exogenously given target level, but instead

the revenue requirement should be a function of the population characteris-

tics. It is possible to take derive the aggregate revenue requirement from

primitives in different ways. In our analysis below, the revenue requirements

for a particular draw will be derived from the Pareto efficient level of public

good provision for that draw, leading to intrinsic variation in revenue require-

ments across draws.3 We shall make assumptions on primitives implying that

the Pareto efficient level of public good is unique but generally different for

each draw.

Why do we focus on the Pareto efficient level for a given draw? Given

utility functions that are separable in the public good, ex post recontracting

on the level of public goods provision will not be beneficial.

It seems natural for us to require that any proposed tax system must be

feasible (in terms of the revenue it raises) for any draw, as no player (including

the government) knows the realization of the draw before a tax is imposed. In

other words, the consumers do not transmit information, such as their labor

income, to the government prior to the imposition of the income tax. For

example, an abstract government planner might not know precisely the top

ability of individuals in the economy, and therefore might not be able to follow

optimal income tax rules to give the top ability individual a marginal rate of

2This assumption is similar to the one used in Bierbrauer (2011), though the purpose of

that work is entirely different from ours.
3As an alternative, the variation in revenue requirements can be seen as variation in fiscal

pressure on the government; see Heathcote and Tsujiyama (2017) for discussion.
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zero. The key implication of using finite draws as the true economies is that

requiring ex ante feasibility of any proposable tax system for any draw narrows

down the set of alternatives, which we call the feasible set, to a manageable

number (even a singleton in some cases).4

To be clear, the assumption is that the government must commit to a tax

system (as a function of income) before knowing the realization of the draw of

abilities from the distribution of abilities, this tax system cannot depend on

the draw, and it must raise sufficient draw-dependent revenue no matter the

draw. If we allowed the tax system to depend on the draw of abilities, we

would be back in the situation the rest of the literature has found unsolvable,

since in general any tax system can be defeated by a majority for a given

draw. In other words, if the government doesn’t have to commit and can

propose a state or draw contingent tax, we have the same situation as if there

is no uncertainty and a finite number of worker/consumers with given types,

so there generally will be no Condorcet winner in any given state.

Our arguments apply to finite numbers of agents. The model has a dis-

continuity when one goes from a finite to an infinite number of agents. In this

latter case there is no uncertainty about the composition of the draw, so we do

not have a continuum of ex ante feasibility restrictions, one for each possible

draw. Instead we have only that the revenue constraint needs to be satisfied

for the known population. Thus, for our purposes, even a little uncertainty

is sufficient, and it is possible to view perfect certainty about the draw as a

knife-edge case.5 Moreover, there are further conceptual issues pertaining to

models with a pure public good and a continuum of consumers; see Berliant

and Rothstein (2000).

In relation to the literature that deals with voting over linear taxes, our

model of voting over nonlinear taxes will not yield a linear tax as a solu-

tion without very extreme assumptions. This will be explained in section 6

below. Moreover, our second order condition for incentive compatibility will

generally be much weaker than those used in the literature on linear taxes;

compare our assumptions below with the Hierarchical Adherence assumption

of Roberts (1977). As noted by L’Ollivier and Rochet (1983), these second

4Pierre Boyer has pointed out that the cost of the public good could be unknown in

addition to or instead of the abilities of the individuals in the economy. This would represent

an aggregate risk to the economy, in contrast with individual abilities, that are idiosyncratic

risks. In accordance with the assumptions concerning asymmetric information in the optimal

tax literature, we stick to unknown individual abilities on the part of the tax designer.
5We are indebted to Jim Snyder for some of these thoughts.
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order conditions are generally not addressed in the optimal income taxation

literature, though they ought to be addressed there. In what follows, we em-

ploy the results contained in Berliant and Gouveia (2001) and more generally

in Berliant and Page (1996) to be sure that the second order conditions for

incentive compatibility hold in our model.

At this point, it is important to remark on the anatomy of our analysis.

We shall introduce two models: an endowment economy, where there is no

choice of labor supply, where each consumer knows only their own endowment

and the prior distribution from which endowments are drawn, and where all

taxes are lump sum; and an optimal income tax economy, where each con-

sumer knows only their own productivity and the prior distribution of types,

where the government knows only the prior distribution from which agents’

types are drawn, where taxes induce distortions in labor supply, and where

incentive constraints must be satisfied. Although results on existence of Con-

dorcet winners for the endowment economy may be of independent interest,

our primary objective is to apply these results to the income tax model with

distortions. The method for accomplishing this is to use a result on imple-

mentation of lump sum taxes from the endowment economy, the first model, in

terms of a tax on labor income in the optimal income tax economy, the second

model. Under assumptions we shall specify, this result implements the lump

sum tax system in the sense that each consumer facing a labor-leisure choice

ends up paying exactly the tax specified by the lump sum tax system; notice

that income taxes are an indirect mechanism. In the literature on optimal

income taxation, this is called the “Taxation Principle.” Moreover, we show

that characteristics of the lump sum tax systems, such as single crossing, are

inherited by the taxes implementing them in the framework with incentives.

The structure of the paper is as follows. First, we introduce our framework

and notation in section 2. In section 3 our main result on voting over both

public goods and income taxes is stated. Section 4 contains a discussion of

the techniques we use in the proofs, whereas section 5 contains two examples

of interest. Finally, section 6 contains conclusions and suggestions for further

research. The appendix contains proofs of most results.
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2 The Model

2.1 Basic Notation and Definitions

We shall develop an initial model of an endowment economy as a tool. Al-

though it might be of independent interest, our primary purpose is to apply

this model and the results we obtain to the standard optimal income tax model

in the succeeding sections.

There is a single consumption good c and consumers’ preferences are iden-

tical and given by the utility function v(c) = c, with c ∈ R+. A con-

sumer’s endowment, which is also her type, is described by w ∈ [w,w], where
[w,w] ⊆ R++. In this section the endowment can also be seen as pre-tax

income or, following classical terminology in Public Finance, the ability to pay

of each agent. References to measure are to Lebesgue measure on [w,w].

The distribution of consumers’ endowments has a measurable density f(w),

where f(w) > 0 a.s.

Let k be a positive integer and let A ≡ [w,w]k, the collection of all possible
draws of k individuals from the distribution with density f .6 Formally, a draw

is an element (w1, w2, ..., wk) ∈ A.
In order to be able to determine what any particular draw can consume, it

is first necessary to determine what taxes are due from the draw. Hence, we

first assume that there is a given net revenue requirement function R : A → R.

For each (w1, w2, ..., wk) ∈ A, R(w1, w2, ..., wk) represents the total taxes due
from a draw. For example, if the revenues from the income tax are used to

finance a good such as schooling, then R(w1, w2, ..., wk) can be seen as: the per

capita revenue requirement for providing schooling to the draw (w1, w2, ..., wk)

multiplied by k.7

Although we shall begin by taking revenue requirements as a primitive, in

6Note that f(·) plays almost no role in the development to follow, in contrast with its
preeminent role in the standard optimal income tax model. It may be interpreted as a

subjective distribution describing the planner beliefs about the characteristics of the agents

in the economy, but that consideration is immaterial for the model presented here. We have

implicitly assumed that the abilities are drawn independently, but since we never use this,

correlation would also be permissible provided that the support of the joint distribution is

fixed at [w,w]k. In multistage voting in a representative democracy, the equilibria are likely

to be a function of f , as is often the case in signaling games. We expect to study that

problem in the future.
7Actually, regarding schooling, there is a separate literature on the political economy of

public supplements for such goods. The formal structure is slightly different from what we

consider in this paper; see Gouveia (1997).
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the end we will justify this postulate by deriving revenue requirements from

the technology for producing a public good. But this is simply an important

example illustrating where aggregate revenue requirements come from.

It is important to be clear about the interpretation of R. One easy in-

terpretation is that the taxing authority provides a schedule giving the taxes

owed by any draw. There are several reasons that revenue requirements might

differ among draws, including differences in taste for a public good that is im-

plicitly provided, income or wealth differences, a non-constant marginal cost

for production of the public good, differences in the cost of revenue collection,

and so forth.

The government and the agents in the economy know the prior distribution

f of types of agents in the economy8 as well as the mapping R. Before moving

on to consider the game - theoretic structure of the problem, it is necessary to

obtain some facts about the set of tax systems that are feasible for any draw

in A. These are the only tax systems that can be proposed, for otherwise
the voters and social planner would know more about the draw than that

it consists of k people drawn from the distribution with density f . Voters

can use their private information (their endowment) when voting, but not in

constructing the feasible set. For otherwise either each voter will vote over a

different feasible set, or information will be transmitted just in the construction

of the feasible set.

An individual revenue requirement9 is a function g : W → R that takes w

to tax liability. It is a lump sum tax function.

Clearly, there will generally be a range of individual revenue requirements

consistent with any map R. Our next job is to describe this set formally. Fix

k and R. Let

G ≡
{

g : [w,w]→ R | g is measurable,
k∑

i=1

g(wi) ≥ R(w1, w2, ..., wk) a.s. (w1, w2, ..., wk) ∈ A
}

G is the set of all individual revenue requirements that collect enough

revenue to satisfy R. G 6= ∅ if almost surely for (w1, w2, ..., wk) ∈ A,
∑k

i=1wi ≥
R(w1, w2, ..., wk). The constraint that the aggregate revenue requirement be

satisfied for each draw restricts the feasible set G significantly.

8Actually, all they need to know is the support of that distribution.
9Even though this is simply a tax function on endowments, we will reserve the terminology

“tax function” for an environment with incentives to simplify the exposition.
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2.2 FromCollective to Individual Revenue Requirements

In order to examine the set of feasible individual revenue requirements de-

scribed above, more structure needs to be introduced. It is obvious that some

feasible g’s will raise strictly more taxes than necessary to meetR(w1, w2, ..., wk)

for almost any (w1, w2, ..., wk). We now search for the minimal elements of the

set G. We call the set of such elements G∗. In other words, we search for in-

dividual revenue requirements g ∈ G∗ ⊆ G with the following property: there
is no g

′

such that almost surely for (w1, w2, ..., wk) ∈ A, R(w1, w2, ..., wk) ≤∑k
i=1 g

′

(wi); almost surely for w ∈ [w,w], g′(w) ≤ g(w); and there exists a set
of positive Lebesgue measure in [w,w] where g

′

(w) < g(w).

To this end, define a binary relation � over G by g � g
′

if and only if

g(w) ≥ g′(w) for almost all w ∈ [w,w]. Let

G ≡ {B ⊆ G| B is a maximal totally ordered subset of G}.

By Hausdorff’s Maximality Theorem (see Rudin (1974, p. 430)), G 6= ∅. Fi-
nally, define

G∗ ≡ {g : [w,w]→ R| ∃B ∈ G such that g(w) = inf
g′∈B

g′(w) a.s.}.

G∗ is nonempty.

If g ∈ G\G∗ is proposed as an alternative to g∗ ∈ G∗, ∃g′ ∈ G∗ that is
unanimously weakly preferred to g.

2.3 Notation for the Optimal Income Tax Model

Having dispensed with preliminaries, we now turn to the voting model with

incentives based on Mirrlees (1971). The three goods in the model are a

composite consumption good, whose quantity is denoted by c; labor, whose

quantity is denoted by l; and a pure public good, whose quantity is denoted by

x. Consumers have an endowment of 1 unit of labor/leisure, no consumption

good, and no public good.10 Let u : R+ × [0, 1] × R+ × [w,w] → R be the

utility functions of the agents, writing u(c, l, x, w) as the utility function of type

w, where u is twice continuously differentiable. Subscripts represent partial

derivatives of u with respect to the appropriate arguments. The parameter w,

an agent’s type, is now to be interpreted as the wage rate or productivity of

an agent. Thus w is the value of an agent of type w’s endowment of labor.

10It would be easy to add an endowment of consumption good for consumers, but that

would complicate notation.
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The gross income earned by an agent of type w is y = w · l and it equals
consumption when there are no taxes.

A tax system is a function τ : R → R that takes y to tax liability. A

net income function γ : R → R corresponds to a given τ by the formula

γ(y) ≡ y − τ(y).
First we discuss the typical consumer’s problem under the premise that the

consumer does not lie about its type, and later turn to incentive problems. A

consumer of type w ∈ [w,w] is confronted with the following maximization
problem in this model:

max
c,l
u(c, l, x, w) subject to w · l − τ(w · l) ≥ c with τ , x given,

and subject to c ≥ 0, l ≥ 0, l ≤ 1.

For fixed τ , we call arguments that solve this optimization problem c(w)

and l(w) (omitting τ and x) as is common in the literature. Define y(w) ≡
w · l(w).
The public good financed by the revenue raised through the income tax is

usually excluded frommodels of optimal income taxation due to the complexity

introduced, but here the cost of the public good will be used to derive the

revenue requirements function. Let the cost function for the public good in

terms of consumption good be H(x), which is assumed to be C2. The basic

set of tax functions for the optimal income tax model is defined as:

T ≡ {τ : R→ R| τ is measurable}

As is standard in the literature, for τ ∈ T we shall generally write τ(y) to

denote the tax liability of a worker earning income y.

3 Voting Over Income Taxes and a Public Good

3.1 Basic Assumptions

These basic assumptions will be maintained throughout the remainder of this

paper.

We will now use ideas inspired by Bergstrom and Cornes (1983) to obtain

a unique Pareto optimal level of public good for each draw, so the revenue

requirement function is well-defined.
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The major assumption that we make to obtain results, beyond requiring

sufficient revenue to finance the public good for each draw, is that utility is

quasi-linear and separable to a certain degree:11

u(c, l, x, w) = c+ b(l, w) + r(x,w)

We assume throughout that ∂b/∂l < 0, ∂2b/∂l2 < 0, ∂r/∂x > 0, ∂2r/∂x2 <

0; dH(x)/dx > 0 and d2H(x)/dx2 ≥ 0.

From this, it follows that utility is strictly monotonic in consumption com-

modity (a good) and labor (a bad). There are several more remarks to

be made. First, if we had more than 1 efficient level of public good pos-

sible for given parameters, as is standard in public goods models without the

Bergstrom-Cornes type of assumptions, then we would have another dimension

to vote over, namely the level of the public good. Generally speaking, this

would cause Condorcet cycles and thus no Condorcet winner. Second, if we

made utility more general, for example allowing the subutility function r(x,w)

to depend on consumption good c or labor l or both, then the public good

level and hence the aggregate revenue requirement function would depend on

the tax function, and that tax function would depend on the public good level

and hence the aggregate revenue requirement function. Thus, the aggregate

revenue requirement would not be exogenous and likely not uniquely defined.

Probably it is a solution to a fixed point problem, possibly a contraction under

some circumstances. Finally, when production of the public good is not con-

stant returns to scale, there is a potential issue of profit distribution. However,

when utility is quasi-linear, this isn’t really an issue.

The bottom line is that something has to be done to shut down the feedback

between tax liabilities and the optimal level of the public good. The Bergstrom

and Cornes (1983) specification is a natural starting point and actually is more

general than some of the separability assumptions used in the optimal nonlinear

income tax literature.

The next step in our analysis is to find the Pareto efficient level of public

goods provision for each draw using the Lindahl-Samuelson condition for our

specialized economy, a technique pioneered by Bergstrom and Cornes (1983).

Let (w1, w2, ..., wk) ∈ A, and let ci and li denote the consumption and
labor supply of the ith member of the draw respectively. Then production

possibilities for this given draw are:

11In this case we are also using w as a taste parameter. That interpretation is quite

common in both the optimal tax literature and the literature on self-selection.
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k∑

i=1

wi · li −
k∑

i=1

ci ≥ H(x). (1)

Fix (w1, w2, ..., wk) ∈ A. We define an allocation to be interior if the

associated level of public good x satisfies x > 0 and H(x) <

k∑

i=1

wi.
12 Given

our assumptions, a necessary and sufficient condition for an interior Pareto

optimum is:

k∑

i=1

∂r(x,wi)/∂x |x=0> dH(x)/dx |x=0 and there is x such that
k∑

i=1

∂r(x,wi)/∂x |x=x< dH(x)/dx |x=x and H(x) <
k∑

i=1

wi. More usefully, we

shall assume the following sufficient condition:

For all w ∈ [w,w], ∂r(x,w)/∂x > dH(0)/dx |x=0, and k·∂r(x,w)/∂x |x=H−1(kw)<

dH(x)/dx |x=H−1(kw).

Lemma 1: Under the basic assumptions listed above, for any given draw

(w1, w2, ...wk), there exists an interior Pareto optimal allocation; moreover, for

all interior Pareto optimal allocations, the public good level x∗ is the same.

Proof: The Pareto optimal allocations are solutions to: maxu(c1, l1, x, w1)

subject to u(ci, li, x, wi) ≥ ui for i = 2, 3, ...k and subject to (1) where the

maximum is taken over ci, li, (i = 1, ..., k) and x. Restricting attention to

interior optima, we have the Lindahl-Samuelson condition for this problem:

k∑

i=1

∂r(x,wi)/∂x = dH(x)/dx. (2)

Since this equation is independent of ci and li for all i, the Pareto optimal

level of public good provision is independent of the distribution of income and

consumption for the given draw. Given our assumptions on r and H, there

exists a unique level of public good x∗ that solves (2).

For the class of utility functions defined above we can thus solve for x∗ as

an (implicit) function of (w1, w2, ..., wk), and obtain the revenue requirement

function

R(w1, w2, ..., wk) ≡ H(x∗(w1, w2, ..., wk)).

12See Bergstrom and Cornes (1983) for an explanation of why we need to restrict the

analysis to interior allocations.
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Let F ⊆ T be the feasible set defined by:

F ≡
{

τ ∈ T | a.s. for (w1, w2, ..., wk) ∈ A,
k∑

i=1

τ(y(wi)) ≥ R(w1, w2, ..., wk)
}
.

Notice that the feasible set does not depend on the level of public good x, since

revenue requirements for Pareto efficient x must be satisfied for all draws, and

hence for the draw that is actually realized.

With this in hand, a straightforward definition of majority rule equilib-

rium follows: a majority rule equilibrium for draws of size k is a correspon-

dence M mapping (w1, w2, ..., wk) into F × R+ such that for almost every

(w1, w2, ..., wk) ∈ A, for every (τ , x) ∈ M(w1, w2, ..., wk) (with associated

y(w)), there is no subset D of {w1, w2, ..., wk} of cardinality greater than k/2
along with another pair (τ ′, x′) ∈ F × R+ (with associated y′(w)) such that
u(y′(w) − τ ′(y′(w)), y′(w)/w, x′, w) > u(y(w) − τ(y(w)), y(w)/w, x, w) for all
w ∈ D.
It is important to make a couple of remarks about this definition. First,

in the case where aggregate revenue requirements R are taken as primitive

and exogenous, we can simply take the public good level x to be fixed. Then

there is no voting over the public good component of the bundle. Second,

when the public good component is not fixed, it is important to explain why

we restrict to Pareto optimal provision of the public good for any draw. In

essence, there is unanimity ex post concerning its level. This relies heav-

ily on our assumptions concerning the utility function. To be precise, fix a

draw (w1, w2, ..., wk) ∈ A and consider the public good level x∗(w1, w2, ..., wk).
Below we will find a τ ∗ ∈ F such that (τ ∗, x∗) is majority undefeated by

any (τ̂ , x∗) where τ̂ ∈ F . Suppose that there is a (τ̂ , x̂) such that τ̂ ∈ F ,
k∑

i=1

τ̂(ŷ(wi)) ≥ H(x̂),13 and (τ̂ , x̂) majority defeats (τ ∗, x∗). But since τ̂ ∈ F ,
k∑

i=1

τ̂(ŷ(wi)) ≥ H(x∗(w1, w2, ..., wk)). Hence, if surplus revenue is redistrib-

uted back to consumers under tax system τ̂ , or alternatively used for another

public good not made explicit in this model, or simply counted as government

surplus as in cost-benefit analysis, (τ̂ , x∗) Pareto dominates (τ̂ , x̂) with ap-

propriate redistribution of the surplus.14 This fact, combined with the fact

13This condition is actually unnecessary.
14This could be uniform per capita redistribution of the surplus, for example.
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that (τ ∗, x∗) is majority undefeated by any (τ̂ , x∗) where τ̂ ∈ F , implies that
(τ ∗, x∗) is not majority defeated by (τ̂ , x̂).

We have avoided a technicality here concerning the redistribution of excess

revenue or its other use by the government, both because it adds notation and

because it is unnecessary to restrict its use. What is important to this applica-

tion is that the unique Pareto efficient level of public good provision generates

surplus relative to other levels. Of course, in cases where R is a primitive and

there is no public good in the model, this argument is superfluous.

3.2 The Main Result

To simplify notation, we shall abbreviate derivatives of functions of only one

variable using primes, e.g. H ′(x) ≡ dH(x)/dx.

Theorem 1: Let k ≥ 2 and let u(c, l, x, w) = c + b(l, w) + w · s(r̂(x)),
H(x) = m · r̂(x), where r̂′(x) > 0, r̂′′(x) ≥ 0, s′(r) > 0, s′′(r) < 0, 2s′′(r)2 >
s′′′(r) · s′(r), m > 0. Then for any draw in A, the one stage voting game over
interior (τ , x) has a majority rule equilibrium.

Proof: See the Appendix.

Examples covered by this theorem include the following:

A. u(c, l, x, w) = c + b(l, w) + w · s(x), H(x) = m · x, where r̂(x) = x,

s′(x) > 0, s′′(x) < 0, s′′′(x) ≤ 0, and m > 0.

B. u(c, l, x, w) = c+ b(l, w) + w
1−αx

1−α, H(x) = m
β
· xβ, with α > 1, β ≥ 1.

In this case, r̂(x) = 1
β
xβ, s(r) = β

1−α
β

1−α r
1−α
β .

Example 1 below is covered by B, with α = 3, β = 2.

A complicating factor in proving such theorems is that aggregate revenue

requirements derived here depend not only on the first derivative of the cost

function, but on its level as well.

4 Discussion of the Underlying Techniques

4.1 Single Crossing Individual Revenue Requirements

With a view toward future extensions of Theorem 1, we state some natural

assumptions on R that will be satisfied by the revenue requirements derived in

the course of proving Theorem 1. For instance, we might wish simply to take
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revenue requirements R as a primitive rather than derived from a model of a

pure public good. That generalization is covered in this section.

The first of these assumptions means that position in the draw (first, sec-

ond, etc.) does not matter. All that matters in determining the revenue to be

extracted from a draw is which types are drawn from the distribution.

Definition: A revenue requirement function R is said to be symmetric

if for each k and for each (w1, w2, ..., wk) ∈ A, for any permutation σ of
{1, 2, ..., k}, R(w1, w2, ..., wk) = R(wσ(1), wσ(2)..., wσ(k)).
We will use the assumption that R is C2. This is not a strong assumption,

because the assumption that R is C2 is generic in the appropriate topology;

that is, C2 R’s will uniformly approximate any continuous R (Hirsch (1976,

Theorem 2.2)).15 We will also assume that R is smoothly monotonic:

Definition: A revenue requirement function R is said to be smoothly

monotonic if for any (w1, w2, ..., wk) ∈ A, ∂R(w1, w2, ..., wk)/∂wi > 0 for

i = 1, 2, ..., k.

This assumption requires that increasing the ability or wage of any in-

dividual in a draw increases the total tax liability of the draw. One could

successfully use weaker assumptions with this framework, but at a cost of

greatly complicating the proofs.16

Amajor step in our analysis that we have relegated to other papers that are

cited in the bibliography, Berliant and Gouveia (2001) and Berliant and Page

(1996), is to implement the individual revenue requirement g using an income

tax, an indirect mechanism. A sufficient (and virtually necessary) condition

is that g be increasing in type, w.17 If g is anywhere decreasing in type, the

net income function can cut the indifference curve of an agent, creating a gap

in the assignment of types to tax liability and ruining the implementation of g

by an income tax. To use the first order approach to incentive compatibility,

for example, we must make further assumptions, namely the second order

conditions.18 These second order conditions are equivalent to the property

15This idea is also used to justify differentiability in the smooth economies literature.
16One particular case ruled out is the one of constant per capita revenues. In our model

this situation implies constant individual revenue requirements, i.e. a head tax, clearly an

uninteresting situation even though it is first-best. It also includes the particular situation

where the government wants to raise zero fiscal revenue. Constant per capita revenues can

be handled as a limit of the cases considered here.
17The case g′(w) = 0 for some types w could be handled, but it creates some technical

problems because g is not necessarily invertible.
18We note that much of the recent literature on optimal taxation verifies the second order

conditions ex post, not ex ante; see Kapička (2013) for example.
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that g is increasing.

Turning next to aggregate revenue requirements R, we relate the property

of increasing R (∂R(w1, w2, ..., wk)/∂wi > 0 for i = 1, 2, ..., k) to increasing g ∈
G∗. Suppose that there are w,w′ ∈ [w,w] with w′ > w. Then, by definition
of G∗, there is a draw (w1, w2, ..., wk) with w = wi for some i and

∑k
j=1 g(wj) =

R(w1, w2, ..., wk). Now replace w with w′, namely set wi = w′, leaving

all other elements of the draw the same. Then R(w1, w2, ..., w
′, ..., wk) >

R(w1, w2, ..., wk). Since g is feasible, g(w1)+g(w2)+ · · ·+g(w′)+ · · ·+g(wk) ≥
R(w1, w2, ..., w

′, ..., wk) > R(w1, w2, ..., wk) =
∑k

j=1 g(wj), so g(w
′) > g(w).

The next step is to introduce a set of assumptions where the elements of

the set of feasible and minimal individual revenue requirements G∗ are single

crossing,19 i.e. each pair of g’s will cross only once.20 They will be implied by

the postulates of Theorem 1. Thus, future generalizations of our main results

will likely use the lemmas below. The assumptions have collective revenue

requirements decreasing as a draw becomes more polarized.

Definition: A revenue requirement function R(w1, ...wk) is argument-

additive if R(w1, w2, ..., wk) ≡ Q(
k∑

i=1

wi). Let Q
′ denote dQ

d

∑k

i=1

wi

.

Lemma 2: Let k ≥ 2 and let the revenue requirement functionR(w1, w2, ..., wk)
be argument-additive with Q′′ < 0. Then, we have that ∀g ∈ G∗, g is as fol-
lows:

— For w̃ ≥ (w + w)/2, g ∈ G∗ implies:
A) g(w; w̃) = Q(kw̃)/k+Q′(kw̃) · (w− w̃) if w ≤ w̃+(k−1) · (w̃−w).
B) g(w; w̃) = Q((k−1)w+w)− ((k−1)/k) ·Q(kw̃)+ (k−1) ·Q′(kw̃) ·

(w̃ − w) if w > w̃ + (k − 1) · (w̃ − w).

— For w̃ < (w + w)/2, g ∈ G∗ implies:
C) g(w; w̃) = Q(kw̃)/k+Q′(kw̃) · (w− w̃) if w ≥ w̃− (k−1) · (w− w̃)
D) g(w; w̃) = Q((k−1)w+w)− ((k−1)/k) ·Q(kw̃)+(k−1) ·Q′(kw̃) ·

(w̃ − w) if w < w̃ − (k − 1) · (w − w̃)
19In fact, under stronger assumptions, it is possible to show that the set of feasible and

minimal individual revenue requirements is a singleton, rendering voting trivial. In that

analysis, it’s useful to have the size of the draw, k, unknown to the planner as well. We

omit this analysis for the sake of brevity.
20A G∗ with single crossing g’s generates a trade-off where raising more taxes from one

type of voter allows less revenue to be raised from another type, as in the conventional

income tax model.
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where w̃ ∈ [w,w]. Thus, dg(w; w̃)/dw > 0 except at a finite number of

points. Furthermore, ∀w ∈ [w,w], g(w; w̃) is single caved21 in w̃ and attains
a minimum at w̃ = w. Finally, any pair of g’s in G∗ will cross once: for

any g, g′ ∈ G∗, there exists a w̃, w̃′ ∈ [w,w], w̃ < w̃′ such that g(w) > g′(w)
implies g(w) > g′(w) for all w ∈ [w, w̃), g(w) = g′(w) for all w ∈ [w̃, w̃′] and
g(w) < g′(w) for all w ∈ (w̃′, w].

Proof: See the Appendix.

The implication of our feasibility approach in this case is that feasible tax

functions turn out to be parameterized by w̃. The intuition for this result is

quite simple. Consider (for the moment) the case where the distribution of

endowments is not bounded above or below. Since the revenue requirement Q

is concave, so is the per capita revenue requirement Q/k. But then, only the

tangents to Q/k can be tax functions, since any linear combination of taxes has

to be greater than or equal to the per capita requirement. The w̃’s correspond

to the arguments of the per capita revenue functions at the tangency points.

The statement of the theorem is slightly more complex because this intuition

may not work near the bounds w and w.

Note that the marginal rates in branch B are lower than the rates in

branches A and C (the tangent branches), that in turn are lower than those in

branch D. In the argument-additivity case, concavity implies that per-capita

revenue requirements decrease with the polarization of the draw.

Notice that the shape of the distribution of endowments f does not have

in itself any relevant information to predict the shape of the income tax sched-

ules chosen by majority rule, since we have not used it anywhere. Revenue

requirements function R is all that is needed.22

4.2 Single Crossing Optimal Tax Functions

Next, some results from the literature on optimal income taxation and im-

plementation theory are used to construct the best income tax function that

implements a given individual revenue requirement. The discussion will be

informal, but made formal in the theorems and their proofs.

21A function g is single-caved if −g is single peaked.
22With these preliminary results in hand, it would be possible to prove that a majority

rule equilibrium exists for the endowment economy where there is no incentive problem.

Since this not our main aim, for the sake of brevity it is omitted.
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The problem confronting a worker/consumer of type w given net income

schedule γ is maxl u(γ(w · l), l, x, w). Using the particular form of utility that
we have specified, the first order condition from this problem is dγ

dy
·w+∂b/∂l =

0. Rearranging,
dγ

dy
= −∂b(l, w)

∂l
· 1
w
.

For this tax schedule, we want the consumer of type w to pay exactly the

taxes due, which are g(w) for some g ∈ G∗. If g is strictly increasing, g is
invertible. If we assume (for the moment) that g(w) is continuously differen-

tiable, then g−1, which maps tax liability to ability (or wage), is well-defined

and continuously differentiable. Substituting into the last expression,

dγ

dy
= −

∂b( y
g−1(y−γ) , g

−1(y − γ))
∂l

· 1

g−1(y − γ) ≡ Φ(γ, y). (3)

As in Berliant (1992), a standard result from the theory of differential

equations yields a family of solutions to this differential equation.23 Berliant

and Gouveia (2001) show that (3) has global solutions if g′ > 0, g(w) ≥ 0.
Of course, as L’Ollivier and Rochet (1983) point out, the second order

conditions must be checked to ensure that solutions to (3) do not involve

bunching, which means that consumers do optimize in (3) at the tax liability

given by g.24 This was done in Berliant and Gouveia (2001), where the Rev-

elation Principle25 was used to construct strictly increasing post tax income

23The method used above originates with the signaling model in Spence (1974), further

developed by Riley (1979) and Mailath (1987). Equation (3) is best seen as defining an indi-

rect mechanism where gross income is the signal sent by each agent to the planner, much as

in Spence’s model education is the signal sent to the firm. However, finding the equilibria of

this game is only part of the problem. The remaining part of the problem relates to imple-

mentation. By this we mean that the social planner’s problem is to define reward/penalty

functions that induce each type of agent to choose, in equilibrium, the behavior the planner

desires of that type of agent. A reference closer to our work is Guesnerie and Laffont (1984).

However, there is a difference between our results and the other literature on implementa-

tion using the differentiable approach to the revelation principle. The difference is that in

the other literature the principal cares only about implementing the action profiles of the

agents (labor supply schedules in our model). In contrast, we consider the implementation

of explicit maps from types to tax liability. That is, the principal cares about agents’ types,

which are hidden knowledge. These maps from types to tax liability are not action profiles,

and are motivated by the ability to pay approach in classical public finance. They play the

same role here as reduced form auctions play in the auction literature.
24That is, we have a separating equilibrium.
25In (3) the planner first chooses a net income function γ(y), the agents then take the

chosen net income function as given and maximize utility by selecting a gross income level y
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functions θ(w) = y(w) − g(w) that implement g(w), where g′(w) > 0. Since
we then have that y(w) is invertible, we immediately obtain γ(y) = θ(w(y))

and τ(y) = g(w(y)).

It is almost immediate from this development that the set of solutions to

(3) for a given g is Pareto ranked. We focus on the best of these for each given

g. Define

T ∗ ≡ {τ ∈ T | γ is a solution to (3) for some g ∈ G∗, τ(y) = y − γ(y),
and τ Pareto dominates all other solutions to (3) for the given g} .

Any element of T ∗ has the property that the marginal tax rate for the top

ability w consumer type is zero.

From a practical viewpoint, for instance in solving examples such as those

presented here, the use of these techniques and in particular equation (3)

makes sense. However, for the general theory, in our application we do not

have the conditions required by Berliant and Gouveia (2001); for example, the

standard boundary condition is not satisfied due to the quasi-linear form of

utility. Thus, we use Berliant and Page (1996), which is more general than

Berliant and Gouveia (2001), and even then we must modify the proof slightly.

Lemma 3: If G∗ is a set of measurable functions that are non-decreasing,

then for any k and any τ ∈ T there is a τ ∗ ∈ T ∗ such that the utility level of
each agent under τ ∗ is at least as large as the utility level of each agent under

τ and such that the marginal tax rate for the top ability w consumer type

under τ ∗, if it exists, is zero.26

Proof: We verify the assumptions of Berliant and Page (1996), Theorems

1 and 2, with a modification. Obviously, u is continuous and strictly decreas-

ing in tax payment τ , where c = y− τ . As is standard in the optimal income
tax literature, single crossing is satisfied because c is a normal good. The mod-

ification we must make is that, instead of the boundary conditions (3) and (4)

(or the corresponding level of labor supply). This is the implementation approach described

in Laffont (1988). The Revelation Principle allows us to write an equivalent mechanism

where agents are simply asked to report their type w. It is easier to check second order

conditions of the problem for this direct mechanism. They essentially say that both pre and

post tax incomes should be increasing functions of w. In our case they are strictly increasing

functions and there is no bunching.
26The result on the top marginal tax rate is extended to non-differentiable functions in

Berliant and Page (1996), but is a little complicated and, in fact, irrelevant to our purpose

here.
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in that paper, we have quasi-linear utility. The boundary conditions are used

in only one place in the proofs, namely in the first paragraph of the proof of

Theorem 1 of that paper. So we provide a substitute for the argument in that

paragraph; quasi-linear utility actually makes the proof simpler. As there,

Y = [0,m) ⊆ R+, the set of all possible incomes. We can set m > w. First,
given income yi assigned to person i in the draw, where people are ordered

by income from lowest to highest, omit x since it is irrelevant to this argu-

ment. The proof is by induction downward, beginning with the highest type

k. After the inductive argument, Berliant and Page (1996, p. 399) let k →∞.
Let yk ∈

{
y ∈ Y | u(y − g(wk), ywk , wk) ≥ u(y

′ − g(wk), y
′

wk
, wk)∀y′ ∈ Y

}
. De-

fine τ(y) = g(wk) for y ∈ [yk,∞). We must show that there is ŷi−1 such

that u(ŷi−1 − g(wi−1), ŷi−1wi−1
, wi−1) ≤ u(yi − g(wi), yi

wi−1
, wi−1). Taking ŷi−1 =

yi − g(wi) + g(wi−1) ≤ yi and evaluating the utility difference for our specific
form of utility function, u(ŷi−1−g(wi−1), ŷi−1wi−1

, wi−1)−u(yi−g(wi), yi
wi−1

, wi−1) =

yi − g(wi) + g(wi−1) − g(wi−1) + b( ŷi−1wi−1
, wi−1) − yi + g(wi) − b( yi

wi−1
, wi−1) =

b( ŷi−1
wi−1

, wi−1) − b( yi
wi−1

, wi−1) ≤ 0. As in the proof, since g(wi−1) ≤ g(wi),

u(yi − g(wi),
yi
wi−1

, wi−1) ≤ u(yi − g(wi−1),
yi
wi−1

, wi−1), and hence u(ŷi−1 −
g(wi−1),

ŷi−1
wi−1

, wi−1) ≤ u(yi − g(wi), yi
wi−1

, wi−1) ≤ u(yi − g(wi−1), yi
wi−1

, wi−1).

So there exists yi−1 ∈ [ŷi−1, yi] with u(yi−1 − g(wi−1), yi−1wi−1
, wi−1) = u(yi −

g(wi),
yi
wi−1

, wi−1). Then for y ∈ (yi−1, yi) define τ(y) ≡ y + b( y
wi−1

, wi−1) −
yi−1 + g(wi−1) − b( yi−1wi−1

, wi−1). For i = 1, for y ∈ [0, y1), define τ(y) ≡
y + b( y

w1
, w1) − y1 + g(w1) − b( y1w1 , w1). The remainder of the proofs proceed

as in that paper.

Remark: The theorem says that any non-negative and feasible revenue

requirement function can be implemented by a continuum of tax schedules.

These tax schedules are Pareto ranked and furthermore a maximal tax schedule

under the Pareto ranking exists.

The next step is to characterize a class of individual revenue requirements

for which we will be able to obtain results. This class contains the cases

discussed in Theorem 1 and may possibly include other sets of assumptions.

Definition: A collection E of functions mapping [w,w] into R is called

strongly single crossing if each g ∈ E is:

1. Continuous.

2. Twice continuously differentiable except possibly at a finite number of

points.
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3. dg/dw > 0 except possibly at a finite number of points.

4. Individual revenue requirements cross each other only once, i.e. for any

pair g, g′ ∈ E, there exists a w̃, w̃′ ∈ [w,w], w̃ < w̃′ such that g(w) >

g′(w) implies g(w) > g′(w) for all w ∈ [w, w̃), g(w) = g′(w) for all

w ∈ [w̃, w̃′] and g(w) < g′(w) for all w ∈ (w̃′, w].

The next two lemmata do not rely on the assumption that utility is quasi-

linear. Lemma 4 proves that when individual revenue requirements are

strongly single crossing, the income tax systems in T ∗ cross at most once.

Lemma 4: Let k be a positive integer. Suppose that R implies strongly

single crossing minimal individual revenue requirements, G∗. Let τ , τ ′ ∈
T ∗, and let y(·), y′(·) be the gross income functions associated with τ and τ ′,
respectively. For incomes y1, y2, y3 ∈ y([w,w]) ∩ y′([w,w]), y1 < y2 < y3,

τ(y3) < τ
′(y3) and τ(y2) > τ

′(y2) implies τ(y1) ≥ τ ′(y1).27

Proof: See the Appendix.

The notion of strongly single crossing of tax systems is the analog of con-

dition (SC) of Gans and Smart (1996) in this specific context.

Lemmas 3 and 4 are used to prove Lemma 5:

Lemma 5: Let k be a positive integer. Suppose that R implies strongly

single crossing minimal individual revenue requirements, G∗. Then for any

draw in A, the one stage voting game has a majority rule equilibrium, namely
∀(w1, w2, ..., wk) ∈ A, M(w1, w2, ..., wk) 6= ∅.
Proof: See the Appendix.

Strongly single crossing is used intensively to prove this. It has the im-

plication that induced preferences over tax systems have properties shared by

single peaked preferences over a one dimensional domain. The winners will be

the tax systems most preferred by the median voter (in the draw) out of tax

systems in T ∗.

The proof consists of two parts. The first part shows that there is a tax

schedule that is weakly preferred to all others by the median voter. The second

part shows that this tax schedule is a majority rule winner. This second part

could be replaced by Gans and Smart (1996, Theorem 1). But it would take

27Outside of y([w,w]), τ can be extended in an arbitrary fashion subject to incentive

compatibility, for example in a linear way.
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as much space to verify the assumptions of that Corollary as it does to prove

our more specialized result directly.

5 Examples

Next we provide a pair of simple examples that can be solved.

Example 1: Take

u(c, l, x, w) = c− l
2

2
− w · x

−2

2

H(x) =
x2

2

The marginal cost of the public good is x. The marginal willingness to pay

of type w for the public good is w · x−3, so the total marginal willingness to

pay for the draw (w1, w2, ..., wk) is x
−3

k∑

i=1

wi. Setting this equal to marginal

cost to solve for the Pareto efficient level of public good provision (that will

be unique), we obtain:

x∗(w1, w2, ..., wk) =

(
k∑

i=1

wi

) 1

4

A reason why the isoelastic case might be interesting comes from the fact that

it is a suitable case for the purpose of carrying out empirical tests of the model,

given that the correct way to aggregate abilities (or tastes) in this particular

case is simply to sum them.

The aggregate revenue requirement function is:

R(w1, w2, ..., wk) = H (x
∗(w1, w2, ..., wk)) =

1

2

√√√√
k∑

i=1

wi

Next, take w = 1, w = 2, and let w̃ be the median type of a draw. Then

as in Lemma 2, if k ≥ 2 and 1.5 ≤ w̃ ≤ 2, the minimal individual revenue

requirements are indexed by w̃ and given by28

g(w; w̃) =
1

2
(kw̃)

1

2 /k +
1

4
(kw̃)−

1

2 · (w − w̃)

=
1

4

[√
w̃

k
+

√
1

kw̃
· w
]

28To keep calculations simple, we focus on draws where the median is at least 1.5.
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In an endowment economy, this is the tax on endowments most preferred by

type w̃ among those satisfying the aggregate revenue constraints. In this

particular case, it is a linear tax. The next step is to implement it in an

optimal income tax economy.

Applying the first order approach to incentive compatibility29 given in the

differential equation (3) above, dτ
dy
= 1 − dγ

dy
, and g−1(y − γ) = w, the income

tax function is given by the solution to:30

dτ

dy
= 1− y

w2

Inverting g and solving for w in terms of τ ,

w = 4
√
kw̃τ − w̃

so
dτ

dy
= 1− y

[
4
√
kw̃τ − w̃

]2

This ordinary differential equation has a solution at through every point. To

choose the best of these, take the one that has the marginal tax rate zero for the

top type w = 2. For the top type, it is the solution that goes through (τ , y) =(
1

2
√
kw̃
+ 1

4

√
w̃
k
,
[
2+w̃√
kw̃
− w̃

]2)
. This will be the majority rule equilibrium for

any draw with median w̃ ≥ 1.5. A comparative static can be derived in this
example: The marginal tax rate at any income is increasing in the size of the

economy (k).

Example 2: One point of this example is that although we will restrict to

quasi-linear utility functions for the general theory, that might not be neces-

sary. Take

u(c, l, x, w) = min (c, w · [1− l])− w · x
−2

2

H(x) =
x2

2

The aggregate revenue requirements function is unchanged from Example 1.

Setting c = w · [1− l],
y − τ = w − y

29The second order condition for incentive compatibility will be satsified because ∂g(w;w̃)
∂w

>

0.
30Although we know that a solution exists and through any point it is unique, actually

solving the ODE explicitly is another matter entirely.
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Therefore,

τ(y) = 2y − w
= 2y − 4

√
kw̃τ(y) + w̃

and thus

τ(y) =
2y + w̃

1 + 4
√
kw̃

Comparative statics in k and w̃ are apparent.

Remarks: The single crossing of individual revenue requirements results

from the combination of: the assumptions on utility and cost of the public good,

and the idea that the aggregate revenue requirements must be satisfied for any

draw. We proved in Lemma 4 that when we implement the individual revenue

requirements and impose second best efficiency, the single crossing property is

inherited by the income tax implementations. One common feature of our in-

dividual revenue requirement functions is that there is a switch point, indexed

by w̃ in our examples here, that represents the individual revenue requirement

that minimizes that type’s tax liability among all individual revenue require-

ments satisfying the aggregate revenue requirements for all draws. This is not

actually necessary for our general results, and is not used in the proofs once

we obtain single crossing of individual revenue requirements. However, as

seen from Example 1, provided that g is strictly increasing, the optimization

point for type w under the (optimal) income tax framework will correspond

to tax liability g(w; w̃). Therefore, using the standard diagrams from opti-

mal tax theory,31 the majority rule equilibrium will correspond to the best

implementation (solution to the ordinary differential equation) of the revenue

requirement function that minimizes the tax liability of the median type of

the draw, g(w; w̃). Thus, the switch point is inherited by the optimal income

tax implementation of the individual revenue requirements. The fact that we

do not use the switch point once we have single crossing of individual revenue

requirements allows room for expansion of our results.

6 Conclusions

Two different but related issues deserve some discussion at the outset. The first

is whether information on the likelihood of each draw can be used. The second

is how to deal with possible excess revenues. As for the opposite situation of

31See Seade (1977).
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insufficient revenues, the reader should note that imposing a penalty for not

meeting the requirement simply results in a new revenue requirement function.

We first discuss the information issue. One obvious possibility would be

to define as feasible all individual revenue requirement functions that generate

an expected revenue equal to or larger than the expected collective revenue

requirement. In contrast with what we use, this would be a single constraint

rather than a constraint for each draw. The problem with this notion is that

single crossing conditions for individual revenue requirements would likely fail

to be satisfied for most cases including the ones studied in this paper. But

one could consider weakening our feasibility restriction and still have enough

“bite” to generate single crossing g’s. Here is a suggestion:

One option is to use a class of probability measures over draws and constrain

the expectation of revenues for each probability measure. Expected revenue

according to f would be one particular member of this class. The class could

be chosen to generate a continuum of constraints, binding enough for the single

crossing result to survive, and we would be back to our initial setup although

with different feasibility conditions. This is similar to a model of government

behavior using ambiguity aversion or Knightian uncertainty. Perhaps this

could be justified as a way to aggregate risk averse voter preferences over

budget deficits.

We now address the issue of excess revenue. Consider first the case of utility

quasi-linear in consumption good that we have used throughout this paper. It

is possible to return the ex post excess revenue in a lump-sum fashion, as there

are no income effects. Or the government could use them for another purpose,

such as production of yet another public good.

When we consider general preferences and technologies the problem be-

comes more difficult. Clearly, the excess revenue cannot be returned to tax-

payers in a lump sum fashion, as it will affect their behavior in optimizing

against the income tax. However, once we deviate from quasi-linear utility,

other issues would arise before we get to this point, most importantly the

presence of multiple Pareto optimal levels of public good provision. From the

point of view of applications, analysis of these more general models will be

much more difficult.

Since our income tax is distortive, it is reasonable to inquire why we should

impose the Pareto efficient level of public goods provision for each draw. To

be specific, a second-best, lower level of public good provision could be used,

where the amount of revenue that must be collected, and thus the distortion
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imposed by the income tax, could be reduced. For example, a draw of all

high types will require a high level of public good provision and thus high per

capita taxes. To ensure that high types do not try to mimic low types, the per

capita tax on low types will generally have to be higher than it would be if the

draw were known to consist of all low types and the first best level of public

good provision for that draw is used. Thus, excess revenue will be generated

from some draws, specifically of all low types, and it might be more efficient

to reduce the income tax for all draws and types and provide a second best,

lower level of public good and consequent lower tax for each draw.32 The

problem with this argument is that, ex post, after labor is supplied and taxes

are collected, the workers would like to voluntarily contribute lump sum to

raise the level of public good back to first best, say through a constant per

capita tax. In other words, they would like to renegotiate. So we stick to

first best public good levels to avoid this problem.

This example also illustrates how the incentive constraints affect the feasi-

ble set of tax instruments. What we have presented here is a benchmark, in

that the first best public good level is unique for each draw, thus cutting off

feedback between public good level and income tax selection. Such feedback

would make our analysis much more difficult.

The bottom line is whether the alternative models have more to offer. Is

it better to restrict ourselves to fixed revenue and voting over a parameter of

a prespecified functional form for taxes (as in the previous literature), which

are also generally Pareto dominated, or is the model proposed here a useful

complement? Differences of opinion are clearly possible.

We note here that unlike much of the earlier literature on voting over linear

taxes, the majority equilibria are not likely to be linear taxes without strong

assumptions on utility functions and on the structure of incentives. The reason

is simple: in the optimal income tax model, Pareto optimality requires that

the top ability individuals face a marginal tax rate of zero.33 All majority

rule equilibria derived in this paper are second best Pareto optimal (for a given

individual revenue requirement), and hence satisfy this property. Therefore,

32These interesting comments belong to Paolo Piacquadio.
33We know of only one case where an optimal tax is linear: Snyder and Kramer (1988).

But this and other results derived in that paper are due to the use of a peculiar model that

departs significantly from the other models used in the study of income taxation. There

are no income nor substitution effects on effort induced by taxation up to the point where

workers switch to the underground sector, and from that point on the same holds since, by

definition, income realized in the underground sector is not taxed.
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poll taxes are the only linear taxes that could possibly be equilibria. In our

model, such taxes are not generally majority rule equilibria, since consumers

at the lower ability end of the spectrum will object.

In that sense, the results obtained here are a step forward relative to Romer

(1975) and Roberts (1977). In another sense, they also improve on Snyder and

Kramer (1988) by using a standard optimal income tax model as the framework

to obtain the results.

There are a few strategies that may be productive in pursuing research

on voting over taxes. One strategy is to use probabilistic voting models such

as in Ledyard (1984). Another is to take advantage of the structure built in

this paper and, with our results in hand, look at multi-stage games in which

players’ actions at the earlier stages might transmit information about types.

Of course, it might be necessary to look at refinements of the Nash equilibrium

concept to narrow down the set of equilibria to those that are reasonable (at

least imposing subgame perfection as a criterion).

A two-stage game of interest is one in which k is fixed and each player in

a draw proposes a tax system in T ∗ (simultaneously). The second stage of the

game proceeds as in the single stage game above, with voting restricted to only

those tax systems in T ∗ that were proposed in the first stage.

A three stage game of interest is one in which k is again fixed and the

players in a draw elect representatives and who then propose tax systems and

proceed as in the two stage game (see Baron and Ferejohn (1989)).

Work remains to be done in obtaining comparative statics results, as in

the examples. Finally, the predictive power of the model will be the subject

of empirical research. That will certainly be the focus of future work.

7 Appendix

7.1 Proof of Theorem 1

For a draw (w1, w2, ..., wk) ∈ A, the Lindahl-Samuelson condition for this
model is:

k∑

i=1

wi · s′(r̂(x)) · r̂′(x) = m · r̂′(x)
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Hence,

x = r̂−1



s′−1




m
k∑

i=1

wi







and thus

R(w1, w2, ..., wk) = m · s′−1




m
k∑

i=1

wi




Hence, R is argument additive. Computing the first derivative,

dR

d
k∑

i=1

wi

= −m2 · 1

s′′


s

′−1




m
k∑

i=1

wi





 ·

(
k∑

i=1

wi

)2
> 0

Computing the second derivative,

d2R

d

(
k∑

i=1

wi

)2

= m2 ·

2s′′


s

′−1




m
k∑

i=1

wi





 ·

(
k∑

i=1

wi

)
+ s′′′


s

′−1




m
k∑

i=1

wi





 ·

−m

s′′




s′−1




m

k∑

i=1

wi








s

′′


s

′−1




m
k∑

i=1

wi





 ·

(
k∑

i=1

wi

)2



2

= m2 ·
2s′′ (r) ·

(
k∑

i=1

wi

)
+ s′′′ (r) · −m

s′′(r)


s′′ (r) ·

(
k∑

i=1

wi

)2

2
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where

r = s′−1




m
k∑

i=1

wi




Thus,

d2R

d

(
k∑

i=1

wi

)2 < 0 if and only if

2s′′ (r) ·
(

k∑

i=1

wi

)
< s′′′ (r) · m

s′′ (r)
or

2s′′ (r)2 > s′′′ (r) · s′(r)

The last expression holds by assumption. Therefore, R is argument additive

with negative second derivative. The result then follows from Lemmas 2 and

5.

7.2 Proof of Lemma 2

It is straightforward to prove by direct calculation that ∀g(w; w̃) ∈ G∗ as given
in the statement of the Lemma, g(w; w̃) is continuously differentiable in each

of w and w̃ and is strictly increasing in w. Since R is argument-additive,

R(w1, w2, ..., wk) = Q(

k∑

i=1

wi) = Q(k · wA), where wA is the average ability in

the draw.

Next focus on branches A and C of the statement of the Lemma. Since R

is concave, on these branches,

g(w; w̃) = Q(k · w̃)/k +Q′(k · w̃)(wA − w̃) ≥ Q(
k∑

i=1

wi)/k.

This shows that the branches A and C in the statement of the Lemma are

feasible. We now prove that they are minimal. Consider branch A. Clearly,

if a draw consists of k individuals of type w̃, g(w̃; w̃) is minimal. To show

that g(w; w̃) is minimal, suppose the opposite. Take h(w) to be minimal,

with h(w̃) = Q(k · w̃)/k and h(w) ≤ g(w; w̃) with strict inequality for some

w1 ∈ [w, w̃ + (k − 1) · (w̃ − w)]. It is feasible to have a draw (w1, w2, ...wk)
with mean w̃ and wi ∈ [w, w̃ + (k − 1) · (w̃ − w)] for i = 1, 2, ...k. Then,
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R(w1, w2, ...wk) = Q(k · w̃) =
k∑

i=1

g(wi; w̃). But
k∑

i=1

h(wi) <
k∑

i=1

g(wi; w̃), so

h(w) is not feasible. Similar reasoning holds for branch C.

Now consider branch B and w1 ∈ (w̃ + (k − 1)(w̃ − w), w]. The logic used
for branches A and C does not hold in this case: it is not possible to find k−1
ability levels in order to construct a draw with mean w̃. Consider a draw with

wj ∈ [w, w̃ + (k − 1) · (w̃ − w)] for j = 2, 3, ...k. Due to argument-additivity,
for any fixed draw mean wA, we can take all wj’s (j = 2, 3, ..., k) to be equal

to ŵ = (k · wA − w1)/(k − 1), without loss of generality. Feasibility requires

g(w1; w̃) + (k − 1) · g(ŵ; w̃) ≥ Q((k − 1) · ŵ + w1).

Take this as an equality and replace g(ŵ; w̃) by

Q(k · w̃)/k +Q′(k · w̃) · (ŵ − w̃)

to obtain:

g(w1; w̃) = Q((k−1)·ŵ+w1)−(k−1)/k·Q(k·w̃)−(k−1)·Q′(k·w̃)·(ŵ−w̃) (4)

By construction, this revenue requirement is minimal (particularly at ŵ = w̃).

Next, notice that

(k − 1) · ŵ + w1 > (k − 1) · ŵ + w̃ + (k − 1) · (w̃ − w)
≥ (k − 1) · w + w̃ + (k − 1) · (w̃ − w) = k · w̃

Since Q is concave,

(k − 1) ·Q′((k − 1) · ŵ + w1) < (k − 1) ·Q′(k · w̃)

Hence, expression (4) is maximized over ŵ ∈ [w,w] at ŵ = w, so feasibility

requires

g(w1; w̃) = Q((k−1) ·w+w1)− (k−1)/k ·Q(k · w̃)+(k−1) ·Q′(k · w̃) · (w̃−w).

It is easy to prove that allowing for draws with different compositions, namely

more than one ability in the interval [w̃+(k− 1) · (w̃−w), w], does not violate
feasibility. We thus obtain branch B in the statement of the Lemma. Branch

D is obtained following similar reasoning.

Next, suppose there is h ∈ G∗ that is not of the form given in the statement
of the Lemma. Then there is some w ∈ [w,w] with h(w) < g(w). Then

k · h(w) < k · g(w;w) = Q(k · w), implying that h is not feasible.
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To prove single cavedness in w̃, one need only differentiate g(w; w̃) with

respect to the parameter w̃. For branches A and C we obtain:

∂g(w; w̃)

∂w̃
= Q′′(k · w̃) · k · (w − w̃).

The derivative above is positive if w < w̃ and negative for w > w̃.

For branch B we have:

∂g(w; w̃)

∂w̃
= k · (k − 1) ·Q′′(k · w̃) · (w̃ − w) < 0.

which applies only for w > w̃.

Finally, for branch D we get:

∂g(w; w̃)

∂w̃
= k · (k − 1) ·Q′′(k · w̃) · (w̃ − w) > 0.

which applies only for w < w̃.

These results imply that argminw̃ g(w; w̃) = w. Furthermore, we claim

that these g’s are single crossing. To see this, first note that from the definition

of g(w; w̃) in the statement of the Lemma, direct calculation yields that ∂g(w;w̃)
∂w

is weakly decreasing in w̃ for each w. Therefore, if g(w; w̃) and g(w; w̃′) cross

twice, there exist w,w′, w′′ ∈ [w,w], w < w′ < w′′ such that g(w; w̃) = g(w; w̃′),
g(w′; w̃) 6= g(w′; w̃′), g(w′′; w̃) = g(w′′; w̃′). But this cannot happen in each

case: w̃′ = w̃, w̃′ < w̃, w̃′ > w̃.

7.3 Proof of Lemma 434

Let g and g′ be the elements of G∗ associated with τ and τ ′, respectively. The

proof is by contradiction. Suppose that there exist incomes y1 < y2 < y3 with

τ(y1) < τ ′(y1), τ(y2) > τ ′(y2) and τ(y3) < τ ′(y3). Then by the intermediate

value theorem applied to utility differences as a function of w, there exists wa

such that u(y(wa)− τ(y(wa)), y(wa)/wa) = u(y′(wa)− τ ′(y′(wa)), y′(wa)/wa),
y′(wa) > y(wa), τ ′(y′(wa)) < τ(y′(wa)) and τ(y(wa)) < τ ′(y(wa)). Moreover,

g(wa) = τ(y(wa)) < τ ′(y(wa)) and since y′(wa) > y(wa), g′(wa) > g(wa).35

There also exists wb > wa with u(y(wb) − τ(y(wb)), y(wb)/wb) = u(y′(wb) −
τ ′(y′(wb)), y′(wb)/wb), y(wb) > y′(wb), τ(y′(wb)) > τ ′(y′(wb)) and τ ′(y(wb)) >

τ(y(wb)). Hence τ(y′(wb)) > τ ′(y′(wb)) = g′(wb) and since y(wb) > y′(wb),

g(wb) > g′(wb).

34To see how this critical proof works, it is useful to draw the graphs from optimal taxation,

net income as a function of gross income, that are standard in the literature; see Seade (1977).
35dτ/dy = dg/dw · dw/dy > 0 holds because dg/dw > 0 and dw/dy > 0 is proved in

Proposition 1 of Berliant and Gouveia (2001).
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Using strongly single crossing, g(w) > g′(w).

By construction of T ∗, τ(y(w)) > τ ′(y′(w)). Note that since the mar-

ginal tax rate at y(w) and y′(w) is zero, what we have are essentially lump

sum taxes at the top ability level. Hence, u(y′(w) − τ ′(y′(w)), y′(w)/w) >
u(y(w)−τ(y(w)), y(w)/w). Normality of leisure implies y(w) > y′(w). More-
over, continuity of τ implies τ(y′(w)) > τ ′(y′(w)) Since τ ′(y(wb)) > τ(y(wb)),

there exists y′(w) > y∗ > y(wb) with τ(y∗) = τ ′(y∗), so there exists wc with

u(y(wc) − τ(y(wc)), y(wc)/wc) = u(y′(wc) − τ ′(y′(wc)), y′(wc)/wc), y′(wc) >
y(wc), τ ′(y′(wc)) < τ(y′(wc)) and τ(y(wc)) < τ ′(y(wc)). As above, g(wc) <

τ ′(y(wc)) and since y′(wc) > y(wc), g′(wc) > g(wc).

This contradicts strongly single crossing. So the hypothesis is false, and

the lemma is established.

7.4 Proof of Lemma 5

Definition: Let C1 be the space of continuously differentiable functions (with

domain [w,w] and range R) endowed with the uniform topology. We consider

T ∗ to be a subset of this space by extending any τ ∈ T ∗ to the whole domain,
if necessary, in a C1 and linear fashion.

Fix τ ∈ T ∗. First we claim that 0 ≤ dτ/dy ≤ 1. The first inequality

holds because dτ/dy = dg/dw · dw/dy, and dg/dw > 0 (except possibly at a
finite number of points) by assumption whereas dw/dy ≥ 0 is demonstrated in
the course of proving the implementation result, Proposition 1, in Berliant and

Gouveia (2001), so it holds except possibly at a finite number of points. Since,

in spite of the exceptions at finitely many points, τ will be C1, 0 ≤ dτ/dy. The
second inequality can be written dγ/dy ≥ 0, which reduces to dγ/dw ·dw/dy ≥
0. As before, dw/dy ≥ 0, and dγ/dw ≥ 0 is demonstrated in the same place as
dw/dy ≥ 0. (Note that dγ/dw > 0 is the second order condition for incentive
compatibility in this model.) So every τ ∈ T ∗ is Lipschitz in income with
constant 1, and thus T ∗ is equicontinuous. Since k ·g(w) ≥ R(w,w, ..., w) ≥ 0,
T ∗ is also norm bounded by w. Using Ascoli’s theorem (see Munkres (1975, p.

290)), T
∗
(the closure of T ∗ in C1) is compact.

Fix k and let (w1, w2, ..., wk) ∈ A. For any τ ∈ T , let v(τ , w) = maxy u(y−
τ(y), y/w), the utility induced by the tax system τ for type w. It is easy to

verify that for each w, v(τ , w) is continuous in its first argument.

Let τ ∗ be a maximal element of T
∗
using v(·, wM) as the objective, where

wM is the median ability level in (w1, w2, ..., wk) if k is odd, and w
M ∈
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[wk/2, wk/2+1] (where the wage rates are ordered in an increasing fashion) if

k is even. Using Lemma 3, τ ∗ ∈ T ∗.
Now suppose there exists τ ∈ T such that there is a subsetD of {w1, w2, ..., wk}

with v(τ , w) > v(τ ∗, w) for all w ∈ D and where the cardinality of D is greater
than k/2. Then using Lemma 3, we can take τ to be in T ∗ without loss of

generality. Using Lemma 4, τ ∗and τ are single crossing, or alternatively, their

after tax income functions are single crossing. Thus, there exist intervals

W,W ′ ⊆ [w,w] such that W and W ′ partition [w,w] and D ⊆ W . Let W

be the smallest interval (in the sense of set inclusion) such that W and its

complement are both intervals, W and W ′ partition [w,w], and D ⊆ W .
Then by definition of τ ∗, wM /∈ W . Hence D cannot contain a majority

of the draw, a contradiction. Hence the hypothesis is false and τ ∗ cannot be

defeated by any other feasible tax system.
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