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Abstract

We study the problem of sharing the revenues raised from the collective sale of broadcasting

rights for sports leagues. We characterize the sharing rules satisfying three basic and intuitive

axioms: symmetry, additivity and maximum aspirations. They convey a natural compromise

between two focal rules, arising from polar estimations of teams� loyal viewers. We also show

that these compromise rules have further interesting properties, such as allowing for the exis-

tence of a majority voting equilibrium. We bring some of the testable implications from our

axiomatic analysis to the real case of European football leagues.

Keywords: resource allocation, broadcasting, sports leagues, compromise rules, testable impli-

cations.
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1 Introduction

Sources report that half of the world�s population watched the �nal game of the 2010 FIFA

World Cup (e.g., Palacios-Huerta, 2014). The increasing popularity during the last two decades

of televised sports events has had signi�cant e¤ects on the broadcasting sectors and sports

leagues in North America and Europe (e.g., Cave and Crandall, 2001). According to Kantar

Media estimates, sports programming in 2014-15 generated $8:47 billion in sales for ABC,

CBS, NBC and Fox, a 35% increase from �ve years before, accounting for more than one-third

of the Big Four�s overall ad revenue for the period.2 As for sports organizations, the sale

of broadcasting and media rights is currently their biggest source of revenue. According to

Statista, more than 50 percent of the revenue that the (US) National Football League as a

whole generated in 2015 is attributable to television rights deals.

The sale of broadcasting rights for sports leagues is often carried out through some sort of

collective bargaining involving all participating organizations (teams) in a given competition on

the one hand, and broadcasting companies on the other hand.3 Thus, an ensuing key problem

arises in which the revenues collected from the sale have to be shared among the teams. This

is, by no means, a straightforward problem, mostly because the individual contribution to the

revenues is not known. Furthermore, the revenue is sizable, which renders the solution of the

problem crucial for the management of most sports organizations.

The revenue sharing rules used by the leagues are actually strikingly di¤erent between North

America and Europe. In North America, contracts essentially involve equal sharing, whereas

in Europe, performance-based reward schemes are widespread. The latter is rationalized by

Palomino and Szakovics (2004) due to the competitive environment in which European leagues

operate.4 On the other hand, as explained by Fort and Quirk (1995), in a one-team-one-vote

environment, such as the one in North America, equal sharing is more or less guaranteed because

the national contract can be approved only if there is a virtual consensus among league teams.5

2In the era of streaming, sports has become the cornerstone to television programming, playing the role of

a defensive wall against online disruption (e.g., Lee, 2019).
3Falconieri et al., (2004) provide a welfare analysis of collective vs. individual sale of TV rights.
4In Europe, as opposed to North America, teams but also leagues have incentives to compete for talent.
5Weak-drawing teams can block unequal sharing by refusing to permit televising of games involving them

and strong-drawing teams. This happened to be a pro�table bargaining strategy for Betis in the pre-collective

sale era of TV rights for La Liga when they were paired with Real Madrid for the �rst game of the 2003/2004

season, which was the highly anticipated debut of David Beckham in such a tournament.
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In this paper, we align with the European case, assuming that broadcast-revenue sharing

goes beyond equal sharing. More precisely, as in our recent papers (Bergantiños and Moreno-

Ternero, 2020a, 2020b), we consider a simple formal model in which the sharing process is based

on the (broadcasting) audiences that games throughout the season generate. We then take the

axiomatic approach for such a model to derive appropriate sharing rules.

To wit, we consider three basic and intuitive axioms for sharing rules: symmetry, additivity

and maximum aspirations. The �rst one says that if two teams have the same overall audiences,

then they should receive equal amounts.6 The second one says that revenues should be additive

on audiences.7 The third axiom says that no team can receive more than its claim, i.e., the total

revenue obtained from all the games in which the team was involved. These three axioms, which

seem to be innocuous independently, have a strong bite when combined. We actually show (in

the main result of this paper) that they characterize a family of rules that o¤er a compromise

between two focal and somewhat polar rules (that is why we call them compromise rules).

On the one hand, the so-called equal-split rule which splits the audience of each game equally

among the two teams. On the other hand, the so-called concede-and-divide, which concedes

each team the audience coming from its fan base (the loyal viewers watching all games played

by that team) and divides equally the residual. The two rules have distinguishing merits, but

they treat fans in two opposite and somewhat extreme ways. The equal-split rule essentially

ignores the existence of fan bases as it considers, de facto, that both teams participating in a

game contributed equally to the revenues collected from broadcasting that game. On the other

hand, concede-and-divide essentially ignores the existence of casual viewers as it considers, de

facto, that viewers watching a game are either fans of one participating team, or compulsive

viewers, who watch all games in the season. The scenarios underlying the equal-split rule and

concede-and-divide can be thought of as meaningful lower and upper bounds, depending on

whether the team has a weak or strong fan base. Reality seems to be somewhat in between

those two scenarios. Thus, compromising between both rules seems to be a natural move. That

is precisely what we do in this paper.

6As we shall argue later, revenues can be reduced to audiences provided one assumes a constant pay-per-view

fee for each game.
7An interpretation is that the aggregation of the revenue sharing in two seasons (involving the same teams)

is equivalent to the revenue sharing in the hypothetical combined season aggregating the audiences of the

corresponding games in both seasons.
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Each rule in the family we characterize is simply de�ned by a certain convex combination

of the equal-split rule and concede-and-divide. More precisely, for a given parameter � 2

[0; 1], the rule R� selects, for each problem, the convex combination of the solutions suggested

by the equal-split rule and concede-and-divide for that problem, with weights � and 1 � �,

respectively. Note that, when the set of options is equipped with a convex structure (as in

this case), averaging between di¤erent positions that people may take concerning the best way

of approaching problems is an appealing way of �nding some common ground between them.8

What is remarkable in our setting is that this position is normatively supported by three simple

and intuitive principles, as our characterization shows.

We then explore the family so derived and discover further interesting features of it.

First, we show that, if we allow teams to vote for any rule within the family, then a majority

voting equilibrium exists, i.e., a rule that cannot be overturned by any other rule within the

family through majority rule. This feature avoids the existence of disturbing majority cycles

and it is a consequence of the fact that the rules within the family satisfy the so-called single-

crossing property, which allows one to separate those teams that bene�t from the application

of one rule or the other rule, depending on the rank of their claims.9

Second, we show that the rules within the family yield outcomes that are fully ranked

according to the Lorenz dominance criterion, the most fundamental principle for the evaluation

of inequality (e.g., Dasgupta et al., 1973; Atkinson and Bourguignon, 1987). More precisely,

for each problem, and each pair of rules within the family, the outcome suggested by the rule

associated with a higher parameter dominates (in the sense of Lorenz) the outcome suggested

by the other rule, which is equivalent to saying that the former will be more egalitarian than

the latter.

Due to the previous feature, the parameter describing the family can be considered as an

index of egalitarianism within the family. As a matter of fact, the parameter can also be

considered as an estimation of the percentage of viewers who watch a game without being a

fan of one of the teams playing the game.10 In other words, a low value of the parameter is

associated with a large fan base for participating teams, whereas a high value of the parameter

8Averaging to compromise is a recurrent theme in game theory and resource allocation (Thomson, 2019a).
9It is well known that a su¢cient condition for the existence of a majority voting equilibrium is that voters

exhibit intermediate preferences over the set of alternatives (e.g., Gans and Smart, 1996).
10This is reminiscent of the concept of neutral (as opposed to hard-core) fans introduced by Szymanski (2001).
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is associated with a small fan base for participating teams.

A third interesting feature of the family is that it can be applied to real-life situations. More

precisely, we consider the case of the Spanish Football League and apply the family to explore

several allocation schemes therein. An important aspect of the rules in our family is that they

have a minimal informational basis, which allows us to use them even when there is limited

available data (as, unfortunately, happens to be the case with European football leagues).

One-parameter families, such as the one we derive in this paper, have been frequently

highlighted in the literature. Atkinson (1970) famously introduced a family of inequality mea-

sures, characterized by a weighting parameter measuring aversion to inequality. Somewhat

related, Donaldson and Weymark (1980) generalized the social-evaluation function correspond-

ing to the focal Gini inequality index to derive the (one-parameter) family of generalized Gini

inequality indices.11 In a context more similar to ours, Moulin (1987) characterized a fam-

ily compromising between the equal and proportional surplus sharing methods. As a matter

of fact, his family is the convex combination of those two methods and one of the axioms

used for its characterization is precisely additivity. Thus, the parallelism with our result is

strong. Something similar happens in minimum cost spanning tree problems, where Trudeau

(2014) characterizes the convex combination of the folk rule (e.g., Bergantiños and Vidal-Puga,

2007) and the so-called cycle-complete rule (e.g., Trudeau, 2002), also making use of additivity.

Compromises between the proportional and constrained equal-award rules (thus, satisfying the

standard non-negativity condition for claims problems) have also been considered by Thomson

(2015a,b). Moreno-Ternero and Villar (2006) introduced a one-parameter family of rules for

claims problems generalizing the so-called Talmud rule (e.g., Aumann and Maschler, 1985) and

encompassing (as extreme cases) the polar constrained equal awards and losses rules. The rules

within such a family also happen to satisfy the single-crossing property and be fully ranked

according to the Lorenz dominance criterion (e.g., Moreno-Ternero, 2011).

The rest of the paper is organized as follows. We introduce the model in Section 2. We

present the axiomatic characterization leading to the family in Section 3. Section 4 is devoted

to explore additional properties of the rules within the family. In Section 5, we bring testable

implications from our analysis to the case of the Spanish Football League. We conclude in

Section 6. Some technical aspects have been deferred to an Appendix.

11See also Weymark (1981) and Bossert (1990).
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2 The model

We consider the model introduced by Bergantiños and Moreno-Ternero (2020a). Let N describe

a �nite set of teams. Its cardinality is denoted by n. We assume n � 3. For each pair of teams

i; j 2 N , we denote by aij the broadcasting audience (number of viewers) for the game played

by i and j at i�s stadium. We use the notational convention that aii = 0, for each i 2 N .

Let A 2 An�n denote the resulting matrix of broadcasting audiences generated in the whole

tournament involving the teams within N .12 Each matrix A 2 An�n with zero entries in the

diagonal will thus represent a problem and we shall refer to the set of problems as P.13

Let �i (A) denote the total audience achieved by team i, i.e.,

�i (A) =
X

j2N

(aij + aji):

Without loss of generality, we normalize the revenue generated from each viewer to 1 (to be

interpreted as the �pay per view� fee). Thus, we sometimes refer to �i (A) by the claim of

team i. When no confusion arises, we write �i instead of �i (A). We de�ne � as the average

audience of all teams. Namely,

� =

P

i2N

�i

n
:

For each A 2 An�n, let jjAjj denote the total audience of the tournament. Namely,

jjAjj =
X

i;j2N

aij =
1

2

X

i2N

�i =
n�

2
:

A (sharing) rule is a mapping that associates with each problem the list of the amounts the

teams get from the total revenue. Thus, formally, R : P ! R
n is such that, for each A 2 P,

X

i2N

Ri(A) = jjAjj:

Two rules stand out as focal for this problem (e.g., Bergantiños and Moreno-Ternero, 2020a,

2020b). First, the so-called equal-split rule, which splits equally the audience of each game

12We are therefore assuming a round-robin tournament in which each team plays in turn against each other

team twice: once home, another away, which is the format of most of the national football leagues. Our model

could be extended though to account for tournaments in which some teams play other teams a di¤erent number

of times. In such a case, aij would denote the broadcasting audience in all games played by i and j at i�s

stadium.
13As the set N will be �xed throughout our analysis, we shall not explicitly consider it in the description of

each problem.
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(among the two teams), thus ignoring the existence of fans for each team. Second, the so-called

concede-and-divide, which concedes each team its number of fans and divides equally the rest.

They are, nevertheless, de�ned in a similar way. First, each team i tentatively receives its claim

(�i). Second, they each subtract from it an amount associated to the remaining n�1 teams. In

the case of the equal-split rule, an equal share of half of the team�s total audience (�i =
�i=2
n�1
); in

the case of concede-and-divide, the average audience per game that the remaining teams played

(
i =

P

j;k2Nnfig
(ajk+akj)

(n�2)(n�1)
).14 Formally,

Equal-split rule, ES: for each A 2 P, and each i 2 N ,

ESi(A) = �i � (n� 1)�i =
�i
2
:

Concede-and-divide, CD: for each A 2 P, and each i 2 N ,

CDi(A) = �i � (n� 1)
i =
(n� 1)�i � jjAjj

n� 2
:

We now consider a family of rules that o¤er a compromise between the equal-split rule and

concede-and-divide. They are de�ned as convex combinations of the two rules. Formally,

Compromise rules,
�
C�
	
�2[0;1]

: for each � 2 [0; 1] ; each A 2 P, and each i 2 N ,

C�i (A) = �ESi(A) + (1� �)CDi(A):

At the risk of stressing the obvious, note that when � = 0 then C� coincides with concede-

and-divide, whereas when � = 1 then C� coincides with the equal-split rule. That is, C0 � CD

and C1 � ES.

Note also that, with straightforward algebraic computations, we can obtain that, for each

A 2 P, each i 2 N , and each � 2 [0; 1] ;

C�i (A) =
�i
2
+
n(1� �)

2 (n� 2)
(�i � �) : (1)

One can easily infer from the previous expression that, if �i < ��, then C�i (A) is an increasing

function of �, thus maximized at � = 1. If, instead, �i > ��, then C
�
i (A) is a decreasing function

of �, thus maximized at � = 0. Finally, if �i = ��; then C
�
i (A) =

�i
2
for each � 2 [0; 1].

14The term concede-and-divide, which was coined by Thomson (2003) in a di¤erent setting, is justi�ed here

by an intuitive procedure, based on a form of statistical estimation aiming to capture the loyal viewers of each

team, which leads to this rule (see Bergantiños and Moreno-Ternero (2020a) for further details).
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Generalizing what we said above for its two extreme rules, each rule within the family can

be obtained with a two-step process: �rst, each team i tentatively receives its claim (�i), and

then we subtract from it an amount associated to the remaining n � 1 teams (in this case,

�i = ��i + (1� �)
i). Formally,

C�i (A) = �i � (n� 1)�i = �i � (n� 1)(��i + (1� �)
i):

3 The characterization

We now introduce three natural axioms for rules.

The �rst axiom is a minimal requirement of impartiality, a basic requirement of justice (e.g.,

Moreno-Ternero and Roemer, 2006). It says that if two teams have equal total audience, then

they should receive equal amounts.

Symmetry: For each A 2 P, and each pair i; j 2 N , such that �i = �j,

Ri(A) = Rj(A):

The second axiom is a robustness axiom indicating that when two equally valid perspectives

can be taken in evaluating a situation, it seems natural to require that these two perspectives

result in the same outcome (e.g., Thomson, 2019b). More precisely, the axiom states that

revenues should be additive on A.15 Formally,

Additivity: For each pair A and A0 2 P,

R (A+ A0) = R(A) +R (A0) :

The third axiom says that each team should receive, at most, the total audience of the

games played by the team. It therefore formalizes a natural upper bound, akin to the standard

requirement of claims boundedness for the problem of adjudicating con�icting claims (e.g.,

O�Neill, 1982; Thomson, 2019a).

Maximum aspirations: For each A 2 P and each i 2 N ,

Ri(A) � �i:

15One might argue that subadditivity, i.e., for each pair A and A0 2 P, R (A+A0) � R(A)+R (A0) ; is a more

reasonable axiom. It turns out that both axioms are equivalent in our setting due to the de�nition of rules.
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The next result states that just the combination of the three previous axioms characterizes

the family of compromise rules. This is remarkable as the three axioms are intuitive and basic

and none of them seem to convey strong implications individually.

Theorem 1 A rule satis�es symmetry, additivity, and maximum aspirations if and only if it

is a compromise rule.

Proof. It is straightforward to show that each compromise rule satis�es the three axioms.

Conversely, let R be a rule satisfying the three axioms. Let A 2 P. For each pair i; j 2 N ,

with i 6= j, let 1ij denote the matrix with the following entries:

1ijkl =

8
<

:
1 if (k; l) = (i; j)

0 otherwise.

Notice that 1ijji is the zero matrix, i.e., the matrix with only zero entries.

Let k 2 N: By additivity,

Rk(A) =
X

i;j2N :i6=j

aijRk
�
1ij
�
: (2)

By symmetry, for each pair k; l 2 N n fi; jg we have that Ri (1
ij) = Rj (1

ij) = xij, and

Rk (1
ij) = Rl (1

ij) = zij. As
P

k2N Rj (1
ij) = jj1ijjj = 1, we deduce that

zij =
1� 2xij

n� 2
:

Let k 2 N n fi; jg. By additivity, Rj
�
1ij + 1ik

�
= xij + zik, and Rk

�
1ij + 1ik

�
= zij + xik.

By symmetry, Rj
�
1ij + 1ik

�
= Rk

�
1ij + 1ik

�
. Thus,

xij +
1� 2xik

n� 2
= xik +

1� 2xij

n� 2
,

(n� 2) xij + 1� 2xik = (n� 2) xik + 1� 2xij ,

xij = xik

Therefore, there exists x 2 R such that for each fi; jg � N;

Ri
�
1ij
�
= Rj

�
1ij
�
= x, and

Rl
�
1ij
�
=

1� 2x

n� 2
for each l 2 N n fi; jg:
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Let k 2 N . By (2),

Rk(A) = �kx+ (jjAjj � �k)
1� 2x

n� 2

= �kx+ (2x� 1)

�
(n� 1)�k � jjAjj

n� 2
� �k

�

= �kx+ (2x� 1)CDk(A)� (2x� 1)�k

=
�k
2
2 (x� 2x+ 1) + (2x� 1)CDk(A)

= (2� 2x)ES(A) + (2x� 1)CDk (A) :

Let fi; j; lg � N be a set of three di¤erent teams. By maximum aspirations,

x = Ri
�
1ij
�
� �i

�
1ij
�
= 1 and

1� 2x

n� 2
= Rl

�
1ij
�
� �l

�
1ij
�
= 0:

Thus, 1
2
� x � 1. Let � = 2� 2x. Then, 1� � = 2x� 1: As x ranges from 1=2 to 1, it then

follows that � ranges from 0 to 1. Consequently,

Rk(A) = �ESk(A) + (1� �)CDk(A) = C
�
k (A);

as desired.

We prove in the Appendix that the three axioms are independent.

Theorem 1 shows that the family of compromise rules is characterized only by three basic

and intuitive axioms, which, when combined, have strong implications to single out a one-

parameter family ranging from the equal-split rule to concede-and-divide.

In Bergantiños and Moreno-Ternero (2020a), we characterized the equal-split rule and

concede-and-divide. Two properties were common in both characterizations. One (equal treat-

ment of equals) was a weakening of the symmetry axiom considered here.16 The other was the

same additivity axiom we consider here. The third property in each characterization came from

a pair of polar properties modeling the e¤ect of null or essential teams.17 What we show with

16Formally, we say that a rule R satis�es equal treatment of equals if, for each A 2 P, and each pair i; j 2 N

such that aik = ajk, and aki = akj , for each k 2 N n fi; jg, Ri(A) = Rj(A):
17The null team property states that if each game played by a team has no audience, then such a team

(called null) receives nothing. The essential team property states that if only the games played by one team

have positive audience, then such a team (called essential) receives all its audience. Formally, a rule R satis�es

null team if, for each (N;A) 2 P, and each i 2 N , such that aij = 0 = aji, for each j 2 N , Ri(N;A) = 0: It

satis�es essential team if, for each (N;A) 2 P, and each i 2 N such that ajk = 0 for each pair fj; kg 2 Nn fig,

Ri(N;A) = �i:
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Theorem 1 is that, considering the axiom of maximum aspirations instead of any of the last

two polar properties, allows us to move from characterizing the equal-split rule and concede-

and-divide to characterize the family of all rules generated by their convex combinations.

The compromise rules just characterized are not very demanding from an informational

viewpoint. Although they are de�ned over matrices, they do not require all the entries from

the matrices to be de�ned. Just the claims are enough to de�ne the rules. This will be a

valuable asset for the empirical analysis in Section 5, as, in general, full information about

audiences is rare to exist. On the other hand, information on aggregate audiences for each

team is usually available.

The compromise rules obviously also satisfy other properties beyond those in the state-

ment of Theorem 1. We highlight two of them here because they provide interesting testable

implications for our empirical analysis in Section 5.

The �rst one is a strengthening of symmetry and it states that rules yield amounts that

preserve the ranking of claims.

Order Preservation: For each A 2 P and each pair i; j 2 N , such that �i � �j,

Ri(A) � Rj(A):

The second one states that rules provide amounts that, for each team, lie between the

extreme amounts provided by the equal-split rule and concede-and-divide for each of them.18

Lower and Upper Bounds: For each A 2 P and each i 2 N ,

minfESi(A); CDi(A)g � Ri(A) � maxfESi(A); CDi(A)g:

4 Further insights

4.1 Majority preferences

We have provided in the previous section normative foundations for a family of rules to share

revenues raised from broadcasting. The axiomatic analysis is, nevertheless, silent regarding the

speci�c rule to choose within the family. We explore such a problem in this section, taking

18Note that, for some teams, the amount that the equal-split rule yields will be smaller than the amount

concede-and-divide yields, whereas for others it will be the opposite.
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a decentralized approach. More precisely, we study whether the choice of a rule within the

family could be made by means of simple majority voting, letting each team vote for a rule

within the family.19 Due to the overwhelming existence of majority cycles, one should normally

not expect a positive answer to this question. Surprisingly, we do get a positive answer in our

setting, thanks to the following feature that compromise rules exhibit.

In what follows, we assume, without loss of generality, that, for each A 2 P, N = f1; : : : ; ng

and �1 � �2 � � � � � �n, with at least one strict inequality.
20 We show next that the compromise

rules satisfy the so-called single-crossing property. Formally,

Proposition 1 Let 0 � �1 � �2 � 1, and A 2 P. Then, there exists i
� 2 N such that:

(i) C�1i (A) � C
�2
i (A) for each i = 1; :::; i

� and

(ii) C�1i (A) � C
�2
i (A) for each i = i

� + 1; :::; n.

Given a problem A 2 P, we say that C� (A) is a majority winner (within the compromise

rules) for A if there is no other compromise rule C�
0
such that C�

0

i (A) > C
�
i (A) for a majority of

teams. We say that the family of compromise rules has a majority voting equilibrium if there is

at least one majority winner (within the compromise rules) for each problem A 2 P. It is well

known that the single-crossing property of preferences is a su¢cient condition for the existence

of a majority voting equilibrium (e.g., Gans and Smart, 1996). Thus, we have the following

corollary from Proposition 1.

Corollary 1 There is a majority voting equilibrium for the family of compromise rules.

We now study which speci�c compromise rule could be a majority winner for each problem.

We obtain three di¤erent scenarios, depending on the characteristics of the problem at stake;

more precisely, the partition of agents with respect to their claims. For some problems (those

in which there is a high concentration of small claims), only the equal-split rule is a majority

winner. For other problems (those in which there is a low concentration of small claims), only

concede-and-divide is a majority winner. For the remainder of the problems, each compromise

rule is a majority winner.

19This way of proceeding is somewhat realistic in one-team-one-vote environments, such as the one in North

America (e.g., Fort and Quirk, 1995).
20Otherwise, all rules within our family would yield the same allocation.
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For each A 2 P, we consider the following partition of N , with respect to the average

claim (��): Nl (A) = fi 2 N : �i < ��g, Nu (A) = fi 2 N : �i > ��g, and Ne (A) = fi 2

N : �i = ��g. That is, taking the average claim (within the tournament) as the benchmark

threshold, we consider three groups referring to individuals with claims below, above, or exactly

at, the threshold. When no confusion arises, we simply write Nl, Nu; and Ne. Note that

n = jNlj+ jNuj+ jNej.

Proposition 2 Let A 2 P. The following statements hold:

(i) If 2jNlj > n, then ES(A) is the unique majority winner.

(ii) If 2jNuj > n, then CD(A) is the unique majority winner.

(iii) Otherwise, each C�(A) is a majority winner.

Proposition 2 implies that if the distribution of claims is skewed to the left (i.e., the median

claim is below the mean claim), then the equal-split allocation (the most equal allocation within

the family) is the majority winner, whereas if it is skewed to the right (i.e., the median claim

is above the mean claim), then the concede-and-divide allocation (the most unequal allocation

within the family, as proved below) is the majority winner. If it is not skewed, then any

compromise allocation can be a majority winner.21

The single-crossing property also guarantees that the social preference relationship obtained

under majority voting is transitive, and corresponds to the median voter�s. In our setting,

the median voter corresponds to the team with the median overall audience (claim). Thus,

depending on whether this median overall audience is below or above the average audience, the

median voter�s preferred rule (and, thus, the majority winner) will either be the equal-split rule

or concede-and-divide. In other words, a tournament with a small number of very strong teams

(i.e., with very high claims in relative terms) will proclaim the equal-split allocation (the one

favoring weaker teams more within the family) as the majority winner, whereas a tournament

with a small number of very weak teams (i.e., with very small claims in relative terms) will

proclaim the concede-and-divide allocation (the one favoring stronger teams more within the

family). The reader is referred to the Appendix for the details.

21This is somewhat consistent with empirical evidence recently found in voting experiments on redistribution

(e.g., Jiménez-Jiménez et al., 2019).
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4.2 Distributive power

We now turn to the distributional e¤ects of the rules within the family. More precisely, we

show that the rules within the family are completely ranked according to the so-called Lorenz

dominance criterion, the most fundamental criterion of income inequality.

Formally, given x; y 2 Rn satisfying x1 � x2 � ::: � xn, y1 � y2 � ::: � yn, and
Pn

i=1 xi =
Pn

i=1 yi, we say that x is greater than y in the Lorenz ordering if
Pk

i=1 xi �
Pk

i=1 yi, for each

k = 1; :::; n � 1, with at least one strict inequality. This criterion induces a partial ordering

on allocations which re�ects their relative spread. When x is greater than y in the Lorenz

ordering, x is unambiguously �more egalitarian� than y (e.g., Dasgupta et al., 1973; Atkinson

and Bourguignon, 1987).

In our setting, we say that a rule R ismore egalitarian than another R0 if for each A 2 P,

R(A) is greater than R0(A) in the Lorenz ordering.

As mentioned above, the Lorenz ordering is only a partial ordering. Thus, one should not

expect many rules to be ranked according to the egalitarian criterion just described. Nev-

ertheless, as the next result shows, the compromise rules are fully ranked according to the

parameter that de�nes the family. This parameter can therefore be interpreted as an index of

the distributive power of the rule.

Proposition 3 If 0 � �1 � �2 � 1, then C
�2 is more egalitarian than C�1.

In particular, one obtains from Proposition 3 that the equal-split rule is the most egalitarian

rule within the family, as expected, whereas concede-and-divide is the least egalitarian rule

within the family. Nevertheless, this does not imply that the equal-split rule is always the fairest

(or concede-and-divide the least fair) rule within the family. Egalitarianism (here formalized as

Lorenz dominance of allocations) does not need to be considered as a synonym of fairness (e.g.,

Sen, 1980; Roemer, 1998). In our environment, fairness of an allocation might depend on several

factors (such as the partition of the audience among loyal fans and casual viewers). Thus, a

proper analysis on fairness in this setting would require an axiomatic approach addressing some

of these factors and thus extending the one we o¤ered in Section 3.
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4.3 Non-negativity

Another interesting aspect of the compromise rules is that they can provide negative amounts

for some teams. Now, given a problem A 2 P, and i 2 N , one might be interested in identifying

the set of rules within the family that yield a positive amount to team i. Here is a clear-cut

answer to that question:

Proposition 4 For each A 2 P and each i 2 N , we have the following statements:

(a) If �i � �; then C
�
i (A) � 0; for each � 2 [0; 1].

(b) If �i < �; then C
�
i (A) � 0 if and only if

� � 1�
(n� 2)�i
n (�� �i)

:

We have the following de�nition:

Non negativity. For each A 2 P and each i 2 N ,

Ri(A) � 0:

Proposition 4 says that, for each rule within the family, teams with an audience above

average will get a non-negative amount. Teams with an audience below average will get a non-

negative amount depending on the relationship between �i and �: When �i is relatively small

with respect to �, we need a large � for non-negativity. The only case always guaranteeing a

non-negative allocation to each team is the case in which � = 1, i.e., the equal-split rule. As a

consequence of Theorem 1, we can actually give a characterization of the equal-split rule based

on this property.

Proposition 5 A rule satis�es additivity, symmetry, maximum aspirations and non negativity

if and only if it is the equal-split rule.

As mentioned in the previous section, we would need additional axioms (re�ecting princi-

ples with normative appeal too) to extend the analysis in Section 3 and be able to discriminate

within the family (eventually, singling out a member of it as �superior� to the others in terms

of fairness). If one would consider non-negativity as an axiom of that kind (it is, after all,

formalizing another meaningful bound somewhat complementary to that of maximum aspira-

tions), then we would indeed conclude that the equal-split rule (which happens to be the more

egalitarian rule within the family, as shown in the previous section) is the fairest among the

rules within the family as it is the only one passing the additional test that axiom imposes.
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4.4 On the interpretation of �

As mentioned above, compromise rules are de�ned by means of a parameter � 2 [0; 1] indicating

the relative weight of the equal-split rule in the convex combination with concede-and-divide.

We showed in Section 4.2 that this parameter � can also be interpreted as an index of the

distributive power of the rule, as all rules within the family are fully ranked (in terms of the

Lorenz dominance criterion) according to �. We also discuss now that the parameter can be

interpreted as a measure of teams� fan bases.

In general, individuals watching a game can be classi�ed as fans of one of the teams involved

in the game, or as neutral viewers. In practice, the above information is not available and we

only know the total audience of the game. We can conjecture several plausible scenarios. For

instance, In the extreme scenario in which the �rst group is empty (i.e., no team has fans),

it seems natural to divide viewers of each game equally, which is what the equal-split rule

proposes. In the polar extreme case, in which the second group is empty, it seems natural

to concede each team the amount generated by its fans, which is the allocation proposed by

concede-and-divide.22 In other words, � = 1 is associated to 100% of neutral (non-fan) viewers,

whereas � = 0 is associated to 0% of neutral (non-fan) viewers.

In practice, we know the total number of viewers of each game, but not the partition as fans

and no fans. Now, it is feasible to estimate the average number of fans and no fans watching

the games. For instance, we can take a sample of viewers and ask them to report the games

they have watched, and if they are fans of some team. Let f denote the number of people who

have watched a game being a fan of some of the teams. Let fn denote the number of people

who have watched a game without being a fan of any of the teams. Then, �� = fn

f+fn
is the

percentage of neutral (non-fan) viewers of a game. Similarly, 1� �� = f
f+fn

is the percentage of

fans watching a game.

In general, � can be considered as an estimation of the percentage of neutral viewers (those

who watch a game without being a fan of one of the teams playing the game). Similarly, 1� �

can be considered as an estimation of the percentage of viewers who watch a game because they

are fans of one of the teams playing the game. In other words, a low value of � is associated

with a large fan base for participating teams, whereas a high value of � is associated with a

small fan base for participating teams.

22See Bergantiños and Moreno-Ternero (2020a) for further details.
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5 An empirical application

In this section, we present an empirical application of our model resorting to La Liga, the

Spanish Football League.

La Liga is a standard round robin tournament involving 20 teams. Thus, each team plays 38

games, facing each time one of the other 19 teams (once home, another away). The 20 teams,

and the overall audience (in millions) of each team during the season 2017-2018, are listed in

the �rst two columns of Table 1.23

Insert Table 1 about here

Note that the total audience of the entire season is 197:05 millions, and the total revenue

was 1325:6 millions of euros. Thus, in order to accommodate the premises of our model and

identify total audience with total revenue, we have to assume that each viewer paid a pay-per-

view fee of 6:73 euros (instead of only one) per game. This normalizing assumption appears in

Column 3. The resulting scaling will be implicit in the next tables describing the allocations.

Columns 4 and 5 yield the allocation put in practice for the season 2017-18 (in millions

of euros and in percentage terms).24 As we can see, two teams (Barcelona and Real Madrid)

dominated the sharing, collecting (when combined) almost 23% of the pie.

An important conclusion one can derive from Table 1 is that the testable implication we

formalized by the axiom ofMaximum Aspirations is veri�ed, as all teams obtain amounts below

their claims (i.e., the amount in Column 4 is always below the corresponding amount in Column

3). On the other hand, the testable implication we formalized by the axiom of Symmetry is

not veri�ed, as two teams (Real Sociedad and Girona) have equal claims but obtain di¤erent

amounts. Obviously, this infers that the testable implication we formalized by the axiom of

Order Preservation is not veri�ed either. As a matter of fact, we have several violations of it.

For instance, Real Madrid has a higher claim than Barcelona but receives a smaller amount.

Betis actually receives a smaller amount than 7 other teams with a lower claim (Atlético de

Madrid, Valencia, Sevilla, Málaga, Athletic de Bilbao, Real Sociedad, and Villarreal).

Table 2 lists again the allocation put in practice for the season 2017-18, but now together

with the ones proposed by the equal-split rule and concede-and-divide (the two extreme compro-

23Most of the data come from Palco 23, the leading newspaper in economic information of the sport business

in Spain, which refers to Havas Sports and Entertainment as its source.
24The source is La Liga�s website. See, for instance, http://www.laliga.es/lfp/reparto-ingresos-audiovisuales
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mise rules). In the last column of this table we explore whether the amount obtained by each

team in the allocation used in practice corresponds to some compromise rule. For instance,

Barcelona receives the amount that the rule C0:98 would yield for this setting. In contrast,

Real Madrid receives less than the amount proposed by any rule within the family because

148 < min f158:43; 260:81g. On the other hand, Atlético de Madrid receives more than the

amount proposed by any rule within the family because 110:60 > max f85:77; 107:43g.

Insert Table 2 about here

Several conclusions can be derived from Table 2. Maybe the most obvious one is that the

testable implication of Lower and Upper Bounds is far from being veri�ed: less than half of

teams obtain amounts within the interval determined by those bounds. More precisely, nine

teams are favored by the actual allocation, in the sense that the amount each gets is above

the amounts suggested by both bounds. Apart from Real Madrid, only one team (Betis)

obtains amounts below those two bounds.25 The remaining nine teams obtain amounts that

can therefore be rationalized by some compromise rule. However, the rule would be di¤erent

for each team. For instance, for Celta, it would be the rule corresponding to � = 0:02 (which

means that it receives something quite similar to the concede-and-divide outcome), whereas,

for Barcelona, it would be the rule corresponding to � = 0:98 (which means that it receives

something quite similar to the equal-split outcome).26 Note that if the parameter � is interpreted

as the percentage of neutral viewers (as argued in Section 4:4), the number for Barcelona is quite

counterintuitive because the audiences of Barcelona games are much larger than the audiences

of all other games (excluding those involving Real Madrid).

Another conclusion is that, contrary to what some might argue, the actual revenue shar-

ing seems to be biased against the two powerhouses. Barcelona receives approximately the

minimum it could receive, whereas Real Madrid receives even less than the minimum. With

concede-and-divide (one of the extreme rules within the family), Barcelona and Real Madrid

25It is actually a remarkable case, as the allocation yields 3:99%, whereas the two rules would recommend

7:1% and 9:44%, respectively.
26Somewhat surprisingly, the compromise rule yielding a closer allocation (according to the Euclidean dis-

tance) to the real allocation is the rule corresponding to � = 1, i.e., the equal-split rule. If we compare both

allocations, one team (Betis) obtains much less (41 millions). Other nine teams (including Real Madrid) also

obtain less (between 1 and 10 millions). The remaining ten teams (including Barcelona) obtain more (between

0 and 25 millions).
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together would receive 38:28% of the pie (instead of the 22:78% they actually receive). We be-

lieve that fairness considerations regarding this issue can only be made with a proper normative

analysis of how to split revenues. We have actually provided normative foundations for a whole

family of rules on sharing revenues. Although the family encompasses a wide array of views,

all of them agree suggesting that the two teams combined should receive something more than

what they currently receive now. Thus, we can indeed argue that, based on our analysis, one

cannot state that Barcelona and Real Madrid are unfairly favored.

6 Discussion

We have studied the problem of sharing the revenues from the collective sale of broadcasting

rights for sports leagues, as recently considered by Bergantiños and Moreno-Ternero (2020a,

2020b). We have considered three basic and intuitive axioms for such a problem. Together,

the three axioms characterize a family of rules that o¤er a compromise between two focal and

somewhat polar rules: the equal-split rule and concede-and-divide. As such, the family is �exible

enough to accommodate a wide variety of views regarding the existence of fans associated to

each participating team. It ranges from the extreme view that, de facto, dismisses the existence

of those fan bases (as exempli�ed by the equal-split rule) to the polar (and, thus, extreme too)

view that minimizes the number of casual viewers, who simply watch a game because they are

interested into the speci�c pair of teams involved in it (as exempli�ed by concede-and-divide).

We have also shown that the family has other merits. For instance, it constitutes a domain of

rules for which majority voting equilibrium exists. This is important as the ultimate decision to

approve a sharing rule might come to a vote among participating teams. Thus, guaranteeing the

existence of a majority voting equilibrium, avoiding disturbing majority cycles, seems crucial.

Especially so, when the voting decision is made among a wide variety of options, as in this case.

Our family of rules is reminiscent of some other families that have been considered in

the literature on related topics (such as income inequality measurement, surplus sharing, cost

allocation, or claims problems). Some of these families also o¤er compromises between focal

and somewhat polar rules. Others share with ours the structure regarding the order of their

members (according to the spread of the outcomes they yield), or the majority preferences

(with respect to the members of the family).
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We have also applied the rules within our family to a real-life situation. More precisely, we

have explored the allocation of the (joint) revenues collected from selling broadcasting rights in

the case of La Liga, the Spanish Football League. We have observed that some of the testable

implications of our analysis are not veri�ed for this case, which casts doubts on the allocation

implemented by the Spanish Football League Association. It would be interesting to extend

our empirical analysis to other major leagues such as the English Premier League.

The schemes we obtained for La Liga re�ected a considerable level of inequality of outcomes.

Much has been written about what constitutes distributive justice (see, for instance, Konow

(2001) and the references therein). Depending on the speci�c view that one might hold on

distributive justice, the above schemes might be considered fair or not. For instance, it might

be considered fair that teams with a stronger bargaining power (either due to outside options,

better performance, or higher ratings) receive much more.27 On the other hand, inequality

aversion is a widespread phenomenon that might make some consider the above schemes as

unfair.28 Our view is that a proper analysis on distributive justice for this setting requires an

axiomatic approach in which further aspects, such as performance, are considered. New axioms

in such a more general structure, with normative appeal, should help derive new rules. For

instance, hybrid rules in which a portion of the pie is divided according to performance and

another portion according to audiences. Alternatively, generalizations of the equal-split rule, in

which the revenues from each game are split among the two teams playing the game, according

to some weight re�ecting performance. As this analysis is beyond the scope of this paper, we

leave it for further research.

We conclude acknowledging that our paper is silent about the potential e¤ects of the shar-

ing process (of revenues raised from selling broadcasting rights) into several aspects of sports

leagues. Much has been studied, for instance, about its e¤ects on competitive balance.29 It is

also left for further research to study whether the rules in our family perform in a structured

way with respect to their e¤ect on competitive balance. To begin with, this would require to

consider an appropriate measure of competitive balance, as the literature on sports economics

is �ooded with di¤erent measures and no consensus has been reached yet (e.g., Moreno-Ternero

27Rodríguez-Lara (2016) mentions precisely this case in his study on equity and bargaining power.
28As Garner (1986) puts it, �individuals become distressed when they participate in unfair relationships, and

the greater the inequity, the more distress they feel�.
29See, for instance, Késenne (2000), Szymanski (2001), Szymanski and Késenne (2004), or Peeters (2011).
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and Weber, 2019; Pawlowski and Nalbantis, 2019). A more general model than ours, in which

teams would be modeled as pro�t-maximizing clubs, determining talent investments resulting in

win probabilities (with playing talent sold on a competitive market), would also be required.30

Finally, it would also be interesting to explore the interdependence of broadcasting rev-

enues and transfer fees (the other major source of revenues in professional sports).31 It is

conventionally argued that the increase in the amounts raised from broadcasting has boosted

transfer fees. Interesting patterns emerge too as a consequence of international di¤erences. For

instance, weak teams competing in the English Premier League (the most powerful domestic

football competition worldwide to raise revenues from broadcasting, with a very egalitarian

sharing system) are able to pay high transfer fees to reasonably strong teams in other strong

domestic competitions (such as La Liga, or Serie A) with a less egalitarian sharing system of

revenues from broadcasting rights. Partly because of this, it might not have been a surprise

to observe that, for the �rst time in history, four teams from the same domestic competition

(in this case, the English Premier League) dominated the two international competitions in a

given season (2018-2019).
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To save space, we have included in this appendix, which is not for publication, some technical

aspects of our analysis, as well as secondary proofs.

8 Appendix

Remark 1 The axioms of Theorem 1 are independent.

Let R1 be the rule that arises as a convex combination between the equal split rule and

concede-and-divide, but with the (endogenous) weight obtained by the ratio between the maximum

audience and the overall audience. Formally, for each problem A 2 P, let �A = maxi;j2Naij.

Then, for each i 2 N ,

R1i (A) =
�A

jjAjj
ESi(A) +

�
1�

�A

jjAjj

�
CDi(A):

R1 satis�es symmetry and maximum aspirations, but not additivity.

Let R2 be the rule in which, for each game (i; j) 2 N �N , the revenue aij goes to the team

with the lowest number of the two. Namely, for each problem A 2 P, and each i 2 N;

R2i (A) =
X

j2N :j>i

(aij + aji):

R2 satis�es maximum aspirations and additivity, but not symmetry.

The uniform rule, which divides the total audience equally among the teams, satis�es addi-

tivity and symmetry, but not maximum aspirations.

Proof of Proposition 1

Let 0 � �1 � �2 � 1, and A 2 P.

We consider two cases:

1. Case �i � �: In this case,

C�1i (A) =
�i
2
+
n(1� �1)

2 (n� 2)
(�i � �)

=
�i
2
+
n(�1 � 1)

2 (n� 2)
(�� �i)

�
�i
2
+
n(�2 � 1)

2 (n� 2)
(�� �i)

= C�2i (A):
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2. Case �i > �: In this case,

C�1i (A) =
�i
2
+
n(1� �1)

2 (n� 2)
(�i � �)

�
�i
2
+
n(1� �2)

2 (n� 2)
(�i � �)

= C�2i (A):

It turns out that i� is precisely the team whose overall audience is closest (from below) to

the average overall audience. �

Proof of Proposition 2

Let 0 � � � 1, and A 2 P. By (1), for each i 2 N ,

C�i (A) =
�i
2
+
n(1� �)

2 (n� 2)
(�i � �) :

If �i < ��, then C
�
i (A) is an increasing function of �, thus maximized at � = 1. This implies

that, for each i 2 Nl, ESi(A) is the most preferred outcome (among those provided by the

family).

If �i > ��, then C
�
i (A) is a decreasing function of �, thus maximized at � = 0. This implies

that, for each i 2 Nu, CD(A) is the most preferred outcome (among those provided by the

family).

If �i = ��; then C�i (A) =
�i
2
for each � 2 [0; 1]. This implies that, for each i 2 Ne, all rules

in the family yield the same outcome.

From the above, statements (i) and (ii) follow trivially. Assume, by contradiction, that

statement (iii) does not hold. Then, there exists A 2 P and � 2 [0; 1] such that C� is not a

majority winner for A: Thus, we can �nd �0 2 [0; 1] such that C�
0

i (A) > C
�
i (A) holds for the

majority of the teams. We then consider two cases:

Case �0 > �.

In this case, C�
0

i (A) > C
�
i (A) if and only if i 2 Nl: Now,

jNlj =
���
n
i 2 N : C�

0

i (A) > C
�
i (A)

o���

>
���
n
i 2 N : C�

0

i (A) � C
�
i (A)

o���

= jNuj+ jNej

which is a contradiction.
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Case �0 < �.

In this case, C�
0

i (A) > C
�
i (A) if and only if i 2 Nu: Now,

jNuj =
���
n
i 2 N : C�

0

i (A) > C
�
i (A)

o���

>
���
n
i 2 N : C�

0

i (A) � C
�
i (A)

o���

= jNlj+ jNej

which is a contradiction. �

We now reformulate Proposition 2 in terms of the median voter. Depending on whether

the number of teams is odd or even, the median can be uniquely determined or not. To avoid

ambiguity, we consider in each case the median to be the mean of the two middle values.

Formally, the median overall audience is de�ned by

�m =

8
<

:
�n+1

2

if n is odd

1
2

�
�n

2
+ �n+2

2

�
otherwise.

Depending on whether this median overall audience is below or above the average audience,

the median voter�s preferred rule (and, thus, the majority winner) will either be the equal-split

rule or concede-and-divide. More precisely,

Corollary 2 Let A 2 P be such that n is odd. The following statements hold:

(i) If �m < ��, then ES(A) is the unique majority winner.

(ii) If �m > ��, then CD(A) is the unique majority winner.

(iii) If �m = ��, then any C
�(A) is a majority winner.

Proof. If �m < ��, then jNlj � m. Hence jNlj > jNuj + jNej : By Proposition 2, statement (i)

holds.

If �m > ��, then jNuj � m. Hence jNuj > jNlj + jNej : By Proposition 2, statement (ii)

holds.

If �m = ��, then jNlj < m; jNuj < m; and jNej > 0. Hence, we are in case (iii) of the

statement of Proposition 2, which concludes the proof.

Corollary 3 Let A 2 P be such that n is even. The following statements hold:

(i) If �n+2
2

< ��, then ES(A) is the unique majority winner.

(ii) If �n
2
> ��, then CD(A) is the unique majority winner.

(iii) If �n
2
� �� � �n+2

2

, then any C�(A) is a majority winner.

29



Proof. If �n+2
2

< ��, then jNlj � m. Hence jNlj > jNuj+ jNej : By Proposition 2, statement (i)

holds.

If �n
2
> ��, then jNuj � m. Hence jNuj > jNlj + jNej : By Proposition 2, statement (ii)

holds.

Suppose now that �n
2
� �� � �n+2

2

: Then, it is enough to prove that we are in case (iii) of

the statement of Proposition 2. That is, we have to prove that neither jNlj > jNuj + jNej nor

jNuj > jNlj+ jNej hold. We consider several subcases:

1. If �� = �n
2
, then jNlj <

n
2
, jNuj �

n
2
and jNej > 0.

2. If �n
2
< �� < �n+2

2

, then jNlj =
n
2
, jNuj =

n
2
and jNej = 0.

3. If �� = �n+2
2

, then jNlj �
n
2
, jNuj <

n
2
and jNej > 0.

In either case, the desired conclusion holds.

Proof of Proposition 3

Let A 2 P.

We �rst prove that ES(A) is greater than CD (A) in the Lorenz ordering.

Let i 2 N: By equation (1),

CDi(A) =
�i
2
+

n

2 (n� 2)
(�i � �) :

Thus,

ES1(A) � ES2(A) � ::: � ESn(A) and

CD1(A) � CD2(A) � ::: � CDn(A): (3)

It then su¢ces to show that, for each k = 1; :::; n� 1,

kX

i=1

�i
2
�

kX

i=1

�
�i
2
+

n

2 (n� 2)
(�i � �)

�
:

But this is simply a consequence of the fact that

kX

i=1

�i � k�;

for each k = 1; :::; n� 1.
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We now prove that C�2(A) is greater than C�1(A) for each 0 � �1 � �2 � 1. By (3), we

have that

C�11 (A) � C�12 (A) � ::: � C
�1
n (A) and

C�21 (A) � C�22 (A) � ::: � C
�2
n (A):

Then, it su¢ces to show that, for each k = 1; :::; n� 1,

kX

i=1

C�2i (A) �

kX

i=1

C�1i (A):

Now,

kX

i=1

�
�i
2
+
n(1� �2)

2 (n� 2)
(�i � �)

�
�

kX

i=1

�
�i
2
+
n(1� �1)

2 (n� 2)
(�i � �)

�
,

kX

i=1

n(1� �2)

2 (n� 2)
(�i � �) �

kX

i=1

n(1� �1)

2 (n� 2)
(�i � �),

(1� �2)
kX

i=1

(�i � �) � (1� �1)
kX

i=1

(�i � �) :

As
kP

i=1

(�i � �) � 0 and �1 � �2, the above follows. �

Proof of Proposition 4

Let A 2 P, i 2 N , and � 2 [0; 1]. By equation (1) ; C�i (A) � 0 if and only if

�
�i
2
+ (1� �)

(n� 1)�i � jjAjj

n� 2
� 0:

Or, equivalently,

(n� 2)��i + 2 (1� �) [(n� 1)�i � jjAjj] � 0:

As

jjAjj =

P

i2N

�i

2
; and � =

P

i2N

�i

n
;

we deduce that

jjAjj =
n�

2
:

Then, C�i (A) � 0 if and only if

(n� 2)��i + 2 (1� �)

�
(n� 1)�i �

n�

2

�
� 0:
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Equivalently,

�n�i � 2��i + 2n�i � 2�i � 2�n�i + 2��i � n� + �n� � 0;

or

�n (�� �i) � n�� 2n�i + 2�i: (4)

We now consider three cases:

Case �i > �:

In this case, (4) is equivalent to

� �
n�� 2n�i + 2�i
n (�� �i)

= 1�
(n� 2)�i
n (�� �i)

:

As �� �i < 0 we deduce that

1�
(n� 2)�i
n (�� �i)

� 1;

and hence (4) holds for any � 2 [0; 1] :

Case �i = �:

In this case, (4) is equivalent to 0 � (2� n)�i; which always holds.

Case �i < �:

In this case, (4) is equivalent to

� �
n�� 2n�i + 2�i
n (�� �i)

= 1�
(n� 2)�i
n (�� �i)

;

as stated in the proposition. �

Proof of Proposition 5

By Theorem 1, we know that the equal-split rule satis�es symmetry, additivity andmaximum

aspirations. It is obvious that it also satis�es non negativity.

Conversely, let R be a rule satisfying the four properties. By Theorem 1, R is a compromise

rule. Thus, there exists � 2 [0; 1] such that, for each A 2 P,

R(A) = �ES(A) + (1� �)CD(A):

Suppose, by contradiction, that � < 1. Then,

R3
�
f1; 2; 3g ; 112

�
= (1� �) (�1) < 0;

which contradicts non negativity. Thus, � = 1 and, hence, R � ES: �
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Table 1: Audiences and revenues for the Spanish Football League. Season 2017-18 

Teams Alpha 

(millions) 

Alpha 

normalized 

Allocation 17-18 

(millions euros) 

Allocation  

17-18 (%) 

Real Madrid 47,10 316,85 148,00  11,16  

Barcelona 45,10 303,40 154,00  11,62  

Betis 28,00 188,36 52,90  3,99  

Atlético Madrid 25,50 171,54 110,60  8,34  

Valencia 19,50 131,18 65,70  4,96  

Sevilla 18,50 124,45 74,00  5,58  

Celta 17,80 119,74 52,90  3,99  

Málaga 17,60 118,40 53,50  4,04  

Athletic Bilbao 17,20 115,71 73,20  5,52  

Español 16,70 112,34 52,40  3,95  

Las Palmas 15,90 106,96 46,80  3,53  

Levante 15,10 101,58 45,10  3,40  

Real Sociedad 14,90 100,24 61,50  4,64  

Girona 14,90 100,24 43,30  3,27  

Dep. Coruña 14,30 96,20 46,00  3,47  

Villareal 13,80 92,84 65,50  4,94  

Alavés 13,70 92,16 46,10  3,48  

Getafe 13,50 90,82 44,50  3,36  

Eibar 13,10 88,13 46,30  3,49  

Leganés 11,90 80,05 43,30  3,27  

     

Total 197,05 1325,60 1325,60 100.00 

 



Table 2: The allocation rule and the EC family. 

Team Alloc. 17-18 ES CD lambda 

Real Madrid 148,00  158,43 260,81 Below 

Barcelona 154,00  151,70 246,61 0,98  

Betis 52,90  94,18 125,18 Below 

Atlético Madrid 110,60  85,77 107,43 Above 

Valencia 65,70  65,59 64,82 Above 

Sevilla 74,00  62,23 57,72 Above 

Celta 52,90  59,87 52,75 0,02  

Málaga 53,50  59,20 51,33 0,28  

Athletic Bilbao 73,20  57,85 48,49 Above 

Español 52,40  56,17 44,94 0,66  

Las Palmas 46,80  53,48 39,26 0,53  

Levante 45,10  50,79 33,58 0,67  

Girona 61,50  50,12 32,16 Above 

Real Sociedad 43,30  50,12 32,16 0,62  

Deportivo Coruña 46,00  48,10 27,90 0,90  

Villareal 65,50  46,42 24,35 Above 

Alavés 46,10  46,08 23,64 Above 

Getafe 44,50  45,41 22,22 0,96  

Eibar 46,30  44,06 19,38 Above 

Leganés 43,30  40,03 10,86 Above 

 


