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The Role of Skewness 

 

 

Abstract 

We study an equilibrium risk and return model to explore the effects of the coronavirus crisis and asso-

ciated skewness. We derive the moment and equilibrium equations, specifying skewness price of risk 

as an additive component of the effect of variance on mean expected return. We estimate our model 

using the flexible skewed generalized error distribution, for which we derive the distribution of returns 

and the likelihood function. Using S&P 500 Index returns from January 1990 to mid-May 2020, our 

results show that the coronavirus crisis generated the most negative reaction in the skewness price of 

risk, more negative even than the subprime crisis.  
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1. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease it causes (COVID-

19) were first identified after a cluster of cases in December 2019 in Wuhan, China. In response to 

reports of new cases surging daily in China and subsequently in Europe, especially Italy, the market’s 

negative reaction to the coronavirus’ spread began in mid-February 2020, with the first large crash on 

February 21. The U.S. equity markets hit a low on March 23 following the World Health Organization’s 

declaration of a pandemic on March 11, the exponential increase of daily new COVID-19 cases 

worldwide, and government decisions to enact lockdowns.  

 In this paper, we include the coronavirus crisis in a dynamic model of risk and return, in order to 

illustrate the importance of the skewness price of risk for modeling the risk–return relation. Our results 

have important implications for estimating the depth of the coronavirus financial crisis and its 

comparison with the 2008 subprime mortgage lending crisis. More generally, our analysis highlights 

the role of skewness in measuring the depth of financial crises and investors’ reaction to bad news. 

 The economic case for including skewness in a model of risk and return is that mean and variance 

are not the only factors driving the returns distribution (unconditional in the cross-section or conditional 

in the time series). This is because, ceteris paribus, risk-averse investors must prefer right-skewed 

portfolios to left-skewed ones. For example, adding assets that decrease a portfolio’s skewness (and 

thus making them more left-skewed) should have higher expected returns. Skewness is thus a key 

element in models of risk and return, especially for short- and medium-term investors. During periods 

of excess volatility, investors realize that their expected returns will not materialize and switch to less 

risky assets, thereby introducing increased negative skewness to the price of risk.  

 Because of the downturn’s exogenous nature, the coronavirus crisis presents a natural experiment 

to examine the role of skewness in models of risk and return. Chan and Marsh (2020) show that the 

market’s trajectory in the coronavirus crisis resembles that of the Great Depression and the Lehman 

Brothers collapse, but newer data for the coronavirus era shows a quicker market rebound since the 

U.S. market low on March 23, 2020. This phenomenon might be the result of the different and 

exogenous nature of the coronavirus crisis, with markets perceiving that the economy will rebound 



 

2 
 

more easily or because of the quickly enhanced liquidity by policy makers. We note, however, that the 

initial (one-month) coronavirus market crash was much deeper than the equivalent 2008 crash, 

reflecting a very strong investor reaction as well as associated changes in risk and investment horizons. 

 On this basis, our paper answers two interrelated questions. First, we examine whether skewness 

is significantly more negative during crisis periods while maintaining the prediction of a positive risk–

return nexus. The latter is important for consistency with key relevant theory in financial economics 

(e.g., French et al., 1987; Theodossiou and Savva, 2016). Second, we examine whether the sharpness 

and exogeneity of the coronavirus crisis implies that skewness was more negative during this period 

compared with the subprime crisis.  

 We incorporate skewness into a dynamic equilibrium model of risk and return. For a positive 

risk–return relation, investors require a higher (lower) risk premium during periods that are more (less) 

volatile. Technically, this dynamic implies that a portfolio’s excess return is a positive function of the 

conditional variance of returns (e.g., Engle et al., 1987). In this respect, we build on Theodossiou and 

Savva (2016), who explicitly model skewness in the price of risk. Specifically, we examine the joint 

effect of price shocks reflected in the subprime and coronavirus crises on the distribution of returns 

using a skewed extension of the generalized autoregressive conditional heteroskedasticity in the mean 

(GARCH-M) model of Glosten et al. (1993). We derive the conditional variance as a positive function 

of financial crises, and we estimate skewness in the price of risk as an additive component of the effect 

of variance (the pure price of risk) on the mean expected returns. The skewness equation depends on 

the conditional asymmetry parameter, and together these factors determine how the pure and skewness 

prices of risk affect expected returns. Importantly, we derive the risk-neutral equation of returns, which 

shows the effect of crises, skewness, and other parameters on equilibrium returns. Our model’s key 

prediction is that a negative value on the crisis parameter implies a negative unconditional asymmetry 

parameter and yields a negatively skewed distribution for returns. 

 We estimate our model using data from the S&P 500 Index for the period January 2, 1990 to May 

15, 2020 (7,652 daily continuously compounded returns). We use the skewed generalized error 

distribution, which has the appealing property of allowing us to develop exponential asset pricing 
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equations, thereby significantly improving flexibility. We use maximum likelihood estimation with 

robust standard errors and obtain confidence intervals using the procedure of Rapach and Wohar (2009). 

 Our main results show the importance of modeling crisis periods and associated skewness in asset 

pricing models. Aside from finding large volatility increases in the crisis periods, and consistent with 

our theoretical priors, we show that the conditional skewness price of risk is indeed negative in our full 

sample. Importantly, the conditional skewness price of risk drops (becomes more negative) by 

approximately 74% during the subprime crisis compared with the “regular” period, whereas the 

equivalent decrease during the coronavirus crisis is much larger, reaching 149% compared with the 

regular period. These decreases show the immense reaction of investors during crisis periods, as well 

as the quickly altering sentiments regarding portfolio risk and investment horizon. Evidently, the 

negative reactions were deeper during the coronavirus crisis compared with the subprime crisis. Finally, 

we show that accounting for skewness in our model allows maintaining the theoretically positive risk–

return relation. 

  The rest of the paper proceeds as follows. The next section develops the moment equations for 

prices of financial assets, derives the risk-neutral equilibrium equation for their returns, and explores 

the basic properties of their distributions. Section 3 specifies the key equations for the conditional 

moments in our model, as well as the risk-neutral equilibrium equation for returns. Sections 4 discusses 

the estimation method and the empirical findings. Section 5 concludes the paper.  

2. Asset Price Moments and Equilibrium Returns 
 

2.1. Asset Price Moments 

 
In a discrete time setup, the price of an asset at time t + 1 is 
 

   
11 11

1

tt t t tt
zr

t t tS S e S e
µ σ ++ ++

+
+ = = ,   (1) 

 
where St is the price at time t (spot price), rt+1 is a continuously compounded return for the period t to t 

+ 1, zt+1 is the standardized value of rt+1,  

   ( )11 t tt t E rµ ++ = Φ  

and 

   ( )2
1| 1vart t t trσ + += Φ  
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are respectively the mean and variance of rt+1 conditional on the information set Φt, which includes 

information available at time t used in the formation of price expectations. 

 The conditional probability mass function (pmf) for standardized returns is 

   ( )| | 1 1z t z t t t tdF f z dz+ += Φ , (2) 

 
where fz|t is the conditional and probability density function (pdf) for zt+1, which is assumed to be 

continuous and unimodal with a moment generating function. The latter is necessary for the existence 

of price expectations. 

 The jth conditional moment for asset prices is 
 

  ( ) 11 1

1

tt t t tj j zj j
t t t z t

E S S e e dF
µ σ ++ +

∞

+
−∞

Φ =    

 

   
1 ,lnt t j z tj Ej

tS e
µ + += , (3) 

where 

  11

,

tt tj z

j z t z t
E e dF

σ ++
∞

−∞
=   (4) 

 
for j = 1, 2, … The conditional mean and conditional variance of St+1 are respectively 

   ( ) 1 1,ln

1
t t z tE

t t tE S S e
µ + +

+ Φ =  (5) 

and 

   ( ) ( )1 2, 1,2 ln 2ln2
1var t t z t z tE E

t t tS S e e e
µ +

+ Φ = − . (6) 

 

2.2. Equilibrium Prices and Rates 

The asset’s accrued dividends at time t + 1, paid continuously over the period t to t +1, are 
 

   ( )1

1 1 1 ,tq
t tD S e +
+ += −  

 
where qt+1 is a dividend payment rate. The sum of the price and accrued dividends is 

   1 11 1

1 1

t tt t t tq z

t t tS D S e
µ σ+ ++ ++ +

+ ++ = .  (7) 

In liquid and frictionless markets, the absence of arbitrage opportunities requires that the expected value 

of the price and accrued dividends discounted at the asset’s required rate of return to be equal to its 

price at the beginning of the period. That is, 

   ( ) 1| , 1 11 1,, 1 1|
ln

1 1 ,t t f t tt t z tf t t t
r q Er

t t t t tE S D e S e S
ρ µρ + + +++ + − − + + +− −

+ ++ Φ = =   
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where rf,t+1 and ρt+1 are respectively the risk-free rate of interest and the asset’s risk premium over the 

period t to t + 1. The risk premium ρt+1 represents the minimum return in excess of the risk-free rate rt+1 

that induces investors to buy or hold the risky asset. A deviation of the above pricing kernel from St 

constitutes a violation of the martingale property for prices and is indicative of arbitrage opportunities. 

The arbitrage-free equality above gives the following equilibrium rate of return  

   1| , 1 1| 11 1,
ˆ lnt t f t t t tt t z t

K r q Eρ µ+ + + ++= + = + + , (8) 

 
where μt+1|t, qt+1 and lnE1,z|t are as defined previously. 

2.3. Distribution of Returns 
 
We examine the impact of distributional asymmetry on equilibrium returns using the following 

decomposition for standardized returns: 

  ( )( )1 1 11 1 1
1t t tt t t t t t

z sgn w wδ λ θ+ + ++ + += − + + , (9) 

where –δt+1|t is by construction the mode of zt+1, θt+1|t is a scaling constant for the tails of the distribution 

of zt+1, λt+1|t is a conditional asymmetry parameter with its values constrained in the closed interval [–1, 

1] and wt+1 is a symmetric random variable distributed as dFw|t. The asymmetry parameter λt+1|t controls 

the shape of the distribution to the left and right of the mode of dFz|t. Negative values of λt+1|t trigger a 

negatively skewed distribution and vice versa. Zero values are associated with a symmetric distribution. 

The assumption that mode(zt+1) = –δt+1|t implies that the mode for returns is  

   ( ) ( )1 11 1
mode modet tt t t t

r zµ σ+ ++ += +  

 
    

1 1 1 1t t t t t t t t
mµ δ σ+ + + += − ≡ . (10) 

 
Under the two-sided distribution framework used in the modeling of the distribution asset returns in 

downside and upside markets, the asymmetry parameter can be factored out of the distribution of 

standardized returns as follows (for details, see Savva and Theodossiou, 2018):  

  ( )( )1 11 tz t t t wtdF sgn w dFλ+ += + , (11) 

where 

  | 1.w t tw t
dF f dw +=  
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and ( )( )| | 11
.w t z t tt t

f f z wθ ++= The probability function fz|t(wt+1) above is obtained via direct substitution of 

zt+1(wt+1) into fz|t. By construction, the maximum likelihood point occurs at fz|t(–δt+1|t), which coincides 

with fw|t(0), thus fw|t has a zero mode. 

 Potential candidates for dFw|t include symmetric unimodal distributions with moment generating 

functions, such as the Generalized Error Distribution (GED), Laplace, normal, the symmetric 

exponential generalized beta of the second kind (EGB2) of McDonald and Xu (1995), the Generalized 

type III logistic and the logistic distributions.  

 The random variable decomposition and pdf factorization, given respectively by equations (9) 

and (10), yield the following functional forms for the scaling constants δt+1|t and θt+1|t 

  
1|1 1 1

2 tt t t t t t
Gδ λ θ+ + += , (12) 

  ( )2 2 2
1| 2| 1| 1|1 1 1 3 4t t t t t tt t G Gθ λ λ+ ++ = + −  (13) 

and 

  ( )| 1 1 |
0

2
s s

s t t t w tG E w w dF
∞

+ += =  ,  (14) 

 
for s = 1, 2, … See Equations (A3) and (A4) in the Appendix for the derivations. Note that these 

equations are general and do not depend on specific parametric distributions.  

2.4. Generalized Error Distribution 

For computational purpose, we use the flexible type generalized error distribution (GED) to model the 

distribution of the “stripped” random variable wt+1 

  ( ) 1 1

11
1

| 1 1| 1

1 1

1 1 1
exp ,

2
t t it t

k k

w t t t t t

t t t t

f w k w
k k

+ +

−
−

+ + +
+ +

   
   
   = Γ −      
   

 (15) 

 
where kt+1|t is a shape parameter that controls its tails and peakness around the zero mode of fw|t and Γ(⸱) 

is the gamma function. The above pdf is unimodal and symmetric with a moment generating function. 

The analytical equations for its absolute moments, derived in the appendix, are  

  1

1

| 1 1|

1 1

1 1
,t t

s

ks

s t t t t

t t t t

s
G E w k

k k
+

−

+ +
+ +

   
   +   = = Γ Γ      
   

for s = 1, 2 … (16) 
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We choose not to use the Student’s or the generalized t distribution of McDonald and Newey (1988), 

because of lack of moment generating functions. Their skewed extensions along the lines in this paper 

yield the skewed t of Hansen (1994) and the skewed generalized t of Theodossiou (1998). Both 

distributions are known to provide a good fit to the empirical distributions of financial returns. 

3. Specification of Conditional Moments 

We examine the joint impact of price shocks on the distribution of financial returns using a skewed 

extension of the generalized autoregressive conditional heteroskedasticity in the mean (GARCH-M) 

model of Glosten et al. (1993). We extend the model’s structure to account for the impact of the 

subprime and coronavirus crises. 

3.1. Conditional Variance 

The conditional variance of returns is  

  ( ) ( )2 2 2
1| 1 , , 0 | 1

1

var
J

t t t t D j j t N t t t t
j

r v D v Nσ α α ε β σ+ + −
=

= Φ = + + + + ,  (17) 

 
where Dj,t is an indicator variable that takes the value of one during the period of crisis j and zero 

otherwise, j = 1, 2,…, J, εt = rt – μt|t–1 is a deviation of return rt from its conditional mean, used as a 

proxy for shocks in period t – 1 to t, and Nt = 1 for εt < 0 and Nt = 0 for εt > 0. The parameter vD,j 

measures the impact of crisis j on the conditional variance of returns. The second and third terms ac-

count for asymmetric volatility and volatility clustering. Larger positive values of a and β are indicative 

of higher volatility persistence. The parameter aN measures the impact, if any, of past negative shocks 

on current market volatility (asymmetric volatility). In fact, the persistence of volatility is  

   VP ( )0 1N ta Pα ε β= + ⋅ < + < , 

where P(εt < 0) is the probability of negative shocks, which is 0.5 in case of a symmetric distribution 

for εt. Stationarity of volatility requires that VP < 1. 

3.2. Conditional Mode and Mean  

The equation for the conditional mode of rt + 1 is  

   ( )1 , , 01 1
1

mode
J

t t D j j t tt t t t
j

m r m D m b r c σ++ +
=

= Φ = + + + , (18) 
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where Dj,t, for j = 1, 2, …, J, are as defined previously, rt is a past return, σt+1|t = var(rt+1|Φt), and c is the 

GARCH-in-mean coefficient (Engle et al., 1987), or the “pure price of risk” (Theodossiou and Savva, 

2016). It follows from equation (10) that 

  ( )11 t tt t
E rµ ++ = Φ ( ), , 0 1 1

1

J

D j j t t t t t t
j

m D m br c δ σ+ +
=

= + + + + , (19) 

 
where δt+1|t is skewness price of risk. It also follows from equations (12) and (13) that 

  
( )

1|1

1
2 2 2

1| 2| 1| 1|

2

3 1 4

tt t

t t

t t t t t t

G

G G

λ
δ

λ λ
+

+

+ +

=
+ −

 (20) 

depends directly on the conditional asymmetry parameter λt+1|t and the conditional absolute moments 

G1|t and G2|t, which are functions of the shape parameter kt+1|t. Note that δt+1|t and λt+1|t have the same 

sign. Both parameters are of primary interest because they determine how the total, pure, and skewness 

price of risk affect expected returns.  

 The substitution of μt+1|t into equation (8) gives 

  ( )1| , , 0 11 1 1,
1

ˆ ln
J

t t D j j t t tt t t t z t
j

K m D m br c q Eδ σ+ ++ +
=

= + + + + + + , (21) 

 
which is a type risk-neutral equilibrium equation for returns. This equation shows how crises, volatility, 

and other distributional parameters affect equilibrium returns. 

3.3. Conditional Asymmetry 

The conditional asymmetry parameter, which controls the shape of the distribution of returns to the left 

and right of its conditional mode, is  

  ( )
1|

1| 1

2
1

1 t t
t t t t h

asym r
e

λ
++ += Φ = −

+
  (22) 

where 

   1| , , 0 | 1
1

J

t t D j j t N t P t h t t
j

h D u u hγ γ γ γ γ− +
+ −

=
= + + + +   (23) 

and 

  
1

1

t t t

t

t t

r m
u

σ
−

−

−
= , (24) 

are standardised returns in excess of their conditional mode, with t tu u− = for ut < 0 and zero otherwise, 

and t tu u+ = for ut > 0 and zero otherwise. These are used respectively as measures of downside and 

upside shocks (e.g., Feunou et al., 2012). 
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 The intercept γ0 can be negative, zero, or positive. A negative value is associated with a negative 

unconditional asymmetry parameter and yields a negatively skewed distribution for returns (and vice 

versa for a positive value). The crisis parameter γD,j measures the impact of crises on the intercept of 

ht+1|t. The coefficient γN measures the marginal impact of downside price shocks on the asymmetry 

index ht+1|t and the asymmetry parameter λt+1|t. A positive value indicates that past downside price 

shocks have a positive impact on both ht+1|t and λt+1|t (and vice versa). On the other hand, the coefficient 

γP measures the marginal impact of past price shocks on ht+1|t and λt+1|t. Positive values indicate that past 

upside price shocks have a positive impact on the parameters (and vice versa). The coefficient γh 

measures the persistence of past upside and downside shocks on the conditional values of ht+1|t and λt+1|t. 

3.4. Conditional Shape Parameter 

As in Mazur and Pipień (2018), we examine the dynamic behavior of the shape parameter kt+1|t using 

   
1||1

1 t t

U L
Ut t g

k k
k k

e ++

−= −
+

, (25) 

where  

   1| , , 0 | 1
1

J

t t D j j t N t P t h t t
j

g d D d d u d u d g− +
+ −

=
= + + + + , (26) 

tu −  and
tu+ are as defined previously, and kL and kU are predetermined lower and upper limits for the 

time varying shape parameter kt +1|t. Typical values in financial series are kL = 1 (Laplace) and kU = 2 

(normal). The parameters dN and dP control the shape of the distribution to the left and right of the 

conditional mode mt|t–1. Zero values for dN and dP indicate a time invariant shape parameter kt +1|t. 

3.5. Upside and Downside Probabilities  
 
The equations for the conditional probabilities for downside and upside markets are 

 ( ) ( )
1

1 1 1

1 1
1

2 1 t t
t t t t t h

P r m
e

λ
++ + +≤ = − =

+
 (27) 

and  

 ( ) ( )
1

1 1 1

1 1
1

2 1 t t
t t t t t h

P r m
e

λ
++ + + −> = + =

+
. (28) 

These equations are obtained from the substitution of the conditional asymmetry parameter of equation 

(14) into the upside and downside probability equations (A1) and (A2) in the Appendix.  
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4. Sample Likelihood Specification and Estimation 

This section presents the specification of the sample log-likelihood function and estimation of the 

parameters, and discusses the empirical findings. 

4.1 Skewed Generalized Error Distribution 

The distribution of returns is 

 ( ) 1

11
1

1 1

1 1 1

1 1

2
t tk

r t t t t

t t t t t t

f r k
kθ σ

+

−
−

+ +
+ + +

 
 
 Φ = Γ  
 

  

 

   ( )
1

1 1 1 1

1 1 1 1 1 1 1 1

1
exp ,

1 ( )

t tk

t t t t t t t

t t t t t t t t t t t t t t t

r

k sgn r

µ δ σ

µ δ σ λ θ σ

+

+ + + +

+ + + + + + + +

 
 − + 
 − + − +  
 

 (29) 

 
where μt+1|t, σt+1|t, δt+1|t, θt+1|t, λt+1|t, kt+1|t are as defined previously. This is the conditional version of the 

skewed generalized error distribution (SGED) of Theodossiou (2015). It follows easily from equations 

(9), (10), (11) and (15). Since its inception, the SGED has been employed in the literature for the meas-

urement of risk, pricing of options, and modeling of the time-series behavior of returns of stock indices, 

currencies, oil and precious metals, etc. Unlike the skewed generalized t that is often used in empirical 

work, the SGED enables the development of asset exponential asset pricing equations. It gives for kt+1|t 

= 1 the skewed Laplace or double exponential distribution, for kt+1|t = 2 the skewed normal distribution 

used in Feunou et al. (2012) and Roon and Karehnke (2017), and for kt+1|t = ∞ the uniform distribution. 

4.2. Maximum Likelihood Estimation  
 
We obtain maximum likelihood estimates (MLE) for the parameters of the conditional mean, variance, 

asymmetry, and shape equations of the distribution of returns via the Berndt et al. (1974) optimization 

procedure of the sample log-likelihood  

  ( ) ( ) ( )1 1
1 1

log ,
T T

r t t t
t t

L f r L+ +
= =

= Φ = θ θ θ ,  (30) 

 
where fy (θ | rt+1, Φt) is the conditional likelihood function of returns given by equation (29) and θ is a 

column vector of parameters for the conditional mean, variance, asymmetry, and shape equations 

specified previously. We obtain estimates for the time-varying skewness price of risk δt+1|t via the 
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substitution of the MLE for kt+1|t and λt+1|t into equation (20). Last, we obtain robust standard errors for 

the MLE estimates denoted by θ%  from the equation 

 ( ) ( ) ( ) ( ) ( )1 1
2 2

1 1 1 1

1 1 1

var
T T Tt t t t

t t t

L L L L
− −

+ + + +

= = =

   ∂ ∂ ∂ ∂   
   =    ′ ′ ′∂   ∂ ∂ ∂ ∂ ∂
   
  

θ θ θ θ

θ
θθ θ θ θ θ

% % % %

% .  (31) 

These are more appropriate in the case of missspecified sample likelihood functions (e.g., Engle and 

Gonzalez-Rivera, 1991; Bollerslev and Wooldridge, 1992).  

 Moreover, we calculate confidence intervals based on the bootstrap procedure of Rapach and 

Wohar (2009). Specifically, we generate a series of innovations to construct a pseudo-sample of 

observations making T + 100 independent draws from the SGED distribution. Using the randomly 

drawn innovations, we create the series according to the equations of the model (where the parameters 

of the model are set to their maximum-likelihood estimates). To randomize the initial observations of 

the pseudo-series, we drop the first 100 transient start-up, leaving us with a pseudo-sample of T 

observations matching the original sample. Then, we estimate the model using the pseudo-sample and 

repeat the process 1,000 times. We construct the 90% confidence intervals for each parameter using the 

percentile method in Davidson and MacKinnon (1993). 

4.3. Empirical Findings 

Our dataset covers the period January 2, 1990 to May 15, 2020, corresponding to 7,652 daily continu-

ously compounded returns for the S&P 500. We compute the returns using the equation 

( )1 1100 lnt t tr S S+ += ⋅ , 

where St and St+1 are the values of the index on two consecutive trading days. We differentiate among 

three periods: the subprime crisis (June 1, 2008 to February 1, 2010), the coronavirus crisis (February 

21, 2020 to the end of our sample), and the “regular” period (the rest of our sample).1  

                                                
1 We list several robustness tests in Appendix 2, the results of which are available on request. Importantly, the 

results are robust to the use of an earlier starting period for the subprime crisis (e.g., April 2008, when the first 

market downturn occurred) and to different definitions for the end of the subprime crisis. Moreover, reference to 

a “regular” period does not imply lack of turmoil in specific subperiods; such turmoil, however (as occurred, e.g., 

in the early and late 1990s or during the European sovereign debt crisis), was not nearly as deep as the subprime 

and coronavirus crises. As shown in the following, our model captures these spikes.   
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 Panel A of Table 2 reports the estimates for the conditional variance of daily returns, along with 

its structural terms for the two crisis periods. The results indicate intense volatility clustering throughout 

the period. Volatility persistence  

  ( )0N tVP a a P ε β= + < +  

 0.0091 0.1641 0.485 0.8873 0.976= + ⋅ + =  

is very high but stationary (given that VP < 1). The asymmetry coefficient is positive, supporting pre-

vious findings that negative stock market shocks have a larger impact on future volatility than do posi-

tive shocks. In general, these results are typical in studies of financial markets and in particular the S&P 

500 (e.g., Sun and Yu, 2020). 

 Panel A of Table 3 reports the monthly means of the conditional standard deviations, σt+1|t, in the 

regular, subprime crisis, and coronavirus crisis periods. Notably, during the coronavirus crisis period, 

the mean of σt+1|t is about 3.5 times larger relative to that of the regular period. For the subprime crisis, 

the mean is about two times larger. The pairwise t-test statistics and Figure 1 confirm these large dif-

ferences, with the figure showing large spikes in the two crisis periods (the largest spike in the corona-

virus crisis). 

 Panel B of Table 2 presents the estimates of the conditional mode equation. Negative serial cor-

relation is present in the return series. The pure market price of risk during the regular period is 0.228 

and statistically significant. The bootstrap intervals also confirm statistically significant positive devia-

tions of the pure market price of risk during the subprime and coronavirus crisis periods. Specifically, 

the pure market price of risk is 0.3281 (= 0.228 + 0.1001) during the subprime crisis and 0.391 during 

the coronavirus crisis. Also, Panel B of Table 3 reports the means of the conditional mode of daily 

returns, mt+1|t, for the subprime, coronavirus, and regular periods. The means are approximately double 

during the subprime period and triple during the coronavirus period. The t-test statistics for testing these 

differences are highly statistically significant, a fact illustrated in Figure 2.  

 Panel C of Table 2 reports the estimates for the conditional asymmetry index ht+1|t and parameter 

λt+1|t of the distribution of daily returns. The intercept of the asymmetry index is statistically significant 

and negative, thus reflecting a negatively skewed distribution of returns. The bootstrap intervals for its 
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deviations in the subprime and coronavirus periods are statistically significant and negative, implying 

larger negative values during the two periods and thus more-negatively skewed distribution for returns. 

The coefficient for past downside market shocks is also negative, indicating a negative impact of such 

shocks on current values of the asymmetry index and parameter. On the other hand, the coefficient for 

past upside market shocks is positive, indicating a positive impact on current values of the asymmetry 

index and parameter. Finally, the coefficient for past values of the asymmetry index is negative, indi-

cating strong mean reversion of the asymmetry index and parameter over time.  

 Panel C of Table 3 reports the equivalent means of the conditional asymmetry parameter, λt+1|t, 

for the subprime, coronavirus, and regular periods. The mean during the regular period is –0.0907, 

showing that on average, there are 9.07% more returns in the sample positioned to the left of the con-

ditional mode of the distribution of returns (negative skewness). This number increases significantly to 

15.91% and 22.65% during the subprime and coronavirus crisis periods, respectively. Figure 3 confirms 

the significant decrease of the asymmetry parameter during the subprime and coronavirus crisis periods. 

The dive in the monthly average of λt+1|t is indeed considerably deeper for the coronavirus crisis, show-

ing more negative skewness during this period compared with the subprime crisis. 

 Panel D of Table 2 reports estimates for the conditional shape index gt+1|t and parameter kt+1|t of 

the distribution of daily returns. As expected, the intercept of the shape index is statistically significant 

and positive. The bootstrap intervals for its deviations in the subprime and coronavirus periods are also 

statistically significant and positive. The coefficient for past downside market shocks is also positive, 

indicating a positive impact of downside shocks on current values of the shape parameter. On the other 

hand, the coefficient for past upside market shocks is negative, indicating a negative impact on current 

values of the shape parameter. Finally, the coefficient for past values of the shape index is positive, 

indicating slow mean reversion of the shape index and parameter over time.  

 Panel D of Table 3 reports the respective means of the conditional shape parameter, kt+1|t, for the 

regular, subprime, and coronavirus periods. The mean during the regular period is 1.36, showing a large 

deviation of the distribution of returns from normality (the shape parameter for the normal distribution 

is 2). The mean values of the shape parameters increase mildly to 1.43 during the subprime crisis and 
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to 1.56 during the coronavirus crisis. Figure 4 confirms the latter increase of the shape parameter during 

the subprime and coronavirus periods.  

 Most importantly, Panels E and F of Table 3 show the behavior of the skewness price of risk and 

the conditional mean of daily returns given by equations (20) and (19), respectively. The conditional 

skewness price of risk δt+1|t is considerably more negative during the subprime crisis, decreasing by 

approximately 74% compared with the regular period. The equivalent decrease is even larger for the 

coronavirus crisis—we document a decrease of 149% compared with the regular period. In fact, the 

difference between the coronavirus crisis and the regular period is double that of the difference between 

the subprime crisis and the regular period (–0.205 versus –0.103). Figures 5 and 6 illustrate the relevant 

distributions (also drawing lines for the respective normal distributions) and show the shift of the dis-

tributions to the left of that of regular periods. Most notably, Figure 7 illustrates the immense decreases 

in δt+1|t during the crisis periods, with the decrease during the coronavirus crisis being considerably 

deeper compared with the equivalent decrease during the subprime crisis.  

 Finally, in Panels G and H of Table 3, we report the means of the risk-neutral equilibrium returns 

along with log of the exponential component given by equation (21). Equilibrium returns are about 5 

and 10 times higher in the subprime and coronavirus crisis periods, respectively, than during the regular 

period. Figures 7 and 8 illustrate the time series behavior of their monthly averages. The large spikes 

observed during the two periods indicate excessive risk premia required by investors. 

5. Conclusions 

We model the coronavirus crisis in an equilibrium model of asset pricing with skewness in the price of 

risk. We define the conditional moment equations as functions of the subprime and coronavirus crises, 

and we show theoretically that skewness becomes more negative in crisis periods. We further define 

the risk-neutral equilibrium equation for returns as a function of crisis periods. Notably, in equilibrium, 

skewness enters as an additive parameter to the effect of the variance on returns (the pure price of risk). 

This result is important theoretically, because the model allows the effect of the pure price of risk on 

returns to be positive (consistent with a positive risk and return relation).  
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 We estimate our model using S&P 500 data for January 2, 1990 to May 15, 2020. We use the 

skewed generalized error distribution, for which we derive the distribution of returns, the likelihood 

function, robust standard errors, and bootstrapped confidence intervals. Our results show extreme skew-

ness during the subprime and coronavirus crises, whereas skewness during other turmoil periods was 

significantly milder. In fact, skewness during the coronavirus crisis overshadows its counterpart during 

the subprime crisis. Our findings open up new research pathways on understanding the determinants of 

skewness in crisis periods. 
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Table 1: Detailed summary statistics of returns 

The table reports detailed summary statistics (number of observations, mean, standard deviation, mini-

mum, maximum, skewness, and kurtosis) for returns for the full sample, the sub-sample corresponding 

to the subprime crisis, and the subsample corresponding to the coronavirus crisis.  

 Obs. Mean St. dev. Min. Max. Skewness Kurtosis 

Returns        

Full sample 7,630 0.016 1.146 -12.771 10.953 -0.384 14.653 

Subprime crisis 716 -0.014 1.938 -9.474 10.953 -0.167 8.677 

Coronavirus crisis 92 -0.138 3.162 -12.771 8.962 -0.495 6.866 
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Table 2. Dynamics of Equilibrium Returns: Subprime and Coronavirus Crises 

The table reports estimation results from our asset pricing model. Our sample covers January 2, 1990 to May 15, 

2020. A * indicates statistical significance at the five percent level. The conditional variance, mode, asymmetry 

and shape parameters for daily returns are respectively given by equations (17), (18), (22) and (25). The 

coefficients with subscripts SubP and Covid represent deviations in subprime and coronavirus crisis periods. The 

subprime crisis covers June 1, 2008 to February 1, 2010 and the coronavirus crisis February 21, 2010 to May 15, 

2020. The coefficient c measures the impact of conditional standard deviation of returns on their conditional mode 

and is the “pure price of risk”. The conditional mean of returns μt+1|t is given by equation (19), where δt+1|t is the 

skewness price of risk. The total price of risk is ξt+1|t = c + δt+1|t. The lower part of the table reports the arithmetic 

averages of the conditional Pearson’s conditional coefficients of skewness and kurtosis, computed using the 

equations (A5) and (A6) in Appendix 1. 

    
 Estimates Std. Error t-stat Lower Upper 

A. Variance - ( )2
1| 1vart t t trσ + += Φ     

0v   0.0202 0.0023 8.62* –0.0085  0.0509 

SubPv  0.0240 0.0173 1.39 –0.0093  0.0499 

Covidv  0.0471 0.0658 0.72 0.0164  0.0759 

α  0.0091 0.0066 1.37 –0.0173  0.0419 

Nα  0.1641 0.0123 13.34* 0.1368  0.1970 

β  0.8873 0.0079 11.58* 0.8627  0.9205 

B. Mode - ( )11
mode t tt t

m r ++ = Φ and Mean - 
1 1 1 1t t t t t t t t

mµ δ σ+ + + += +   

0m  –0.0421 0.0257 –1.64 –0.0749  –0.0156 

SubPm  –0.0469 0.1315 –0.36 –0.0775  –0.0183 

Covidm  –0.0700 0.4758 –0.15 –0.1033  –0.0448 

b  –0.1402 –0.0133 10.54* –0.1709  –0.1117 

c  0.2280 0.0378 6.04* 0.1947  0.2539 

SubPc  0.1001 0.1266 0.79 0.0668  0.1270 

Covidc  0.1630 0.3407 0.48 0.1334  0.1927 

C. Asymmetry parameter - ( )1| 1t t t tasym rλ + += Φ  

0γ  –0.2160 0.0413 –5.24* –0.2448  –0.1850 

SubPγ  –0.1390 0.1247 –1.11 –0.1720  –0.1122 

Covidγ  –0.2560 0.4892 –0.52 –0.2863  –0.2272 

Nγ  –0.1350 0.0272 –4.97* –0.1645  –0.1052 

Pγ  0.2190 0.0382 5.73* 0.1916  0.2512 

hγ  –0.1470 0.0875 –1.68* –0.1764  –0.1173 

D. Shape parameter - ( )11 t tt t
k shape r ++ = Φ  

0d  0.4570 0.1190 3.84* 0.4285  0.4877 

SubPd  0.0520 0.2287 0.23 0.0205  0.0798 

Covidd  0.1850 1.0259 0.18 0.1567  0.2159 

Nd   0.3500 0.1725 2.03* 0.3203  0.3797 

Pd   –0.6220 0.1206 –5.16* –0.6531  –0.5941 

hd  0.5530 0.1005 5.50* 0.5205  0.5793 

SK - Average –0.2261 0.0028 –80.58* 
KU - Average 4.3458 0.0123 352.37* 
Log-L –9,717.2  
Observations 7,652   
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Table 3. Testing Differences in the Means of Conditional Parameters of the Distribution of Daily 

Returns in the Regular, Subprime, and Coronavirus Periods 
  

A. Conditional standard deviation of returns,
1t t

σ +   

Period   Mean  St. Dev. 

Regular 0.9172  0.4110   
Subprime 1.9078  1.1714   
COVID-19 3.4147  1.7826   

Difference in the means tests  Diff  T-Value 

Subprime vs. regular 0.9906  18.10   
COVID-19 vs. regular 2.4975  11.03  
 
B. Conditional mode of returns,

1t t
m +   

Period  Mean  St. Dev. 

Regular 0.1637  0.1761   
Subprime 0.5423  0.5298   
COVID-19 1.2613  0.9221   

Difference in the means tests  Diff  T-Value 

Subprime vs. regular 0.3786  15.31   
COVID-19 vs. regular 1.0975  9.37   
 
C. Conditional asymmetry parameter for the distribution of returns,

1t t
λ +   

Period  Mean  St. Dev. 

Regular –0.0907  0.0833   
Subprime –0.1591  0.0807   
COVID-19 –0.2265  0.0813   

Difference in the means tests  Diff  T-Value 

Subprime vs. regular –0.0685  –17.63   
COVID-19 vs. regular –0.1358  –13.10   
 
D. Conditional shape parameter for the distribution of returns,

1t t
k +   

Period  Mean  St. Dev. 

Regular 1.3618  0.1753   
Subprime 1.4331  0.1441   
COVID-19 1.5576  0.0956   

Difference in the means tests  Diff  T-Value 

Subprime vs. regular 0.0713  10.16   
COVID-19 vs. regular 0.1958  15.90   
 
E. Conditional skewness price of risk,

1t t
δ +   

Period  Mean  St. Dev. 

Regular –0.1379  0.1241   
Subprime –0.2404  0.1220   
COVID-19 –0.3433  0.1221   

Difference in the means tests  Diff  T-Value 

Subprime vs. regular –0.1025  –17.45   
COVID-19 vs. regular –0.2054  –13.19   
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F. Conditional mean of daily returns,
1t t

µ +   

Period  Mean  St. Dev. 

Regular 0.0300  0.0370   
Subprime 0.0631  0.1005   
COVID-19 0.0916  0.1303   

Difference in the means tests  Diff  T-Value 

Subprime vs. regular 0.0332  7.07   
COVID-19 vs. regular 0.0616  3.72   
 
G. Log of Exponential Integral, ln

z t
E   

Period  Mean  St. Dev. 

Regular –0.0139  0.1176   
Subprime 0.0212  0.0376   
COVID-19 0.0732  0.0722   

Difference in the means tests  Diff  T-Value 

Subprime vs. Regular 0.0351  15.71   
COVID-19 vs. Regular 0.0871  9.39   
 

H. Ex-dividend required returns, 
1 1

ˆ ln
t t t t z t

K Eµ+ += +  

Period  Mean  St. Dev. 

Regular 0.0160  0.1267   
Subprime 0.0843  0.1328   
COVID-19 0.1648  0.1924   

Difference in the means tests  Diff  T-Value 

Subprime vs. regular 0.0683  10.74   
COVID-19 vs. Regular 0.1488  6.08   
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Figure 1. Conditional Standard Deviation of Daily Returns, Monthly Averages 

 

Figure 2. Conditional Mode for Daily, Monthly Averages 
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Figure 3. Conditional Asymmetry Parameter for Distribution of Daily Returns 

 

Figure 4. Conditional Shape Parameter for Distribution of Daily Returns 
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Figure 5. Distributions of Conditional Skewness – Subprime vs. Regular Period 

 

Figure 6. Distributions of Conditional Skewness - Coronavirus vs. Regular Period 
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Figure 7. Conditional Skewness Price of Risk, Monthly Averages 

 

Figure 8. Log of Exponential Integral, Monthly Averages 
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Figure 9. Ex-Dividend Required Rate of Return 
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Online Appendix 1. Distribution of Standardized Returns: Derivation of 

Parameters 
 

To simplify the exposition and derivation of the results the time subscripts in Equations (9) and (11) are 

dropped from the random variables and parameters. That is, 

  ( )( )1z sgn w wδ λ θ= − + +  

and 

  ( )( )1z wdF sgn w dFλ= + . 

 
Upside and Downside Probabilities 
 
The probability for downside markets is 
 

   ( ) ( ) zP r m P z dF
δ

δ
−

−∞
≤ = ≤ − =   

 

    ( )
0 1

1
2

wdF
λλ

−∞

−= − = .  (A1) 

 
Similarly, the probability for upside markets 
  

   ( ) ( ) zP r m P z dF
δ

δ
∞

−
> = > − =  

 

    ( )
0

1
1

2
wdF

λλ
∞ += + = .  (A2) 

Parameter δ 
 
By construction Ez = 0, thus 
 

   ( ) .E z Ezδ δ δ+ = + =  

Also, because 

   ( )( )1z sgn w wδ λ θ= − + + , 

 

  ( ) ( ) zE z z dFδ δ
∞

−∞
+ = +  

 

   ( ) ( )
02 2

0

1 1w wwdF wdFθ λ λ
∞

−∞

 
 = − + + 
 

    

 

   ( ) ( )2 2

0

1 1 wwdFθ λ λ
∞ = − − + + 

    

 

   1
0

4 2wwdF Gλθ λ θ
∞

= = , 

where 
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  1
0

2 .wG E w w dF
∞

= =    

It follows easily from the above equations that 
  
   12 Gδ λ θ= . (A3) 

Parameter θ 
 

By construction Ez = 0 and Ez2 = 1, thus 
 

   ( ) ( ) ( )2 2 22E z E z E zδ δ δ+ = + +  

 

   2 2 2 2
11 1 4 Gδ λ θ= + = + . 

Also, 

    ( ) ( )( )32 2 21 wE z sgn w w dFδ θ λ
∞

−∞
+ = +  

 

    ( ) ( )3 3 2 2

0

1 1 ww dFλ λ θ
∞ = − + + 

     

 

     ( )2 2 2

0

1 3 2 ww dFλ θ
∞

= +  ( )2 2
21 3 Gλ θ= + . 

where 

    
2 2

2
0

2 .wG E w w dF
∞

= =   

It follows from above 

   ( )2 2 2 2 2
1 21 4 1 3G Gλ θ λ θ+ = +  

or 

   ( )( )2 2 2 2
2 11 1 3 4G Gλ λ θ= + − . 

Thus, 

   ( )2 2 2
2 11 1 3 4G Gθ λ λ= + − . (A4) 

 
Pearson’s Moment Coefficient of Skewness  
 

   ( ) ( )( )43 2 1 wE z sgn w dFδ θ λ
∞

−∞
+ = +  

 

   ( ) ( ) ( )3 4 4 3 3

0

1 1 1 ww dFλ λ θ
∞ = − − + + 

    

 

   ( )2 3
34 1 Gλ λ θ= + , 

where 3
3

0

2 wG w dF
∞

=  . The latter measure is computed numerically. Moreover,  

 

  ( ) ( ) ( ) ( )3 3 2 2 33 3E z E z E z E zδ δ δ δ+ = + + +  

 

   ( )3 33E z δ δ= + + . 
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The above results imply that  
 

  ( ) ( )3 3 2 3
33 4 1 ,E z Gδ δ λ λ θ+ + = +  

 
thus the Pearson’s conditional moment coefficient of skewness is 
 

  ( ) ( )3 2 3 3
34 1 3SK E z Gλ λ θ δ δ= = + − − . (A5) 

 
Pearson’s moment coefficient of kurtosis 

 

  ( ) ( )( )54 4 1 wE z sgn w dFδ θ λ
∞

−∞
+ = +  

 

   ( ) ( ) ( )4 5 5 4 4

0

1 1 1 ww dFλ λ θ
∞ = − − + + 

    

 

   ( )2 4 4
41 10 5 ,Gλ λ θ= + +  

where 

  4
4

0

2 .wG w dF
∞

=   

Moreover, 

  ( ) ( ) ( ) ( ) ( )4 4 3 2 2 3 44 6 4E z E z E z E z E zδ δ δ δ δ+ = + + + +  

 

   ( )4 2 44 6 .E z SKδ δ δ= + + +  

The above imply 
 

  ( ) ( )4 3 4 2 4 4
44 6 1 10 5 ,E z SK Gδ δ δ λ λ θ+ + + = + +  

 
thus the Pearson’s moment coefficient of kurtosis is 
 

  ( ) ( )4 2 4 4 2 4
41 10 5 4 6KU E z G SKλ λ θ δ δ δ= = + + − − − . (A6) 

 
Generalized Error Distribution – Absolute Moments 
 
Under the skewed generalized error distribution, the moment function for absolute values is 
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Online Appendix 2. Robustness Tests in Our Empirical Analysis 

We conduct the following robustness tests, the results of which are very similar to our baseline and are 

available on request: 

1. Use several different dates for the beginning and ending of the subprime and coronavirus crises.  

2. Use additional crisis dummies for the early 1990s recession, the dot-com bubble, and the 9/11 attacks 

(and combinations of these). 

3. Use additional crisis dummies for the periods of the SARS epidemic and the H1N1 pandemic (and 

combinations of these).  

4. Use any combination of the different choices concerning points 1 to 3 above.  

   


