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Abstract: The COVID-19 disease outbreak is the deadliest viral pandemic our generation has 

experienced, and much uncertainty exists over the vulnerability of different populations to the 

virus since a clinically-approved vaccination does not exist. Our study investigates whether 

evolutionary processes such as genetic diversity and cultural behaviour norms can explain the 

differences in COVID-19 virus infections and mortalities observed in different countries. Using 

a sample of 133 countries we find that populations with higher expected genetic heterozygosity 

and more historical exposure to infectious diseases are associated with lower COVID-19 

infections and mortalities. Further investigations reveal two ‘channels’ of transmission. Firstly, 

a longer migratory distance from the origins of homo sapiens adversely influences expected 

heterozygosity, which then increases the populations susceptibility to the COVID_19 virus. 

Secondly, higher disease prevalence leads to higher collectivism (lower individualism) 

behaviour, which then reduces the populations susceptibility to COVID_19 infections. Our 

analysis is robust to the inclusion of additional controls and dummies. Policy implications of 

our findings are discussed.   
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1. INTRODUCTION  

 

“…humans who domesticated animals [fell] victim to the newly developed germs, but those 

humans evolved substantial resistance to new[er] disease…” (Diamond, 1997:92).  

 

The above quote is taken from Jared Diamonds Non-fictional Pulitzer Winning Book 

‘Guns, Germs and Steel: The fates of human societies’ which gives a remarkable archaeological 

account of human development spanning from the end of the Ice Age over 13,000 years ago 

up to the New World. In the 11th Chapter of the book, Diamond (1997) focuses on the 

emergence and development of viral diseases which became prominent around the Neolithic 

transition when human society traversed from hunter-gathering livelihoods towards 

agricultural based societies. At the centre of this revolution is the domestication of different 

animals (mainly for food, clothing, farming and travel) which were adaptable to both the 

climate and illnesses of these agricultural societies but brought about infectious diseases 

confined exclusively to human beings. These viral diseases, which are concomitant to human 

evolution, are branded as “…the biggest killers of people…” (Diamond, 1997: 197) even when 

compared to fatalities resulting from Wars. The two deadliest viral pandemics experienced over 

the last millennium are the Black Death of 1346-1352 which claimed the lives of more than 

two-fifths of Europe’s population (Jedwab et al., 2019) as well as the Spanish influenza of 

1918-1921 which was responsible for between 50-100 million deaths globally (i.e. 

approximately 5-10% of the then World’s population) (Karlsson et al., 2014).    

 

The World is currently afflicted by the coronavirus (COVID-19) epidemic which is 

labelled as the deadliest outbreak of viral disease since the ‘Spanish flu’ a Century ago. 

According to Phan (2020), ‘Patient Zero’ of the COVID-19 disease was identified in December 

2019 in Wuhan, China and due to the rapid spread of the disease worldwide, the World Health 

Organization (WHO) officially declared it a global pandemic in March 11th when global 

infections had reached 126,214 and total deaths recorded at 4,628. Despite the World having 

built stronger health and research institutions in comparison to those which existed during the 

time of the Spanish flu, there is however one predicament; no vaccine or cure for the disease 

exists at this moment. The best option for governments worldwide is to focus on flattening the 

‘epidemic curve’ through quarantining infected person, encouraging social distancing, placing 

traveling restrictions and implementing other emergency ‘lockdown’ strategies even though 

the literature casts much ambiguity surrounding the effectiveness of these strategies. In a quasi-



experiment performed for France, Adda (2016) uses high frequency data on ‘school closures’ 

and ‘public transportation’ to demonstrate on how shutdown policies may be successful in 

curbing the viral spread of flu-like illnesses and yet this comes at a cost of excessive 

productivity losses. Adda (2016) concludes that lockdown strategies are most cost-effective 

only when the actual death rate is above it’s average. Xiao and Torok (2020) further caution 

that the prolonged closure of schools and business, particularly in less-industrialized countries, 

could result in civil unrest which will reduce societies compliance with lockdown measures. 

Sibony (2020) refers to this phenomenon as ‘behavioural fatigue’ and cites this as factor which 

could offset a society’s fear of the pathogen hence leading to more risky behaviour. More 

recently, Toda (2020) calibrates a Susceptible-Infected-Recovered (SIR) epidemic model using 

global COVID-19 data to highlight on the ineffectiveness of ‘draconian’ lockdown strategies 

used by governments in attempts to lower transmission rate of the disease. Toda’s (2020) 

calibrations reveal that for governments to significantly reduce the spread of the disease they 

would have to employ strict lockdown measures for periods exceeding 12 weeks which the 

author finds to be economically unsustainable. Moreover, the findings show that current 

measures taken to lower the transmission rate have instead lowered the chances of populations 

acquiring ‘herd immunity’ and this increases the risk of the epidemic resurfacing in future 

periods.          

 

Notably, the COVID-19 morbidity and mortality levels vastly differ amongst many 

countries across the globe, with 16 countries even reporting zero cases at the time of writing 

(i.e. Comoros, Kiribati, Lesotho, Marshall Islands, Micronesia, Nauru, North Korea, Palau, 

Samoa, Sao and Principles, Solomon Island, Tajikistan, Tonga, Turkmenistan, Tuvalu and 

Vanuatu). What is even more striking is that poorer countries characterized by less 

sophisticated health systems, particularly in the Sub-Saharan Africa (SSA), South Asia and the 

Oceania Islands regions, exhibit fewer infections and death cases compared to those reported 

in more industrialised economies. Given the uncertainty of a vaccine being formulated against 

the COVID-19 disease, the varying levels of morbidities and mortalities experienced in 

different countries worldwide are more likely to be determined by other factors unrelated to 

the quality of health and medical institutions. So far, scientists have established that the most 

vulnerable groups towards COVID-19 infection and mortality include elderly populations 

(Koff and Wlliams, 2020), persons with ill health and comorbidities (Yang et al., 2020), males 

as opposed to females (Wenham et al. (2020) and in populations whose infants were not 

previously vaccinated with Bacillus Calmette-Guerin (BCG) (Miller et al., 2020). Our study 



goes beyond these demographic factors and proposes evolutionary factors like genetic 

heterozygosity and historical prevalence to infectious disease, as deeper explanations of 

susceptibility to the pandemic and to reach our objective we borrow from two scientific 

disciplines of research.  

 

Firstly, we draw from mainstream genetic theory which hypothesizes on genetically 

‘homogenous’ populations being more susceptible to viral infection and disease progression 

compared to more genetically diverse populations (King and Lively, 2012; Anacleto et al., 

2019). One of the most compelling proofs of this proposition is presented by Lively (2010) 

who uses a mathematical epidemiological model to demonstrate an inverse relationship 

between the average intrinsic rate of viral infections and the number of host genotypes in a 

population. We also draw from the ‘Out of Africa’ hypothesis modelled by a separate group of 

population geneticists which further predicts on a natural selection evolutionary process in 

which populations only carried a sub-set of genetic material when they migrated away from 

their parental colonies whose origins trace to a common ancestor in Addis Ababa (Prugnolle et 

al. (2005); Deshpande et al. (2008)). To empirically test the hypothesis, Ramachandran et al. 

(2005) and Ashraf and Galor (2013) use the allelic frequencies of 377 loci to measure the 

changes in genetic heterozygosity for 51 ethnic groups relating to different population 

settlements along the 5 migratory paths leading ‘Out of Africa’. The authors find that expected 

heterozygosity at these microsatellite loci not only decrease along the migratory distance from 

East Africa but also the genetic variation between populations in various settlements outside 

Africa is larger when there is a longer migratory distance between the populations i.e. serial-

founder effect. Notably, these measures of expected heterozygosity have been empirically used 

by Unified Growth Theorists (UGT) to explain global differences in human capital 

development (Sequeira et al., 2019), technological advancements (Sequeira and Santos, 2019) 

and susceptibility to conflict (Arbatli et al., 2020). Our study uses Ashraf and Galor’s (2013) 

measures of expected heterozygosity to empirically examine whether Lively’s (2010) 

hypothesis of an inverse relationship between genetic diversity and the spread of viral infection 

holds for the case of the ongoing COVID-19 pandemic. Figure 1 presents a scatterplot between 

genetic heterozygosity for 133 countries and their corresponding COVID-19 

infections/mortalities at 15st April 2020. A preliminary fit of the data reveals an inverse co-

relationship between genetic diversity and the COVID-19 virus which provides the basis for 

our study’s first testable hypothesis i.e.  

 



H1: Genetic diversity is inversely related with COVID-19 infections. 

 

Figure 1: COVID infections, mortalities and genetic diversity 
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Secondly, our study draws from the sociocultural literature and we particularly focus 

on the ‘pathogenic stress theory’ which explains the behavioural influence that parasite and 

infection stress has on the development of cultural norms and individual values (Fincher et al. 

(2008), Fincher and Thornhill (2008, 2012), Murray and Schaller (2010), Murray et al. (2008, 

2011)). According to the theory, the threat of diseases on the survival of ancestral populations 

led to natural selection pressures whereby societies with higher exposure to previous 

pathogenic infections evolved psychological and behavioural ‘antipathogen’ defences against 

novel diseases. Adopted cultural traits such as the use of spices as a natural antibiotic in the 

preparation of food (Billing and Sherman, 1998), limited interaction with ‘out-group’ members 

(Fincher et al., 2008), mate preferences (Murray et al., 2011) and prejudice against people 

perceived as unhealthy, unclean or unhygienic (Fincher and Thornhill, 2012) are believed to 

reflect ‘collectivism’ behaviour which helps these societies avoid the infection and spread of 

newer diseases. Murray et al (2008) and Murray and Schaller (2010) use epidemiological 

atlases to code an index of z-sores which capture the prevalence of 9 different types of 

pathogens causing infectious diseases (i.e. leishmanias, schistosomes, trypanosomes, leprosy, 

malaria, typhus, filariae, dengue and tuberculosis) and estimate positive (negative) correlations 



with measures of collectivism (individualism) presented in Hofstede (2001), Suh et al. (1998), 

Gelfand et al. (2004) and Kashima and Kashima (1998). Similar findings are observed in 

Cashdan and Steele (2013), Nikolaev and Salahodjaev (2017) and Ang (2019) albeit using 

different regression control variables in their respective analysis. However, these previous 

studies have not examined whether societies with higher disease prevalence are less 

susceptibility to novel viral infection, as hypothesized by the ‘pathogenic stress theory’. Our 

paper uses the measures of disease prevalence constructed by Murray and Schaller (2010) to 

investigate the empirical relationship between pathogen prevalence and the ongoing COVID-

19 virus. To further motivate our study, we present a preliminary scatterplot between the HPPI 

index for 133 countries and their corresponding COVID-19 infections/mortalities in Figure 2. 

A preliminary fit of the data provides visual support for a negative correlation between the 

variables and this leads to the formation of a second testable hypothesis i.e.  

 

H2: Disease prevalence is inversely related with COVID-19 infections. 

 

Figure 2: COVID infections, mortalities and disease prevalence 

0

1

2

3

4

5

6

7

-2 -1 0 1 2

DISEASE_PREVALENCE

C
O
V
ID
_
IN
F
E
C
T
IO
N
S
_
IN
_
H
U
N
D
R
E
D
_
T
H
O
U
S
A
N
D
S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-2 -1 0 1 2

DISEASE_PREVALENCE

C
O
V
ID
_
m
o
r
ta
li
ty
_
in
_
te
n
_
th
o
u
s
a
n
d
s

 

 

All-in-all, our study enriches the knowledge on susceptibility of populations to the 

coronavirus disease in three ways. Firstly, whilst most previous studies focus on demographic 

factors limited to regional data, our paper presents an analysis using global data covering 133 



countries worldwide which makes our study more relevant for decision making at a global 

level. Secondly, we provide evidence on evolutionary process and behaviour traits as being 

significantly correlated with coronavirus cases even after controlling for a host of plausible 

geographical, climatic and ecological determinants of general disease. We find that the 

magnitude of effect for expected heterozygosity and disease prevalence on the COVID-19 virus 

is greater and more significant in comparison to other control factors. These findings have 

important implications for biomedical and pharmaceutical research in their quest towards 

formulating a vaccine as well as for behavioural policies used by governments to control the 

spread of the COVID-19 virus in the absence of a cure for the disease. Lastly, we address 

possible endogeneity problems by making use of instrument variable methodology. On one 

hand, we follow Ashraf and Galor (2013) and use migratory distance from origin as an 

instrument for expected heterozygosity, which we then use as a predictor for COVID-19 cases. 

On the other hand, we follow Nikolaev and Salahodjaev (2017) and Ang (2019) and use disease 

prevalence as an instrument for collectivism/individualism, which we then use as a predictor 

for COVID-19 cases. The findings obtained from the instrumental variable estimates support 

the channels of causality implied in Diamond’s (1997) work.    

 

We proceed with the rest of the study as follows. The next section outlines the empirical 

regressions used in our study and describes data to be used in our empirical analysis. Section 3 

presents the baseline OLS empirical estimates of the regressions whilst section 4 presents 

sensitivity analysis. Section 5 presents the two-staged least squares (2SLS) estimates to address 

possible endogeneity in the regressions. Our paper is concluded in Section 6 in the form 

implications for policymakers and researchers.   

 

2. METHODS AND DATA  

 

Consistent with the two hypotheses specified in the introduction of the study, we model 

two cross-country least squares regressions for estimation purposes. Firstly, we model 

coronavirus infections/mortalities (SARS-CoV-2) as being endogenous to genetic diversity 

(GEN_DIV) and other conditioning variables (CONTROLS) i.e. 

 

SARS-CoV-2i =  +  GEN_DIV i + CONTROLSi + i    (1) 

 



Secondly, we model coronavirus infections/mortalities (SARS-CoV-2) as being 

endogenous to pathogen prevalence (HPPI) and other control variables i.e. 

 

SARS-CoV-2i =  +  HPPI + CONTROLSi + et, i     (2) 

 

The dependent variable in equations (1) and (2) is measured by total morbidities and 

total mortalities of SARS-CoV-2 virus in 133 developing and developed economies sourced 

from the John Hopkins database and consists of total infections and mortalities at 28/04/2020. 

The list of countries used in ours study is provided in the appendix of the paper. The two main 

independent variables GEN_DIV and HPPI represent genetic diversity and disease prevalence, 

respectively, and consistent with our formulated hypotheses we expect a negative and 

statistically significant coefficient estimates on the  parameter i.e.  < 0. As mentioned in the 

introduction, we use measures of expected heterozygosity provided by Ashraf and Galor (2013) 

to capture genetic diversity whereas we employ the 9-digit historical pathogen prevalence 

index found in Murray and Schaller (2010) to measure disease prevalence. Our estimated 

regressions also include a host of control variables used to address possible omitted variables 

bias. We present three main sets of controls commonly used in the deep roots literature. Firstly, 

we use geographic controls inclusive of land suitability which measures soil suitability for 

cultivation of agricultural crops (land_suit) collected from Michalopoulos (2012), average 

elevation (elevation), geographic latitude (latitude) and geographical longitude (longitude) 

collected from the CIA World factbook. Secondly, we use ecological controls inclusive of 

ecological fractionization (eco_frac) and ecological polarization (eco_polar) which are 

collected from (Fenkse, 2014) these indices measure the extent to which a population 

approximates a territory in which two vegetation types occupy half its area. Thirdly, we use 

average temperature (temp) and average precipitation (precip) as climate controls which we 

source from Harris et al. (2014).  

 

As part of our sensitivity analysis, we employ an additional 4 sets of control and dummy 

variables. Firstly, we use state and antiquity (S&A) measures of intuitional quality which 

includes variables measuring i) the time of Neolithic transitions from hunting and gathering to 

agriculture based societies (Neolithic), as sourced from Putterman and Weil (2010) ii) The state 

history variable (Stat_Hist), also sourced from Putterman and Weil (2010) which measures the 

depth of experience with state institutions by capturing the strength of locally-dominated 



government structures above tribal levels within a territorial geographic scope iii) the time 

elapsed since the original (uninterrupted) settlement of human populations provided by 

Ahlerup and Olsson (2012) (Origtime) iv) the 2019 per capita level of heath expenditure as 

measure of the quality of health institutions (health). Secondly, we employ legal origins 

dummies of La Porta et al. (1999) which categorize countries according to 5 legal systems (i.e. 

English, French, German, Scandinavian or Socialist). Thirdly, we use the natural resources 

dummy (oil and gas reserve dummy) which we source from Lujala et al. (2007). Lastly, we use 

the dummy variables for Islands as source form CIA World factbook. We consider this later 

dummy important since most countries which have recorded no cases of coronavirus are 

incidental Island economies. As previously mentioned, we also employ two-stage least squares 

(2SLS) estimators to address potential heterogeneity problem of endogeneity within the 

regressions. To this end we employ we employ two sets of instruments. For the first set of 

instruments, we follow Asharaf and Galor (2013) and use the migratory distance from Addis 

Ababa as an instrument for expected heterozygosity, which we then use to estimated COVID-

19 infections and mortalities. For the second set of instruments, we follow Nikolaev and 

Salahodjaev (2017) and Ang (2019) and employ measures of collectivism/individualism from 

Hofstede (2001) as an instrumental variable for historical pathogen prevalence. The descriptive 

statistics of all the variables used in ours study is summarized in Table 1 in the appendix of the 

paper. 

 

3. EMPIRICAL EVIDENCE  

 

This section of the paper presents the OLS estimates of the regressions (1) and (2) which 

are summarized in Table 2. Panel A reports the results between genetic diversity and 

COVID_19 infections/mortalities (i.e. columns (1) - (8)) whilst Panel B reports the reports the 

results between disease prevalence and COVID_19 infections/mortalities (i.e. columns (9) - 

(16)). Columns (1), (5), (9) and (13) presents the models without any control variables which 

produce negative and statically significant estimates at all levels of significance. Generally, 

these findings support Lively (2010) hypothesis that populations with higher genetic diversity 

and more disease prevalence are associated with lower COVID_19 infections and mortalities. 

We are, however, concerned by the low R-squared values, particularly when genetic diversity 

is the independent variables (columns (9) – (16)) and the variable explains only between 2 and 

6 percent of variation in COVID_19 morbidities and mortalities.  

 



Suspecting omitted variables bias as the reason for these low explanatory power in the 

regressions, columns (2), (6), (10) and (14) present the models inclusive of four geographic 

controls (i.e. land suitability, average elevation, longitude and latitude) which significantly 

improves on all R-squared values which now explain between 28 and 48 percent of variation 

in the regressions. Moreover, we observe that geographic factors such as latitude and longitude 

are positively correlated with COVID infections and mortalities whilst land suitability is 

inversely correlated with the disease. These findings imply that countries further from the 

equator and Prime Meriden as well as those with less suitable cultivation land suffer from more 

COVID infections and mortalities.  

 

In columns (3), (7), (11) and (15) we add two ecological controls (i.e. ecological 

fractionalization and polarization) whilst in columns (4), (8), (12) and (16) we add another two 

climate control variables (average temperature and precipitation). Notably the addition of the 

last two sets of controls does not offer much change in the magnitude of regression estimates 

for genetic diversity and disease prevalence and neither does it significantly improve the R-

squared variable. We do, however, observe negative and statistically significant estimates on 

the temperate variable, which implies that areas with higher temperatures have lower COVID 

infections and deaths. Similar findings have been recently reported in O’Reilly et al. (2020) 

who observe a low survival rate of the SARS-CoV virus in geographical areas with higher 

temperatures and humidity levels. Nevertheless, we note that in all regressions the magnitude 

of the coefficient estimates on genetic diversity and disease prevalence variables is larger in 

absolute terms in comparison to coefficient estimates on other control variables, hence 

highlighting the dominance of evolutionary and behaviour factors in explaining movements in 

COVID-19 infections and mortalities.       

 

 

 

 

 



Table 2: Baseline regressions 

 Dependent variable: Log (SARS-CoV-2) 

Panel A Infections  Mortalities 

Independent 

variable 

(1) 

No 

controls 

 

(2) 

Add 

biogeography 

(3) 

Add 

ecology 

(4) 

Add 

Climate 

 (5) 

No 

controls 

 

(6) 

Add 

biogeography 

(7) 

Add 

ecology 

(8) 

Add 

Climate 

Gen_div -12.91 

(4.18)*** 

-28.13 

(4.17)*** 

-26.52 

(4.20)*** 

-26.90 

(4.52)*** 

 -8.33 

(4.15)*** 

-25.68 

(4.73)*** 

-24.46 

(4.67)*** 

-23.99 

(5.03)*** 

Land_suitability  -0.02 

(0.008)*** 

-0.12 

(0.06)* 

-0.13 

(0.06)** 

  -0.02 

(0.01) 

-0.11 

(0.07) 

-0.11 

(0.07) 

Elevation  0.0004 

(0.0005) 

0.0002 

(0.0006) 

0.00003 

(0.0006) 

  0.001 

(0.0005)*** 

0.0009 

(0.0005)* 

0.0009 

(0.0005)* 

Latitude  0.07 

(0.01)*** 

0.07 

(0.01)*** 

0.05 

(0.01)** 

  0.07 

(0.01)*** 

0.07 

(0.01)*** 

0.06 

(0.01)*** 

Longitude  0.007 

(0.004)* 

0.007 

(0.004)* 

0.008 

(0.004)** 

  0.007 

(0.004)* 

0.007 

(0.004)* 

0.007 

(0.004)* 

Dist_river  -0.0005 

(0.0004) 

-0.0005 

(0.0004) 

-0.0008 

(0.0004)* 

  -0.0007 

(0.0005) 

-0.0008 

(0.0005) 

-0.0009 

(0.0006) 

Eco_frac   2.03 

(1.25) 

1.77 

(1.25) 

   2.04 

(1.46) 

1.88 

(1.53) 

Eco_pol   -1.95 

(1.31) 

-1.43 

(1.31) 

   -1.97 

(1.29) 

-1.81 

(1.30) 

Temp    -0.05 

(0.03)* 

    -0.02 

(0.03) 

Precipitation_mean    -0.0005 

(0.0003) 

    -0.0001 

(0.0003) 

Constant 15.97 

(2.96)*** 

25.39 

(2.88)*** 

24.54 

(2.93)*** 

26.56 

(2.99)*** 

 9.68 

(2.97)*** 

20.15 

(3.28)*** 

19.56 

(3.33)*** 

19.83 

(3.28)*** 

R2 0.06 0.48 0.49 0.52  0.03 0.40 0.41 0.42 

Obs 143 127 127 127  143 111 111 111 



Panel B          

independent 

variable 

(9) 

No 

controls 

 

(10) 

Add 

biogeography 

(11) 

Add 

ecology 

(12) 

Add 

Climate 

 (13) 

No 

controls 

 

(14) 

Add 

biogeography 

(15) 

Add 

ecology 

(16) 

Add 

Climate 

Disease_9 -1.75 

(0.29)*** 

-1.19 

(0.33)*** 

-1.24 

(0.29)*** 

-1.24 

(0.29)*** 

 -1.29 

(0.35)*** 

-0.81 

(0.34)** 

-0.82 

(0.33)** 

-0.83 

(0.34) 

Land_suitability  -0.05 

(0.0)*** 

-0.22 

(0.07)*** 

-0.17 

(0.040*** 

  -0.05 

(0.01)*** 

-0.19 

(0.08)** 

-0.13 

(0.05)*** 

Elevation  0.0003 

(0.0006) 

0.00005 

(0.0007) 

-0.0002 

(0.0007) 

  0.001 

(0.0005)** 

0.0008 

(0.0006) 

0.0007 

(0.0006) 

Latitude  0.03 

(0.01)*** 

0.04 

(0.01)*** 

0.04 

(0.009)*** 

  0.03 

(0.01)*** 

0.04 

(0.01)*** 

0.04 

(0.01)*** 

Longitude  -0.003 

(0.004) 

-0.002 

(0.003) 

-0.001 

(0.003) 

  -0.003 

(0.004) 

-0.002 

(0.003) 

-0.001 

(0.003) 

Dist_river  -0.0007 

(0.0005) 

-0.0007 

(0.0004)* 

-0.001 

(0.0005)* 

  -0.0009 

(0.0005)* 

-0.001 

(0.0005)* 

-0.001 

(0.0006)* 

Eco_frac   3.83 

(1.47)** 

5.41 

(1.58)*** 

   3.22 

(1.73)* 

5.12 

(1.82)*** 

Eco_pol   -2.77 

(1.40)* 

-3.61 

(1.56)** 

   -2.29 

(1.51) 

-3.67 

(1.62)** 

Temp    -0.01 

(0.003)*** 

    -0.01 

(0.003)*** 

Precipitation_mean    -0.002 

(0.003) 

    0.0001 

(0.003) 

Constant 6.99 

(0.39)*** 

6.54 

(0.45)*** 

6.46 

(0.76)*** 

6.55 

(0.80)*** 

 3.81 

(0.47)*** 

3.00 

(0.48)*** 

2.86 

(0.86)*** 

2.74 

(0.86)*** 

R2 0.20 0.34 0.39 0.42  0.12 0.28 0.30 0.34 

Obs 143 127 127 127  124 111 111 111 
Notes: “***”, “**”, “*” denote 10%, 5% and 1% critical levels, respectively. White heteroscedasticity-consistent standard errors reported in (). P-values are reported in []. 



4. SENSITIVITY ANALYSIS: ADDITIONAL CONTROLS AND DUMMY VARIABLES 

 

To ensure the robustness of our previous findings, this section of the paper presents a 

re-estimation of previous regressions after including more controls and dummy variables. 

Firstly, we include 3 sets of dummies for Islands, legal origins and natural resources and report 

these findings in columns (1), (5), (9) and (13) of Table 3. Secondly, in columns (2), (6), (10) 

and (14) we add controls for the number of years since the Neolithic transition from hunting 

and gathering to agriculture societies. Thirdly, in columns (3), (7), (11) and (15), we add 

controls for state history which accounts for the depth of experience with state institutions 

above tribal levels within a territorial geographic scope. Fourthly, in columns (4), (8), (12) and 

(16) we add controls for time elapsed since original (uninterrupted) human settlement and for 

health expenditure as a proxy for quality of current health institutions.  

  

As can be collectively observed in Table 3, the inclusion of additional dummies and 

controls does not change the sign nor the magnitude of the genetic diversity and disease 

prevalence variables and yet we note an improvement in the explanatory power of all 

regressions (i.e. R2). We also note that none of the state and antiquity (S&A) variables (i.e. 

Neolithic transition, state history and original time since human settlement) are significantly 

correlated with COVID_19 figures, implying that historical institutional advantages are non-

detrimental towards COVID_19 infections and deaths. Moreover, the positive and significant 

coefficient estimate on current health institution variables reported in columns (4) and (16) 

further implies that economies with less advanced health institutions have been less affected 

by the COVID pandemic. This finding can be treated as additional evidence of factors other 

than technological and institutional factors being responsible for the differing patterns in 

distribution of COVID_19.    

 

 

 



Table 3: Regressions inclusive of additional controls and dummies  

 Dependent variable: Log (SARS-CoV-2) 

 Infections  Mortalities 

Independent variable (1) 

Add 

dummies 

(2) 

Add  

Neolithic 

(3) 

Add 

statehist 

(4) 

Add 

Origtime+health 

 (5) 

Add 

dummies 

(6) 

Add  

Neolithic 

(7) 

Add 

statehist 

(8) 

Add 

Origtime+health 

Gen_div -26.97 

(4.37)*** 

-27.39 

(4.64)*** 

-27.36 

(4.71)*** 

-14.57 

(5.93)*** 

 -25.21 

(5.39)*** 

-25.38 

(5.56)*** 

-25.35 

(5.60)*** 

-16.41 

(7.69)** 

Neolithic  0.28 

(0.37) 

0.27 

(0.37) 

0.43 

(0.34) 

  0.16 

(0.39) 

0.15 

(0.41) 

0.19 

(0.41) 

Statehist   0.01 

(0.26) 

0.03 

(0.20) 

   0.03 

(0.27) 

0.10 

(0.28) 

Origtime    -0.20 

(0.18) 

    -0.21 

(0.29) 

Health    4.11 

(1.09)*** 

    2.21 

(1.34) 

Ecology controls Yes Yes Yes Yes  Yes Yes Yes Yes 

Geography controls Yes Yes Yes Yes  Yes Yes Yes Yes 

Climate controls Yes Yes Yes Yes  Yes Yes Yes Yes 

Legal origin dummies Yes Yes Yes Yes  Yes Yes Yes Yes 

Island dummies Yes Yes Yes Yes  Yes Yes Yes Yes 

Natural resources dummy Yes Yes Yes Yes  Yes Yes Yes Yes 

Constant 22.53 

(3.23)*** 

20.45 

(4.70)*** 

20.50 

(4.74)*** 

9.85 

(5.54)* 

 16.59 

(3.61)*** 

16.29 

(4.38)*** 

16.41 

(4.47)*** 

10.49 

(5.58)* 

R2 0.62 0.61 0.61 0.66  0.57 0.58 0.58 0.60 

Obs 127 117 117 115  111 105 105 103 

independent variable (9) 

Add 

dummies 

(10) 

Add  

Neolithic 

(11) 

Add 

statehist 

(12) 

Add 

Origtime 

 (13) 

Add 

dummies 

(14) 

Add  

Neolithic 

(15) 

Add 

statehist 

(16) 

Add 

health 

Disease_9 -1.51 

(0.39)*** 

-1.83 

(0.44)*** 

-1.83 

(0.44) 

-1.27 

(0.67)* 

 -1.25 

(0.46)*** 

-1.54 

(0.49)*** 

-1.56 

(0.48)*** 

-1.08 

(0.54)** 



Neolithic  0.93 

(0.76) 

0.82 

(0.67) 

0.84 

(0.60) 

  0.50 

(0.39) 

0.40 

(0.40) 

0.35 

(0.37) 

Statehist   0.29 

(0.26) 

0.27 

(0.24) 

   0.27 

(0.31) 

0.27 

(0.30) 

Origtime    -0.51 

(0.33) 

     

Health         3.23 

(1.27)** 

Ecology controls Yes Yes Yes Yes  Yes Yes Yes Yes 

Geography controls Yes Yes Yes Yes  Yes Yes Yes Yes 

Climate controls Yes Yes Yes Yes  Yes Yes Yes Yes 

Legal origin dummies Yes Yes Yes Yes  Yes Yes Yes Yes 

Island dummies Yes Yes Yes Yes  Yes Yes Yes Yes 

Natural resources dummy          

Constant 3.50 

(1.26)*** 

3.49 

(4.15) 

2.13 

(4.36) 

2.59 

(5.26) 

 1.09 

(1.45) 

3.83 

(3.31) 

2.62 

(3.51) 

4.12 

(3.04) 

R2 0.58 0.58 0.58 0.60  0.52 0.55 0.55 0.58 

Obs 127 117 117 117  111 105 105 103 
Notes: “***”, “**”, “*” denote 10%, 5% and 1% critical levels, respectively. White heteroscedasticity-consistent standard errors reported in (). P-values are reported in []. 

 

 

 

 



5. TWO-STAGE LEAST SQUARES (2SLS) ESTIMATES 

 

So far, we have not addressed the issue of endogeneity in the estimated regressions. In 

this section of the paper, we use two-staged least squares (2SLS) model in which we use 

instruments variables for genetic diversity and disease prevalence. In applying the 2SLS 

estimators to examine the relationship between genetic diversity and COVID_19 

infections/mortalities, we specify the first stage regression the one used in Ashraf and Galor 

(2013), Sequeira et al., (2019), Sequeira and Santos, (2019) and Arbatli et al., (2020) i.e. 

 

GEN_DIVi =  +  MIGR_DIST i + CONTROLSi + i    (3) 

 

 And then extract the estimated values of genetic diversity from regression (3) and use 

them in the following second-stage regression:  

 

SARS-CoV-2i =  +  GEN_DIV i + CONTROLSi + i    (4) 

 

Moreover, we follow Nikolaev and Salahodjaev (2017) and Ang (2019) who use 

disease prevalence as an instrument for collectivism/ individualism measures of psychological 

behaviour proposed by Gelfand et al. (2004). In applying these instruments in our study, we 

propose the following 2SLS estimation regressions. Under the first stage regression, we model 

individualism/collectivism as being endogenous to disease prevalence i.e. 

 

IND_COLLi =  +  HPPI i + CONTROLSi + i     (5) 

 

 And then we extract the estimates of in individualism/collectivism and model them as 

being exogenous towards COVID_19 infections and mortalities in the second-stage regression 

i.e.  

 

SARS-CoV-2i =  +  IND_COLL i + CONTROLSi + i    (6) 

 

  From regressions (3) - (6), we employ a set of controls for geography, climate, ecology, 

Islands, natural resources and institutions as used in the previous section of the paper. Table 4 

presents a summary of the 2SLS results, with Panel A reporting the estimates of regressions 



(3) and (4) whereas Panel B reports the estimates of regressions (5) and (6). Note that, as in the 

previous section of the paper, we present the estimates of our models in a stepwise fashion with 

columns (1), (5), (9) and (13) only including baseline controls and dummies (i.e. geography 

controls, climate controls, ecological controls, Islands dummies and natural resource 

dummies); columns (2), (6), 10) and (14) adding the number of years since the Neolithic 

transition; columns  (3), (7), (11) and (15) adding State history; and lastly columns (4), (8), 

(12) and (15) adding time since original human settlement.    

 

Based on the results reported in Panel A, we find that migratory distance is negatively 

and significantly related with genetic diversity in all first-stage regression estimators 

corresponding to columns (9) – (16) and we note that these findings are in alignment with those 

reported in Ashraf and Galor (2013), Sequeira et al., (2019), Sequeira and Santos, (2019) and 

Arbatli et al., (2020). From the second-stage estimates reported in columns (1) to (8), we 

observe familiar negative and statistical significant estimates on the on the ‘instrumented’ 

genetic diversity variable. These findings confirm a mechanism in which longer (shorter) 

migratory distance from the origin is negatively (positively) correlated with genetic diversity, 

which then becomes a positive (negative) predictor of COVID-19 infections and mortalities. 

One the other hand, the first stage estimates from Panel B reveal a negatively and statistically 

significant estimates between disease prevalence and collectivism as previously found in 

Nikolaev and Salahodjaev (2017) and Ang (2019), whereas the second stage estimates further 

reveal a negative correlation between the ‘instrumented’ collectivism variable and COVID-19 

infections and mortalities. These findings confirm a mechanism in which populations with 

longer (shorter) historical experiences with pathogen diseases are associated with societies 

characterized by more (less) collectivism behaviour, which, in turn, is a negative (positive) 

predictor of COVID-19 infections and mortalities. This later mechanism reflects the 

mechanism described in the 5th Chapter of Diamond’s (1997) book which suggests that 

populations with longer experiences with diseases tend to “…[evolve] substantial resistance 

to new[er] disease…” (Diamond 1997: 92).  

 

 



Table 4: 2SLS estimates  

Panel A: Dependent variable: Log (SARS-CoV-2) 

2nd stage 

estimates 

Infections  Mortalities 

 (1) 

Add 

dummies 

(2) 

Add  

Neolithic 

(3) 

Add 

statehist 

(4) 

Add 

Origtime+health 

 (5) 

Add 

dummies 

(6) 

Add  

Neolithic 

(7) 

Add 

statehist 

(8) 

Add 

Origtime+health 

          

Gen_div -26.97 

(4.37)*** 

-27.39 

(4.64)*** 

-27.36 

(4.71)*** 

-14.57 

(5.93)*** 

 -25.21 

(5.39)*** 

-25.38 

(5.56)*** 

-25.35 

(5.60)*** 

-16.41 

(7.69)** 

Neolithic  0.28 

(0.37) 

0.27 

(0.37) 

0.43 

(0.34) 

  0.16 

(0.39) 

0.15 

(0.41) 

0.19 

(0.41) 

Statehist   0.01 

(0.26) 

0.03 

(0.20) 

   0.03 

(0.27) 

0.10 

(0.28) 

Origtime    -0.20 

(0.18) 

    -0.21 

(0.29) 

Health    4.11 

(1.09) 

    2.21 

(1.34) 

Ecology controls Yes Yes Yes Yes  Yes Yes Yes Yes 

Geography 

controls 

Yes Yes Yes Yes  Yes Yes Yes Yes 

Island dummies Yes Yes Yes Yes  Yes Yes Yes Yes 

Natural resources 

dummy 

Yes Yes Yes Yes  Yes Yes Yes Yes 

Constant 22.53 

(3.23)*** 

20.45 

(4.70)*** 

20.50 

(4.74)*** 

9.85 

(5.54)* 

 16.59 

(3.61)*** 

16.29 

(4.38)*** 

16.41 

(4.47)*** 

10.49 

(5.58)* 

R2 0.62 0.61 0.61 0.66  0.57 0.58 0.58 0.60 

Obs 127 117 117 115  111 105 105 103 

IV F-statistic 10.66*** 8.52*** 7.99*** 8.77***  7.23*** 6.63*** 6.21*** 5.75*** 

1st stage 

estimates 

 Dependent variable: Log (Gen_div) 



Migra_dist -0.007 

(0.00004)*** 

-0.007 

(0.00004)*** 

-0.007 

(0.00004)*** 

-0.007 

(0.00004)*** 

 -0.007 

(0.00004)*** 

-0.007 

(0.00004)*** 

-0.007 

(0.00004)*** 

-0.007 

(0.00004)*** 

Controls and 

dummies 

✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

R2 0.99 0.99 0.99 0.99  0.99 0.99 0.99 0.99 

Panel B:          

2nd stage 

estimates 

         

 (9) 

Add 

dummies 

(10) 

Add  

Neolithic 

(11) 

Add 

statehist 

(12) 

Add 

Origtime+health 

 (13) 

Add 

dummies 

(14) 

Add  

Neolithic 

(15) 

Add 

statehist 

(16) 

Add 

Origtime+health 

Coll_ind -4.90 

(2.23)** 

-5.86 

(2.63)** 

-5.87 

(2.73)** 

-3.11 

(1.75)* 

 -5.41 

(2.66)** 

-6.63 

(2.93)** 

-6.64 

(3.04)** 

-4.17 

(2.15)* 

Neolithic  2.95 

(0.81)*** 

2.99 

(1.30)** 

2.43 

(0.95)** 

  3.53 

(0.97)*** 

3.60 

(1.51)** 

3.00 

(1.32)** 

Statehist   -0.05 

(0.71) 

0.41 

(0.39) 

   -0.07 

(0.80) 

0.21 

(0.55) 

Origtime    -0.72 

(0.39)* 

    -0.55 

(0.48) 

Health    2.73 

(2.11) 

    2.18 

(2.61) 

Ecology controls Yes Yes Yes Yes  Yes Yes Yes Yes 

Geography 

controls 

Yes Yes Yes Yes  Yes Yes Yes Yes 

Island dummies Yes Yes Yes Yes  Yes Yes Yes Yes 

Natural resources 

dummy 

No No No Yes  No No No Yes 

Constant 9.16 

(1.91)*** 

16.24 

(6.64)*** 

16.65 

(11.11) 

7.96 

(7.84) 

 5.54 

(2.08)** 

24.19 

(7.94)*** 

24.78 

(12.92)* 

17.15 

(10.98) 

R2 0.17 0.11 0.12 0.49  0.09 0.19 0.21 0.41 

Obs 66 62 62 61  66 62 62 61 



IV F-statistic 11.31*** 16.66*** 15.48*** 20.73***  9.79*** 16.76*** 15.48*** 20.93*** 

1st stage 

estimates 

Dependent variable: Log (Coll_ind) 

Disease_9 0.68 

(0.21)*** 

0.72 

(0.24)*** 

0.70 

(0.25)*** 

0.55 

(0.26)*** 

 0.68 

(0.21)*** 

0.72 

(0.24)*** 

0.70 

(0.25)*** 

0.55 

(0.26)*** 

Controls and 

dummies 

✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

R2 0.54 0.57 0.57 0.60  0.54 0.57 0.57 0.60 

Obs 66 62 62 61  66 62 62 61 
Notes: “***”, “**”, “*” denote 10%, 5% and 1% critical levels, respectively. White heteroscedasticity-consistent standard errors reported in (). P-values are reported in []. 



 

6. CONCLUSIONS  

 

The COVID-19 epidemic has affected almost every sphere of human livelihood and 

hence interdisciplinary research is crucial towards understanding and providing possible 

solutions or guidelines in the world’s battle with pandemic. Our study provides deeper 

knowledge on the susceptibility of different populations to the coronavirus disease by 

investigating whether natural selection evolutionary factors like genetic diversity and disease 

prevalence explain population vulnerability to the pandemic. Using statistical measures of 

expected heterozygosity and historical prevalence to infectious disease found in the ‘deep roots 

literature’, we find a negative and statistically significant co-relationship between these 

variables and total COVID-19 cases for a sample of 133 countries. We find that the magnitude 

of these variables as explanations for COVID-19 is superior to host of geographical, ecological, 

climate and institutional control factors. Instrumental variable estimates further reveal two 

transmission channels through which populations are susceptible to the COVID-19 virus. 

Firstly, there is the genetic route, where populations whose migratory distance from the origins 

of modern life are inversely related with genetic diversity, which then predicts movements in 

coronavirus infections and mortalities. Secondly, there is the behavioural channel, where 

populations with higher prevalence to infectious diseases develop ‘collectivist’ behavioural 

traits which acts as a antipathogen defence mechanism against the contraction and spread to 

the COVD-19 virus. 

 

Our findings foremost hold relevant implications towards geneticists and related 

branches of medicinal research in their urgent need to develop a vaccine against the virus. Our 

observation of a negative co-movement between a population’s expected heterozygosity and 

reported COVID-19 cases possibly reflects the variation in physiological immune system 

responses of different populations to the virus across the globe. Therefore, in developing a 

vaccine against the virus, geneticists may need to research on which specific human genes in 

populations are most resistant to the disease. Understanding how the variation in genetic 

selection of the COVID-19 pathogen towards different human populations would not only be 

useful towards formulating medication which can fight off the COVID-19 virus but also once 

such a vaccine is discovered and clinically-approved, then populations who are most vulnerable 

to the disease can be identified and prioritized for vaccination. Our results also have 

implications towards the behavioural governance of the coronavirus disease as a non-



pharmaceutical solution to fighting the pandemic. Our study particularly shows that societies 

which have previously gone through viral pandemics and have encouraged (discouraged) 

collectivism (individualism) behaviour are associated with lowest COVID-19 infections and 

mortalities. Therefore, governments worldwide need to incorporate behavioural approach in 

policy design which will not only control the spread of the infection but can present 

opportunities to speed-up the process of re-starting of economies. By replacing stringent 

lockdown strategies with behavioural adjustment strategies, economies can minimize the 

adverse economic repercussions of closing major sectors of the economy. This is more relevant 

for poorer countries who already face economic and social maladies such as high 

unemployment and extreme poverty and do not have access to necessary infrastructure and 

technology to protect themselves from the economic challenges presented by the virus. Without 

a clinically approved cure or treatment for the coronavirus disease, human survival may depend 

on our ability to adapt psychological and behavioural traits which will help avoid infections 

and manage contagion whilst simultaneously allowing people to live ‘normal’ lives. 
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APPENDIX A  

 

List of countries: Afghanistan, Albania, Algeria, Angola, Argentina, Armenia, Australia, 

Austria, Azerbaijan, Belgium, Benin, Bolivia, Botswana, Brazil, Brunei, Bulgaria, Burkina 

Faso, Burundi, Cambodia, Cameroon, Canada, Central African Republic (CAR), Chad, Chile, 

China, Colombia, Congo, Costa Rica, Cote d’Ivore, Croatia, Czech Republic, Denmark, 

Djibouti, Democratic Republic of Congo, Ecuador, Egypt, El Salvador, Equatorial Guinea, 

Eritrea, Estonia, Eswatini, Ethiopia, Finland, France, Gabon, Gambia, Georgia, Germany, 

Ghana, Greece, Guatemala, Guinea, Guinea-Bissau, Hungry, Iceland, India, Indonesia, Iran, 

Iraq, Ireland, Israel, Italy, Japan, Joran, Kenya, Kuwait, Laos, Latvia, Lebanon, Lesotho, 

Liberia, Libya, Lithuania, Luxembourg, Macedonia, Madagascar, Malawi, Malaysia, Mali, 

Mauritania, Mexico, Morocco, Mozambique, Namibia, Nepal, Netherlands, New Zealand, 

Niger, Nigeria, Norway, Oman, Panama, Peru, Philippines, Poland, Portugal, Romania, Russia, 

Rwanda, South Korea, Saudi Arabia, Senegal, Serbia, Sierra Leone, Slovakia, Slovenia, 

Somalia, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syrian, 

Tanzania, Thailand, Togo, Tunisia, Turkey, United Arab Emirates, Uganda, United Kingdom, 

Ukraine, Uruguay, United States of America, Uzbekistan, Venezuela, Vietnam, Yemen, 

Zambia, Zimbabwe.   

 

APPENDIX B 

 

Table 1: Summary statistics  

Variable Source Obs Mean s.d. Minimum Maximum 

Main dependent 

variables 

      

SARS-CoV-2 

(infections) 

John Hopkins 

Institute 

134 7.15 2.43 1.61 13.34 

SARS-CoV-2 

(mortalities) 

John Hopkins 

Institute 

134 3.62 2.58 0.00 10.23 

Main 

independent 

variables 

      



Gen_div Ashraf and 

Golar (2013) 

134 0.72 0.05 0.57 0.77 

HPPI Murray and 

Schaller 

(2010) 

134 0.29 0.67 -1.78 1.20 

Biogeography 

controls 

      

Land suitability Michalopoulos 

(2012) 

134 1.16 6.79 0.003 69.94 

Average 

elevation 

G-ECON 

project 

128 562.18 475.11 0.64 2729.63 

Latitude CIA World 

Factbook 

128 20.18 24.93 -42.00 64.00 

Longitude CIA World 

Factbook 

128 19.90 51.98 -102.00 174.00 

Distance to river Gallup et al. 

(1999) 

134 305.05 380.60 15.00 2385.58 

Ecological 

controls 

      

Ecological 

fractionalization 

Fenske (2014) 128 0.59 0.39 0.007 3.30 

Ecological 

polarization 

Fenske (2014) 128 0.67 0.19 0.02 0.91 

Climate  

controls 

      

Temperature 

volume 

Harris et al. 

(2014) 

128 17.94 8.39 -4.94 28.55 

Precipitation 

volume 

Harris et al. 

(2014) 

128 992.08 706.75 21.49 2933.82 

Legal origins 

dummy 

La Porta et al. 

(1999) 

134 - - 0 1 

Island dummies CIA’s World 
Factbook 

134 - - 0 1 

Natural resource 

dummy 

Lujala et al. 

(2007) 

129 - - 0 1 

Colony dummies CIA’s World 
Factbook 

129 - - 0 1 

Historic 

institution 

controls  

      

Years since 

Neolithic 

revolution 

(Neolithic) 

Putterman and 

Weil (2010) 

118 10.50 16.39 5.99 145.60 

State History 

(Statehist) 

Putterman and 

Weil (2010) 

118 -0.77 1.29 -3.57 7.50 

Duration of 

human 

Ahlerup and 

Olsson (2012) 

134 10.44 1.98 -2.51 11.98 



settlement 

(Origtime) 

2019 per capita 

expenditure on 

health 

World 

Development 

Indicators 

134 321356.

82 

605.25 22.89 6086.3 

Instrumental 

variables 

      

Migratory 

distance from 

origin 

(Dist_orig) 

Ashraf and 

Golar (2013) 

118 7.29 1.82 0.00 11.81 

Collectivism Gelfand et al. 

(2004) 

52 5.18 0.76 3.53 6.37 

 

 

 
 


