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ABSTRACT 

Disasters often cause exogenous flow damage (i.e., the [hypothetical] difference in economic scale 

with and without a disaster in a certain period) to production (“supply constraint”). However, input-

output (IO) analysis (IOA) cannot usually consider it, because the Leontief quantity model (LQM) 

assumes that production is endogenous; the Ghosh quantity model (GQM) is considered implausible; 

and the Leontief price model (LPM) and the Ghosh price model (GPM) assume that quantity is fixed. 

This study proposes to consider a supply constraint in the LPM, introducing the price elasticity of 

demand. This study uses the loss of social surplus (SS) as a damage estimation because production 

(sales) is less informative as a damage index than profit (margin); that is, production can be any amount 

if without considering profit, and it does not tell exactly how much profit is lost for each supplier 

(upstream sector) and buyer (downstream sector). As a model application, this study examines Japan’s 

largest five earthquakes from 1995 to 2017 and the Great East Japan Earthquake (GEJE) in March 

2011. The worst earthquake at the peak tends to increase price by 10-20% and decrease SS by 20-30%, 

when compared with the initial month’s prices/production. The worst damage tends to last eight 

months at most, accumulating 0.5-month-production damage (i.e., the sum of [hypothetical] 

differences in SS with and without an earthquake [for eight months] is 50% of the initial month 

production). Meanwhile, the GEJE in the five prefectures had cumulatively, a 25-month-production 

damage until the temporal recovery at the 37th month. 

 

KEYWORDS: Earthquakes in Japan; input-output analysis; supply constraint  

JEL codes: D57, Q54 
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1. INTRODUCTION  

Japan is known as an earthquake-prone country; between 1996 and September 2018, there 

were 155 earthquakes – an average of 6.7 earthquakes per year – which resulted in human injuries 

(Japan Meteorological Agency, 2018). Dead or missing people were reported as a result of 20 of these 

155 earthquakes, with more than 10 people being reported dead or missing as a result of six of them. 

Ninety-nine cases resulted not only in human injuries but also in physical damage (houses, school 

buildings, landslides, window glass, water pipes, and so on). Tsunamis occurred in 18 cases, and more 

than one-meter tsunamis occurred in three cases (the mortality rate when a person is involved in a one-

meter tsunami is almost 100%). Note that in 1995, the Hyogo-ken Nanbu Earthquake (the so-called 

Great Hanshin Earthquake) resulted in 6,434 deaths and three missing people.  

Natural disasters such as earthquakes often disrupt economic activities across supply chains. 

To effectively use human capital and efficiently transform materials, production supply chains have 

become more complex (Brown, 2015). The risks of supply chain disruption have also increased 

because of unplanned and unusual events within complex production supply chains (Mital et al., 2018). 

Savitz (2012) used the Great East Japan Earthquake (GEJE, Japan) in March 2011 and the major 

flooding in Thailand in 2011 to highlight the need for manufacturers to apply effective risk-

management strategies along supply chains to minimize disruptions. These examples demonstrate the 

importance of forecasting the economic damage that will result from supply chain disruptions when 

structuring risk-management schemes for product supply chains. 

Economic methods such as computable general equilibrium (CGE) analysis, econometrics, 

and input-output (IO) analysis (IOA) have been widely used to quantify the economic damage 

associated with natural disasters, including earthquakes. They have also been used to conduct pre- and 

post-evaluations of recoveries from economic damage. Among them, IOA can be effective in 

evaluating economic impacts at the regional/sectoral level through the reduction in intermediate 

demand. In recent years, studies have used IOA to quantify the environmental loads with respect to 

greenhouse gas emissions (Kanemoto et al., 2016), water consumption (Feng et al., 2011), land use 

change (Weinzettel et al., 2013), biodiversity trends (Wilting et al., 2017), and material consumption 
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(Wiedmann et al., 2015), for example. These loads are included in “environmental footprint (Hoekstra 

and Wiedmann, 2014).” Although no extant method is versatile enough to evaluate economic damage 

over the long and short term, IOA is often used to analyze economic damage incurred through the 

supply chain as a result of large-scale, regional disasters such as floods and hurricanes (Crawford-

Brown et al., 2013; Hallegatte, 2008; Li et al., 2013; Okuyama, 2007; Shimoda and Fujikawa, 2012).  

This study focuses on an exogenous (flow) damage (i.e., the hypothetical difference of 

economic scales with and without a disaster in a certain period) to production (“supply constraint”) in 

IOA. The reason for such focus is because we can often know changes in industrial production at the 

monthly or quarterly levels from specific production statistics (provided by governments, industry 

organizations, and so on). As an issue, however, IOA cannot basically handle the supply constraint. 

Four typical IO models are the Leontief quantity model (LQM; Leontief, 1936), the Ghosh quantity 

model (GQM; Ghosh, 1958), the Leontief price model (LPM), and the Ghosh price model (GPM) 

(note that these price models were independently developed by Davar (1989) and Oosterhaven (1989)) 

(Fig. 1). The LQM cannot treat the supply constraint because production is endogenous. In GQM, 

although value added (or primary input) is exogenous, GQM itself is considered implausible 

(Oosterhaven, 1988, 1989, 1996, 2012). In LPM and GPM, because the quantity is assumed to be 

fixed, the supply constraint is not basically applicable. 

The purpose of this study is to propose a method that can consider the supply constraint in 

LPM, introducing the price elasticity of demand. This idea comes from Park (2007), who uniquely 

interpreted that GPM can consider the supply constraint. This approach requires the common 

assumptions of IOA, for instance, that the technical coefficient is fixed.  

This study modifies Park’s (2007) approach in certain aspects. Specifically, this study 

proposes using the loss of social surplus (SS) as damage instead of the change in production. 

Production (sales) is less informative as a damage index than profit (margin) because it can be any 

amount without considering profit. Also, production does not exactly tell how much profit is lost for 

or how much damage of the supply constraint is passed on to each supplier (upstream sectors) and 

each buyer (downstream sectors). For example, suppose the supply quantity is constrained to 80% 
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after the disaster, increasing the price to 125%. Thus, production remains 100%, but the buyers are 

damaged because they buy smaller quantities at the higher price. Such damage information is available 

in SS, which is consumer surplus (CS) plus producer surplus (PS). 

As a model application, among the 155 earthquakes plus the Hyogo-ken Nanbu Earthquake 

in 1995, which is included because of the huge impact that earthquake had, this study examines the 

six largest earthquakes in terms of deaths and missing people (Table I). These earthquakes are: the 

Hyogo-ken Nanbu Earthquake in January 1995 (hereafter H95Jan), which resulted in 6,434 deaths and 

three missing people; the Mid Niigata Prefecture Earthquake in October 2004 (N04Oct), with 68 

deaths; the Niigata-ken Chuetsu-oki Earthquake in July 2007 (N07Jul), with 15 deaths; the Iwate-

Miyagi Nairiku Earthquake in June 2008 (IM08Jun), with 17 deaths and six missing people; the GEJE, 

with 19,630 deaths and 2,569 missing people; and the 2016 Kumamoto earthquakes in April 2016 

(K16Apr), which resulted in 269 deaths.  

The structure of this paper is as follows. Section 2 explains the basic IO models. Section 3 

models the supply constraint in IOA, following and modifying Park (2007). Section 4 explains the 

application to earthquakes in Japan. Section 5 shows the estimated results, and Section 6 concludes. 

 

2. BASIC IO MODELS  

2.1. Basic Quantity and Price IO Models 

Two basic IO models (following Miller and Blair, 2009; and Oosterhaven, 1996) are the 

Leontief model (LQM and LPM) and the Ghosh model (GQM and GPM) (Fig. 1). Note that to 

facilitate understanding by comparison, this section follows the explanation in Oosterhaven (1996). 

LQM (“the demand-driven model”) is expressed as:  𝐱 = 𝐙𝐢 + 𝐘𝐢 = 𝐙𝐢 + 𝐲 = 𝐀𝐱 + 𝐲 (1) 

x is I-vector total output (or input) per sector: [𝑥𝑖] where brackets represent a vector or matrix. I 

means the number of sectors. Z is I×I-matrix with intermediate outputs (or inputs) per sector: [𝑧𝑖𝑗]. Y 

is I×M-matrix with final demand (or outputs) per sector: [𝑦𝑖𝑚]. M means the number of categories in 

final demand. i is a summation vector (of one). A is I×I-matrix with fixed intermediate input 
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coefficients (or technical input coefficients) ([𝑎𝑖𝑗] ) in a single-region IOA. Note that in a multi-

regional IO (MRIO) model, sectors i and j may be in different regions, trading a good from i to j. Thus, 

the MRIO model terms 𝑎𝑖𝑗  not as a “technical coefficient” but as “the product of a technical IO 

coefficient and IO trade coefficient” (Oosterhaven and Hewings, 2014).  𝐙 = 𝐀�̂� ⟺ 𝐀 = 𝐙�̂�−𝟏 (2) 

where the hat (of x) means a diagonal matrix. LQM is solved:  𝐱 = (𝐈 − 𝐀)−𝟏𝐲 = 𝐋𝐲 (3) 

where I is the I×I-identity matrix. L is the so-called Leontief inverse (or input inverse), where 𝐋 =[𝑙𝑖𝑗] = (𝐈 − 𝐀)−𝟏.  

LPM (“the cost-push price model”; Davar, 1989; Oosterhaven, 1989) is expressed as: 𝐩′ = 𝐩′𝐀 + 𝐩v′ 𝐂 (4) 

p is an I-vector of index price [pi] for sectoral output (unit cost for purchasers). pv is an N-vector [pvn] 

of index price for primary inputs (or value added). p and pv are usually a unit vector (i.e., one) 

(however, the lengths I and N are different). C is N×I matrix of fixed primary input coefficients, where 

V is the N×I matrix of primary inputs (value added, [vni]). N means the number of categories in value 

added.  𝐕 = 𝐂�̂� ⟺ 𝐂 = 𝐕�̂�−𝟏 (5) 

The sum of weights regarding A and C is equal to one (𝐢′𝐀 + 𝐢′𝐂 = 𝐢′). LPM is solved:  𝐩′ = 𝐩v′ 𝐂(𝐈 − 𝐀)−𝟏 = 𝐩v′ 𝐂𝐋 (6) 

Meanwhile, GQM (“the supply-driven model”) is expressed as:  𝐱′ = 𝐢′𝐙 + 𝐢′𝐕 = 𝐢′𝐙 + 𝐯′ = 𝐱′𝐁 + 𝐯′ (7) 

B is the I×I-matrix, with fixed intermediate output coefficients (or technical output coefficients) ([𝑏𝑖𝑗]) 
in a single-region IOA. Similarly to LQM, an MRIO model terms 𝑏𝑖𝑗 not as a “technical coefficient” 

but as “the product of technical IO coefficient and IO trade coefficient” (Oosterhaven and Hewings, 

2014). 𝐙 = �̂�𝐁 ⟺ 𝐁 = �̂�−𝟏𝐙 (8) 
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The relationship between A and B is expressed as:  𝐁 = �̂�−𝟏𝐀�̂� ⟺ 𝐀 = �̂�𝐁�̂�−𝟏 (9) 

GQM is solved:  𝐱′ = 𝐯′(𝐈 − 𝐁)−𝟏 = 𝐯′𝐆 (10) 

G is called the Ghosh inverse (or output inverse), where 𝐆 = [𝑔𝑖𝑗] = (𝐈 − 𝐁)−𝟏.  

GQM is mathematically equivalent to LPM, given that price is variable and quantity is fixed 

(Dietzenbacher, 1997). Following Park (2007), recall that 𝐁 = �̂�−𝟏𝐀�̂�, and GQM is solved:  ∆𝐱′ = ∆𝐯′(𝐈 − 𝐁)−𝟏 = ∆𝐯′(𝐈 − �̂�−𝟏𝐀�̂�)−𝟏 = ∆𝐯′(�̂�−𝟏�̂� − �̂�−𝟏𝐀�̂�)−𝟏 = ∆𝐯′�̂�−𝟏(𝐈 − 𝐀)−𝟏�̂� (11) 

Here, suppose that the relative price of primary input changes only in the l-th factor (e.g., labor) and 

does not change in other factors. Let ∆𝐯𝒍𝒑′ be the relative change in value added in the l-th factor:  ∆𝐯𝒍𝒑′ = ∆𝐯𝒍′�̂�−𝟏 (12) 

where ∆𝐯𝒍′ is the corresponding value added. Substituting ∆𝐯𝒍𝒑′ and multiplying �̂�−𝟏 in Eq.11:  ∆𝐱′�̂�−𝟏 = ∆𝐯𝒍𝒑′(𝐈 − 𝐀)−𝟏 = ∆𝐯𝒍𝒑′𝐋 (13) 

Let ∆𝐩′ and ∆(𝐩v′ 𝐂) be the change ratios in production and primary input, respectively. Note that ∆(𝐩v′ 𝐂) does not always mean 𝐂 is fixed: ∆(𝐩v′ 𝐂) = (∆𝐩v′ )(∆𝐂) ≠ ∆𝐩v′ 𝐂 (14) ∆𝐩′ is expressed: ∆𝐩′ = ∆𝐱′�̂�−𝟏 = ∆𝐯𝒍𝒑′𝐋 = ∆(𝐩v′ 𝐂)𝐋 (15) 

Thus, it is exactly the same as LPM, given that quantity is fixed. In other words, GQM can be 

interpreted as a price model.  

Finally, GPM (“the demand-pull price model”; Davar, 1989; Oosterhaven, 1989) is 

expressed as:  𝐩 = 𝐁𝐩 + 𝐃𝐩𝐲 (16) 

D is the I×M-matrix of the fixed final output coefficients:  𝐘 = �̂�𝐃 ⟺ 𝐃 = �̂�−𝟏𝐘 (17) 

p is an I-vector of index price [pi] for sectoral input (unit revenue for suppliers), and py is an M-vector 

[pym] of index price for final outputs per category. p and py are usually a unit vector (however, the 
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lengths I and M are different). The sum of weights regarding B and D is equal to one (𝐁𝐢 + 𝐃𝐢 = 𝐢). 
GPM is solved:  𝐩 = (𝐈 − 𝐁)−𝟏𝐃𝐩𝐲 = 𝐆𝐃𝐩𝐲 (18) 

 

GPM is mathematically equivalent to LQM, given that the price is fixed and the quantity is 

variable (Dietzenbacher, 1997). Following Park (2007), recall that 𝐀 = �̂�𝐁�̂�−𝟏, and LQM is solved:   ∆𝐱 = (𝐈 − 𝐀)−𝟏∆𝐲 = (�̂��̂�−𝟏 − �̂�𝐁�̂�−𝟏)−𝟏∆𝐲 = �̂�(𝐈 − 𝐁)−𝟏�̂�−𝟏∆𝐲 (19) 

By multiplying �̂�−𝟏 in Eq.19, the change ratio in production (�̂�−𝟏∆𝐱) is expressed as:  �̂�−𝟏∆𝐱 = �̂�−𝟏�̂�(𝐈 − 𝐁)−𝟏�̂�−𝟏∆𝐲 = (𝐈 − 𝐁)−𝟏�̂�−𝟏∆𝐲 = 𝐆�̂�−𝟏∆𝐲 (20) 

Let ∆𝐩 and ∆(𝐃𝐩𝐲) be the change ratios in total production and final demand, respectively. Note 

that ∆(𝐃𝐩𝐲) does not always mean 𝐃 is fixed:  ∆(𝐃𝐩𝐲) = (∆𝐃)(∆𝐩𝐲) ≠ 𝐃∆𝐩𝐲 (21) ∆𝐩 is expressed as: ∆𝐩 = �̂�−𝟏∆𝐱 = 𝐆�̂�−𝟏∆𝐲 = 𝐆∆(𝐃𝐩𝐲) (22) 

Thus, it is exactly the same as GPM, given that the price is fixed, In other words, GPM can be 

interpreted as a quantity model.  

 

2.2. Two Implicit Assumptions 

Park (2007) argues that IOA has two implicit assumptions: the newly required value added 

and final demand (Ghosh, 1958). Regarding the former, the ratio of the newly required value added 

over total input is defined as c: 𝐜 = 𝐢′𝐂 = 𝐢′𝐕�̂�−𝟏 = 𝐯′�̂�−𝟏 (23) 𝐜 is an I-vector and indeed the absolute price of primary inputs:  𝐜 = 𝐩v′ 𝐂 = 𝐢′𝐕�̂�−𝟏 = 𝐯′�̂�−𝟏 ⟺ ∆𝐜 = ∆(𝐩v′ 𝐂) = ∆(𝐢′𝐕�̂�−𝟏) = ∆(𝐯′�̂�−𝟏) (24) ∆(𝐯′�̂�−𝟏) means either or both x and v change. The newly required value added is expressed as:  ∆𝐯′ = ∆𝐯′�̂�−𝟏�̂� = (∆𝐜)�̂� (25) 
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Here, we assume that (∆𝐜)�̂� is equal to 𝐜∆�̂�, meaning that a certain change in c is passed only onto 

the change in production: (∆𝐜)�̂� = 𝐜∆�̂� = ∆𝐱′�̂� (26) 

Eq.26 can be solved because of multiplying 𝐱′ and 𝐜 (both I-vectors) in an element wise way. By 

multiplying �̂�−𝟏 in Eq.26:  ∆(𝐩v′ 𝐂) = ∆𝐜 = (∆𝐜)�̂��̂�−𝟏 = 𝐜∆�̂��̂�−𝟏 = ∆𝐱′�̂�−𝟏�̂� = ∆𝐩′�̂� (27) 

Notice that ∆𝐱′�̂�−𝟏 is ∆𝐩′, given that quantity is fixed (because of LPM). Thus, this implies that a 

certain change in the primary input price (∆(𝐩′𝐯𝐂)) should be transferred from the change in the total 

input price (∆𝐩′) via �̂�. 

Similarly, regarding the latter, the ratio of the final demand (𝐲 ) over total output (𝐱 ) is 

defined as d: 𝐝 = 𝐃𝐢 = �̂�−𝟏𝐘𝐢 = �̂�−1𝐲 (28) 

d is an I-vector, and indeed the change ratio of final demand, given that price is fixed (because of 

GPM):  𝐝 = 𝐃𝐩𝐲 = �̂�−1𝐲 ⟺ ∆𝐝 = ∆(𝐃𝐩𝐲) = ∆(�̂�−1𝐲) (29) ∆(�̂�−1𝐲) means either or both of x and y change. The newly required final demand is expressed as:  ∆𝐲 = �̂��̂�−𝟏∆𝐲 = �̂�(∆𝐝) (30) 

Here, we assume that �̂�(∆𝐝) is equal to ∆�̂�𝐝, meaning a certain change in d is passed only onto the 

change in production: �̂�(∆𝐝) = ∆�̂�𝐝 = �̂�∆𝐱 (31) 

Eq.31 can be solved because of multiplying 𝐱 and 𝐝 (both I-vectors) in an element wise way. By 

multiplying �̂�−𝟏 in Eq.31:  ∆(𝐃𝐩𝐲) = ∆𝐝 = �̂�−𝟏�̂�(∆𝐝) = �̂�−𝟏∆�̂�𝐝 = �̂��̂�−𝟏∆𝐱 = �̂�∆𝐩 (32) 

Notice that �̂�−𝟏∆𝐱 is ∆𝐩, given that price is fixed (because of GPM). This implies that a certain 

change ratio of final demand (∆(𝐃𝐩𝐲)) should be transferred from the change ratio of production (∆𝐩) 

via �̂�.  
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2.3. Implausibility of the IO Models 

In the IO literature, Oosterhaven (1988) has argued that GQM is implausible (see 

Supplementary Information A). In summary, GQM converts (delivers) the additional primary input 

(Δv) into final demand (y) in a perfectly elastic way (without any technological relationship), meaning 

that “consumers will buy whatever is supplied to them” (Oosterhaven, 2012, p.106). Implausibility 

implies that intermediate demand (input ratios) varies arbitrarily and that a production function is not 

necessary. Adding to the debate on implausibility (Gruver, 1989; Rose and Allison, 1989), 

Dietzenbacher (1997) argued that the four IO models (LQM, GQM, LPM, and GPM) should be 

divided into either the demand-pull (LQM and GPM, given the fixed price) or cost-push models (LPM 

and GQM, given the fixed quantity) (Section 2.1; Fig. 1). 

 

3. MODELING OF SUPPLY CONSTRAINT  

3.1. Introduction of This Section 

This section proposes the supply-driven IO model with reference to Park (2007; the 

unpublished paper). As in Section 2, a basic IOA can analyze only the following four changes: final 

demand (∆𝐲) in LQM (Eq.3) and price for final outputs (∆𝐩𝐲) in GPM (Eq.18) as the demand-pull 

models; and value added (∆𝐯′) in GQM (Eq.10) and price for value added (∆𝐩v′ ) in LPM (Eq.6) as the 

cost-push models.  

As an issue, the supply constraint is usually a quantity issue on the supply side, but GQM 

itself is considered implausible (Sections 2.3 and 3.2). Instead of GQM, Park (2007) proposes to use 

GPM (Eqs.22–32) for the supply constraint by introducing the price elasticity of demand (Section 3.3). 

Note that Park (2009; the unpublished paper) applied this approach to conduct an economic analysis 

of the U.S. oil industry based on changes in crude oil prices (see Supplementary Information B).  

This study modifies Park (2007) in the following two ways. First, because GPM is a 

demand-side model, this study supposes that LPM is appropriate for analyzing the supply constraints 

(Section 3.5). Second, because production itself is less informative as a damage index than profit, this 

study proposes to use the loss of SS as the damage index (Sections 3.4 and 3.6; for comparison between 
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IOA, this study, and CGE, see Supplementary Information C). Section 3.7 (Supplementary 

Information D) discusses how this study relates to the methods proposed in the previous studies 

regarding the seven issues.  

 

3.2. The Difficulty of Supply Constraint in IOA  

An exogenous shock such as a disaster often disrupts supply (i.e., supply constraint). 

Although we often know how much production decreases due to a shock via sectoral production 

statistics (typically at the monthly level), the supply constraint is difficult to consider in IOA. First, 

the supply constraint is usually a quantity issue. Even if price rises, quantity decreases; however, the 

fact that consumers will reduce the purchase quantity because of the price is just a reflection of a 

supply-demand balance. Therefore, IO price models are usually inadequate because they assume 

quantity is fixed (however, Dietzenbacher (1997) interpreted GPM as a quantity model; Section 2.1). 

LQM cannot usually handle the supply constraint because LQM assumes that total output is 

endogenous. In the literature, the inoperability IO model (e.g., Haimes and Jiang, 2001; Santos, 2006) 

considers the supply constraint; however, this model is regarded as suspicious for usability because it 

is based on LQM (Oosterhaven, 2017). 

Note that many disaster studies have used LQM (e.g., Crawford-Brown et al., 2013; 

Hallegatte, 2008; Li et al., 2013; Okuyama, 2007; Steenge and Bočkarjova, 2007). A basic application 

is to adopt the survival coefficient (or production capacity) 𝚯 = [𝜃𝑖] for total output (or input) (Δx) 

in sector i. 𝜃𝑖 is unity before a disaster and 0 ≤ 𝜃𝑖 ≤ 1 after a disaster. �̂�𝐱 = 𝐱 + ∆𝐱 (33) 

Again, however, the surviving total output (�̂�𝐱) is basically endogenous.  

Finally, GQM is applied in some disaster studies (e.g., for a recent survey, see Galbusera 

and Giannopoulos, 2018; Shimoda and Fujikawa, 2012). GQM is numerically capable if we know an 

exogenous change in primary input (Δv) due to a supply constraint in Eq.10. However, GQM is not 

popular because of its implausibility (Oosterhaven, 1988, 2017).  
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3.3. Supply Constraint in Park (2007) 

Park (2007) has uniquely considered the supply constraint in GPM. Note that Park (2009) 

adopts a similar method (see Supplementary Information B). Park (2007) first proposes that the supply 

constraint may decrease the quantity and increase the price as in basic economics. In Fig. 2, S and D 

are basic supply and demand curves; E is an equilibrium; and subscripts 0 and 1 are before and after 

the constraint, respectively. Suppose the demand curve is fixed; if the quantity is constrained from Q0 

to Q1, the supply curve moves from S0 to S1, depending on the fixed demand curve. Thus, the market 

price increases from P0 to P1, and production will change from Q0 times P0 to Q1 times P1.  

Park (2007) proposes using GPM for the supply constraint in the following four steps (A1 

to A4; Fig. 3). A1) Output quantity is exogenously constrained in certain sectors. A2) Using A1 and 

the exogenous price elasticity of demand (ε), the price of final outputs (Δpy) changes (increases). A3) 

The spillover effect of Δpy changes (increases) the input price (Δ𝐩) (where tilde means the estimation 

or spillover effect in this study). A4) Based on A3, input quantity is estimated.  

Specifically, (A1) the price elasticity of demand (ε) in sector i is exogenously defined as:  

𝜀𝑖 = ∆𝑞𝑖 𝑞𝑖⁄∆𝑝𝑖 𝑝𝑖⁄  (34) 

ε is the arc elasticity here (not the point elasticity). Let the base price (pi) be one and the base quantity 

(qi) be equal to xi (=piqi). The change of price is expressed as:  

∆𝑝𝑖 = ∆𝑞𝑖 𝑞𝑖⁄𝜀𝑖 𝑝𝑖⁄ = ∆𝑞𝑖𝑞𝑖𝜀𝑖 (35) 

We may use the survival coefficient 𝜃𝑖 instead of the quantity ratio:  𝑞𝑖 + ∆𝑞𝑖𝑞𝑖 = 𝜃𝑖 ⟺ ∆𝑞𝑖𝑞𝑖 = 𝜃𝑖 − 1 (36) 

A2) The newly required price of final output ((∆(𝐃𝐩𝐲)) is calculated (Eq.32) as follows:  

∆(𝐃𝐩𝐲) = �̂�∆𝐩 = �̂� [∆𝑞𝑖𝑞𝑖𝜀𝑖] = �̂� [𝜃𝑖 − 1𝜀𝑖 ] (37) 

A3) The spillover change in price (∆𝐩) is calculated (Eq.22): 

∆𝐩 = 𝐆∆(𝐃𝐩𝐲) = 𝐆�̂� [∆𝑞𝑖𝑞𝑖𝜀𝑖] = 𝐆�̂� [𝜃𝑖 − 1𝜀𝑖 ] (38) 
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A4) Based on A3 and ε, the spillover change in input quantity (∆�̃�𝑖) is estimated. Because Park (2007) 

does not specify this procedure, Subsection 3.4 discusses it.  

 

3.4. Generalization of Elasticity Between Price and Quantity 

A feature of Park (2007) is the introduction of the price elasticity of demand into IOA. As 

Oosterhaven (1996) pointed out, IOA usually assumes that price (p) and quantity (q) of production (x) 

are independent of each other. This study presupposes that changes in production are not adequate to 

use as a damage index because, unlike profit, production does not tell exactly how much damage to 

the supply constraint is passed along to each supplier (upstream sectors) and each buyer (downstream 

sectors). For example, suppose the supply quantity is constrained to 80%, increasing the price to 125%. 

Thus, production is 100%, and the suppliers may not be damaged; however, the buyers will be 

negatively affected because they will buy smaller quantities at the higher price. 

In IOA, even if price changes exogenously by ∆𝑝𝑖 in sector i, because quantity does not 

change (∆𝑞𝑖 = 0), production increases by ∆𝑝𝑖𝑥𝑖: (𝑝𝑖 + ∆𝑝𝑖)(𝑞𝑖 + ∆𝑞𝑖) = (1 + ∆𝑝𝑖)𝑥𝑖 = 𝑥𝑖 + ∆𝑝𝑖𝑥𝑖 (39) 

where (𝑝𝑖 = 1) and (𝑞𝑖 = 𝑥𝑖).  

In Park (2007), quantity is elastic with respect to price:  

𝜀𝑖 = ∆𝑞𝑖 𝑞𝑖⁄∆𝑝𝑖 𝑝𝑖⁄ = ∆𝑞𝑖∆𝑝𝑖𝑥𝑖 ⟹ ∆𝑞𝑖 = 𝜀𝑖∆𝑝𝑖𝑥𝑖 (40) 

If price changes exogenously by ∆𝑝𝑖, production will increase by (1 + 𝜀𝑖 + 𝜀𝑖∆𝑝𝑖)∆𝑝𝑖𝑥𝑖:  (𝑝𝑖 + ∆𝑝𝑖)(𝑞𝑖 + ∆𝑞𝑖) = (1 + ∆𝑝𝑖)(𝑥𝑖 + 𝜀𝑖∆𝑝𝑖𝑥𝑖) = 𝑥𝑖 + (1 + 𝜀𝑖 + 𝜀𝑖∆𝑝𝑖)∆𝑝𝑖𝑥𝑖 (41) 

Notice that Eq.39 is a special form of Eq.41, assuming (1 + 𝜀𝑖 + 𝜀𝑖∆𝑝𝑖) is one.  (1 + 𝜀𝑖 + 𝜀𝑖∆𝑝𝑖) = 1 ⟹ 𝜀𝑖(1 + ∆𝑝𝑖) = 0 (42) 

Thus, IOA usually assumes 𝜀𝑖 is 0. ∆𝑝𝑖 is not usually –1 because if so, a price (𝑝𝑖 + ∆𝑝𝑖) becomes 

zero.  

Note that the supply constraint usually increases price (∆𝑝𝑖 > 0). Therefore, production 

(Eq.41) will decrease when (1 + 𝜀𝑖 + 𝜀𝑖∆𝑝𝑖) is negative:  
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1 + 𝜀𝑖 + 𝜀𝑖∆𝑝𝑖 = 1 + 𝜀𝑖(1 + ∆𝑝𝑖) < 0 ⟺ 𝜀𝑖 < − 11 + ∆𝑝𝑖 (43) 

Eq.43 holds when 𝜀𝑖  is elastic to some degree (at least less than –1 when ∆𝑝𝑖 = 0 ). Otherwise, 

production will even increase after the supply constraint.  

 

3.5. Extension to the Cost-Push Price Model 

This and the next subsections aim to address two issues in Park (2007). This study argues 

that GPM in Park (2007) is inadequate for making economic interpretations (of the supply constraint), 

which is consistent with the assumptions in the following two points (see Subsection 2.3). First, GPM 

is a demand-pull model (Dietzenbacher, 1997), and hence, it is a demand-side analysis (i.e., the 

demand constraint). Second, if we are following Dietzenbacher (1997), GPM is a “quantity” model 

(Eqs.19–22), and therefore, GPM cannot handle price change. Thus, this study supposes that LPM is 

adequate for the supply constraint. First, LPM is the cost-push model and is for the supply-side analysis. 

Second, LPM can handle price change. 

Specifically, this study proposes to use LPM in the following four steps (B1–B4; Fig. 3). 

B1) Input quantity is exogenously constrained in certain sectors. B2) Using B1 and the exogenous 

price elasticity of demand, the price of primary inputs (Δpv) changes (increases) from Eq.27: 

∆(𝐩v′ 𝐂) = ∆𝐩′�̂� = [∆𝑞𝑖𝑞𝑖𝜀𝑖]′ �̂� = [𝜃𝑖 − 1𝜀𝑖 ]′ �̂� (44) 

B3) The spillover effect of Δpv changes (increases) output price (Δ𝐩) (Eq.15).  

∆𝐩′ = ∆(𝐩v′ 𝐂)𝐋 = ∆𝐩′�̂�𝐋 = [∆𝑞𝑖𝑞𝑖𝜀𝑖]′ �̂�𝐋 = [𝜃𝑖 − 1𝜀𝑖 ]′ �̂�𝐋 (45) 

B4) based on B3 and ε, spillover change in output quantity (∆�̃�) is estimated, such as from Eq.40:  ∆�̃�𝑖 = 𝜀𝑖∆�̃�𝑖𝑥𝑖 (46) 

Note that the elasticities (𝜀) are set as the same for Eqs.44 and 46 for simplification, but they can be 

different: such as 𝜀𝑠 (for supply “s”) in Eq.44 and 𝜀𝑑 (for demand “d”) in Eq.46. 
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3.6. Social Surplus Loss as a Damage of Supply Constraint  

The other issue is that Park (2007) estimates production as damage, which is obtained by 

multiplying total inputs and price changes in the next period (x times Δp; see Supplementary 

Information B). Unlike profit, however, changes in production do not exactly tell us how much damage 

is passed on to each supplier (upstream sectors) and each buyer (downstream sectors). Even if 

production increases after the supply constraint (as in Eqs.39–43), consumers, in particular, may be 

damaged because the constraint decreases quantity and increases price.  

Instead, this study proposes to use the loss of SS as the damage because it can identify the 

damage incurred by each buyer and seller. Note that the estimation of SS is common practice in CGE 

applications (e.g., Koks et al. (2016) that conduct both IOA and CGE for flood analysis). CGE looks 

ideal for disaster analysis because it is theoretically consistent; however, CGE is usually much harder 

to estimate than IOA (see Supplementary Information C).  

For simplicity, as in Fig. 2, this study supposes that the demand (D) and supply (S) curves 

are linear, and that D does not change, whereas S changes from S0 to S1 (note that S0 and S1 are 

supposed to go through the origin O). Specifically, the demand curve (D) in sector i has a slope of 1𝜀𝑖𝑥𝑖 
from Eqs.34–35 and hence, has an intercept (1 − 1𝜀𝑖).  

Suppose that before the disaster, quantity is production (𝑞𝑖 = 𝑥𝑖) and price is one (𝑝𝑖 = 1) 

in sector i. SS (𝑠𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒) before the supply constraint (in sector i) is ΔAOE0, where CS (𝑐𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒) is 

ΔAP0E0, and PS (𝑝𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒) is ΔOP0E0 (notice that PS is half of 𝑥𝑖).  

𝑠𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 = 𝑐𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 + 𝑝𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 = ΔAOE0 = 12 ∙ AO ∙ P0E0 = 12 ∙ (1 − 1𝜀𝑖) ∙ 𝑥𝑖 = (1 − 𝜀𝑖2 ) 𝑥𝑖
= − 𝑥𝑖2𝜀𝑖 + 𝑥𝑖2  

(47) 

𝑐𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 = ΔAP0E0 = 12 ∙ AP0 ∙ P0E0 = 12 ∙ (− 1𝜀𝑖) ∙ 𝑥𝑖 = − 𝑥𝑖2𝜀𝑖 (48) 

𝑝𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 = ΔOP0E0 = 12 ∙ OP0 ∙ P0E0 = 12 ∙ 1 ∙ 𝑥𝑖 = 𝑥𝑖2  (49) 

Meanwhile, suppose that after the disaster in sector i, the price changes from one to 
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(1 + ∆�̃�𝑖) from Eq.45, whereas quantity changes from 𝑥𝑖 to (1 + 𝜀𝑖∆�̃�𝑖)𝑥𝑖 from Eq.46. Thus, new 

production (𝑥𝑖𝑎𝑓𝑡𝑒𝑟) is calculated:  𝑥𝑖𝑎𝑓𝑡𝑒𝑟 = (1 + ∆�̃�𝑖) ∙ (1 + 𝜀𝑖∆�̃�𝑖)𝑥𝑖 (50) 

SS after the supply constraint (𝑠𝑠𝑖𝑎𝑓𝑡𝑒𝑟) is ΔAOE1, where CS (𝑐𝑠𝑖𝑎𝑓𝑡𝑒𝑟) is ΔAP1E1, and PS 

(𝑝𝑠𝑖𝑎𝑓𝑡𝑒𝑟) is ΔOP1E1.  

𝑠𝑠𝑖𝑎𝑓𝑡𝑒𝑟 = 𝑐𝑠𝑖𝑎𝑓𝑡𝑒𝑟 + 𝑝𝑠𝑖𝑎𝑓𝑡𝑒𝑟 = ΔAOE1 = 12 ∙ AO ∙ P1E1 = 12 ∙ (1 − 1𝜀𝑖) ∙ (1 + 𝜀𝑖∆�̃�𝑖)𝑥𝑖
= (1 + 𝜀𝑖∆�̃�𝑖) ∙ 𝑠𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒

 

(51) 

𝑐𝑠𝑖𝑎𝑓𝑡𝑒𝑟 = ΔAP1E1 = 12 ∙ AP1 ∙ P1E1 = 12 ∙ [(1 − 1𝜀𝑖) − (1 + ∆�̃�𝑖)] ∙ (1 + 𝜀𝑖∆�̃�𝑖)𝑥𝑖
= 12 ∙ (1 − 1𝜀𝑖) ∙ (1 + 𝜀𝑖∆�̃�𝑖)𝑥𝑖 − 12 ∙ (1 + ∆�̃�𝑖) ∙ (1 + 𝜀𝑖∆�̃�𝑖)𝑥𝑖
= 𝑠𝑠𝑖𝑎𝑓𝑡𝑒𝑟 − 𝑥𝑖𝑎𝑓𝑡𝑒𝑟2  

(52) 

𝑝𝑠𝑖𝑎𝑓𝑡𝑒𝑟 = ΔOP1E1 = 12 ∙ OP1 ∙ P1E1 = 12 ∙ (1 + ∆�̃�𝑖) ∙ (1 + 𝜀𝑖∆�̃�𝑖)𝑥𝑖 = 𝑥𝑖𝑎𝑓𝑡𝑒𝑟2  (53) 

Therefore, SS (ΔAOE0 and ΔAOE1) are two triangles, and they have the same base (AO) and different 

height, P0E0 (=Q0) and P1E1 (=Q1), depending only on the change in height (quantity).  

Specifically, this study proposes changes in SS, CS, and PS as damage indicators for the 

whole industry, the downstream sectors, and the upstream sectors, respectively. In sector i, the loss of 

SS (∆𝑠𝑠𝑖) is 𝑠𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 minus 𝑠𝑠𝑖𝑎𝑓𝑡𝑒𝑟: ∆𝑠𝑠𝑖 = 𝑠𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑠𝑠𝑖𝑎𝑓𝑡𝑒𝑟 = 𝑠𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 − (1 + 𝜀𝑖∆�̃�𝑖) ∙ 𝑠𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 = −𝜀𝑖∆�̃�𝑖 ∙ 𝑠𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒
 (54) 

The loss of CS (∆𝑐𝑠𝑖) is 𝑐𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 minus 𝑐𝑠𝑖𝑎𝑓𝑡𝑒𝑟, which is a trapezoid P1P0E0E1: 

∆𝑐𝑠𝑖 = 𝑐𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑐𝑠𝑖𝑎𝑓𝑡𝑒𝑟 = 12 ∙ (P1E1 + P0E0) ∙ P1P0 = 12 ∙ ((1 + 𝜀𝑖∆�̃�𝑖)𝑥𝑖 + 𝑥𝑖) ∙ ∆�̃�𝑖
= ∆�̃�𝑖(2 + 𝜀𝑖∆�̃�𝑖)2 ∙ 𝑥𝑖 

(55) 

The loss of PS (∆𝑝𝑠𝑖) is 𝑝𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 minus 𝑝𝑠𝑖𝑎𝑓𝑡𝑒𝑟: 
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∆𝑝𝑠𝑖 = 𝑝𝑠𝑖𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑝𝑠𝑖𝑎𝑓𝑡𝑒𝑟 = 𝑥𝑖𝑎𝑓𝑡𝑒𝑟2 − 𝑥𝑖2 = − ∆�̃�𝑖(1 + 𝜀𝑖 + 𝜀𝑖∆�̃�𝑖)2 · 𝑥𝑖 (56) 

 

3.7. Applications to the Approaches in the Previous Studies  

Some readers may wonder how this study relates to the methods proposed in the previous 

studies. Due to space limitations, Supplementary Information D briefly discusses the following seven 

items: the endogenous recovery for the survival coefficient (D.2), the sequential interindustry models 

in Romanoff (1984) and Okuyama et al. (2004) (D.3), the impact on transportation networks in Sohn 

et al. (2004) and Kim et al. (2002) (D.4), the input-occupancy-output model in Chen (1990) and Chen 

et al. (2005) (D.5), the extension to the CGE model in Kratena et al. (2013; 2017) and Kratena and 

Streicher (2017) (D.6), spatial substitution and price multipliers (D.7), and the supply constraint in 

GQM (D.8). 

 

4. APPLICATION TO EARTHQUAKES IN JAPAN  

4.1. Multi-Regional IO Table in Japan 

As a model application, this study examines the effect of supply constraint in the largest 

earthquakes in Japan (Table I). This study uses the 2005 MRIO table at the prefecture level (Hasegawa 

et al., 2015), which covers the 47 prefectures of Japan. This table includes 80 industry sector 

classifications (#1 to #80), where 54 sectors from #2 to #55 are mining and manufacturing sectors 

(industrial sectors), and 26 sectors (#1, #56 to #80) are agricultural and service sectors (non-industrial 

sectors) (see Supplementary Information Tables S4–S9). Thus, there are 3,760 industry-prefectures 

(80 sectors in 47 prefectures). Because of the data restriction for production capacity, this study 

examines the 54 mining and industrial sectors out of 80 sectors.  

An important feature of earthquakes is that the resultant damage does not tend to spill over 

to other prefectures. An earthquake with a large magnitude (e.g., M8.0 or more) will shake greatly in 

the prefecture closest to the epicenter (e.g., “Shindo” [seismic intensity scale in Japan] is “lower-five” 

or above), increasing the risk of human injuries and buildings collapsing. Meanwhile, it will not shake 

as much in other prefectures far from the epicenter (e.g., Shindo is four or below). 
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As an exception, however, the GEJE damaged a vast area across prefectures (Hayes et al., 

2017). The GEJE not only caused damage as a result of the earthquake, but also due to the tsunami 

(washing away coastal housing, other buildings, and infrastructure; power problems associated with 

the Fukushima nuclear power plant accident; and medical problems). This explains why the GEJE is 

referred to as a triple disaster (Managi and Guan, 2017). The triple disaster also affected undamaged 

prefectures indirectly in terms of power outages, disruption to logistics and supply chains, and so on. 

Thus, the prefectural MRIO table is suitable for analyzing huge disasters such as the GEJE because it 

can consider damage incurred across different prefectures. 

The reason for using the 2005 version of the MRIO table (Hasegawa et al., 2015) is that the 

growth rate of nominal gross domestic product (GDP) is meager between 1995 and 2016 

(approximately 0.21% on average): 516 trillion (T), 525T, and 539T Japanese yen (JPY) in 1995, 2005, 

and 2016, respectively (Cabinet Office, Government of Japan, 2018) (i.e., the so-called lost two 

decades). Because the industrial structure may change non-trivially over time, however, it is assumed 

herein that the industrial structure remained as per 2005 during all periods.  

The original MRIO table contains annual values, but this study uses monthly values, simply 

dividing the annual value by 12 (months). If necessary, the production value can be seasonally adjusted. 

As in GDP statistics, a popular method is to create “centered ratios” for every month by using the 

(past) 12-month centered moving average. Note that if the input coefficient varies every month, it will 

require the IO table of each month. 

Production (x) at the monthly level is 80,793 billion (B) JPY (100%) for all sectors, 25,263B 

JPY (31%) for the 54 mining and industrial sectors, and 55,530B JPY (69%) for the other 26 sectors. 

Similarly, final demand (y) at the monthly level is 46,870B JPY (100%) for all sectors, 11,455B JPY 

(24%) for the 54 mining and industrial sectors, and 35,415B JPY (76%) for the others.  

 

4.2. Research Settings 

As research settings (Table I), the focal prefectures are Hyogo for H95Jan, Niigata for 

N04Oct and N07Jul, Iwate and Miyagi for IM08Jun, and Kumamoto for K16Apr. Those for GEJE are 
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Fukushima, Iwate, Miyagi, Ibaraki, and Chiba (FIMIC prefectures), which experienced the triple 

disaster, and non-FIMIC prefectures (i.e., 42 of the 47 prefectures), which experienced power outages 

and disruption to logistics and supply chains. As the selection criteria, the prefecture that was closest to 

the epicenter is focused. However, in the case of IM08Jun, because the epicenter is near the prefectural 

border between Iwate and Miyagi, we have chosen two prefectures exceptionally. 

Regarding the initial and occurrence terms, the initial month before each earthquake (t=0) 

is set to May 1995 for H95Jan, September 2004 for N04Oct, June 2007 for N07Jul, May 2008 for 

IM08Jun, March 2016 for K16Apr, and February 2011 for GEJE. Similarly, the month in which each 

earthquake occurred (t=1) is set to the next months, except for January 1995 in H95Jan. Regarding 

H95Jan, the month before the disaster (t=0) is set as May 1995 because data were unavailable for 

December 2014, and production capacity in 1995 was at its highest in May. The analysis periods are 

12 months for H95Jan, N04Oct, N07Jul, IM08Jun, and K16Apr, and 48 months for GEJE.  

 

4.3. Data: Production Capacity 

Regarding production capacity (θ), this study uses seasonally adjusted indices of industrial 

production (IIP) published by the statistics office of each prefecture (at different points in time) such 

as the Hyogo prefecture (2017) for H95Jan, and the Statistics division of the Niigata prefecture (2018) 

for N04Oct and N07Jul. Note that the Ministry of Economy, Trade, and Industry, Japan (2018) 

summarizes each prefectural IIP since January 2008.  

IIP covers production (in all prefectures), shipments, and inventories, and this study uses IIP 

because it has abundant production data as an actual index. Because of the real index, however, IIP 

has a drawback in that it is affected not only by the direct effect of disaster, but also by the indirect 

effect among sectors, which may be somewhat mitigated by the inventories (see Supplementary 

Information E). 

Because IIP only covers the mining and industrial sectors, analysis is restricted herein to the 

54 mining and industrial sectors (#2 to #55) out of 80 sectors in the MRIO table (see Supplementary 

Information Tables S4–S9). As an issue, however, the IIP sector classification differs from the MRIO 
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table classification (80 sectors). This study uses the common 26-sector classification, connecting the 

industrial classification of the MRIO table (from #1 to #80) and the IIP id (from #1 to #26). Because 

there are missing values (i.e., missing sectors) in certain prefectures, this study substitutes another 

similar IIP id for missing values (see Supplementary Information Tables S4–S5).  

The production capacity at t for sector i (𝜃𝑖(𝑡)) is configured:  

𝜃𝑖(𝑡) = {𝐼𝐼𝑃𝑖(𝑡) 𝐼𝐼𝑃𝑖(0)⁄ 𝑖𝑓 𝑖 ∈ 𝐾1 𝑖𝑓 𝑖 ∉ 𝐾 (57) 

where 𝐼𝐼𝑃𝑖(𝑡) denotes the original IIP in sector i at month t. K means the set of damaged areas/sectors, 

and 𝜃𝑖(𝑡) is 1 when 𝑖 ∉ 𝐾. Supplementary Information for the raw dataset includes 𝜃𝑖(𝑡) (𝑖 ∈ 𝐾) 

at IIP id, with missing values for each disaster (Excel sheets: H95Jan, N04Oct, N07Jul, IM08Jun, 

K16Apr, and GEJE) and information on IO id (“ioid”), IIP id (“iipid”), and area id (48 prefectures in 

“areaid”).  

 

4.4. Data: Price Elasticity of Demand 

To estimate price elasticity (𝜀), this study uses the following regression model in log form:  ln𝑞𝑖𝑡 = ∑ 𝐷𝑖ln𝛼𝑖𝑖 + ∑ 𝐷𝑖𝜀𝑖ln𝑝𝑖𝑡𝑖 + 𝑒𝑖𝑡 (58) 

where 𝑞 is quantity and 𝑝 is price in sector i in year t. Di is a dummy variable (0 or 1) for sector i. 𝜀 is the coefficient of the log price, representing the price elasticity of demand. ln𝛼𝑖 is a constant 

term in each sector i, and e is an error term. Note that this study uses industrial dummy variables to 

estimate the constant term (ln𝛼𝑖) and price elasticity (𝜀𝑖; by using interaction terms).  

Regarding the data, this study uses the Japan Industrial Productivity (JIP) Database 2018 

provided by the Research Institute of Economy, Trade, and Industry, Japan (2019). The database 

includes gross output data at real value (in chain-linked sectoral 2011 prices) and nominal value in 

100 unique JIP sectors for 22 years (1994 to 2015), and there are 2,194 observations because nursing 

care (#95) has six missing values. Thus, we can calculate the sectoral deflator (price) by dividing the 

nominal value by the real value (where the deflator is one in 2011). Using the real gross output as 

quantity (q) and the sectoral deflator as price (p), this study estimated the price elasticity of demand 
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(ε) in each of 100 JIP sectors (see Supplementary Information Tables S10–S11).  

Note that the 100 JIP sectors are different from the 80 sectors in the MRIO table again. Thus, 

this study made the weighted average ε for 17 summarized sectors to connect with the 80 MRIO 

sectors (by using the real gross output as of 2005), so that all values become negative. In Table II, the 

price elasticity (ε) is –1.305 in total sectors (#1–17), –0.717 in the manufacturing and mining sectors 

(#1–6; the focus of this study), and –1.598 in the agriculture and service sectors (#7–17).  

 

4.5. Previous Studies Concerning Indirect Damage Estimation: H95Jan and GEJE 

In disaster studies, the loss of SS is not widespread for estimating damage. Instead, two 

popular damages are direct damage (e.g., damage to capital stock) and indirect damage (e.g., flow 

damage due to the spillover effect). This study supposes that the loss of SS is similar to indirect damage 

because it does not consider the damage to capital stock and so on. In other words, indirect damage 

referred to in the previous studies consists of damage to buyers (downstream sectors) and sellers 

(upstream sectors), which are similar to the losses of CS and PS, respectively. This study supposes 

that the reason SS is not popular is that CS is difficult to estimate (although PS is easy). CS is calculated 

from the difference between the reservation price (i.e., willingness-to-pay price) and transaction price. 

However, the reservation price is usually difficult to estimate. 

Two previous studies that estimated damage due to H95Jan (Toyoda and Kouchi, 1997) and 

GEJE (Hayashi, 2012) are introduced for comparative purposes (see Supplementary Information F). 

Toyoda and Kouchi (1997) estimated that the indirect damage caused by H95Jan for one year was 

1,203B JPY for the industrial sectors (in ten cities and ten towns in Hyogo). Meanwhile, regarding 

Hayashi (2012), the indirect damage caused by GEJE was estimated to be approximately 10T JPY in 

Fukushima alone and approximately 100T JPY over the decade.  

 

5. RESULTS 

5.1. Production Capacity  

Table III shows the production capacity (θ) of 54 industrial sectors in the case of each 
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earthquake (Supplementary Information Figs. S11–S12). For simplicity, this study considers 

approximately 99% or more to represent a temporary recovery. Values in parentheses denote 

production capacity after the first temporary recovery.  

The production capacities associated with five of the earthquakes, excepting GEJE, are as 

follows. For H95Jan, production capacity is 84.5% when t=1 (the worst). It recovers (100%) when t=5 

which is set to be the reference month; however, it then drops from the sixth month (97.5%) and does 

not recover to 100% again during the period. For N04Oct, production capacity is 95.8% (t=1) and 

95.6% (t=2; the worst), and recovers to 99.4% when t=7. For N07Jul, production capacity is 96.9% 

(t=1) and recovers to 99.0% (t=2). For IM08Jun, production capacity is 96.7% (t=1) and 95.7% (t=2; 

the worst). Interestingly, it drops to 92.4% (t=3) and then more severely to 69.6% when t=10, probably 

because of the global financial crisis in 2008. Thus, as a caveat, the model cannot separate the impact 

of two or more shocks occurring simultaneously (e.g., a disaster shock and a macroeconomic shock). 

Finally, regarding K16Apr, production capacity is 76.6% (t=1) and 72.6% (t=2; the worst), and 

recovers to 99.7% (t=5). From these results, the peak of earthquake damage (to production) tends to 

occur in the first or second month after the earthquake. As the worst case, K16Apr induced a drop to 

72.6% in the second month. Also, importantly, production capacity tends to temporarily recover 

between the fourth and eighth months after the disaster.  

Damage attributable to GEJE differs substantively between FIMIC and non-FIMIC 

prefectures. Regarding FIMIC, production capacity is lowest at 67.5% (t=1), and indeed this represents 

a greater impact on capacity than any of the other five earthquakes discussed above. It then gradually 

improves to 93.4% (t=12; 1 year), and (almost) recovers fully, to 98.9%, in the 37th month (t=37). 

Thus, the impact of the triple disaster is enormous, and the first temporal recovery took longer to occur 

than that for the above five earthquakes (mainly because of the damage in Fukushima). Meanwhile, 

regarding non-FIMIC prefectures, production capacity is lowest at 86.8% (t=1) and recovers to 

100.5% (t=8). Therefore, the speed of recovery in these prefectures was similar to that of the above 

five earthquakes.  
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5.2. Estimated Results  

Tables IV and V show the estimated results of price, which is the weighted average by initial 

production within the focal prefectures in the 54 manufacturing and mining sectors, and the monthly 

damage for 12 months, and Table VI summarizes the peak and cumulative damage, which is also 

calculated only for the focal prefectures in the 54 sectors. In Tables IV and V values in parentheses 

indicate the periods after the economy recovers temporarily. Figs. 4 and 5 plot the results of price and 

cumulative loss of SS, respectively (for other damage results, see Supplementary Information Figs. 

S13–S17).  

Regarding the five earthquakes, the price peaks during the first month (the four cases) or 

second month (IM08Jun) (Fig. 4). H95Jan and K16Apr exhibit the worst increase in price (0.128 and 

0.202), whereas N04Oct, N07Jul, and IM08Jun have a relatively small effect on the price by several 

percent (0.037, 0.028, and 0.033).  

Tables V and VI and Fig. 5 represent the loss of SS (Δss) as the ratio of initial production, 

where the numerator is each of the losses, and the denominator is the initial production value only in 

the 54 manufacturing and mining sectors in the disaster area. The greatest damage at the peak (Δss) is 

18.7% (i.e., 0.187 month-production damage; 0.22T JPY) for H95Jan and 31.6% (0.07T JPY) for 

K16Apr. 0.22T JPY in H95Jan is larger than 0.07T JPY in K16Apr because the economic scale in 

Hyogo is larger than Kumamoto. In the other three cases, Δss at the peak is approximately 5% of initial 

production (5.7% [0.02T JPY] for N04Oct. 4.6% [0.02T JPY] for N07Jul, and 4.8% [0.03T JPY] for 

IM08Jun). When dividing Δss into losses of CS (Δcs) and PS (Δps), Δss consists almost of Δcs, and 

Δps tends to be small and even negative (i.e., profit). Specifically, Δcs at the peak are 0.25T JPY 

(22.1%) for H95Jan, 0.03T JPY (6.6%) for N04Oct, 0.02T JPY (5.1%) for N07Jul, 0.03T JPY (5.6%) 

for IM08Jun, and 0.07T JPY (33.0%) for K16Apr; similarly, Δps at the peak are −0.03T JPY (−2.4%) 

for H95Jan, −0.004T JPY (−0.9%) for N04Oct, −0.002T JPY (−0.5%) for N07Jul, −0.004T JPY 

(−0.8%) for IM08Jun, and −0.003T JPY (−1.4%) for K16Apr.  

The damages are likely to converge until the eighth month at most. In Table VI, the 

cumulative loss of Δss until the temporal recovery is 105.9% (1.25T JPY) in H95Jan (t=12) and 59.0% 
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(0.13T JPY) in K16Apr (t=7), meaning that the worst earthquake tends to have caused damage of over 

half a month’s worth of production (i.e., more than 50%). The other three cases have lost SS (Δss) by 

approximately 10–20% until the temporal recovery (21.3% [0.09T JPY] for N04Oct when t=8, 16.4% 

[0.07T JPY] for N07Jul when t=5, and 7.9% [0.04T JPY] for IM08Jun when t=2).  

Meanwhile, GEJE increased the price by 0.279 in FIMIC prefectures at the peak (t=1), 

which is larger than the worst earthquake (0.202 for K16Apr), and by 0.083 in non-FIMIC prefectures 

(t=1), which is slightly larger than N04Oct, N07Jul, and IM08Jun (Table V). The loss of SS (Δss) at 

the peak (Table VI) is 1.35T JPY (43.5%) in FIMIC (where Δcs is 1.46T JPY and Δps is −0.1T JPY) 

and 2.18T JPY (9.8%) in non-FIMIC (where Δcs is 2.1T JPY and Δps is 0.08T JPY). In addition, the 

cumulative Δss due to GEJE (Table VI) is 8.05T JPY (251.5%) when t=37 in FIMIC (where Δcs is 

8.82T JPY and Δps is −0.77T JPY) and 9.11T JPY (41.1%) when t=8 in non-FIMIC (where Δcs is 

9.1T JPY and Δps is 0.01T JPY). 

 

5.3. Discussion 

Here, the results are compared with those from Toyoda and Kouchi (1997) for H95Jan and 

Hayashi (2012) for GEJE (Supplementary Information Table S12). Regarding H95Jan, this study 

estimates that the damage of SS is 1.25T JPY (where Δcs is 1.45T JPY and Δps is –0.2T JPY). 

Meanwhile, Toyoda and Kouchi (1997) estimated that indirect damage for one year in the main 

damaged area in Hyogo was approximately 1,203.1B JPY for industrial sectors. Therefore, the loss of 

SS estimate from this study is 103.9% (=1.25T/1.2031T) of the indirect damage estimation by Toyoda 

and Kouchi (1997); therefore, they are approximately equal. 

Regarding GEJE, the loss of SS at the first temporary recovery is 7.83T JPY to FIMIC 

prefectures (t=37) and 9.11T JPY to non-FIMIC prefectures (t=8). Therefore, the damage estimated 

herein is at least 16.94T JPY (=7.83T+9.11T). Meanwhile, Hayashi (2012) suggested that the indirect 

damage of GEJE was approximately 100T JPY over 10 years. Roughly estimating the indirect damage 

incurred only by the industrial sectors gives approximately 24T JPY for 10 years because these sectors 

produced 24% of the total final demand in 2005. Therefore, the loss of SS estimate of this study is 
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70.6% (=16.94T/24T) of the indirect damage estimated by Hayashi (2012), which suggests an 

underestimation. This is probably because of the target periods; this study estimates the first temporal 

recovery (37 and eight months), whereas Hayashi (2012) considers ten years.  

 

6. CONCLUSIONS 

This study examines how to consider the supply constraint in IOA. Different from GPM in 

Park (2007), this study adopts LPM by introducing the price elasticity of demand, because of the 

following two points. First, LPM is for supply-side analysis and is suited to the supply constraint. 

Second, LPM can handle “price” change (Dietzenbacher, 1997). In addition, this study proposes to 

use the loss of SS as the damage of supply constraint, because, unlike profit (margin), production 

(sales) does not identify how much damage is passed on to each supplier (upstream sector) and buyer 

(downstream sector).  

Our methodology of the supply constraint is applied to the large earthquakes in Japan. 

Following the results, implications vis-à-vis countermeasures are as follows. The largest earthquakes 

tend to require economic assistance for 0.2–0.3 months (of initial production) immediately after a 

disaster within a damaged prefecture and more than 0.5 months (50% of initial production) in total 

until the first temporal recovery (the eighth month at most) to compensate for the loss of SS. Also, 

GEJE required twice as much (fast) economic assistance in the FIMIC prefectures than that required 

to address the damage caused by the largest earthquakes, which was at least 25 months in total (over 

250% of initial production at the 37th month). Meanwhile, non-FIMIC prefectures tended to incur 

approximately 0.4-month damage (i.e., the loss of SS) until the eighth month. Note that our estimation 

is similar to (or slightly smaller than) the indirect damage estimation in the literature (Hayashi, 2012; 

Toyoda and Kouchi, 1997).  

Our approach in LPM is straightforward to apply because it requires only a usual MRIO 

table and production capacity data, with simple assumptions (i.e., the input coefficients are invariant; 

the price elasticity of demand; and the linear functions of supply and demand). Note, however, that 

there are the following limitations. Because this study considered the supply constraint, the production 
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capacity in the study is exogenous (based on past data). Therefore, this study does not predict when 

disaster damage will converge, and does not deal with simulating how to minimize the loss of SS 

(Supplementary Information D.2). For example, the IOA literature (e.g., Li et al., 2013) often examines 

these kinds of predictions and simulations, considering disaster countermeasures such as import and 

export policies, transfer policies among multi-regions, inventory management, and so on. As another 

limitation, because production capacity is exogenous in the model, the impact of two or more 

simultaneous shocks cannot be separated (as in the case of IM08Jun). Nevertheless, as easily as the 

basic IOA, the supply constraint of this study can be applied to indirect damage predictions (or, the 

loss of SS) of potential catastrophes such as the Nankai Trough earthquakes [Nankai megathrust 

earthquakes] near Japan, which are anticipated to occur in the future (Investigative Commission for 

Nankai Trough Earthquake Model, 2012; Working Group on Countermeasures to the Nankai Trough 

Earthquake, 2012).  
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Fig. 1. Leontief and Ghosh models with Park (2007) and this study 

 

Notes: This figure shows the relationship between the four models (LQM, GQM, LPM, and GPM) 

and the application of supply constraint by Park (2007) and this study. As the demand-pull model, 

LQM can be converted to GPM, given the price is fixed. Meanwhile, as the cost-push model, LPM 

can be converted to GQM, given the quantity is fixed. The supply constraints are considered via GPM 

in Park (2007) and LPM in this study. 
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Fig. 2. Demand and supply model with the supply constraint 
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Fig. 3. Difference between Park (2007) and this study 
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Fig. 4. Increase in price for 12 months (initial price is one) 

Notes: Price is one at t=0 and is the weighted average by initial production within the focal 

prefectures in the 54 manufacturing and mining sectors. See Table IV.   
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Fig. 5. Cumulative loss of social surplus for 12 months (initial production is 100%) 

Note: See Tables V and VI and Supplementary Information Figs. S13–S17. 
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Table I. Japan’s six most destructive earthquakes between 1995 and 2017 and the research settings 

# Date of 
occurrence 

Earthquake name (location) Human damage Main Physical damage Focal 
prefectures 

t=0 t=1 

H95Jan Jan 17, 1995 The Hyogo-ken Nanbu Earthquake 
(Hanshin region; mainly in Hyogo) 

6,434 deaths, 3 missing 
people, and 43,792 
injured people 

104,906 and 144,274 houses 
were completely and 
partially destroyed 

Hyogo (May 
1995) 

Jan 
1995 

N04Oct Oct 23, 2004 The Mid Niigata Prefecture 
Earthquake in 2004 (Chuetsu 
[middle] region of Niigata) 

68 deaths and 4,805 
injured people 

3,175 and 13,810 houses 
were completely and 
partially destroyed 

Niigata Sep 
2004 

Oct 
2004 

N07Jul Jul 16, 2007 The Niigata-ken Chuetsu-oki 
Earthquake in 2007 (Chuetsu 
offshore of Niigata) 

15 deaths and 2,346 
injured people 

1,331 and 5,710 houses were 
completely and partially 
destroyed 

Niigata Jun 
2007 

Jul 
2007 

IM08Jun Jun 14, 2008 The Iwate-Miyagi Nairiku 
Earthquake in 2008 (southern 
inland of Iwate Prefecture) 

17 deaths, 6 missing 
people, and 426 injured 
people 

30 and 146 houses were 
completely and partially 
destroyed 

Iwate and 
Miyagi 

May 
2008 

Jun 
2008 

GEJE Mar 11, 2011 The 2011 off the Pacific coast of 
Tohoku Earthquake (the Great East 
Japan Earthquake) 

19,630 deaths, 2,569 
missing people, and 
6,230 injured people 

121,781 and 280,962 houses 
were completely and 
partially destroyed 

Fukushima, 
Iwate, 
Miyagi, 
Ibaraki, 
and Chiba 
(FIMIC) 

Mar 
2016 

Apr 
2016 

K16Apr Apr 14 to 16, 
2016 

The 2016 Kumamoto earthquakes 
(Kumamoto prefecture) 

269 deaths and 2,806 
injured people 

8,668 and 34,716 houses 
were completely and 
partially destroyed 

Kumamoto Feb 
2011 

Mar 
2011 

 

Notes: Regarding H95Jan, because there is no data for the month prior to this earthquake (i.e., December 1994), the month before the disaster (t=0) is set as May 1995 

because this month exhibited the highest production capacity in that year. 
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Table II. Price elasticity of demand (weighted by real gross output as of 2005) 
 (1) (2) (3) (4) 
# Elasticity 

(ε) 
Summarized industry group (#1–17) IIP industry group 

(#1–80) 
JIP industry group 

(#1–100) 
1 –0.450 Mining, food products, textile/chemical fibers, and pulp 2–8,11,12,19 5–16 

2 –0.643 Chemical, pharmaceutical, petroleum, and cement products 14–18, 20-23, 26–29 17–28 

3 –0.378 Iron, steel, and metal 30–37 29–34 

4 –0.395 Machinery and electrical products 38–49 35–48 

5 –2.123 Motor vehicles and equipment 50–53 49–51 

6 –0.288 Miscellaneous manufacturing industries (printing, plastic, 
and so on) 

9,10,13,24,25,54,55 52–59 

7 –0.058 Agriculture 1 1–4 

8 –0.087 Utilities and waste disposal 60–62 60–65 

9 –2.093 Construction 56–59 66,67,89 

10 –1.820 Retail and wholesale 63 68,69 

11 –0.072 Transportation and mail 67,77 70–75, 88 

12 –1.879 Communications and information services 68–72,76 78–81,87 

13 –0.813 Finance and insurance 64 82,83 

14 –1.104 Housing and real estate 65,66 76,84,85 

15 –3.270 Medical service 75 93–95 

16 –2.987 Research, education, and other services for businesses 73,74,78 86,90–92 

17 –0.414 Other services for individuals 79,80 77,96–100 

1–17 –1.305 Total sectors 1–80 1–100 

1–6 –0.717 Manufacturing and mining sectors 5–59 2–55 

7–17 –1.598 Agriculture and service sectors 1–4.60–80 1,56–100 

 

Notes: This table shows the price elasticity of demand at the weighted average value by using the real gross output (as of 2005). Columns 1 and 2 show the summarized 

17 industry groups and their elasticity (ε). Columns 3 and 4 indicate the JIP Industry group (#1–100) and IIP Industry group (#1–80), respectively, to connect with the 

summarized industry groups (#1–17). See Supplementary Information Tables S10 and S11 for the descriptive statistics and the regression results. 
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Table III. Production capacity (θ) 

t (months) H95Jan N04Oct N07Jul IM08Jun K16Apr GEJE 

(FIMIC) 
GEJE 

(non-FIMIC) 
0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

(B JPY) (1,179B) (400B) (400B) (525B) (226B) (3,114B) (22,150B) 
1 84.5% 95.8% 96.9% 96.7% 76.6% 67.5% 86.8% 

2 87.1% 95.6% 99.0% 95.7% 72.6% 72.7% 87.2% 

3 89.1% 96.9% 97.5% (92.4%) 91.6% 86.7% 91.3% 

4 94.9% 97.2% 99.2% (92.9%) 87.9% 89.3% 96.3% 

5 100.0% 97.2% 99.6% (92.3%) 99.7% 85.8% 97.3% 

6 97.5% 98.2% (100.5%) (84.0%) 98.9% 87.7% 98.7% 

7 94.1% 99.4% (98.8%) (76.6%) 99.6% 85.0% 97.6% 

8 95.3% 99.8% (99.4%) (74.5%) (106.3%) 88.4% 100.5% 

9 91.2% (98.6%) (98.6%) (69.8%) (106.8%) 89.2% (96.9%) 
10 95.7% (100.1%) (98.0%) (69.6%) (106.2%) 87.1% (99.9%) 
11 93.1% (101.2%) (99.1%) (75.6%) (111.8%) 90.9% (100.6%) 

12 (1 year) 95.0% (99.7%) (99.0%) (76.9%) (113.2%) 93.4% (101.3%) 
37 ─ ─ ─ ─ ─ 98.9% (101.6%) 

48 (4 years) ─ ─ ─ ─ ─ (95.7%) (98.7%) 
 

Notes: Production capacity is set to 100% before a disaster (t=0). Regarding H95Jan, because there is no data for the month prior to this earthquake (i.e., December 

1994), the month before the disaster (t=0) is set as May 1995 (the highest production capacity for the 12 months). Regarding IM08Jun, production capacity further 

decreases from the third month, probably because of the global financial crisis in 2008. See Supplementary Information Figs. S11–S12. 
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Table IV. The change in output price (Δp)  

t (months) H95Jan N04Oct N07Jul IM08Jun K16Apr GEJE 

(FIMIC) 
GEJE 

(non-FIMIC) 
1 0.128 0.037 0.028 0.025 0.202 0.279 0.083 

2 0.108 0.035 0.012 0.033 0.182 0.223 0.078 

3 0.096 0.021 0.026 (0.059) 0.041 0.112 0.064 

4 0.051 0.021 0.013 (0.051) 0.072 0.098 0.034 

5 0.000 0.022 0.008 (0.054) −0.025 0.119 0.030 

6 0.031 0.015 (0.003) (0.116) −0.004 0.107 0.019 

7 0.059 0.007 (0.024) (0.171) 0.008 0.118 0.035 

8 0.056 0.003 (0.021) (0.188) (−0.059) 0.098 0.019 

9 0.071 (0.014) (0.026) (0.214) (−0.072) 0.092 (0.036) 
10 0.052 (0.002) (0.033) (0.220) (−0.086) 0.103 (0.021) 
11 0.067 (−0.014) (0.026) (0.182) (−0.117) 0.075 (0.015) 

12 (1 year) 0.050 (0.010) (0.025) (0.171) (−0.111) 0.054 (0.013) 
37 ─ ─ ─ ─ ─ 0.008 (0.007) 

48 (4 years) ─ ─ ─ ─ ─ (0.043) (0.037) 
 

Notes: Price is one at t=0 and is the weighted average by initial production within the focal prefectures in the 54 manufacturing and mining sectors. Values are in 

parentheses after the first temporal recovery (except for IM08Jun; see Results). See Fig. 4. 
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Table V. The losses of social, consumer, and producer surpluses (compared with the initial monthly production) 

t (months) H95Jan N04Oct N07Jul IM08Jun K16Apr GEJE 

(FIMIC) 
GEJE 

(non-FIMIC) 
Initial production (x) in 

manufacturing sectors (T JPY) 
1.2T 

(100%) 
0.4T 

(100%) 
0.4T 

(100%) 
0.5T 

(100%) 
0.2T 

(100%) 
3.1T 

(100%) 
22.1T 

(100%) 
Loss of social surplus (Δss)        

1 month 18.7% 5.7% 4.6% 3.1% 31.6% 43.5% 9.8% 

2 14.3% 4.7% 2.4% 4.8% 27.5% 35.2% 9.2% 

3 13.3% 2.3% 4.2% (9.7%) 4.3% 17.5% 7.2% 

4 6.2% 2.7% 2.9% (8.1%) 9.5% 15.1% 3.7% 

5 0.0% 2.9% 2.3% (9.3%) −6.3% 18.4% 3.4% 

6 4.0% 2.0% (1.4%) (18.6%) −3.5% 16.6% 2.1% 

7 8.0% 1.1% (4.7%) (28.4%) −4.2% 18.6% 3.8% 

8 7.7% −0.1% (4.6%) (30.9%) (−16.5%) 15.4% 1.8% 

9 9.9% (1.3%) (5.4%) (35.0%) (−16.2%) 14.5% (3.7%) 
10 7.6% (−0.1%) (7.0%) (35.8%) (−17.7%) 16.0% (2.2%) 
11 9.1% (−2.6%) (6.6%) (30.1%) (−24.8%) 11.5% (1.5%) 

12 (1 year) 7.0% (1.0%) (5.9%) (28.4%) (−22.4%) 8.4% (1.4%) 
37 ─ ─ ─ ─ ─ 1.1% (0.6%) 

48 (4 years) ─ ─ ─ ─ ─ (7.1%) (4.5%) 
Loss of consumer surplus (Δcs)        

1 month 21.1% 6.6% 5.1% 3.7% 33.0% 46.7% 9.5% 

2 17.0% 5.7% 2.5% 5.6% 28.4% 37.7% 8.6% 

3 15.4% 3.2% 4.6% (10.8%) 4.3% 19.1% 7.1% 

4 7.6% 3.5% 2.9% (9.3%) 9.1% 16.7% 3.8% 

5 0.0% 3.5% 2.2% (10.3%) −8.1% 20.4% 3.6% 

6 4.9% 2.5% (1.0%) (21.0%) −4.8% 18.5% 2.1% 

7 9.3% 1.4% (4.6%) (31.6%) −4.9% 20.6% 4.2% 

8 8.9% 0.3% (4.3%) (34.2%) (−19.5%) 17.2% 2.2% 

9 11.3% (2.0%) (5.2%) (38.4%) (−19.9%) 16.1% (3.7%) 
10 8.8% (0.2%) (6.6%) (39.2%) (−22.9%) 18.0% (2.3%) 
11 10.5% (−2.8%) (6.4%) (32.9%) (−30.4%) 13.1% (1.7%) 

12 (1 year) 8.0% (1.5%) (5.5%) (30.9%) (−25.7%) 9.5% (1.6%) 
37 ─ ─ ─ ─ ─ 0.8% (0.2%) 

48 (4 years) ─ ─ ─ ─ ─ (7.2%) (4.5%) 
Loss of producer surplus (Δps)        
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1 month −2.4% −0.9% −0.5% −0.6% −1.4% −3.3% 0.4% 

2 −2.6% −1.0% −0.1% −0.8% −0.8% −2.4% 0.6% 

3 −2.0% −0.9% −0.5% (−1.1%) 0.0% −1.6% 0.1% 

4 −1.4% −0.7% 0.0% (−1.2%) 0.4% −1.6% 0.0% 

5 0.0% −0.7% 0.0% (−1.1%) 1.8% −2.0% −0.1% 

6 −0.8% −0.5% (0.3%) (−2.4%) 1.3% −1.9% 0.0% 

7 −1.4% −0.3% (0.1%) (−3.2%) 0.6% −2.1% −0.4% 

8 −1.2% −0.4% (0.3%) (−3.3%) (3.1%) −1.8% −0.4% 

9 −1.4% (−0.7%) (0.2%) (−3.4%) (3.7%) −1.6% (0.0%) 
10 −1.2% (−0.3%) (0.3%) (−3.4%) (5.2%) −2.0% (−0.2%) 
11 −1.4% (0.2%) (0.2%) (−2.8%) (5.5%) −1.5% (−0.2%) 

12 (1 year) −1.0% (−0.4%) (0.4%) (−2.6%) (3.3%) −1.2% (−0.2%) 
37 ─ ─ ─ ─ ─ 0.3% (0.5%) 

48 (4 years) ─ ─ ─ ─ ─ (−0.1%) (0.0%) 
 

Notes: Initial monthly production (at t=0) is 100%. Values are in parentheses after the first temporal recovery (except for IM08Jun). Note that these values are calculated 

only for the focal prefectures in the 54 sectors. See Fig. 5 for cumulative Δss and Supplementary Information Figs. S11–S15 for Δss, Δcs, and Δps. 
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Table VI. Values at the peak and cumulative summation at the temporal recovery 

 
H95Jan N04Oct N07Jul IM08Jun K16Apr GEJE 

(FIMIC) 
GEJE 

(non-FIMIC) 
Initial production (x) in 

manufacturing sectors (T JPY) 
1.2T 

(100%) 
0.4T 

(100%) 
0.4T 

(100%) 
0.5T 

(100%) 
0.2T 

(100%) 
3.1T 

(100%) 
22.1T 

(100%) 
Δp at the peak 0.128 0.037 0.028 0.033 0.202 0.279 0.083 

(The peak month) (t=1) (t=1) (t=1) (t=2) (t=1) (t=1) (t=1) 
Δss at the peak (T JPY) 0.22T 0.02T 0.02T 0.03T 0.07T 1.35T 2.18T 

(x=100%) (18.7%) (5.7%) (4.6%) (4.8%) (31.6%) (43.5%) (9.8%) 
Δcs at the peak (T JPY) 0.25T 0.03T 0.02T 0.03T 0.07T 1.46T 2.10T 

(x=100%) (22.1%) (6.6%) (5.1%) (5.6%) (33.0%) (46.7%) (9.5%) 
Δps at the peak (T JPY) −0.03T −0.004T −0.002T −0.004T −0.003T −0.1T 0.08T 

(x=100%) (−2.4%) (−0.9%) (−0.5%) (−0.8%) (−1.4%) (−3.3%) (0.4%) 
(The temporal recovery) (t=12) (t=8) (t=5) (t=2) (t=7) (t=37) (t=8) 
Cumulative Δss (T JPY) 1.25T 0.09T 0.07T 0.04T 0.13T 8.05T 9.11T 

(x=100%) (105.9%) (21.3%) (16.4%) (7.9%) (59.0%) (251.5%) (41.1%) 
Cumulative Δcs (T JPY) 1.45T 0.11T 0.07T 0.05T 0.13T 8.82T 9.1T 

(x=100%) (122.9%) (26.8%) (17.4%) (9.3%) (57.0%) (283.4%) (41.1%) 
Cumulative Δps (T JPY) −0.2T −0.02T −0.004T −0.01T 0.004T −0.77T 0.01T 

(x=100%) (−17.0%) (−5.5%) (−1.0%) (−1.4%) (1.9%) (−24.8%) (0.1%) 
 

Notes: Price is one at t=0 and is the weighted average by initial production within the focal prefectures in the 54 manufacturing and mining sectors. Initial monthly 

production (at t=0) is 100%. See Tables IV and V.  
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Supplementary Information A: Implausibility of GQM 

In the IO literature, Oosterhaven (1988) has argued that GQM is implausible and has concluded 

that “both as a general description of the working of any economy and as a way to estimate the effects of 

loosening or tightening the supply of one scarce resource, the supply-driven model may not be used” 

(Oosterhaven, 1988, p.208). In GQM, the delivery from primary input (Δv) to final demand (y) is possible 

without any intermediate input, labor, and capital.  

By using the Taylor expansion as in Oosterhaven (1988, Fig. 1 in p.206 and Eq.12 in p.207; 

Supplementary Information Fig. S1), GQM (Eq.10) is solved:  𝐱′ = 𝐯′𝐈 + 𝐯′𝐁 + 𝐯′𝐁𝟐 + 𝐯′𝐁𝟑 + ⋯ (S1) 

First, it is assumed the primary input is increased only in sector i (Δvi) but not others (i.e., zero). 

The first term of the series (𝐯′𝐈) is the direct increase of this new production (e.g., extra input of $100 in 

sector i). Because it is direct, it is possible without any intermediate inputs. Next, the second term of the 

series (𝐯′𝐁) is the first round indirect (forward-linkage) production effects of the direct production effect in 

sector i. This means that the additional increase in production in sector i (e.g., $100 times B) is purchased 

by i and other sectors (as their inputs). Importantly, this is possible without any intermediate input and any 

increase in labor and capital. This interpretation applies to the third term (𝐯′𝐁𝟐) and others as well, and these 

round effects (i.e., endogenous forward production effect) are assumed to be finished simultaneously. Thus, 

these round effects are possible without any intermediate input, labor, and capital, and they will at last 

increase the final demand.  
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Supplementary Information B. Review of Park (2009)  

This part reviews Park (2009; the unpublished paper). Park (2009) is helpful for understanding 

Park’s (2007) approach and also beneficial as an example study of the price IO model in the U.S. oil industry 

because the price IO model has much fewer applications than the quantity model. Following Park’s (2007) 

approach, Park (2009) examined the economic losses in the U.S. oil industry caused by two hurricanes 

(Katrina and Rita, which occurred in August 2005). After the two hurricanes hit the Gulf of Mexico coast 

(Louisiana and surrounding areas), the proportion of U.S. mining production in the state of Louisiana 

decreased from 11,090 million U.S. dollars (USD) in 2004 (10.23% of the U.S. total) to 9,569 million USD 

in 2005 (9.06% of the U.S. total) (i.e., it was changed by −13.72%). Park (2009) created the national IO table 

with 47 USC sectors (29 commodity sectors and 18 service sectors) and estimated the economic losses due 

to the damage in the U.S. oil industry for the four months after the hurricanes. Note that Park, Son, & Park 

(2017) recently examined the economic losses (job losses) caused by hurricane Sandy, which occurred in 

2012, for U.S. industry. Park et al. (2017) also use the same 47 USC sectors, which are converted from the 

two-digit North American Industry Classification System sectors. 

The model of Park (2009) is simplified as follows. From Eq.34 (A1 in Fig. 2), the price elasticity 

of demand in the oil industry (εoil) is defined as:  

𝜀𝑜𝑖𝑙 = ∆𝑞𝑜𝑖𝑙 𝑞𝑜𝑖𝑙⁄∆𝑝𝑜𝑖𝑙 𝑝𝑜𝑖𝑙⁄  (B1) 

Before the hurricanes, the base price of the oil industry (𝑝𝑜𝑖𝑙) is set as one, and the quantity of oil products 

(𝑞𝑜𝑖𝑙) is equal to production (𝑥𝑜𝑖𝑙). From Eq.35, using the exogenous price elasticity (𝜀�̅�𝑖𝑙), the price change 

is elastic to the quantity change as follows:  

∆𝑝𝑜𝑖𝑙 = ∆𝑞𝑜𝑖𝑙 𝑞𝑜𝑖𝑙⁄𝜀�̅�𝑖𝑙 𝑝𝑜𝑖𝑙⁄ = ∆𝑞𝑜𝑖𝑙𝑞𝑜𝑖𝑙𝜀�̅�𝑖𝑙 = ∆𝑞𝑜𝑖𝑙𝜋𝑜𝑖𝑙 (B2) 

where 𝜋𝑜𝑖𝑙 = 𝑝𝑜𝑖𝑙𝑞𝑜𝑖𝑙�̅�𝑜𝑖𝑙 = 1𝑞𝑜𝑖𝑙�̅�𝑜𝑖𝑙. From Eqs. 22 and 38 (A3 in Fig. 2), the spillover change in price (∆𝐩) is 

calculated as: ∆𝐩 = 𝐆∆(𝐃𝐩𝐲) = 𝐆�̂�[∆𝑝𝑜𝑖𝑙] = 𝐆�̂�[∆𝑞𝑜𝑖𝑙𝜋𝑜𝑖𝑙] (B3) [∆𝑝𝑜𝑖𝑙] means the vector that takes ∆𝑝𝑜𝑖𝑙 in the oil industry and 0 in other industries. Note that Park (2007; 

2009) calls the above equations the supply-driven model.  

Table S1 shows a summary of the data necessary to estimate the total output vectors (Park, 2009, 
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Table 3). Note that this table can be calculated without the IO model. The quantity (𝑞𝑜𝑖𝑙) was originally 

expected to be 487.7 million barrels (MB), and the decrease (∆𝑞𝑜𝑖𝑙) was −140MB during the proceeding four 

months (i.e., it changed by −28.7%). The symbol “W” is the weight of each oil product, depending on the 

decrease proportion in quantity (∆𝑞𝑜𝑖𝑙). Note that the weighted average of the oil price before the hurricanes 

(based on W) would be 63.9 U.S. dollars per barrel ($/B). By using W and 𝜀�̅�𝑖𝑙, Park (2009) calculated that 

the price increase (∆𝑝𝑜𝑖𝑙) was 5.1534 $/B (an increase of 8.06%). Note that Park (2009) refers to 5.1534 $/B 

as the total price-type direct losses on the U.S. oil market due to the two hurricanes. Park (2009) also 

estimated that the total loss in value was $721.5 million for four months, or 140MB (∆𝑞𝑜𝑖𝑙) times 5.1534$/B 

(∆𝑝𝑜𝑖𝑙) (Fig. S2). 

Applying the data to the model, Table S1 (Park, 2009, Table 4) shows the estimated results in each 

of the 47 industries. Park (2009) estimated that the total price increased by 10.9780 $/B where 7.1545 $/B 

in the oil industry (i.e., USC sector 10: coal and petroleum products) plus 3.8235 $/B sums up the price 

changes in the other 46 USC industries. Thus, Park (2009) concluded that the total economic losses would 

be $1.54 billion (i.e., 11$/B times 140MB) (Fig. S2).  

As mentioned in the main text, however, this study argues that Park (2009) has some interpretation 

issues. First, although Park (2007; 2009) calls the approach (Eqs. B1–B3) a supply-driven model, it seems 

indeed to be a demand-driven model (Section 3.2) because Eq.B3 is based on GPM (the demand-pull price 

model; Eqs.22 and 32), not on LPM (the cost-push price model; Eqs.15 and 27). Specifically, ∆𝑝𝑜𝑖𝑙  in 

Eq.B3 is the price change for the final output (final demand) in GPM, not for the value added in LPM. In 

other words, Eq.B3 treats the drop in 140MB of oil products not as a reduction in the primary inputs (supply) 

but as a reduction in buyers’ purchases (demand). In addition, as in Section 3.5, when we follow 

Dietzenbacher (1997), GPM is a quantity model (Eqs.19–22) and therefore, cannot handle price changes. 

Indeed, unlike Dietzenbacher (1997), Eq.B3 treats the vector of price change [∆𝑝𝑜𝑖𝑙].  

Second, Park (2009, Table 4) summed up the price increases in each industry (Table S2). However, 

this study wonders whether the price vectors should not be summed up for the different industries. For 

example, suppose that two different industries increase total prices by 0.1 and 0.2 (10% and 20%), 

respectively. Park’s (2009) approach sums them up to 0.3 (30%=10%+20%). Because the two industries do 

not necessarily have the same price unit, however, the value of 0.3 doesn’t seem to make any sense.  

Finally, suppose that the following estimation is correct: ∆𝑞𝑜𝑖𝑙 is 140MB, ∆𝑝𝑜𝑖𝑙 is 5.1534$/B, 
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and ∆𝐩 is 10.9780 $/B. Even so, it seems strange to estimate the total value of losses as $721.5 million 

(5.1534$/B times 140MB) and the total economic losses as $1.54 billion (10.9780 $/B times 140 MB). 

Regarding the former, for buyers, 140MB were not purchased (or demanded), and only 347.7MB were 

indeed purchased at the 5.1534$/B higher price (Fig. S2); therefore, we wonder why the unpurchased 140MB 

would lose 5.1534$/B (in each deal). Similarly, regarding the latter, for sellers, 140MB were not produced 

(or supplied), and only 347.7 MB were produced at the 10.9780 $/B higher price (Fig. S2); therefore, we 

wonder why the non-produced 140 MB lost 10.9780 $/B in each production. In addition, it is important to 

note that 10.9780 $/B is not necessarily a loss for producers because some percentage of the 10.9780 $/B 

may be profitable for them (as value added or profit).  

From another perspective (as in Section 3.3), we can compare the changes in production (sales) 

before and after the hurricanes. If there were no hurricanes, sales would have been $31.1 billion, or 487.7MB 

(𝑞𝑜𝑖𝑙) times 63.9$/B (𝑝𝑜𝑖𝑙). After the hurricanes (347.7MB), sales were $24 billion when the price increased 

by 5.1534$/B (347.7MB times 69.1$/B) and $26 billion when the price increased by 10.9780$/B (347.7MB 

times 74.9$/B). Thus, taking the difference without and with the hurricanes, the changes in sales are $−7,154 

billion and $−5,129 billion. These values seem much higher than Park’s (2009) damage estimate ($721.5 

million and $1.54 billion) because the arc price elasticity of oil products is quite low (Section 3.3). After all, 

the quantity was changed by −28.7% (from 487.7MB to 347.7MB), but the price was increased only by 8.1% 

(+5.1534$/B from 63.9$/B) and 17.2% (+10.9780$/B). In other words, if the arc elasticity is stronger than 

1.4 (i.e., 40.3% divided by –28.7%), sales could even be said to increase after the hurricanes. For example, 

when the price increases to 89.6 $/B (i.e., increased by 40.3%), the sales after the hurricanes would be the 

same as before (i.e., $31 billion). 
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Supplementary Information C: Comparison between IOA, this study (and Park (2007)), and CGE 

This study briefly compares the common IOA, this study (and Park (2007)), and CGE 

(Supplementary Information Table S3). In IOA, price and quantity are usually independent of each other. 

IOA covers intermediate demand and input (as endogenous sectors), and final demand and value added (as 

exogenous sectors) (for IO table in this study, see Supplementary Information Fig. S3). The endogenous 

sectors balance supply and demand (hence, a square matrix) and are endogenous based on the technical 

coefficients (A or B). The exogenous sectors do not usually balance supply and demand (hence, it is not a 

square matrix). Because they are exogenous, labor and capital (as value added) are free to use, whereas 

household and export (etc.) in final demand are free to change. Also, the basic IOA requires only an IO table. 

Importantly, IOA is calculated by spreadsheet and has scalability in the calculation (i.e., it does not matter 

how many sectors are included).  

This study (and Park (2007)) adopt IOA, assuming that price is elastic to quantity. The quantity of 

supply is exogenous (i.e., supply constraint), and the price is endogenous by using the price elasticity of 

demand. Thus, this study requires some parameters for the supply constraint and the price elasticity of 

demand. The other assumptions are the same as IOA. 

Meanwhile, the CGE models are theoretically consistent. Price and quantity in CGE are 

theoretically elastic with each other. CGE can identify all economic activities by each of the utility functions. 

Instead of the IO table, CGE uses a social accounting matrix (SAM). Unlike the IO table, supply and demand 

in SAM are fully balanced in all economic sectors (hence, SAM is a square matrix; see Supplementary 

Information Figs. S4 for an example of the IO table and S5 for SAM). 

CGE looks ideal for the disaster analysis, but it is harder to estimate than IOA. Regarding the data, 

CGE requires SAM. Hence, researchers have to create SAM, which covers a broader range than the IO table, 

and usually need to fit SAM to the CGE model. Also, it is necessary to prepare models (utility functions) 

and parameters for all activities to be consistent theoretically through the model. In addition, CGE is 

computable but highly non-linear and has no scalability, meaning that the more sectors there are, the more 

difficult it is to solve. 
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Supplementary Information D. Applications to the approaches in the previous studies  

D.1 Introduction: The round effects of LQM and LPM 

Some readers (including an anonymous reviewer) may wonder how this study relates to the 

methods proposed in previous studies. Thus, this section briefly discusses the following seven items: the 

endogenous recovery for the survival coefficient (Section D.2), the sequential interindustry models (SIM) in 

Romanoff (1984) and Okuyama et al. (2004) (D.3), the impact on transportation networks in Sohn et al. 

(2004) and Kim et al. (2002) (D.4), the input-occupancy-output model in Chen (1990) and Chen et al. (2005) 

(D.5), the extension to the CGE model: Fully Interregional Dynamic Econometric Long-term IO (FIDELIO) 

model in Kratena et al. (2013; 2017) and Kratena and Streicher (2017) (D.6), spatial substitution and price 

multipliers: the FIDELIO model in Kratena and Streicher (2017) (D.7), and the supply constraints in GQM 

(D.8). 

Before coming to that, this part confirms once again that there is a difference between the LQM 

(the demand-driven quantity model) and this study based on LPM (the supply-driven price model) because 

most of the previous researches are based on LQM. First of all, regarding quantity, LQM is suitable for 

analyzing how the demand (final demand as output; y) causes the supply (production as input; x); however, 

going the opposite way (from supply to demand) is not suitable. Meanwhile, regarding price, LPM is suitable 

for analyzing how the supply (value added; pv) affects the demand (p); similarly, however, going the opposite 

way (from demand to supply) is not suitable. 

Opposite to GQM (from supply to demand, as in Fig. S1), LQM examines an economic effect 

from the demand (the right) to the supply (the left) only at the quantity level (see Fig. S6). By using the 

Taylor expansion as in Oosterhaven (1988), LQM (Eq.3) is solved:  𝐱 = 𝐈𝐲 + 𝐀𝐲 + 𝐀𝟐𝐲 + 𝐀𝟑𝐲 + ⋯ (D1.1) 

First, it is assumed the final demand (final output) is changed only in sector i (Δyi) but not in others (i.e., 

zero). The first term of the series (𝐈𝐲) is the direct increase of this new demand (e.g., the extra output of $100 

in sector i). Next, the second term of the series (𝐀𝐲) is the first round indirect (backward-linkage) production 

effects of the direct production effect in sector i. This means that the additional increase in production in 

sector i (e.g., A times $100) is required by i and other sectors as their outputs. This interpretation applies to 

the third term (𝐀𝟐𝐲) and others as well, and these round effects (i.e., the endogenous backward production 
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effect) are assumed to be finished simultaneously. Thus, they will at last increase the value added (e.g., n-th 

factor in sector j via the coefficient cnj; Δvnj).  

Meanwhile, similarly to GQM, LPM examines an economic effect from the supply (the left) to the 

demand (the right) at the price level (i.e., the straight arrows in Fig. S7). Note that, as in the dotted arrows 

in Fig. S7, this study converts the quantity change to a price change (or vice versa), introducing the price 

elasticity of demand (Park, 2007). Specifically, first, suppose that a certain amount of quantity (as total input) 

in sector i decreases on the supply side (Δ𝑥𝑖 = Δ𝑞𝑖 ). Note that, instead of Δ𝑞𝑖 , Eq.36 uses the survival 

coefficient 𝜃𝑖. By using the price elasticity (𝜀𝑖), Δ𝑞𝑖 is converted to the price change for the value added 

(primary inputs) of the n-th factor (i.e., Δ(𝑝𝑣𝑛𝑐𝑛𝑖); Eq.37) where c is the (fixed) coefficient for pv.  

By using the Taylor expansion as in Oosterhaven (1988), LPM (Eq.6) is solved:  𝐩′ = 𝐈(𝐩v′ 𝐂) + 𝐀(𝐩v′ 𝐂) + 𝐀𝟐(𝐩v′ 𝐂) + 𝐀𝟑(𝐩v′ 𝐂) + ⋯ (D1.2) 

where C is the matrix of the coefficient cni. Similarly to Eq.D1.1, it is assumed the price of value added 

(primary inputs) is increased only in sector i (Δpvncni) but not others (i.e., zero). The first term of the series 

(𝐈(𝐩v′ 𝐂)) is the direct increase of this new supply (e.g., extra price margin of one cent per $1 [1%] in sector 

i). Next, the second term of the series (𝐀(𝐩v′ 𝐂)) is the first round indirect (forward-linkage) production 

effects of the direct production effect in sector i. This means that the additional increase in price margin in 

sector i (e.g., A times one cent per $1) is required by i and other sectors (as their input price). This 

interpretation applies to the third term (𝐀𝟐(𝐩v′ 𝐂) ) and others as well, and these round effects (i.e., the 

endogenous forward production effect) are assumed to be finished simultaneously. Thus, they will at last 

change the price of total outputs and the final outputs (e.g., m-th factor in sector j via the coefficient dmj; 

Δpymdmj).  

 

D.2 Endogenous recovery for the survival coefficient 

As noted in the conclusions (Section 6), the production capacity in the study is exogenous (based 

on past data). Therefore, this study does not predict when the disaster damage will converge. However, some 

readers may wonder how to consider the notion of resilience in the supply in an endogenous way.  

Perhaps one of the simplest ideas is to consider the t-period sequential model, assuming that the 

final output (or the survival coefficient) recovers and depending on the realized final demand in the previous 

period. Let ∆𝑞𝑖𝑡 be the quantity change and 𝜃𝑖𝑡 be the survival rate both in the period t. Also, let �̃�𝑖𝑡 be the 
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realized final output (final demand), which is the pre-disaster quantity (𝑞𝑖 ) plus the spillover change in 

quantity (∆�̃�𝑖𝑡). From Eq.36, the change ratio of the quantity at t is expressed:  ∆𝑞𝑖𝑡𝑞𝑖 = 𝜃𝑖𝑡 − 1 (D2.1) 

Here, suppose that the survival coefficient recovers, depending on the realized final outputs. For 

example, a producer may not be able to carry out production activities without obtaining the required final 

outputs. Or, if too many final outputs are supplied in the market, some suppliers may adjust their production. 

Thus, in the endogenous way of thinking, suppose that the quantity change at period t+1 (∆𝑞𝑖𝑡∗1, or 𝜃𝑖𝑡+1) is 

a function of the realized final demand (�̃�𝑖𝑡, or ∆�̃�𝑖𝑡) at the previous period t.  ∆𝑞𝑖𝑡+1𝑞𝑖 = 𝜃𝑖𝑡+1 − 1 = 𝑓(�̃�𝑖𝑡) (D2.2) 

where 𝑓(∙) denotes some endogenous function. Note that in this case we need to substitute only the initial 

value at t=0 (i.e., ∆𝑞𝑖1, or 𝜃𝑖1) and do not need to substitute after t=1. 

 

D.3 Sequential Interindustry Models (SIM) in Romanoff (1984) and Okuyama et al. (2004) 

SIM was proposed by Romanoff (1984) and his collaborators mainly during the 1980s (for a short 

history, see Okuyama et al., 2004). SIM is a model that takes into account a shift in production timing. As 

the background, a basic LQM (Eq.3) assumes that an additional amount of final demand (y) would induce 

the corresponding production (x) instantly. For example, Eq.D1.1 above (Fig. S6) assumes that the round 

effect finishes simultaneously and instantly. This assumption is not usually realistic, however, because new 

production would require lead and delivery times, depending on the existing amount of inventory. In 

particular, a disaster often causes disruptions in production (the supply constraint), but the timing of the 

disruptions may not affect all sectors equally.  

Following Romanoff (1984), LQM (Eq.1) is converted to a “t-period” static model where t means 

discrete intervals of equal duration (e.g., month or week): 𝐱𝑡 = 𝐳𝑡 + 𝐲𝑡 (D3.1) 

Given A is fixed, suppose delivery of intermediate output (z) at t is linked to the production at t+1 because 

of production time:  𝐳𝑡 = 𝐀𝐱𝑡+1 (D3.2) 
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Thus, the t-period model is expressed as:  𝐱𝑡 = 𝐀𝐱𝑡+1 + 𝐲𝑡 (D3.3) 

Eq.D.3.3 continues indefinitely (to t+∞ ) because 𝐱𝑡+1  is nested in the t-period equation. By using the 

double-sided Z transform, Eq.D3.3 is solved as:  

𝐱𝑡 = 𝐲𝑡 + 𝐀𝐲𝑡+1 + 𝐀2𝐲𝑡+2 + 𝐀3𝐲𝑡+3 + ⋯ = ∑ 𝐀𝑟∞
𝑟=0 𝐲𝑡+𝑟 (D3.4) 

Eq.D3.4 is called a core SIM of the original version, meaning that the current total production (at t) is 

expressed as “a power series of future series final demand orders” (Romanoff, 1984, p.354).  

More realistic models have been proposed as modified SIM rather than the core SIM. The SIM 

literature usually considers two types of production modes: the anticipatory production mode and the 

responsive production mode. The former makes readymade standard products and prepares product 

inventories. It delivers the final outputs when production is complete. Meanwhile, the latter will make non-

standard, unique products without preparing inventories. Hence, before the production is complete, it takes 

a lead time and production interval to deliver the final outputs.  

For example, Okuyama et al. (2004) formulated the two production modes as follows. The 

anticipatory production mode is expressed as: 𝐱𝑡 = 𝐀𝐱𝜎 + 𝐮𝑡 + 𝐲𝑡 (D3.5) 

where u is (a vector of) the outputs to product inventories. Here, t is time interval of input application, and 𝜎 is time interval of production completion. Here, as an assumptions, the intermediate output (Ax) is priced 

at 𝜎 (i.e., product completion), not at t (i.e., input application). Meanwhile, the responsive production mode 

is represented as:  𝐱𝒕 = 𝐀𝐱𝜎−ℎ−𝑘 + 𝐲𝒕 (D3.6) 

where 𝑘  is the ordering lead time, and ℎ  is the production interval. Note that Eq.D3.6 has no product 

inventories. Again, as an assumption, the intermediate output (Ax) is priced at (𝜎 − ℎ − 𝑘) (i.e., the initial 

ordering time), not at t (i.e., input application). Thus, the combined anticipatory-responsive production model 

encompasses both properties of Eqs.D3.5–D3.6 as:  𝐱𝑡 = 𝐀𝐱𝜎−ℎ−𝑘 + 𝐮𝑡 + 𝐲𝑡 (D3.7) 

The above SIM is based on LQM, and hence, we consider rewriting SIM in terms of the LPM 

version as follows. First of all, LQM considers the backward linkage from demand to supply (i.e., from 
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output to input). For example, the production (x) itself is priced at t (input), whereas the intermediate outputs 

(Ax) are priced when they are demanded (or ordered; output), such as t+1 in Eq.D3.3, 𝜎 in Eq.D3.6, and (𝜎 − ℎ − 𝑘)  in Eqs.3.6–3.7. Thus, in SIM, the current input price is decided by the future output price 

(Eq.D3.4). Meanwhile, LPM (this study) considers the forward linkage from supply to demand (i.e., from 

input to output). Therefore, contrary to the normal SIM, in LPM, the future output price should be decided 

by the current input prices. 

Specifically, we convert the original core SIM (Eqs.D3.1–D3.4) as follows. First, LPM (Eq.4) is 

converted to a t-period static model (similarly to Eq.D3.1):  (𝐩′)𝑡 = (𝐩z′ )𝑡 + (𝐩v′ 𝐂)𝑡 (D3.8) 

where 𝐩z′  is the price vector of intermediate inputs (z), and (∙)𝑡 means a period t. For simplicity, suppose 

that C may be variable at t. Given that A is fixed, suppose that the price for intermediate inputs at t is linked 

to the production at t–1 because of production time: (𝐩z′ )𝑡 = (𝐩′)𝑡−1𝐀 (D3.9) 

Thus, the t-period model is expressed as:  (𝐩′)𝑡 = (𝐩′)𝑡−1𝐀 + (𝐩v′ 𝐂)𝑡 (D3.10) 

Eq.D.3.10 continues negatively indefinitely (to t–∞) because (𝐩′)𝑡−1 is nested in the t-period equation. By 

using the double-sided Z transform, Eq.D3.10 is solved as:  

(𝐩′)𝑡 = (𝐩v′ 𝐂)𝑡 + 𝐀(𝐩v′ 𝐂)𝑡−1 + 𝐀2(𝐩v′ 𝐂)𝑡−2 + 𝐀3(𝐩v′ 𝐂)𝑡−3 + ⋯ = ∑ 𝐀𝑟∞
𝑟=0 𝐲𝑡−𝑟 (D3.11) 

This part refers Eq.D3.11 to the original core SIM of the LPM version, meaning that the current total price 

(at t) is expressed as a power series of past series the price of primary inputs (to t–∞) have induced.  

In addition, analogously to Eqs.D3.5–D3.7, we may consider the combined anticipatory-

responsive production model for the LPM version as follows. As the simplest idea, we suppose that the 

correspondence between the time intervals of input (e.g., supply at t) and output (e.g., demand at 𝜎) can be 

reversed from LQM, as in Okuyama et al. (2004), because LPM is the supply-driven model. For example, 

the anticipatory production mode may be expressed as: (𝐩′)𝜎 = (𝐩′)𝑡𝐀 + (𝐩v′ 𝐂)𝜎 (D3.12) 

where t is time interval of input application, and 𝜎 is time interval of production completion. It is assumed 

that prices for total outputs (𝐩′) and primary inputs (𝐩v′ 𝐂) are priced at 𝜎 (when production is complete), 
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and the price for intermediate inputs (𝐩′𝐀) is priced at t (when input is applied). Note that Eq.D3.12 ignores 

the inventory price, assuming that the inventory is priced at 𝜎 (at the completion of production).  

Meanwhile, the responsive production mode of the LPM version may be expressed as: (𝐩′)𝜎−ℎ−𝑘 = (𝐩′)𝑡𝐀 + (𝐩v′ 𝐂)𝜎−ℎ−𝑘 (D3.13) 

where 𝑘 is the ordering lead time and ℎ is the production interval. It is assumed that prices for total outputs (𝐩′)  and primary inputs (𝐩v′ 𝐂)  are priced at (𝜎 − ℎ − 𝑘)  because production will take place after 

ordering at (𝜎 − ℎ − 𝑘). Note that Eq.D3.13 is also considered as the combined anticipatory-responsive 

production model for LPM because it already encompasses the property of Eq.3.12. 

 

D.4 Impact on transportation networks in Sohn et al. (2004) and Kim et al. (2002) 

The production network is a key issue in the literature on disasters. As a study of this challenging 

issue, this section would like to review Sohn et al. (2004), who examined the economic impacts of an 

earthquake on transportation. The authors analyzed the period from the base year (1993) to 2017 (as a 

forecast) in 36 earthquake analysis zones in 13 economic sectors in the United States. For background, in 

recent decades, supply chains have become more developed (not only domestically but also globally), 

probably because the costs of transfers and transportation have become much lower. In other words, 

transportation intensity (or transportation efficiency) in the supply chain network has increased a lot, leading 

to an increase in the fragmentation of production. However, the efficiency here relies on eliminating wasteful 

networks, which can result in a loss of resilience. Therefore, when a disaster disrupts the supply chains, the 

more efficient the production network, the greater the damage to production.  

The model of Sohn et al. (2004) is divided into two parts. One part is the integrated commodity 

flow model (ICFM) (Sohn et al., 2004, Section 12.6, pp.247–249), which was proposed in Kim et al. (2002, 

Eqs.1–8 in Section 3, pp.226–229) and related papers. Note that ICFM is based partly on but far from the 

ordinary IO models, and therefore, this section does not fully review ICFM from the viewpoint of IOA. The 

other is the final demand loss function (Sohn et al., 2004, Section 12.5, pp.242–247), which is based on 

LQM.  

Specifically, ICFM seeks to find the total transportation costs in the economic system, which are 

the network assignment costs, intraregional travel costs, and interregional flow distribution costs. This 

estimate is subject to the following three conditions: material balance, conservation of flow, and non-
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negativity of the flow (of the output of sector). Sohn et al. (2004, Eq.12.17, p.249) calculated the change in 

a sectoral system-wide transportation cost (ΔTCi) in sector i. 

Meanwhile, regarding the final demand loss function (Sohn et al., 2004, Eq.12.8, p.242), we can 

simplify it as follows. First of all, the loss of final demand (∆𝐲) is based on LQM as:  𝐲 = (𝐈 − 𝐀)𝐱 ⇔ ∆𝐲 = (𝐈 − 𝐀)∆𝐱 (D4.1) 

given that A is fixed. As the steps for estimation, we first estimate the transportation cost (ΔTCi) by ICFM 

and the corresponding loss of production (∆𝐱). Eq.D4.1 then estimates the loss of final demand (∆𝐲) as the 

economic loss. Specifically, in a manner similar to the survival coefficient (θ) in the main text, ∆𝐱 is caused 

by the network disruption (coefficient): ∆𝐱 = 𝐍⨂(𝐈 − 𝐑) ∘ 𝐱 (D4.2) 𝐍 is the matrix of network disruption ratio (by zone) (i.e., the symbol D is used in Sohn et al. (2004), but 

we use 𝐍 to distinguish it from the other coefficient D in the main text). R is the matrix of sectoral resiliency 

factor, and thus, (𝐈 − 𝐑)  represents a negative factor of sectoral resiliency. ⨂  means the multiplier of 

tensor product. “∘” denotes the multiplier of Hadamard product (i.e., the element-wise product). Here, the 

network disruption is represented as the network disruption ratio (N) times the sectoral resiliency ratio (𝐈 − 𝐑), meaning that the greater the network disruption and the lower the resilience, the greater the damage 

to production. Recall that x is (𝐈 − 𝐀)−1𝐲, and the final demand loss function of Sohn et al. (2004) is derived 

as:  ∆𝐲 = (𝐈 − 𝐀){[𝐍⨂(𝐈 − 𝐑)] ∘ 𝐱} = (𝐈 − 𝐀){[𝐍⨂(𝐈 − 𝐑)] ∘ [(𝐈 − 𝐀)−1𝐲]} (D4.3) 

This part reviews the model of Sohn et al. (2004). First of all, ICFM itself will be helpful for 

examining the network in each region when considering each material flow. It is also beneficial for 

calculating the transportation costs (ΔTC).  

Meanwhile, regarding the final demand loss function, this part wonders if it is inconsistent with 

the IOA theory. The strangest point is that Eq.D4.1 (LQM) calculates the demand loss (∆𝐲) by the production 

loss (∆𝐱) although LQM is the demand-driven model. Instead, we rewrite the final demand loss function for 

the supply-driven model as follows.  

The simplest idea changes Eq.D4.2 to the quantity equation, analogously to the survival coefficient 

(𝜃). For simplicity, before a disaster, we assume that production (𝐱) equals quantity (𝐪) at price (𝐩) is 
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one. First, suppose that the network disruption causes the supply constraint, and Eq.D4.2 is rewritten to the 

quantity level: ∆𝐪 = 𝐍⨂(𝐈 − 𝐑) ∘ 𝐪 (D4.4) 

Thus, 𝐍⨂(𝐈 − 𝐑) is analogous to the survival coefficient (𝜃). Thus, we can obtain the quantity loss in a 

certain sector i (∆𝑞𝑖) and substitute it to Eq.35.  

Rather, suppose that we already know how much the additional transportation cost (ΔTC) will be 

after a disaster (e.g., via ICFM). Usually, however, ΔTC is value added only in the transport sector and is an 

intermediate input in the other sectors. Therefore, separately, the price of value added is increased by ΔTC 

divided by q in the transport sector as follows: 

∆(𝑝𝑣′ 𝑐) = ∆𝑇𝐶𝑥 = ∆𝑇𝐶𝑞  in the transport sector (D4.5) 

Meanwhile, the price of intermediate input is increased by ΔTC divided by Ax in other sectors as follows:  

∆(𝑝′𝑎) = ∆𝑇𝐶𝑎𝑥  in other sectors except for the transport sector (D4.6) 

In this way, we can use the information on the additional prices of value added (𝐩v′ 𝐂) and the intermediate 

inputs (𝐩′𝐀) in IOA. For example, we may consider updating the coefficients A to 𝐀𝐧𝐞𝐰, or C to 𝐂𝐧𝐞𝐰. 

 

D.5 Input-occupancy-output model in Chen (1990) and Chen et al. (2005) 

Usually, LQM (the Leontief production function) assumes a fixed proportion of inputs (i.e., the 

fixed A), meaning that one product (one output) requires a fixed proportion of inputs. In other words, LQM 

does not consider capital assets such as the plant, land, labor, and other forms. However, this assumption 

may not be realistic because, without capital assets, no matter how many inputs, no output can be produced. 

For example, in a car supply chain, a car (output) is usually made up of tens of thousands of parts (inputs). 

Now, suppose that a disaster damages a plant that creates a key automobile part that cannot be replaced or 

substituted in order to complete a car. As a result, car production would not be complete just because the 

plant cannot operate.  

As a model for considering such a capital (or asset) constraint, the input-occupancy-output model 

(or, the IO model with assets) was proposed in Chen (1990) and Chen et al. (2005). The term “occupancy” 

means “holding and using assets at a point of time by a sector, where assets include fixed assets, inventory, 

financial assets, labor, natural resources, and so on” (Chen et al., 2005, p.224). Chen et al. (2005, p.213) 
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explained assets in terms of the following three features: “assets consist not only of fixed assets (such as 

machinery and construction), but also of inventories, financial assets, labor force (educated or not, skilled or 

not), natural resources, intangible assets, and others;” where “(1) assets are a prerequisite for input and 

output...; (2) assets are related with output and input...; and (3) input is dependent on the assets used.”  

Regarding the normal LQM, which does not consider capital assets, Chen et al. (2005, Eqs.8–9, 

p.218) first rewrote LQM as follows: 𝐱 = 𝐀𝐱 + 𝐲 = (𝐈 − 𝐀)−1𝐲 = (𝐀𝐁 + 𝐈)𝐲 (D5.1) where 𝐀𝐁 = (𝐈 − 𝐀)−1 − 𝐈 (D5.2) 

Instead of B in Chen et al. (2005), we use 𝐀𝐁 to distinguish it from the coefficient B in the main text. Notice 

that compared to the Leontief inverse L, 𝐀𝐁 ignores the identity matrix I:  𝐋 = (𝐈 − 𝐀)−1 = 𝐈 + 𝐀 + 𝐀𝟐 + 𝐀𝟑 + ⋯ (D5.3) 𝐀𝐁 = (𝐈 − 𝐀)−1 − 𝐈 = 𝐀(𝐈 − 𝐀)−1 = 𝐀 + 𝐀𝟐 + 𝐀𝟑 + ⋯ (D5.4) 

Here, Chen et al. (2005, p.218) considered to include the indirect “consumption” of fixed assets, 

rewriting 𝐀𝐁 to 𝐀𝐁∗  as follows:  𝐀𝐁∗ = 𝐀 + 𝐀𝐁∗ 𝐀 + α̂𝐀𝐃 + 𝐀𝐁∗ α̂𝐀𝐃 = (𝐀 + α̂𝐀𝐃) + 𝐀𝐁∗ (𝐀 + α̂𝐀𝐃) (D5.5) 

Note that, instead of D in Chen et al. (2005), we use 𝐀𝐃 to distinguish it from the coefficient D in the main 

text. 𝐀𝐃 is I×I-matrix with the fixed asset holding coefficient. α̂ is the diagonal matrix of the depreciation 

rate αi. In the middle part of Eq.D5.5, the first term (𝐀) means the direct consumption coefficient via 

intermediate inputs; the second term denotes (𝐀𝐁∗ 𝐀) the indirect consumption via intermediate inputs; the 

third term (α̂𝐀𝐃) denotes the direct consumption via fixed assets, which is the product of the depreciation 

rate (α̂) and the fixed asset holding coefficient (𝐀𝐃); and the fourth term (𝐀𝐁∗ α̂𝐀𝐃) refers to the indirect 

consumption via fixed assets. Notice that Eq.D5.5 has round (or ripple) effects because of including 𝐀𝐁∗  in 

the two terms in the middle part. The third part shows that 𝐀𝐁∗   is divided into the direct consumption 

coefficients (𝐀 + α̂𝐀𝐃) and the indirect ones 𝐀𝐁∗ (𝐀 + α̂𝐀𝐃).  

Note that we can rewrite Eq.D5.5 as follows: 𝐀𝐁∗ {𝐈 − (𝐀 + α̂𝐀𝐃)} = 𝐀 + α̂𝐀𝐃 (D5.6) 

Or, equivalently, using Eq.D5.4:  𝐀𝐁∗ = (𝐀 + α̂𝐀𝐃){𝐈 − (𝐀 + α̂𝐀𝐃)}−1 = {𝐈 − (𝐀 + α̂𝐀𝐃)}−1 − 𝐈 (D5.7) 
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Chen et al. (2005, Eqs.15–16, p.220) compared the normal LQM with their approach, replacing A 

with (𝐀 + α̂𝐀𝐃) as follows:  𝐱 = (𝐀 + α̂𝐀𝐃)𝐱 − α̂𝐀𝐃𝐱 + 𝐲 = (𝐀 + α̂𝐀𝐃)𝐱 + 𝐲∗ (D5.8) 

where 𝐲∗ represents the vector of net final demands, excluding the replacement investments of fixed assets (−α̂𝐀𝐃𝐱) . Eq.D5.8 considers the consumption via fixed assets as the intermediate outputs (α̂𝐀𝐃𝐱)  but 

removes the same amount of consumption from the final demand (−α̂𝐀𝐃𝐱) because of equality. Thus, we 

can estimate that the additional net final demand (𝐲∗) would increase how much in terms of production as 

follows: 𝐱 = {𝐈 − (𝐀 + α̂𝐀𝐃)}−1𝐲∗ (D5.9) 

From here, as the simplest application, we explain how the model of this study (i.e., LPM) can 

integrate the input-occupancy-output model. First, considering the coefficient via fixed assets (α̂𝐀𝐃), we 

rewrite the Leontief inverse 𝐋 to 𝐋∗ as follows: 𝐋∗ = {𝐈 − (𝐀 + α̂𝐀𝐃)}−1 (D5.10) 

Note that α̂𝐀𝐃 may take large values if a disaster causes a huge amount of damage to the fixed assets. Thus, 

replacing 𝐋 in Eq.45 with 𝐋∗, we represent the price of total outputs plus the unit cost of occupying fixed 

assets (∆𝐩′∗) as follows: 

∆𝐩′∗ = ∆(𝐩v′ 𝐂)𝐋∗ = ∆𝐩′�̂�𝐋∗ = [∆𝑞𝑖𝑞𝑖𝜀𝑖]′ �̂�𝐋∗ = [𝜃𝑖 − 1𝜀𝑖 ]′ �̂�𝐋∗ (D5.11) 

In this way, we can examine how the change in price for primary inputs (∆(𝐩v′ 𝐂)) will affect the price of 

total outputs with the unit cost of occupying fixed assets (∆𝐩′∗).  

 

D.6 Extension to the CGE model: the FIDELIO model in Kratena et al. (2013; 2017) and Kratena and 

Streicher (2017) 

The model of this study is just an IOA, not CGE, but some readers may wonder how this study 

can be applied to CGE. Thus, this part briefly discusses it with reference to Fully Interregional Dynamic 

Econometric Long-term IO Model (FIDELIO) (Kratena et al., 2013; 2017; Kratena & Streicher, 2017). 

FIDELIO is very similar to CGE and has a demand-driven and linear “IO philosophy” (Kratena et al., 2013). 

Regarding the overview of FIDELIO, Fig. S8 (Kratena et al., 2013, Fig. 1.1, p.5) shows the main economic 
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flows (i.e., monetary transactions, not real [quantity] flows), and Fig. S9 (Kratena et al., 2013, Fig. 1.2, p.10) 

indicates the selected prices.  

Skipping the details, regarding the disaster analysis, FIDELIO can analyze both demand and 

supply constraints (i.e., shocks) because it includes the CGE essence but is more suitable for the demand 

constraint than the supply constraint because of following LQM (as the demand-driven model). At the middle 

of top of Fig. S8, GDbp(r; g; u) represents demand by user u for good g domestically produced in region r at 

basic prices (bp). As in LQM, GDbp(r; g; u) derives the supply of goods (gross outputs) by sector s in region 

r (denoted by Q(r; s)), under the constant proportions of market share (denoted by MKSH(r; g; s)) at the base 

year (t=0 as in the superscript). Kratena et al. (2013, Eqs.4.1–4.2, pp.70–71) express this relationship as 

follows: MAKE(r, g, s) = MKSH0(r, g, s) ∙ ∑ GDbp(r, g, u)u  (D6.1) 

Q(r, s) = ∑ MAKE(r, g, s)g  (D6.2) 

where MAKE (r, g, s) denotes the total supply of good g by sector s in r (i.e., make matrix element). Notice 

that Eqs.D6.1–D6.2 are analogous to LQM (Eq.3) as: 𝐱 = (𝐈 − 𝐀)−𝟏𝐲 = 𝐋𝐲 (3) 

where GDbp(r, g, u)  is analogous to 𝐲 . Thus, FIDELIO can analyze the demand constraint (shock) via ∆GDbp(r, g, u), in a manner similar to ∆𝐲 in LQM.  

Regarding the price, FIDELIO “distinguishes between prices at a very detailed level,” and “all 

prices ultimately derive from output prices PQ(r,s), which are basic prices determined in the translog 

production block using the price function” (Kratena et al., 2013, p.90). This implies that regarding prices, 

FIDELIO is analogous to GPM (as the demand-driven price model). As in GPM, the output price in region 

r in sector s (denoted by PQ(r, s)) derives the basic prices of domestic products (denoted by PGDbp(r, g)) 

via the average weights (denoted by ∑ MKSH0(r, g, s)s ) (Kratena et al., 2013, Eq.4.91, p.91): 

PGDbp(r, g) = ∑ MKSH0(r, g, s)s ∙ PQ(r, s) (D6.3) 

Note that PGDbp(r, g) is further divided into each of prices. Here, notice that Eq.D6.3 is analogous to GPM 

(Eq.18) as:  
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𝐩 = (𝐈 − 𝐁)−𝟏𝐃𝐩𝐲 = 𝐆𝐃𝐩𝐲 (18) 

where PQ(r, s)  is analogous to 𝐩𝐲  or 𝐃𝐩𝐲 . Thus, FIDELIO can analyze the change in output prices, ∆PQ(r, s), in a manner similar to ∆(𝐃𝐩𝐲) in GPM.  

Although FIDELIO is too complex to rewrite the whole model, as an idea, we can consider 

converting FIDELIO to the supply-driven model for some key points. First of all, FIDELIO considers first 

that the final demand derives the supply values (as in LQM) and then that the output prices affect various 

prices (as in GPM). However, this way of thinking is the opposite of this study (Section 2.1). This study 

considers first that the price of primary inputs decides the output price (as in LPM), and then that the input 

value affects the output values (as in GQM).  

Specifically, LPM (Eq.6) derives the output price (𝐩′) from the price of primary inputs (𝐩v′ 𝐂). 𝐩′ = 𝐩v′ 𝐂(𝐈 − 𝐀)−𝟏 = 𝐩v′ 𝐂𝐋 (6) 

Thus, analogously, Eq.D6.3 in FIDELIO is rewritten in the opposite direction, where the input price 

(PGDbp(r, g)) determines the output price (PQ(r, s)), via some function 𝑓1(∙). PQ(r, s) = 𝑓1 (PGDbp(r, g)) (D6.4) 

Although this study is based on LPM, the change of the input quantity (∆𝑞𝑖) is supposed to decide the change 

in 𝐩v′ 𝐂 (Eq.44):  

∆(𝐩v′ 𝐂) = ∆𝐩′�̂� = [∆𝑞𝑖𝑞𝑖𝜀𝑖]′ �̂� = [𝜃𝑖 − 1𝜀𝑖 ]′ �̂� (44) 

Therefore, analogously, the input price in FIDELIO may be affected by the value added via some function 𝑓2(∙): PGDbp(r, g) = 𝑓2(VA(r, s)) (D6.5) 

where VA(r, s) is the total value added at base price (bp) of sector s in region r. When linking Eq.44 to Eq.6, 

we derive Eq.45, meaning that the change in the value added (i.e., the supply constraint) affects the output 

price (∆𝐩′).  

∆𝐩′ = ∆(𝐩v′ 𝐂)𝐋 = ∆𝐩′�̂�𝐋 = [∆𝑞𝑖𝑞𝑖𝜀𝑖]′ �̂�𝐋 = [𝜃𝑖 − 1𝜀𝑖 ]′ �̂�𝐋 (45) 

Similarly, we can link Eq.D6.5 to Eq.D6.4 via the functions 𝑓1 and 𝑓2. PQ(r, s) = 𝑓1 (PGDbp(r, g)) = 𝑓1{𝑓2(VA(r, s))} (D6.6) 
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Eq.D6.6 indicates that the change in value added (i.e., ∆VA(r, s)) will affect the change in output price (i.e., ∆PQ(r, s)). Finally, the model of this study presupposes that the output price decides the output quantity, 

meaning that consumers buy less (more) if the output price is higher (lower) (Eq.46). ∆�̃�𝑖 = 𝜀𝑖∆�̃�𝑖𝑥𝑖 (46) 

Analogously, as rewriting Eq.D6.1 in FIDELIO, the demand for each user (u) at the base price (bp) (i.e., GDbp(r, g, u)) is decided by the output price (PQ(r, s)) via some function 𝑓3(∙): 

∑ GDbp(r, g, u)u = 𝑓3(PQ(r, s)) = 𝑓3[𝑓1{𝑓2(VA(r, s))}] (D6.7) 

Note that each of users (u) may decide the demand quantity, depending on their utility functions. In this way, 

we can examine how the supply constraint (i.e., ∆VA(r, s)) can affect the demand as in the model of this 

study. 

 

D.7 Spatial substitution and price multipliers: the FIDELIO model in Kratena and Streicher (2017) 

Regarding advanced issues, this part discusses spatial substitution and price multipliers. That is, 

when a disaster causes a supply shock (i.e., supply constraint), we may wonder which areas will be damaged 

(i.e., spatial substitution) and how much the economic impact will be (i.e., price multipliers). As  

background, Kratena and Streicher (2017) recently examined the fiscal policy simulations in the aftermath 

of the financial crisis (i.e., the stability and magnitude of fiscal policy multipliers) using the FIDELIO model 

(see Supplementary Information D.6). Covering 67 countries (i.e., EU countries and rest of Europe), the 

simulation supposes that there is a 1% shock to GDP in Spain (as an EU economy) over a ten-year period 

(i.e., shocks to public expenditures, capital taxes, and transfer payments). The estimated result shows 

multipliers are about 1.9 (1.6) for public consumption and 1.2 (0.9) for household taxes or transfers in the 

case of high (low) liquidity constraints.  

Regarding the spatial substitution, Kratena and Streicher (2017) simulate the effect of the shock 

(1% of GDP) in Spain on all 67 countries. Such an analysis is possible in the model of this study because 

this study is already an MRIO model (i.e., 47 prefectures in Japan).  

Note, however, that FIDELIO takes various prices, whereas this study conducts a domestic model 

(i.e., Japan). Thus, we here consider taking various prices as in FIDEIO and as in Fig. S4 (Supplementary 

Information C). Suppose that the price of final output (𝐩𝐲) consists of the following four prices: prices for 
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the final outputs of the household (𝐩𝐡𝐨𝐮), government (𝐩𝐠𝐨𝐯), investments (capital formation; 𝐩𝐢𝐧𝐯), and net 

exports (𝐩𝐞𝐱𝐩). These prices are expressed in GPM, given the coefficient B is fixed. 𝐩 = 𝐁𝐩 + 𝐃𝐩𝐲 = 𝐁𝐩 + 𝐃[𝐩𝐡𝐨𝐮, 𝐩𝐠𝐨𝐯, 𝐩𝐢𝐧𝐯, 𝐩𝐞𝐱𝐩] ⇔ 𝐃[𝐩𝐡𝐨𝐮, 𝐩𝐠𝐨𝐯, 𝐩𝐢𝐧𝐯, 𝐩𝐞𝐱𝐩] = (𝐈 − 𝐁)𝐩 (D7.1) 

where the bracket means the vector (i.e., the four factors of prices). In this case, suppose that the model of 

this study calculates the spillover change in price (∆𝐩) in Eq.38. Thus, substituting ∆𝐩 to Eq.D7.1, the 

change of the final output price (∆(𝐃𝐩𝐲)) is calculated:  ∆(𝐃𝐩𝐲) = ∆(𝐃[∆𝐩𝐡𝐨𝐮, ∆𝐩𝐠𝐨𝐯, ∆𝐩𝐢𝐧𝐯, ∆𝐩𝐞𝐱𝐩]) = (𝐈 − 𝐁)∆�̃� (D7.2) 

Therefore, some rationing scheme can divide ∆𝐩𝐲 into each of ∆[𝐩𝐡𝐨𝐮, 𝐩𝐠𝐨𝐯, 𝐩𝐢𝐧𝐯, 𝐩𝐞𝐱𝐩]. 
We then can explain the price multiplier in IOA. In LQM and LPM, the Leontief inverse (L) causes 

the round effect (see Eq.D1.1 above). Thus, the Leontief multiplier in each sector i (𝑙𝑚𝑖 as the row vector) 

is expressed as the column sum of L as follows: [𝑙𝑚𝑖] = 𝐢′𝐋 = 𝐢′(𝐈 − 𝐀)−1 = 𝐢′(𝐈 + 𝐀 + 𝐀𝟐 + 𝐀𝟑 + ⋯ ) (D7.3) 

where i denotes a summation vector (of one). Similarly, the Ghosh multiplier in each sector i (𝑔𝑚𝑖 as the 

column vector) is expressed as the column sum of G as follows: [𝑔𝑚𝑖] = 𝐆𝐢 = (𝐈 − 𝐁)−1𝐢 = (𝐈 + 𝐁 + 𝐁𝟐 + 𝐁𝟑 + ⋯ )𝐢 (D7.4) 

As a price multiplier, FIDELIO (the demand-driven model) should use the Ghosh multiplier (because of 

GPM; Eq.D7.4). Meanwhile, the model of this study (the supply-driven model) should use the Leontief 

multiplier (because of LPM; Eq.D7.3).  

 

D.8 The supply constraint in GQM 

Some readers also may wonder if the data of this study can be applied to the disaster models 

developed in previous studies. Because most of the models in the literature have adopted LQM (as the 

demand-driven model), however, we could not find such models that could be compared directly with this 

study (i.e., the supply-driven model) at the present moment. Therefore, here we compare the damage of the 

supply constraint in GQM as follows. Note that GQM itself is considered implausible in the IOA literature 

(see Section 2.3). 

GQM (Eq.10) is expressed as:  𝐱′ = 𝐯′(𝐈 − 𝐁)−1 = 𝐯′𝐆 ⟺ 𝐯′ = 𝐱′(𝐈 − 𝐁) = 𝐱′𝐆−1 (D8.1) 
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Given that B is fixed, suppose that a disaster causes the supply constraint to the primary inputs. For example, 

the survival coefficient (or production capacity) 𝚯 = [𝜃𝑖] constrains the primary inputs directly as 𝐯′�̂� 

(where �̂� is the diagonal matrix of 𝚯). Replacing 𝐯′ with 𝐯′𝚯 in Eq.D8.1:  𝐯′�̂�(𝐈 − 𝐁)−1 = 𝐱′(𝐈 − 𝐁)�̂�(𝐈 − 𝐁)−1 = 𝐱′𝐆−1�̂�𝐆 (D8.2) 

Thus, if the primary inputs will be restricted to 𝐯′�̂� , the production (𝐱′ ) is changed (i.e., most likely 

decreased) to be 𝐱′𝐆−1�̂�𝐆. Notice that 𝐱′𝐆−1�̂�𝐆 is different from 𝐱′�̂� although they may take similar 

values with each other:   𝐱′𝐆−1�̂�𝐆 ≠ 𝐱′�̂� (D8.3) 

Eq.D8.3 means that in GQM, the supply constraint is likely to decrease the production directly via 𝐆−1�̂�𝐆. 

Compared to GQM, the model of this study does not always decrease (or even increases) the production 

(Section 3.4). As we can confirm, the loss of PS (ΔPS; which is the difference of half-production before and 

after the disaster) takes even negative values (Tables V and VI).  
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Supplementary Information E: IIP and disaster damage 

IIP covers production (in all prefectures), shipments, and inventories, and this study uses the 

production IIP because it has abundant production data as an actual index. Because of the real index, however, 

IIP has a drawback in that it is affected not only by the direct effect of disaster but also by the indirect effect 

among sectors, which may be somewhat mitigated by the inventories.  

The direct damage lowers IIP due to labor and capital damage. The indirect damage may further 

lower IIP due to the balance (i.e., bottleneck) of supply and demand in the supply chain. Note, however, that 

this indirect damage can be alleviated to some extent by the amount of inventory, covering shipping capacity. 

If there are enough amounts of inventories, because shipping capacity can be covered by inventory to some 

extent, production damage does not spill over to the whole supply chain.  

For example, suppose there are five sectors in a product supply chain: raw materials, components, 

and manufacture as the manufacturing sector, retail as the service sector, and the final consumers 

(Supplementary Information Fig. S2). The first (raw material) to fourth (retail) sectors are on the supply side, 

and are involved in conducting production, shipments, and inventory processes (which are all covered by 

IIP). The maximum volume of shipments depends on production and inventory, and shipments are realized 

based on the balance between supply and demand. Meanwhile, the second to last (consumer) sectors are on 

the demand side, purchasing a product from each of the preceding suppliers. 

Suppose a disaster stops only the production of raw material. The decrease in production will affect 

shipping capacity, potentially changing demand (e.g., volume and price) as the intermediate input of 

components. Because of the shortage of the intermediate input, the supply of components may be affected, 

potentially changing demand for the components in the manufacturing sector (etc.). Note, however, that 

inventory is important for such indirect damage. If there is no inventory, production damage directly affects 

shipping capacity, and therefore largely affects supply and demand throughout the supply chain. Meanwhile, 

if there are enough inventories, because shipping capacity can be covered by inventory to some extent, 

production damage does not spill over to the entire supply chain. 
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Supplementary Information F: Indirect damages in H95Jan (Toyoda & Kouchi, 1997) and GEJE 

(Hayashi, 2012) 

In disaster studies, the loss of SS is not widespread for estimating damage. Instead, two popular 

damages are direct damage (e.g., damage to capital stock) and indirect damage (e.g., flow damage due to the 

spillover effect). This study supposes that the loss of SS is similar to indirect damage because it does not 

consider the damage to capital stock and so on. In other words, the indirect damage in the previous studies 

is divided into those of buyers (in the downstream sector) and sellers (in the upstream sector), which are 

similar to the losses of CS and PS, respectively. This study supposes that the reason SS is not popular is that 

CS is difficult to estimate (although PS is easy). CS is calculated from the difference between reservation 

price (i.e., willingness-to-pay price) and transaction price. However, the reservation price is usually difficult 

to estimate. Meanwhile, PS is calculated from the difference between the transaction price and cost, which 

are easy to determine (with assumptions). 

Two previous studies that estimated damage due to H95Jan (Toyoda & Kouchi, 1997) and GEJE 

(Hayashi, 2012) are introduced for comparative purposes (see Supplementary Information Table S10). 

Shortly after H95Jan (April 5, 1995), the Hyogo prefectural government (and National Land Agency, Japan) 

estimated that the direct damage (to capital stock) caused by the disaster totaled 9,926.8B JPY. Toyoda and 

Kouchi (1997) aimed to update this estimate using a questionnaire survey, which asked sample firms about 

direct and indirect damage amounts. The survey period spanned January 29 to February 15, 1996, and valid 

responses were elicited from 1,246 representatives of firms under the auspices of the Kobe Chamber of 

Commerce and Industry (1,086 firms for direct damage and 810 firms for indirect damage). Toyoda and 

Kouchi (1997) calculated disaster coefficients from the survey data and estimated the damage in ten cities 

and ten towns in Hyogo (which were severely damaged). The results suggest that direct damage totaled 

5,930B JPY and 1,510B JPY for the industrial sectors, whereas indirect damage for one year was 7,230B 

JPY in total and 1,203B JPY for the industrial sectors. Based on their results, Toyoda and Kouchi (1997) 

argued that total direct damage should be 13,268.2B JPY.  

Meanwhile, Hayashi (2012) estimated the direct and indirect damage caused by GEJE. 

Immediately after GEJE, the national government estimated the direct damage to be approximately 16,900B 

JPY (or 3.5% of GDP). Hayashi (2012) considered the additional cost of the damage and argued that the 

direct damage (excluding the indirect damage caused by the nuclear accident) should be valued higher, at 
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approximately 30T JPY (6% of GDP). Also, the indirect damage was estimated to be approximately 10T 

JPY in Fukushima alone and approximately 100T JPY with respect to annual gross regional product over the 

decade. Hayashi (2012) argued that, overall, the damage caused by GEJE was three to four times higher than 

that caused by H95Jan. 
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Figs. 
 

 

Fig. S1. Causal chain representation of the Ghoshian model (Oosterhaven, 1988, p.206, Fig. 1) 

 

Notes: Source: Oosterhaven (1988). The original “diq” was probably a typo (i.e., “i”), and therefore, this 

study changes it to “djq”.  

 

 

 
 

Fig. S2. Economic loss estimation in Park (2009) 
 

Notes: The quantity (𝑞𝑜𝑖𝑙) was originally expected to be 487.7MB, and the quantity change (∆𝑞𝑜𝑖𝑙) was 

−140MB for the four months. The oil price before the hurricanes would be 63.9$/B. Park (2009) calculated 

that the direct loss (∆𝑝𝑜𝑖𝑙) was 5.1534 $/B (to be 69.1$/B) and that the total economic loss (∆𝐩) is 10.9780 

$/B (to be 74.9$/B).   
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Fig. S3. IO table in this study  

Note: To facilitate understanding by comparison, the IO model of this study follows the explanation in 

Oosterhaven (1996). 

 

Fig. S4. Example of an IO table  

Notes: This figure is an example of an IO table. Regarding the demand, intermediate demand has I sectors, 

and final demand has four categories (household, government, investment [as capital formation], and net 

export [as an external sector]). Regarding the input, intermediate input has I sectors, and primary input (value 

added) has four categories (labor, capital, investment [as capital depreciation], and tax). Regarding the 

balance of supply and demand, intermediate inputs and demand are balanced (I-by-I square matrix). 

Meanwhile, primary input and final demand are not balanced (hence, total values do not match). 



28 

 

Fig. S5. Example of SAM 

 

Notes: This figure is an example of SAM extended from Fig. S4. The demand (column) consists of activities 

(intermediate demand: I sectors), factor (labor and capital), household, government, investment (capital 

formation), and net export. Similarly, input (row) consists of activities (intermediate inputs: I sectors), factor 

(labor and capital), household, government (as tax revenue), investment (as capital depreciation), and foreign 

countries (as an external factor). In SAM, supply and demand are fully balanced not only in the activity 

sectors but also in the other sectors (hence, a square matrix). 
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Fig. S6. The round effect of LQM 

Notes: See Eq.D1.1. The change in final demand (y) causes the round effect, which affects the amount of 

the total input (x) and the value added (v).  

 

 

Fig. S7. The round effect of this study based on LPM 

Notes: See Eq.D1.2. The quantity change (q or x) is converted to the price change for value added (pv times 

c) (i.e., the dotted arrows), which causes the round effect on the prices for total outputs (p) and final demand 

(py times d) (i.e., the straight arrows). Finally, the output price (p) decides the total output quantity (q) (i.e., 

a dotted arrow). 
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Fig. S8. Overview of the main economic flows in FIDELIO (Kratena et al., 2013, Fig. 1.1, p.5) 

Notes: Source: Kratena et al. (2013, Fig. 1.1, p.5). “The variables included within red rectangles are endogenous variables. The main functional forms and approaches 

used for the derivation of various parts of the model are mentioned within the blue oval shapes.” 
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Fig. S9. Overview of selected prices in FIDELIO (Kratena et al., 2013, Fig. 1.2, p.10) 

Notes: Source: Kratena et al. (2013, Fig. 1.2, p.10). “Wherever possible, prices (defined within the green rectangles) are positioned/juxtaposed with the 

transactions which they refer to.” 
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Fig. S10. Direct damage of a disaster and indirect damage among sectors in a supply chain of five sectors 

(as an example) 

 

Notes: This figure shows the direct damage caused by a disaster and indirect damage among sectors in an 

example of a supply chain of five sectors: raw materials, components, and manufacture as the manufacturing 

sectors, retail as the service sector, and final consumers. The supply consists of production (or service), 

shipments (to the next sectors), and inventories, and demand means purchasing from the previous sectors. 

IIP consists of production, shipments, and inventories, and this study uses the production IIP. Shipping 

capacity affects demand (market price and quantity) and depends on production and inventories. If there is 

no inventory, production damage directly affects shipping capacity. Meanwhile, if there are enough 

inventories, production damage will be mitigated to some extent by covering shipping capacity. 
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Fig. S11. Production capacity of H95Jan, N04Oct, N07Jul, IM08Jun, and K16Apr  

Note: See Table III. 
 

 

 

Fig. S12. Production capacity of GEJE 

Note: See Table III.  
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Fig. S13. Loss of social surplus (initial production is 100%) 
Note: See Table V. 

 

 
Fig. S14. Loss of consumer surplus (initial production is 100%) 

Note: See Table V.  
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Fig. S15. Loss of producer surplus (initial production is 100%) 
Note: See Table V. 
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Fig. S16. Cumulative loss of consumer surplus (initial production is 100%) 

Note: See Table V. 
 

 
Fig. S17. Cumulative loss of producer surplus (initial production is 100%) 

Note: See Table V. 
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Tables 

 

Table S1. Summary of Data Necessary to Estimate Total Output Vectors (Park, 2009, Table 3, p.22) 
 

Consumption 

Sector 

Oil-Refinery 

Product Type 

𝑞𝑜𝑖𝑙 𝑝𝑜𝑖𝑙 𝜀�̅�𝑜𝑖𝑙 𝜋𝑜𝑖𝑙 ∆𝑞𝑜𝑖𝑙 𝑊 ∆𝑝𝑜𝑖𝑙 𝑊∆𝑝𝑜𝑖𝑙 
          

Transportation Finished Motor 
Gasoline 

263272550 69.528 −0.0334 −0.000008 −37750 0.2696 0.298 0.0804 

 Kerosene-Type 
Jet Fuel 

48463714 65.382 −0.0017 −0.000792 −23989 0.1713 18.993 3.2543 

 Distillate Fuel 
Oil 

89976381 67.920 −0.0058 −0.000129 −42582 0.3041 5.504 1.6740 

 Residual Fuel Oil 6732933 39.336 −0.0058 −0.001000 −4008 0.0286 4.009 0.1148 

Residential Distillate Fuel 
Oil 

12403498 67.920 −0.0997 −0.000055 −5870 0.0419 0.322 0.0135 

Commercial Distillate Fuel 
Oil 

7037068 67.920 −0.4135 −0.000023 −3330 0.0238 0.078 0.0018 

 Propane 33689621 41.412 −0.4135 −0.000003 −8493 0.0607 0.025 0.0015 

 Residual Fuel Oil 1331172 39.336 −0.4135 −0.000071 −792 0.0057 0.057 0.0003 

Industrial Distillate Fuel 
Oil 

13083732 67.920 −0.2018 −0.000026 −6192 0.0442 0.159 0.0070 

 Residual Fuel Oil 11764067 39.336 −0.2018 −0.000017 −7002 0.0500 0.116 0.0058 

Total  487754736    −140008 1.0000  5.1534 

Unit  Barrel (B) $/B   1000B  $/B $/B 

 

Notes: Source: Park (2009, Table 3, p.22). “1) The classifications between consumption sector and oil-refinery product type are available at 
http://www.eia.doe.gov/emeu/states/sep_use/notes/use_petrol.pdf and 2003 percentages of ‘Adjusted Sales of Fuel Oil by End Use’ from 
http://tonto.eia.doe.gov/dnav/pet/pet_cons_top.asp were used to distribute ‘Distillate’ and ‘Residual’ Fuel Oil to the consumption sectors. 2) 𝑊𝑐 = ∆𝑞𝑐𝑜𝑖𝑙/ ∑ ∆𝑞𝑐𝑜𝑖𝑙𝑐 , 
where subscript c denotes Consumption Sector.” 
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Table S2. Total Impacts via Price-sensitive Supply-driven USIO Model (Park, 2009, Table 4, p.23) 
 

USC Sector Total Price 
Increase 

Proportion Total Impact 
($M.) 

USC1 0.0092 0.084% −1.29 

USC2 0.0105 0.096% −1.47 

USC3 0.0087 0.080% −1.22 

USC4 0.0089 0.081% −1.24 

USC5 0.0077 0.070% −1.07 

USC6 0.0780 0.710% −10.92 

USC7 0.0000 0.000% −0.01 

USC8 0.6115 5.570% −85.61 

USC9 0.1724 1.570% −24.13 

USC10 7.1545 65.171% −1001.69 

USC11 0.2088 1.902% −29.23 

USC12 0.0021 0.019% −0.29 

USC13 0.2882 2.625% −40.34 

USC14 0.0766 0.697% −10.72 

USC15 0.0735 0.670% −10.29 

USC16 0.0421 0.384% −5.90 

USC17 0.0605 0.551% −8.47 

USC18 0.0600 0.546% −8.40 

USC19 0.0129 0.118% −1.81 

USC20 0.0576 0.524% −8.06 

USC21 0.0905 0.825% −12.67 

USC22 0.0895 0.815% −12.53 

USC23 0.0717 0.653% −10.04 

USC24 0.0221 0.201% −3.09 

USC25 0.0481 0.438% −6.73 

USC26 0.0085 0.077% −1.19 

USC27 0.0108 0.099% −1.51 

USC28 0.0115 0.105% −1.61 

USC29 0.0119 0.109% −1.67 

USC30 0.1662 1.514% −23.26 

USC31 0.0088 0.080% −1.23 

USC32 0.1339 1.220% −18.75 

USC33 0.1719 1.566% −24.06 

USC34 0.1064 0.969% −14.89 

USC35 0.0142 0.129% −1.98 

USC36 0.0464 0.422% −6.49 

USC37 0.0535 0.487% −7.48 

USC38 0.1555 1.416% −21.77 

USC39 0.0921 0.839% −12.89 

USC40 0.1819 1.657% −25.46 

USC41 0.0914 0.832% −12.79 

USC42 0.0171 0.156% −2.39 

USC43 0.0032 0.029% −0.45 

USC44 0.0711 0.648% −9.95 

USC45 0.0239 0.218% −3.34 

USC46 0.0082 0.075% −1.15 

USC47 0.3244 2.955% −45.42 

TOTAL 10.9780 100.000% −1537.01 

Note: Source: Park (2009, Table 4, p.23). “Price increases refer to the units in which each sector’s outputs 

are denominated.” 
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Table S3. Comparison between IOA, this study, and CGE 

Items IOA This study and Park (2007) CGE 

Price and quantity ∙ Price (model) and quantity 
(model) are independent with 
each other 

∙ Supply quantity is exogenous 
(i.e., supply constraint) 
∙ Price is endogenous by price 
elasticity of demand via supply 
constraint 

∙ Price and quantity are elastic with 
each other 
∙ Determined simultaneously by utility 
function to be theoretically consistent 

Endogenous sectors 
(intermediate demand and 
input) 

∙ Supply and demand are 
balanced 

∙ Based on technical 
coefficients 

(same as IOA) ∙ Supply and demand are balanced as in 
IOA 

∙ Profit maximization is modelled 

Labor and capital (primary 
inputs of value added) 

∙ Exogenous 

∙ Supply and demand may be 
unbalanced 

∙ Free to use  

(same as IOA) ∙ Endogenous 

∙ Supply and demand are balanced by 
corporate utility function (i.e., profit 
maximization) 

Other value added (e.g., 
investment depreciation) 

(ditto) (same as IOA) ∙ Exogenous or endogenous, depending 
on the model setting 

Household (in final 
demand) 

(ditto) (same as IOA) ∙ Supply and demand are balanced 
endogenously by utility function 
(utility maximization) 

Government and others 
(e.g., investment) (in final 
demand) 

(ditto) (same as IOA) Exogenous or endogenous, depending 
on the model setting 

Export (or import) in final 
demand (or external item) 

(ditto) (same as IOA) (ditto) 

Required data IO table  ∙ IO table 

∙ Price elasticity of demand 

∙ Supply constraint 

∙ SAM (usually made from IO table) 
∙ Other values (if needed) such as price 
elasticity of demand 

Scalability ∙ Yes 
∙ IOA does not matter how 
many sectors are included 

∙ Calculated by spreadsheet 
(Excel) 

(same as IOA) ∙ No 

∙ More sectors, more computational 
burden 

∙ Computational problem is highly 
non-linear, requiring nonlinear solver 
(e.g., GAMS) 
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Table S4. Industry identification numbers 

IO id Industry Name (IO) IIP id 

1 Agriculture, forestry and fishery ─ 

2 Metallic ores 26 

3 Non-metallic ores 26 

4 Coal mining, crude petroleum and natural gas 26 

5 Food and Tobacco 18 

6 Beverage 18 

7 Textile products 17 

8 Wearing apparel and other textile products 17 

9 Timber and wooden products 24 

10 Furniture and fixtures 22 

11 Pulp, paper, paperboard, building paper 16 

12 Paper products 16 

13 Publishing, printing 23 

14 Chemical fertilizer 13 

15 Basic inorganic chemical products 13 

16 Basic organic chemical products 13 

17 Organic chemical products 13 

18 Synthetic resins 15 

19 Synthetic fibers 15 

20 Final chemical products 13 

21 Medicaments 13 

22 Petroleum refinery products 13 

23 Coal products 13 

24 Plastic products 15 

25 Rubber products 20 

26 Glass and glass products 12 

27 Cement and cement products 12 

28 Pottery, china and earthenware 12 

29 Other ceramic, stone and clay products 12 

30 Pig iron and crude steel 3 

31 steel products 3 

32 Cast and forged steel products 3 

33 Other iron or steel products 3 

34 Non-ferrous metals 4 

35 Non-ferrous metal products 4 

36 Metal products for construction and architecture 5 

37 Other metal products 5 

38 General industrial machinery 6 

39 Special industrial machinery 6 

40 Other general machines 6 

41 Machinery for office and service industry 6 

42 Industrial electric equipment 7 

43 Applied electrical equipment and electrical measuring instruments 7 

44 Other electric equipment 7 

45 Household electric and electric applications 7 

46 Communication equipment 8 

47 Electric computing equipment and accessory equipment 8 

48 Semiconductor devices and integrated circuits 9 

49 Other electrical equipment 9 

50 Passenger motor cars 10 

51 Other cars 10 

52 Motor vehicle parts and accessories 10 

53 Other transportation equipment 10 

54 Precision instruments 10 
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55 Miscellaneous manufacturing products 25 

56 Reuse and recycling ─ 

57 Building construction and repair of construction ─ 

58 Public construction ─ 

59 Other civil engineering and construction ─ 

60 Electricity ─ 

61 Gas supply and heat supply ─ 

62 Water supply and waste management services ─ 

63 Commerce ─ 

64 Financial and insurance ─ 

65 Real estate agencies and rental services ─ 

66 House rent ─ 

67 Transport ─ 

68 Communication ─ 

69 Broadcasting ─ 

70 Information services ─ 

71 Internet-based services  ─ 

72 Image information production and distribution industry ─ 

73 Public administration ─ 

74 Education and Research ─ 

75 Medical service, health and social security and nursing care ─ 

76 Advertising and survey ─ 

77 Goods rental and leasing services ─ 

78 Other business services ─ 

79 Personal services ─ 

80 Activities not elsewhere classified ─ 

 

Notes: This table shows 80 industries for the IOA. IIP id denotes industry codes of IIP, which are used for 

calculating production capacity (survival coefficients). For the 26 non-mining and manufacturing industry 

sectors (ID 1 and 56 to 80), there are no IIP ids; thus, these sectors are essentially excluded herein.  
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Table S5. Industries of IIP for substitution numbers 

IIP id IIP Industry name Substitute IIP id if 
there is missing 

value 

1 Mining and manufacturing (Total) 2 

2 Manufacturing (Total) 1 

3 Iron and steel  2 

4 Non-ferrous metals 2 

5 Fabricated metals  2 

6 General machinery  2 

7 Electrical machinery  2 

8 Information and communication electronics equipment 2 

9 Electronic parts and devices 2 

10 Transport equipment  2 

11 Precision instruments  2 

12 Ceramics, stone and clay products  2 

13 Chemicals 2 

14 Petroleum and coal products  2 

15 Plastic products  2 

16 Pulp, paper and paper products  2 

17 Textiles 2 

18 Foods and tobacco  2 

19 Other (Total) 2 

20 Rubber products  19 

21 Leather products  19 

22 Furniture  19 

23 Printing  19 

24 Wood and wood products  19 

25 Other products  19 

26 Mining (Total) 1 

 

Notes: This table shows the industry identification numbers of IIP (IIP id). This table corresponds to Table 

S2 by IIP id. Missing values can occur because certain prefectures often do not disclose indices for each 

industry; where this is the case, we substitute related IIP id as shown in the right column.  
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Table S6. Production (x) and final demand (y) at the monthly level in each prefecture (unit: B JPY) 

  (1) (2) (3) (4) (5) (6) 
# Prefecture x x x y y y 

 (Sectors) All sectors 54 industrial sectors 26 other sectors All sectors 54 industrial sectors 26 other sectors 
1 Hokkaido 2,827 520 (18%) 2,307 (82%) 1,744 206 (12%) 1,538 (88%) 
2 Aomori 625 112 (18%) 513 (82%) 413 54 (13%) 359 (87%) 
3 Iwate 696 204 (29%) 492 (71%) 438 108 (25%) 330 (75%) 
4 Miyagi 1,295 321 (25%) 974 (75%) 775 147 (19%) 628 (81%) 
5 Akita 538 123 (23%) 415 (77%) 337 56 (17%) 281 (83%) 
6 Yamagata 653 240 (37%) 413 (63%) 415 142 (34%) 273 (66%) 
7 Fukushima 1,299 460 (35%) 840 (65%) 739 237 (32%) 502 (68%) 
8 Ibaraki 2,099 1,013 (48%) 1,086 (52%) 1,096 398 (36%) 698 (64%) 
9 Tochigi 1,412 703 (50%) 709 (50%) 854 393 (46%) 461 (54%) 
10 Gunma 1,351 644 (48%) 708 (52%) 758 314 (42%) 443 (58%) 
11 Saitama 3,280 1,146 (35%) 2,134 (65%) 1,964 554 (28%) 1,410 (72%) 
12 Chiba 3,242 1,116 (34%) 2,127 (66%) 1,785 371 (21%) 1,414 (79%) 
13 Tokyo 12,179 879 (7%) 11,300 (93%) 7,148 347 (5%) 6,801 (95%) 
14 Kanagawa 5,007 1,741 (35%) 3,265 (65%) 3,050 839 (28%) 2,211 (72%) 
15 Niigata 1,401 400 (29%) 1,001 (71%) 832 172 (21%) 659 (79%) 
16 Toyama 742 321 (43%) 421 (57%) 394 116 (29%) 279 (71%) 
17 Ishikawa 693 194 (28%) 500 (72%) 441 108 (24%) 333 (76%) 
18 Fukui 519 164 (32%) 355 (68%) 298 76 (25%) 222 (75%) 
19 Yamanashi 528 199 (38%) 329 (62%) 338 114 (34%) 223 (66%) 
20 Nagano 1,427 515 (36%) 912 (64%) 872 300 (34%) 572 (66%) 
21 Gifu 1,169 450 (39%) 719 (61%) 653 174 (27%) 479 (73%) 
22 Shizuoka 2,847 1,354 (48%) 1,493 (52%) 1,543 647 (42%) 896 (58%) 
23 Aichi 6,589 3,105 (47%) 3,484 (53%) 3,548 1,441 (41%) 2,106 (59%) 
24 Mie 1,488 838 (56%) 651 (44%) 794 373 (47%) 421 (53%) 
25 Shiga 970 505 (52%) 465 (48%) 568 250 (44%) 317 (56%) 
26 Kyoto 1,367 385 (28%) 982 (72%) 866 208 (24%) 658 (76%) 
27 Osaka 5,741 1,351 (24%) 4,390 (76%) 3,134 532 (17%) 2,601 (83%) 
28 Hyogo 3,030 1,179 (39%) 1,851 (61%) 1,812 558 (31%) 1,254 (69%) 
29 Nara 564 175 (31%) 389 (69%) 379 91 (24%) 288 (76%) 
30 Wakayama 576 232 (40%) 345 (60%) 326 93 (29%) 233 (71%) 
31 Tottori 307 91 (30%) 216 (70%) 195 44 (22%) 151 (78%) 
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32 Shimane 377 90 (24%) 287 (76%) 247 47 (19%) 201 (81%) 
33 Okayama 1,381 683 (49%) 698 (51%) 731 276 (38%) 455 (62%) 
34 Hiroshima 1,989 763 (38%) 1,226 (62%) 1,101 317 (29%) 783 (71%) 
35 Yamaguchi 1,045 504 (48%) 541 (52%) 564 214 (38%) 350 (62%) 
36 Tokushima 429 139 (32%) 290 (68%) 255 61 (24%) 194 (76%) 
37 Kagawa 597 194 (32%) 403 (68%) 318 77 (24%) 242 (76%) 
38 Ehime 832 299 (36%) 533 (64%) 470 115 (24%) 355 (76%) 
39 Kochi 324 49 (15%) 275 (85%) 218 21 (10%) 197 (90%) 
40 Fukuoka 2,844 707 (25%) 2,136 (75%) 1,693 356 (21%) 1,336 (79%) 
41 Saga 431 132 (31%) 299 (69%) 266 72 (27%) 194 (73%) 
42 Nagasaki 630 120 (19%) 510 (81%) 414 66 (16%) 348 (84%) 
43 Kumamoto 840 226 (27%) 614 (73%) 511 92 (18%) 419 (82%) 
44 Oita 785 344 (44%) 441 (56%) 416 120 (29%) 296 (71%) 
45 Miyazaki 548 123 (22%) 425  (78%) 352 67 (19%) 285 (81%) 
46 Kagoshima 796 159 (20%) 637 (80%) 485 71 (15%) 414 (85%) 
47 Okinawa 481 49 (10%) 432 (90%) 322 19 (6%) 302 (94%) 
-- Monthly total 80,793 25,263 (31%) 55,530 (69%) 46,870 11,455 (24%) 35,415 (76%) 
-- Yearly total 969,519 303,157 (31%) 666,362 (69%) 562,437 137,457 (24%) 424,980 (76%) 

 

Note: Monthly values are calculated by dividing annual values by 12. 
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Table S7. Initial monthly production of each prefecture and initial social, consumer, and producer surpluses (unit: T JPY) 

Area Hyogo Niigata Iwate&Miyagi Kumamoto FIMIC Non-FIMIC Japan 

 (H95Jan) (N04Oct) 
(N07Jul) 

(IM08Jun) (K16Apr) (GEJE) (GEJE)  

All sectors        

Production (x) 3.0 1.4 2.0 0.8 8.6 72.2 80.8 

 (100%) (100%) (100%) (100%) (100%) (100%) (100%) 
Consumer surplus 3.8 2.1 2.8 1.2 13.2 90.4 103.6 

 (126%) (150%) (141%) (141%) (153%) (125%) (128%) 
Producer surplus 1.5 0.7 1.0 0.4 4.3 36.1 40.4 

 (50%) (50%) (50%) (50%) (50%) (50%) (50%) 
Social surplus 5.3 2.8 3.8 1.6 17.5 126.5 144.0 

 (176%) (200%) (191%) (191%) (203%) (175%) (178%) 
Mining and Manufacturing 

sectors (IIP) 
       

Production (x) 1.2 0.4 0.5 0.2 3.1 22.1 25.3 

 (100%) (100%) (100%) (100%) (100%) (100%) (100%) 
Consumer surplus 1.4 0.5 0.6 0.2 3.5 23.0 26.6 

 (116%) (119%) (112%) (105%) (114%) (104%) (105%) 
Producer surplus 0.6 0.2 0.3 0.1 1.6 11.1 12.6 

 (50%) (50%) (50%) (50%) (50%) (50%) (50%) 
Social surplus 2.0 0.7 0.9 0.4 5.1 34.1 39.2 

 (166%) (169%) (162%) (155%) (164%) (154%) (155%) 
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Table S8. Production (x) and final demand (y) at the monthly level in 80 sectors (unit: B JPY) 

IO id Sector name x y 

1 Agriculture, forestry and fishery 1,092 346 

2 Metallic ores 2 0 

3 Non-metallic ores 73 5 

4 Coal mining, crude petroleum and natural gas 10 0 

5 Food and Tobacco 2,366 1,599 

6 Beverage 617 470 

7 Textile products 189 61 

8 Wearing apparel and other textile products 191 127 

9 Timber and wooden products 211 12 

10 Furniture and fixtures 203 54 

11 Pulp, paper, paperboard, building paper 373 30 

12 Paper products 278 43 

13 Publishing, printing 528 27 

14 Chemical fertilizer 27 2 

15 Basic inorganic chemical products 156 28 

16 Basic organic chemical products 220 31 

17 Organic chemical products 455 132 

18 Synthetic resins 232 61 

19 Synthetic fibers 39 13 

20 Final chemical products 532 255 

21 Medicaments 540 93 

22 Petroleum refinery products 1,166 446 

23 Coal products 95 9 

24 Plastic products 909 151 

25 Rubber products 253 89 

26 Glass and glass products 144 40 

27 Cement and cement products 255 11 

28 Pottery, china and earthenware 62 19 

29 Other ceramic, stone and clay products 145 36 

30 Pig iron and crude steel 567 16 

31 steel products 1,125 266 

32 Cast and forged steel products 149 9 

33 Other iron or steel products 166 8 

34 Non-ferrous metals 173 29 

35 Non-ferrous metal products 422 88 

36 Metal products for construction and architecture 393 24 

37 Other metal products 690 127 

38 General industrial machinery 777 507 

39 Special industrial machinery 1,096 899 

40 Other general machines 329 212 

41 Machinery for office and service industry 352 274 

42 Industrial electric equipment 584 337 

43 Applied electrical equipment and electrical measuring 
instruments 

245 220 

44 Other electric equipment 312 187 

45 Household electric and electric applications 220 193 

46 Communication equipment 649 588 

47 Electric computing equipment and accessory equipment 345 329 

48 Semiconductor devices and integrated circuits 513 270 

49 Other electrical equipment 960 307 

50 Passenger motor cars 1,070 998 
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51 Other cars 322 310 

52 Motor vehicle parts and accessories 2,371 628 

53 Other transportation equipment 450 274 

54 Precision instruments 317 255 

55 Miscellaneous manufacturing products 394 256 

56 Reuse and recycling 73 19 

57 Building construction and repair of construction 3,210 2,570 

58 Public construction 1,325 1,325 

59 Other civil engineering and construction 628 628 

60 Electricity 1,497 428 

61 Gas supply and heat supply 275 122 

62 Water supply and waste management services 719 280 

63 Commerce 8,049 5,046 

64 Financial and insurance 3,863 1,406 

65 Real estate agencies and rental services 1,829 1,190 

66 House rent 4,111 4,111 

67 Transport 4,118 1,660 

68 Communication 1,347 632 

69 Broadcasting 297 87 

70 Information services 1,520 838 

71 Internet-based services  106 20 

72 Image information production and distribution industry 608 142 

73 Public administration 3,089 2,998 

74 Education and Research 3,096 2,079 

75 Medical service, health and social security and nursing care 4,616 4,421 

76 Advertising and survey 814 181 

77 Goods rental and leasing services 995 116 

78 Other business services 3,383 583 

79 Personal services 4,392 4,161 

80 Activities not elsewhere classified 478 27 

─ Monthly total 80,793 46,870 

─ Yearly total 969,519 562,437 
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Table S9. Sample size of each IIP for production capacity 

IIP id H95Jan N04Oct N07Jul IM08Jun K16Apr GEJE: 
FIMIC 

GEJE: non-
FIMIC 

(# of prefectures) (1) (1) (1) (2) (1) (5) (42) 
#1 1 1 1 2 1 5 34 

#2 1 1 1 2 1 5 38 

#3 1 1 1 2 1 5 42 

#4 1 1 1 2 1 5 36 

#5 1 1 1 2 1 5 41 

#6 1 1 0 0 1 4 13 

#7 1 1 1 2 1 2 11 

#8 0 1 1 2 0 4 26 

#9 0 1 1 2 1 5 30 

#10 1 1 1 2 1 5 39 

#11 1 1 0 0 0 3 4 

#12 1 1 1 2 1 5 42 

#13 1 1 1 2 1 5 37 

#14 1 0 0 1 0 3 13 

#15 1 1 1 2 1 5 41 

#16 1 1 1 2 0 5 39 

#17 1 1 1 2 1 5 41 

#18 1 1 1 2 1 5 42 

#19 1 1 1 2 0 5 39 

#20 1 0 0 0 1 2 23 

#21 1 0 0 0 0 0 10 

#22 1 1 0 0 0 2 23 

#23 1 0 0 0 0 5 19 

#24 1 1 1 0 1 5 36 

#25 1 1 1 0 1 5 20 

#26 0 1 1 1 1 4 26 

 

Notes: This table shows IIP sample sizes for production capacity. IIP data used herein cover 26 sectors 

and may have missing values, depending on the prefectural statistics. Each of the earthquakes affected 

a different number of prefectures: 1 prefecture for H95Jan, N04Oct, N07Jul, and K16Apr; 2 

prefectures for IM08Jun; and 5 (FIMIC) and 42 prefectures (non-FIMIC) for GEJE. Therefore, the 

maximum sample size of each IIP id should be 1 for H95Jan, N04Oct, N07Jul, and K16Apr, 2 for 

IM08Jun, 5 for FIMIC, and 42 for non-FIMIC. Finally, 0 denotes that no IIP data are used.  
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Table S10. Descriptive statistics for JIP database 

Variable Obs Average Std. Dev. Min Max 

Real gross output (q) (million JPY 
in 2011) 2,194 9,526,640 11437374 94,677 76,655,035 

Nominal gross output (million 
JPY) 2,194 9,656,146 11498946 110,203 75,516,116 

Deflator (p) 2,194 1.047 0.309 0.359 4.780 

ln(q) 2,194 15.459 1.182 11.458 18.155 

ln(p) 2,194 0.017 0.228 -1.024 1.564 

 

Note: This data comes from the JIP database 2018.  

 

 



50 

 

Table S11. Regression results of the price elasticity of demand (ε) 

  (1) (2) (3) (4) (5) 
No. JIP Industry Name Coef. (ε) Std. Err. Real gross output 

(2005; T JPY) 
JIP Industry group 

(#1–100) 
IIP Industry group 

(#1–80) 
1 Agriculture –0.105 (0.559) 9.7 1–4 1 

2 Agricultural services –1.112 (1.453) 0.7 1–4 1 

3 Forestry 1.014* (0.608) 0.4 1–4 1 

4 Fisheries 0.569 (0.750) 1.7 1–4 1 

5 Mining –1.321** (0.637) 1.2 5–16 2–8,11,12,19 

6 Livestock products –0.337 (0.840) 4.9 5–16 2–8,11,12,19 

7 Seafood products –2.674*** (0.755) 3.7 5–16 2–8,11,12,19 

8 Flour and grain mill products –0.764 (0.645) 1.4 5–16 2–8,11,12,19 

9 Miscellaneous foods and related products 1.390 (0.925) 13.1 5–16 2–8,11,12,19 

10 Beverages 3.385** (1.690) 7.8 5–16 2–8,11,12,19 

11 Prepared animal foods and organic fertilizers –0.051 (0.578) 1.0 5–16 2–8,11,12,19 

12 Tobacco –1.358** (0.574) 3.6 5–16 2–8,11,12,19 

13 Textile products (except chemical fibers) –5.591*** (0.912) 4.6 5–16 2–8,11,12,19 

14 Chemical fibers –3.048*** (0.625) 0.7 5–16 2–8,11,12,19 

15 Pulp, paper, and coated and glazed paper –1.498** (0.731) 5.3 5–16 2–8,11,12,19 

16 Paper products –1.987** (0.818) 3.7 5–16 2–8,11,12,19 

17 Chemical fertilizers –0.920 (0.601) 0.7 17–28 14–18, 20-23, 26–29 

18 Basic inorganic chemicals –0.872 (0.596) 1.9 17–28 14–18, 20-23, 26–29 

19 Basic organic chemicals 0.359 (0.565) 3.4 17–28 14–18, 20-23, 26–29 

20 Organic chemicals –0.716 (0.580) 12.0 17–28 14–18, 20-23, 26–29 

21 Pharmaceutical products –1.439** (0.603) 5.7 17–28 14–18, 20-23, 26–29 

22 Miscellaneous chemical products 0.062 (1.372) 7.0 17–28 14–18, 20-23, 26–29 

23 Petroleum products –0.195 (0.564) 21.4 17–28 14–18, 20-23, 26–29 

24 Coal products –0.312 (0.564) 2.2 17–28 14–18, 20-23, 26–29 

25 Glass and its products –0.042 (0.613) 1.5 17–28 14–18, 20-23, 26–29 

26 Cement and its products –2.816*** (0.707) 3.5 17–28 14–18, 20-23, 26–29 

27 Pottery 0.721 (0.645) 0.7 17–28 14–18, 20-23, 26–29 

28 Miscellaneous ceramic, stone and clay 
products 

–0.855 (0.690) 2.0 17–28 14–18, 20-23, 26–29 

29 Pig iron and crude steel 0.575 (0.572) 23.6 29–34 30–37 
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30 Miscellaneous iron and steel –0.475 (0.581) 10.0 29–34 30–37 

31 Smelting and refining of non-ferrous metals 0.129 (0.565) 3.3 29–34 30–37 

32 Non-ferrous metal products –0.068 (0.587) 6.3 29–34 30–37 

33 Fabricated constructional and architectural 
metal products 

–2.094*** (0.710) 5.0 29–34 30–37 

34 Miscellaneous fabricated metal products –1.665** (0.731) 8.3 29–34 30–37 

35 General-purpose machinery –0.275 (1.424) 11.0 35–48 38–49 

36 Production machinery 0.087 (1.206) 15.4 35–48 38–49 

37 Office and service industry machines –0.478 (0.590) 4.0 35–48 38–49 

38 Miscellaneous business oriented machinery –0.956 (0.732) 3.6 35–48 38–49 

39 Ordnance –8.378*** (0.832) 0.4 35–48 38–49 

40 Semiconductor devices and integrated circuits –0.717 (0.562) 3.3 35–48 38–49 

41 Miscellaneous electronic components and 
devices 

–0.729 (0.569) 9.0 35–48 38–49 

42 Electrical devices and parts 0.565 (0.879) 7.5 35–48 38–49 

43 Household electric appliances –0.497 (0.568) 2.3 35–48 38–49 

44 Electronic equipment and electric measuring 
instruments 

–0.367 (0.578) 2.3 35–48 38–49 

45 Miscellaneous electrical machinery equipment –0.479 (0.587) 3.1 35–48 38–49 

46 Image and audio equipment –0.181 (0.563) 2.5 35–48 38–49 

47 Communication equipment –0.454 (0.566) 3.7 35–48 38–49 

48 Electronic data processing machines, digital 
and analog computer equipment and 
accessories 

–0.057 (0.561) 2.7 35–48 38–49 

49 Motor vehicles (including motor vehicles 
bodies) 

–0.297 (0.835) 23.2 49–51 50–53 

50 Motor vehicle parts and accessories –4.216*** (0.843) 23.6 49–51 50–53 

51 Other transportation equipment 0.176 (0.789) 5.4 49–51 50–53 

52 Printing 1.814** (0.776) 5.9 52–59 9,10,13,24,25,54,55 

53 Lumber and wood products –1.841** (0.731) 2.7 52–59 9,10,13,24,25,54,55 

54 Furniture and fixtures –6.456*** (0.915) 2.5 52–59 9,10,13,24,25,54,55 

55 Plastic products –0.136 (0.894) 11.2 52–59 9,10,13,24,25,54,55 

56 Rubber products –0.928 (0.934) 3.4 52–59 9,10,13,24,25,54,55 

57 Leather and leather products –7.406*** (0.962) 0.5 52–59 9,10,13,24,25,54,55 

58 Watches and clocks 1.672*** (0.608) 0.3 52–59 9,10,13,24,25,54,55 
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59 Miscellaneous manufacturing industries 3.148*** (0.810) 4.1 52–59 9,10,13,24,25,54,55 

60 Electricity –0.333 (0.653) 16.7 60–65 60–62 

61 Gas, heat supply 0.621 (0.589) 3.6 60–65 60–62 

62 Waterworks –0.504 (0.735) 3.1 60–65 60–62 

63 Water supply for industrial use –0.721 (0.829) 0.1 60–65 60–62 

64 Sewage disposal 1.226 (1.265) 2.6 60–65 60–62 

65 Waste disposal 0.424 (0.836) 5.3 60–65 60–62 

66 Construction –1.757 (1.159) 41.5 66,67,89 56–59 

67 Civil engineering –3.584*** (0.950) 24.6 66,67,89 56–59 

68 Wholesale –1.073 (1.354) 76.7 68,69 63 

69 Retail –3.008*** (0.919) 38.1 68,69 63 

70 Railway –0.370 (1.532) 7.6 70–75, 88 67,77 

71 Road transportation 0.286 (1.480) 20.5 70–75, 88 67,77 

72 Water transportation 1.710** (0.748) 5.8 70–75, 88 67,77 

73 Air transportation –0.845 (0.695) 4.4 70–75, 88 67,77 

74 Other transportation and packing –1.508 (1.489) 4.3 70–75, 88 67,77 

75 Mail 3.066 (2.226) 1.9 70–75, 88 67,77 

76 Hotels 1.264 (1.224) 6.5 76,84,85 65,66 

77 Eating and drinking services –2.042** (0.992) 26.5 77,96–100 79,80 

78 Communications –1.898*** (0.577) 13.8 78–81,87 68–72,76 

79 Broadcasting –4.226*** (1.312) 3.6 78–81,87 68–72,76 

80 Information services –5.958*** (0.826) 18.0 78–81,87 68–72,76 

81 Image information, sound information and 
character information production 

4.298** (2.101) 7.8 78–81,87 68–72,76 

82 Finance 0.169 (0.613) 25.3 82,83 64 

83 Insurance –2.426** (1.183) 12.9 82,83 64 

84 Housing –0.720 (1.365) 45.9 76,84,85 65,66 

85 Real estate –2.321** (0.941) 20.8 76,84,85 65,66 

86 Research 1.378 (1.113) 4.2 86,90–92 73,74,78 

87 Advertising 2.857*** (0.964) 8.3 78–81,87 68–72,76 

88 Rental of office equipment and goods –0.725 (0.568) 9.3 70–75, 88 67,77 

89 Automobile maintenance services 0.984 (1.077) 10.0 66,67,89 56–59 

90 Other services for businesses –6.552*** (1.078) 29.4 86,90–92 73,74,78 

91 Public administration –1.552 (0.947) 37.3 86,90–92 73,74,78 

92 Education –1.032 (0.883) 21.6 86,90–92 73,74,78 
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93 Medical service, health and hygiene –2.722* (1.629) 33.0 93–95 75 

94 Social insurance and social welfare –0.442 (0.951) 8.0 93–95 75 

95 Nursing care –9.001*** (1.099) 6.2 93–95 75 

96 Entertainment 2.071* (1.150) 10.5 77,96–100 79,80 

97 Laundry, beauty and bath services –0.141 (3.346) 6.3 77,96–100 79,80 

98 Other services for individuals 3.075** (1.333) 7.9 77,96–100 79,80 

99 Membership organizations –1.337 (1.326) 4.9 77,96–100 79,80 

100 Activities not elsewhere classified –0.844 (0.677) 3.5 77,96–100 79,80 

― Constant (for #1) 16.149*** (0.032) ― ― ― 

― Industry dummy (#2–100) Yes ― ― ― ― 

― # of observations 2,194 ― ― ― ― 

― R-squared 0.989 ― ― ― ― 

― Adjusted R-squared 0.988 ― ― ― ― 

 

Notes: Columns 1 and 2 show the estimated results of a regression model. Values with and without parentheses are coefficients and standard error, respectively. 

***, **, and * denote statistically significant levels of 1%, 5%, and 10%, respectively. Column 3 shows real gross output as of 2005 to calculate weighted 

average price elasticity in 17 summarized groups (see Table II). Columns 4 and 5 indicate the JIP Industry group (#1–100) and IIP Industry group (#1–80), 

respectively, for creating the weighted average groups. 
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Table S12. Earthquake damage estimates from previous studies: H95Jan and GEJE 

# Estimation Direct damage Indirect damage (This study) 
H95Jan Hyogo prefectural 

government and National 
Land Agency, Japan27 

9,926.8B JPY for damage to capital 
stock 

─ 

(The cumulative loss of social 
surplus [Δss] is 1.25T JPY for 
12 months [Δcs is 1.45T JPY; 

Δps is –0.2T JPY]) 

H95Jan Toyoda and Kouchi (1997) 13,268.2B (=9,926.8B+3,341.4B) 
JPY in total; 5,930B JPY in total in 
10 cities and 10 towns; 1,510B JPY 
for industrial sectors in 10 cities and 
10 towns. 

7,230B JPY in total in 10 cities and 
10 towns (for 1 year); 1,203.1B 
JPY for industrial sectors in 10 
cities and 10 towns (for 1 year). 

GEJE The national government 
(Hayashi, 2012) 

Approximately 16,900B JPY (or 
3.5% of GDP) 

─ 

(The cumulative loss of social 
surplus [Δss] is 16.94T JPY 
until the temporal recovery 

[7.83T JPY to FIMIC at t=37; 
9.11T JPY to non-FIMIC 

prefectures at t=8]) 

GEJE Hayashi (2012) Approximately 30T JPY (or 6% of 
GDP) 

Approximately 10T JPY for the 
annual gross regional product in 
Fukushima, and 100T JPY in total 
for 10 years. This study estimates 
approximately 24T JPY for 10 
years only in industrial sectors.  
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