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Abstract 
Traditional cross-sectional estimates of hedonic price functions theoretically can recover mar-
ginal willingness to pay for characteristics, but face endogeneity problems when some character-
istics are unobserved.  To help overcome such problems, economists have introduced difference-
in-differences and other quasi-experimental econometric methods into the hedonic model.  Un-
fortunately, the welfare interpretation of the estimands has not been clear.  This paper shows that, 
when they condition on baseline data, they identify the "average direct unmediated effect" on 
prices from a change in characteristics.  It further shows that this effect is a lower bound on wel-
fare, specifically Hicksian equivalent surplus plus the change in profits.  The paper illustrates 
these results with an application to toxic facilities' effects on housing prices. 
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Difference-in-Differences Hedonics 
 

1. Introduction 

For over half a century, economists have used hedonic price functions as a simple way to model 

quality-differentiated products, to control for quality change, and to price underlying characteris-

tics.  The standard hedonic model begins with a single cross-section and uses the insight that a 

household choosing a particular product has a marginal willingness to pay for an attribute equal to 

the derivative of the hedonic price function with respect to the attribute.  While working with cross-

sections has been the standard hedonic project for decades, more recently economists have drawn 

attention to the problem of unobserved attributes that may be correlated with the attribute of inter-

est (Greenstone 2017).  To overcome this endogeneity problem, they have applied difference-in-

differences (DD) and other quasi-experimental methods to the hedonic econometric model, so that 

changes to the hedonic attributes of interest are plausibly exogenous.1  Parmeter and Pope (2013) 

provide an introduction to and review of this literature, and Kuminoff et al. (2010) illustrate with 

simulations the importance of using DD hedonic techniques to control for unobservables. 

From a standpoint of statistical estimation, this work is clearly an important improvement, 

allowing for identification of the hedonic price function under much weaker assumptions about 

unobservable characteristics.  However, from an economic perspective, it seemingly has come at 

the cost of a clear interpretation of the estimand:  what economic question it answers is not always 

clear, or at least has not been perceived clearly in the literature.  The ambiguity arises because the 

hedonic equilibrium is fundamentally cross sectional:  Households face a tradeoff among products 

at a point in time, not across time. 

Although the results of this paper apply to any hedonic context, for concreteness, consider 

the specific application of housing price functions.  Let the hedonic price function be pt = pt(gt, xt), 

where pt is the price (or cost) of the hedonic bundle in period t, g is a continuous characteristic of 

interest, and x is a vector of other characteristics.  For example, in applications to housing, g might 

be a public good of interest and x a vector of housing characteristics (lot size, dwelling size, and 

                                                            
1 Examples include Bento et al. (2015), Cellini et al. (2010), Chay and Greenstone (2005), Currie et al. (2015), Davis 
(2004, 2011), Figlio and Lucas (2004), Gopalakrishnan et al. (2011), Greenstone and Gallagher (2008), Haninger et 
al. (2017), Lang (2018), Linden and Rockoff (2008), Mastromonaco (2015), Muehlenbachs et al. 2015, and Pope 
(2008). 
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so forth).  At a point in time, the derivative of a price function with respect to the characteristic of 

interest, ∂pt(gt, xt)/∂g, is the marginal willingness to pay.  However, it is not clear how this marginal 

willingness to pay can be identified in the context of DD hedonic regressions.  The dependent 

variable in a DD hedonic regression is  

(1) dp  =  p1(g1, x1) - p0(g0, x0), 

which mixes information from two equilibria.  Recently, the literature has begun to refer to such 

differences as "capitalization" (Chay and Greenstone 2005, Klaiber and Smith 2013, Kuminoff 

and Pope 2014, Mastromonaco 2015, Muehlenbachs et al. 2015, Parmeter and Pope 2013), in con-

trast to the slope of a single equilibrium hedonic price function. 

The link between such capitalization and the underlying economic model is not immedi-

ately clear.  For changes to the set of characteristics for a small subset of houses, the equilibrium 

hedonic price function can be taken as constant over a short time period, so that DD models can 

be interpreted within a single equilibrium (Palmquist 1992).  But in the more general case, a large 

change in the supply of an amenity will shift the hedonic price function.  Too, other changes in the 

economic environment (income, other amenities) taking place over the longer time periods used 

in many studies, such as ten years, would also shift the price function.  When the hedonic price 

function shifts for either reason, panel-data studies compare prices at two different equilibria in 

potentially confusing ways.  The confusion is compounded by ambiguity about the meaning of 

language borrowed from the program evaluation literature, such as "the capitalization effect," in 

the sense of a causal effect, of a change in amenities on prices, when there are various such effects 

with differing interpretations. 

Consider the wide range of claims made in the literature.  On one hand, Greenstone and 

Gallagher (2008) argue that capitalization effects represent the Marshallian consumer surplus for 

a change in amenities when housing is inelastically supplied (see their Figure 1 and associated 

discussion).  However, their argument is based on two strong assumptions.  First, they assume that 

the policy induces a parallel shift in the Marshallian demand for land and/or housing in the im-

proved area.  Second, they implicitly assume that the change in Marshallian consumer surplus for 

housing is equal to the consumer surplus for the change in the underlying amenity.  In fact, this 

equality does not hold except under the special case of a restriction to income effects known as the 
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Willig condition (Palmquist 2005 and Smith and Banzhaf 2004). 

On the other hand, Klaiber and Smith (2013), Kuminoff and Pope (2014), and Parmeter 

and Pope (2013) have argued that, because it combines two equilibria, the capitalization effect 

often answers an ill-defined economic question.  Taken together, their arguments essentially in-

volve two points in the presence of changes in the hedonic price function.  First, the total price 

effect of a change in g is not the same as willingness to pay, nor indeed related to it in any clear 

way.  Instead, it conflates willingness to pay (defined within the context of one equilibrium price 

function) with changes in the equilibrium price function.  Second, estimation of pt(gt, xt) will be 

biased if the general equilibrium effects on the price function are ignored.  Both points are correct.  

Nevertheless, DD hedonic studies can provide meaningful welfare measures that account not only 

for marginal willingness to pay for g, but also for general equilibrium effects. 

This paper clarifies the issue by introducing distinctions made in the treatment effect liter-

ature when the Stable Unit Treatment Value Assumption (SUTVA) is violated.  Distinguishing 

between the indirect and direct effects of treatment, is shows that, when properly conditioning on 

baseline conditions, DD hedonic studies identify the movement along the ex post hedonic price 

function, which is not the same as the total price effect if the function shifts endogenously.  Second, 

it shows this effect can be interpreted as a lower bound on Hicksian equivalent surplus (ES) (plus 

the change in profits) for an improvement in g, even in the presence of general equilibrium shifts 

in the price function and endogenous adjustments to the supply of x.  The bound is similar to one 

discussed many years ago by Bartik (1988).  These results are quite general.  Demands and other 

aspects of the economic environment may change between periods, there are no restrictions on 

heterogeneity in demands, panel data on household choices are not required, and even repeated 

cross sections of houses can be used.  Thus, as long as changes in the attribute of interest meet a 

basic conditional independence assumption, a wide variety of data sets can be used to estimate the 

lower bound, even with repeated cross sections separated over time. 

The paper illustrates these results with an application to the value of reduced toxic emis-

sions in southern California between 1995 and 2000.  Although the estimates are a lower bound, 

the estimated value is substantial, at about $8 billion for the present value of the realized decrease 

in emissions, or about $74 per year. 

DD hedonics can thus provide useful information about the underlying structure of the 
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economic model.  In situations where a lower bound on welfare is useful (e.g., because even the 

lower bound estimate exceeds costs), they can provide sufficient information robust to some econ-

ometric problems.  In other cases, they should be interpreted with caution.  In simulations, the 

lower bound estimate is on the order of three-quarters of the true equivalent surplus. 

2. Hedonic Capitalization Effects 

2.1 The Hedonic Model 

Let ℋ denote the set of houses in a region with typical element h and let ℐ denote the set of house-

holds with typical element i.  For ease of exposition, assume for now that the region is closed, so 

there is no migration in or out.  (Below, I relax this assumption and show it does not effect the 

interpretation.)  Equilibrium in each time period consists of a one-to-one correspondence of house-

holds to houses (all households occupy a house and all houses are occupied by a household).  

Households may rent or own their house, but we will treat owner-occupied houses as if the house-

hold is rents from itself. 

At any point in time t, households differ by their income y and by their current-period 

preferences, which can be represented by a twice differentiable quasi-concave conditional indirect 

utility function 𝑣௧(𝑦௧-ph, gh, xh), with 𝜕𝑣௧/𝜕𝑦௧ > 0.  On the supply side of the market, the profit 

function for house h is πh = ph - ch(xh), where the cost function ch( ) is twice differentiable.  For 

simplicity, assume ch( ) is constant over time, although this assumption could be relaxed. 

Consider two points in time, denoted t=0 for an initial situation and t=1 in a later situation.  

In each period, prices of houses are determined by the level of the amenities evaluated on the 

equilibrium price function:  𝑝௧  = 𝑝௧(g௧ , 𝐱௧ ).  The time superscript on the hedonic price function 

indicates that equilibrium hedonic prices may shift.  In principle, these shifts may transpire from 

changes in the distribution of g, changes in household demands, or other changes in the economic 

environment.  In each period, households maximize utility over a continuous choice set defined by 

the continuously differentiable hedonic function. 

I make the standard hedonic assumption that households have perfect information and are 

in a static equilibrium in each time period.2  Maximizing utility in period t, the household satisfies 

                                                            
2 This assumption continues to underlie majority of work on hedonic markets (e.g. Bajari and Benkard 2005, Bishop 
and Timmins 2019, Ekeland, Heckman, and Nesheim 2004, Heckman, Matzkin, and Nesheim 2010) as well as struc-
tural sorting models of locational choice (e.g. Bayer, Ferreira, and McMillan 2007, Kuminoff 2012, and Sieg et al. 
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the first-order condition for g: 

 𝜕𝑣௧𝜕𝑔 = − 𝜕𝑣௧𝜕𝑝 𝜕𝑝௧𝜕𝑔 . 
Using −𝜕𝑣௧/𝜕𝑝 = 𝜕𝑣௧/𝜕𝑦, this is equivalent to: 

(2) 
𝜕𝑣௧/𝜕𝑔𝜕𝑣௧/𝜕𝑦 = 𝜕𝑝௧𝜕𝑔 . 

Equation (2) is the standard tangency condition, with the derivative of the hedonic function with 

respect to an amenity is equal to marginal willingness to pay for the amenity at the optimal point. 

Similarly, a landlord's first-order condition for profit maximization for characteristic 𝑥 is 

(3) 𝜕𝑐𝜕𝑥 = 𝜕𝑝௧𝜕𝑥 . 
The endogenous amenities x are supplied according to similar tangency condition, with marginal 

cost of supply equal to the marginal revenue. 

The basic problem is (i) to make inferences about non-marginal welfare effects from these 

primitive conditions and (ii) to estimate even the primitives when g or x are endogenous, perhaps 

because of omitted variables. 

2.2 Defining Capitalization Effects 

To overcome the second issue, related to estimation, researchers have applied DD and related 

quasi-experimental approaches to the hedonic econometric model to identify the effects of exoge-

nous changes in g (e.g. Bento et al. 2015, Cellini et al. 2010, Chay and Greenstone 2005; Currie et 

al. 2015; Davis 2004, 2011; Figlio and Lucas 2004; Greenstone and Gallagher 2008; Lang 2017, 

Linden and Rockoff 2008, Mastromonaco 2015, and Pope 2008).  While effectively addressing an 

econometric problem, these methods have raised other questions about what precisely they iden-

tify.  In an important advance in the literature, Klaiber and Smith (2013) and Kuminoff and Pope 

(2014) point out that if the hedonic price function shifts (either because of the changes in g itself 

or other changes in the economic environment), standard DD approaches conflate parameters de-

scribing two different equilibrium price functions. 

                                                            
2004).  However recent work increasingly is considering dynamic optimization in the presense of transactions costs, 
which may be substantial in applications to housing (Bayer et al. 2016, Bishop and Murphy 2019, Kennan and Walker 
2011).  The labor literature has long considered such dynamic optimization (e.g. Keane and Wolpin 1997). 
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If the equilibrium hedonic price function for a housing market changes endogenously be-

cause of a shock to amenities, then the price of a house will change even if its amenities have not.  

From the perspective of the program evaluation literature, this can be viewed as a violation of 

SUTVA, particularly the no-interference assumption:  the outcome (price) of an untreated housing 

unit in the market is affected by the fact that other housing units were treated with changes to their 

amenities. 

In the presence of interference, a policy scenario treating some units has an "indirect effect" 

even on untreated units plus an additional "direct effect" of treatment on the treated.  Consequently, 

we must make a distinction between the effect of a treatment scenario and the effect of treatment 

status for a unit, given the scenario.  To analyze such effects, we can draw on extensions to the 

potential outcome framework made by Hudgens and Halloran (2008), Tchetgen Tchetgen and 

VanderWeele (2012), VanderWeele and Tchetgen Tchetgen (2011), and others to consider effects 

defined by an entire policy—that is, by a change in g anywhere. 

Let g be the value of g at house h which is realized under some potential scenario a at t=1 

and let 𝐠ି  be the (H-1)-dimensional vector of g at all houses except h in scenario a.  Let 𝐱(g) 

be the value of x at house h in scenario a, which itself is a function of g.  Let a* be the scenario 

that was actually implemented, such as a program to clean up toxic waste.  Likewise, let a' be some 

alternative counterfactual scenario that could have prevailed at t=1, the outcomes under which one 

wants to compare to the outcomes under a*.  With this notation, different scenarios a describe 

different possible distributions of g at t=1. 

We incorporate the violation of SUTVA by allowing for different potential prices at 

house h based not only on the value of gh, but also based on the entire policy vector g.  The potential 

outcome for house h were we in the counterfactual state (with no houses treated), would be 𝑝ଵ(𝐠ିᇱ , gᇱ, 𝐱ᇱ(gᇱ)).  This price is illustrated in Figure 1, by price pA, from the counterfactual 

price function evaluated at gᇱ.  The potential outcome for house h, if the rest of the market were 

under policy a*, can be written as 𝑝ଵ(𝐠ି∗ , gᇱ, 𝐱∗(gᇱ)) if house h were not treated (receiving its 

counterfactual gᇱ) and as 𝑝ଵ(𝐠ି∗ , g∗, 𝐱∗(g∗)) if house h were treated (exogenously receiving g∗).  These are depicted in Figure 1 by prices pB and pC respectively. 

As always, causal effects of a policy must compare the policy scenario, 𝑎∗, to a counter-
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factual, 𝑎ᇱ.  Two distinctions here should be emphasized about this comparison in our settingrela-

tive to common assumptions.  First, there may be exogenous changes over time.  Thus, in general, 

the equilibrium under 𝑎ᇱ is not the same as in t=0.  Even if a' is "no program" to change g, the 

distribution of g may be evolving.  Too, even if g would not have changed, pA is not necessarily 

equal to 𝑝, as there could be other changes in the economic environment between t=0 and t=1 

affecting the price function or xh.  Second, with interference, there are endogenous changes from 

the policy that require untreated units to be evaluated in the policy scenario as well as the counter-

factual.  Despite the fact that house h is untreated, pB = 𝑝ଵ(𝐠ି∗ , gᇱ, 𝐱∗(gᇱ)) is not necessarily 

equal to pA = 𝑝ଵ(𝐠ିᇱ , gᇱ, 𝐱ᇱ(gᇱ)) because the treatments at the other houses effect equilibrium 

prices at all houses, including h. 

Following Hudgens and Halloran (2008) and VanderWeele and Tchetgen Tchetgen (2011), 

define the individual total effect (TE) of policy a* for some house h as  𝑇𝐸(𝑎∗)  =   𝑝ଵ൫𝐠ି∗ , g∗, 𝐱∗(g∗)൯ −  𝑝ଵ(𝐠ିᇱ , gᇱ, 𝐱ᇱ(gᇱ)). 
The total effect is the overall effect of treatment by the policy at house h.  In Figure 1, it is equal 

to pC - pA.  It can be decomposed into two parts, an indirect effect and a direct effect.  The individual 

indirect effect (IE) of treatment a* for h is defined as IE(𝑎∗)  =  𝑝ଵ൫𝐠ି∗ , gᇱ, 𝐱∗(gᇱ)൯ − 𝑝ଵ(𝐠ିᇱ , gᇱ, 𝐱ᇱ(gᇱ)). 
IEh represents the effect on the price of untreated houses due to the shifting hedonic price function 

between scenario a' and scenario a*.  It is the result of interference:  the price at h may be affected 

by spillovers from treatments elsewhere, even if h itself is untreated.  IEh is depicted in Figure 1 

by pB - pA. 

The individual direct effect (DE) of treatment a* for h, conditional on the program going 

forward in the rest of the market, is defined as  DE(𝑎∗)  =  𝑝ଵ൫𝐠ି∗ , g∗, 𝐱∗(g∗)൯ − 𝑝ଵ൫𝐠ି∗ , gᇱ, 𝐱∗(gᇱ)൯. 
DEh represents the effect of re-assigning house h from an untreated to a treated state, while holding 

constant the treatment status of the other houses.  It is depicted in Figure 1 by pC - pB. 

In theory, changing the treatment status of just house h by itself, as envisioned in the defi-

nition of DE, could itself have general equilibrium effects.  Assumption A1 rules out such effects: 
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ASSUMPTION A1 (Local Non-interference).  Let 𝐩ି be the vector of prices for all houses except 
h.  Assume 𝐩ିଵ (𝐠ି∗ , g∗, 𝐱ଵ ) ≈ 𝐩ିଵ (𝐠ି∗ , gᇱ, 𝐱ଵ ) for all h and all a*, a'. 

In words, changing the treatment status of only one house does not appreciably affect the price of 

any other house.  This rules out, for example, "tipping" away from an unstable equilibrium.  The 

local non-interference assumption can be taken to be a minimal instance of Palmquist's (1992) 

localized externality.  Under this assumption, the direct effects DE can be interpreted as the move-

ment along a constant hedonic price function, specifically the one prevailing in scenario a*, from 

an untreated to a treated state, at a fixed x.3  As the price function no longer depends on whether h 

alone was actually treated, with the local non-interference assumption, we can write these potential 

effects more simply as 𝑝ଵ(𝐠ି , g∗, 𝐱∗)  =   𝑝(g∗, 𝐱∗), 𝑝ଵ(𝐠ି , gᇱ, 𝐱ᇱ)  =   𝑝(gᇱ, 𝐱ᇱ). 
That is, the evaluation of 𝑝(gଵ , 𝐱ଵ ) need not account for the general equilibrium price effects of 

changing the treatment status of only house h. 

As written, TE, IE, and DE all include any effects mediated through changes in x.4  For 

example, improvements in g might motivate households to improve the house in other (observable) 

ways, or it might trigger resorting with new households wanting to change the house.  Variants of 

these treatment effects that net out the portions mediated through changes in x can be defined for 

all three.  Define the total unmediated effect (TUE) and the direct unmediated effect (DUE) at 𝐱 

respectively by: TUE(𝑎∗)  =   𝑝∗൫g∗ , 𝐱∗ = 𝐱൯ −  𝑝ᇱ(gᇱ, 𝐱ᇱ = 𝐱) DUE(𝑎∗) = 𝑝∗(g∗, 𝐱∗ = 𝐱) −  𝑝∗(gᇱ, 𝐱ᇱ = 𝐱). 
                                                            
3 To avoid the general equilibrium effects of changing the treatment for one unit, Hudgens and Halloran (2008) impose 
a particular randomization assumption that under any policy a, the number of treated units is fixed.  Thus, 𝐠ିଵ,∗

 is 
conditioned on the value of gଵ  in their definition of the direct effect.  To avoid this awkward construction, 
VanderWeele and Tchetgen (2011) propose an alternative definition of the direct effect in which 𝐠ିଵ,∗

 is fixed, but 
which no longer decomposes the total effect.  The local non-interference assumption provides an alternative way to 
address this issue.  Under this assumption, both definitions of the direct effect are equivalent. 
4 As noted by Tchetgen Tchetgen and VanderWeele (2012), terms like "direct" and "indirect" can be somewhat con-
fusing in the presence of both interference and mediation.  I use "indirect" to mean changes in the hedonic price 
function (as defined previously) and "mediated" to be the effect through changes in x attributable to changes in g. 
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TUE and DUE are the same as TE and DE respectively, except they hold xh constant at some level.  

DUE and DE both can be identified by DD hedonic methods.  As I will show below, DUE is the 

causal effect concept which has the clearest welfare interpretation as a lower bound on welfare.  It 

represents moving h from an untreated to a treated state, while holding constant the treatment 

program at the other houses and holding constant xh as some level 𝐱.  Accordingly, henceforth I 

shall focus primarily on DUE, but I also will comment on DE. 

Each of the individual effects defined above have their respective group averages.  Define 

the average total and direct unmediated effects, respectively, as follows: TUE(𝑎∗)തതതതതതതതതതത   =   1𝐻  TUE(𝑎∗) , 
DUE(𝑎∗)തതതതതതതതതതത   =   1𝐻  DUE(𝑎∗) . 

More generally, we could define similar averages over any sub-set of houses ℋ′.  In the case of 

the direct unmediated effect we then write 

DUEℋᇱ(𝑎∗)തതതതതതതതതതതതതത   =   1∑ 1(ℎ ∈ ℋᇱ)  DUE(𝑎∗)∈ℋᇱ . 
When we have a particular treatment program in mind, a particular special case of DUEℋᇱ(𝑎∗)തതതതതതതതതതതതതത is 

where ℋ′ is simply the subset of treated houses.  This is the average direct unmediated effect on 

the treated, or DUET(𝑎∗)തതതതതതതതതതതതത. 

3. Difference-in-Difference Hedonic Models Identify the Direct Effect 

Either TE(𝑎∗)തതതതതതതതത or DE(𝑎∗)തതതതതതതതത, or their unmediated variants, could be defined as a "capitalization ef-

fects."5  TE(𝑎∗)തതതതതതതതത captures both the treatment on h and the shifting hedonic price function.  If we 

wanted to forecast the effects of the program on prices, relative to a counterfactual of no program, 

either TE(𝑎∗)തതതതതതതതത or TUE(𝑎∗)തതതതതതതതതതത would be useful measures.  However, the impact on prices qua prices 

are of limited interest for measuring welfare, except for understanding distributional effects on 

individuals who pay them or receive them as income.  As Kuminoff and Pope (2014) and Klaiber 

                                                            
5 Linking hedonics to "capitalization" has a long history.  When Frederick Waugh (1929) first used hedonic methods 
to explain vegetable prices as a function of their attributes, Eveline Burns commented that the effect was analogous 
to Ricardian rent for cross-section differences in the fertility of land.  Early interpretations of capitalization in time 
include Lind (1973) and Starrett (1981).  By the 1980s, "capitalization" was used interchangeably in potentially con-
fusing ways to refer to cross sectional capitalization or to capitalization over time. 
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and Smith (2013) have rightly emphasized, TUE(𝑎∗)തതതതതതതതതതത is not the average willingness to pay for pro-

gram a*.  The problem is that it conflates the direct and the indirect unmediated effects.  Indeed, 

it is hard to give it any welfare interpretation except in the special case where the hedonic function 

does not in fact change, in which case the results of Palmquist (1992) apply.  In that case, there is 

no indirect effect, so the total and direct effects coincide. 

Moreover, without additional assumptions TE(𝑎∗)തതതതതതതതത and TUE(𝑎∗)തതതതതതതതതതത cannot be identified any-

way.  Because 𝑝ଵ,ᇱ is not observed, we cannot know the indirect effects.6  However, DUE(𝑎∗)തതതതതതതതതതത can 

still be identified because, by definition, it does not reference scenario a'.  It only requires the 

weaker assumption, typical of DD estimators, that changes from 𝑝 to 𝑝ଵ,∗ for untreated units are 

the same, on average, as what they would have been for treated units were they left untreated, but 

the policy went forward.  In practice, it allows researchers to use data on observed changes. 

The basic argument can be seen in Figure 1, if we replace pa'( ) with p0( ).  A treated unit 

and its matched control both start at pA.  In scenario a*, the untreated unit moves to pB, and under 

the identifying assumption so would the treated unit (in expectation).  Here, the figure shows that 

g does not change from the baseline, but that assumption is not necessary.7  The treated units have 

an additional shock to g and end up at pC.  Thus, the identified effect from a DD comparison is 

(PC – PA) - (PB – PA)  =  (PC – PB), which is the movement along the ex post hedonic price function 

from treatment, or DUE.  As shown in Section 4, this concept can be interpreted as a lower bound 

on welfare. 

3.1 Identification and Estimation of Capitalization Effects:  The Linear Case 

Consistently with most hedonic work, let us first develop the argument with a linear model.  In-

                                                            
6 That is not to say that, if it were of interest, TE could not be identified with additional assumptions or data.  One 
possible assumption is that there are no other changes, so that, if a' were "no policy," then 𝑝 could be substituted for 𝑝ଵ൫𝐠ିଵ,ᇱ, gଵ,ᇱ൯ in the expression for TE.  In effect, this assumption is that 𝑝ᇱ is observed, as 𝑝.  Another is that 
observations are available at other markets that are not treated and that between-market trends are assumed to be such 
that identification can leverage inter-city comparisons.  See Hudgens and Halloran (2008) and Manski (2013).  Crépon 
et al. (2013) illustrate the idea. 
7 In principle, one could allow g to change for the untreated, so long as it would have changed in the same way for the 
treated but for the treatment.  For example, Chay and Greenstone (2005) and Bento et al. (2015) consider the price 
effects of air quality improvements triggered by regulatory thresholds crossed in some counties but not others.  One 
can identify the direct effects of the change in air quality triggered by those regulations, while still allowing for chang-
ing air quality nationally. 
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troducing error terms into the price functions, for any individual house h, the ex ante and a* he-

donic price functions and their difference are, respectively: 

(4a) 
(4b) 
(4c) 

    𝑝  =  α0 + β0g  + γ0'𝐱  + ξh + ε , 𝑝∗  =  αa* + βa*g∗ + γa*'𝐱∗ + ξh + ε∗, 𝑑𝑝∗  =  dαa* + dβa*g  + βa*𝑑g∗ + dγa*'𝐱  + γa*'𝑑𝐱∗ + 𝑑ε∗, 

 

where in Equation (4c) the differences are taken from the baseline, not from the unobserved coun-

terfactual.  This equation is a variant of the "generalized difference-in-differences estimator" rec-

ommended by Kuminoff et al. (2010).  Note the local non-interference assumption A1 is implicitly 

embedded in (4b), as the parameters are independent of the value of g∗.  If the hedonic price 

function does not change between (4a) and (4b), as with Palmquist's (1992) localized externality, 

then we can suppress time-scenario superscripts in the parameters and Equation (4c) collapses to  

(5) 𝑑𝑝∗  =  β𝑑g∗ + γ'𝑑𝐱∗ + 𝑑ε∗. 

In this case, it is clear that DD hedonic regressions identify β, the marginal effect of a change in 

the attribute, if dε is independent of dg after conditioning on dx. 

However, in the general case where the hedonic function does shift, the true model is (4c), 

so (5) of course is mis-specified.  Consequently, it suffers from omitted variable bias:  g0 and x0 

belong in the model but are omitted.  In their recent discussion of capitalization, Kuminoff and 

Pope (2014) refer to this problem as "conflation bias," as the estimates conflate marginal willing-

ness to pay at a point in time (i.e. β0 or βa*) with changes in the hedonic price function.  As they 

show, conflation bias is an example of omitted variable bias.  Clearly, if g0 and x0 are included in 

the model, as in Equation (4c), the linear model potentially can identify βa*, the ex-post marginal 

willingness to pay under the scenario.  Thus, any flaw in the model arises from failure to properly 

condition on baseline observables, not with the economic logic of differencing prices from two 

equilibria per se. 

Of course, including g0 and x0 in a linear model, as in Equation (4c), may well raise addi-

tional estimation issues.  In particular, although it allows for the existence of an unobserved time 

invariant effect, ξh, Equations (4) still require a conditional zero mean assumption on dε to estimate 

the full set of parameters in (4c) from OLS.  Unfortunately, dε may well be correlated with g0:  for 

example, houses near high levels of pollution may be depreciating in unobserved ways.  However, 
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important (if incomplete) information can still be identified under a weaker conditional independ-

ence assumption, in which dga* is independent of dεa* conditional on g0 and the other observables: 

(dε ⊥ dg | g0, x0, dx).  Such conditional independence would allow identification of βa*, even if β0 

were biased. 

The fact that it is the ex post hedonic price parameter under the realized scenario, βa*, that 

is identified under the weaker assumptions is the crucial point here.  In the context of the linear 

model, this parameter represents DUETതതതതതതതത (per unit g), the direct effect netting out the mediated effect 

of any changes in x.  The product βa*·dga* is the movement along the ex post hedonic price function 

in the dimension of g. 

3.2  Estimating Direct Effects Without Linearity 

The preceding insight extends to nonlinear models like matching estimators as well.  To simplify 

the exposition, consider the case of a binary treatment, which occurs only in the second period:  

g0=0, g𝑎∗ ∈ {0,1}.  Examples might include cleanup of Superfund sites (Gamper-Rabindran and 

Timmins 2013, Greenstone and Gallagher 2008), discovery of a cancer cluster (Davis 2004), clos-

ing of large polluting facilities (Currie et al. 2015, Mastromonaco 2015), arrival of a sex offender 

(Linden and Rockoff 2008) and so forth.8  Relaxing the linearity inherent in Equations (4), we can 

define the potential outcomes using the following semi-parametric assumptions: 

(6a) 

(6b) 

(6c) 

𝑝  =  𝛄ᇱ𝐱  + ε , 𝑝∗൫g∗ = 0൯  =  𝛄భୀ∗ ′𝐱∗ + εೌ∗ୀ,∗  , 𝑝∗൫g∗ = 1൯  =  𝛄భୀଵ∗ ′𝐱∗ + εೌ∗ୀଵ,∗
 , 

where the γ vectors include an intercept term.  Equation (6b) represents houses that are not treated 

ex post, Equation (6c) those that are.  This model controls for x with regressions that differ by 

treatment status, but allows the effect of g, which is embedded in the ε's, to have any arbitrary form 

(e.g. Heckman et al. 1997).9  It again implicitly relies on the local non-interference assumption A1, 

                                                            
8 The model of this sub-section could be extended to include multi-valued or even continuous treatments along the 
lines suggested by Imbens (2000) and Hirano and Imbens (2004).   
9 Note that E[ε,∗ |𝐱] need not be zero.  If we could observe [εభୀଵ,∗ |𝐱] and E[εభୀ,∗ |𝐱] for the same house, we could 
take the difference as our estimate of the effect of g conditional on x.  Of course, we don't observe the latter for treated 
houses, which is the standard missing counterfactuals problem. 
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as 𝛄∗ does not depend on whether any one house h is treated. 

This model requires a conditional mean independence assumption on differences in unob-

servables, slightly weaker than the linear model.  For example, if we want to know the effect of 

the observed policy a* relative to some counterfactual, then we want to estimate the Average Treat-

ment on the Treated and we require the following assumption. 

ASSUMPTION A2 (Conditional mean independence in differences for the treated): 

(7) E[εభୀ∗ − ε | x0, g∗ = 1]  =  E[εభୀ∗ − ε | x0, g∗ = 0]. 

In words, after conditioning on x0, the houses that are actually treated by the policy (g∗
=1) would 

have had the same trend (on average) in unobserved time-varying effects, had they not been 

treated, as the untreated houses (g∗
=0). 

Under these conditions, as well as the usual requirement of overlapping support, a condi-

tional DD estimand can identify the average direct unmediated effect on the treated.  This is stated 

more formally in the following lemma. 

LEMMA.  Given A1, A2, and the model of Equations (6), 

(8) 

𝐸 ቂቀ𝑝∗൫g∗ = 1൯ − 𝛄భୀ∗ ′𝐱∗ቁ − ቀ𝑝 − 𝛄భୀ∗ ′𝐱 ቁ | 𝐱, g∗ = 1)ቃ  −           𝐸 ቂቀ𝑝∗൫gଵ = 0൯ − 𝛄భୀ∗ ′𝐱∗ቁ − ቀ𝑝 − 𝛄భୀ∗ ′𝐱 ቁ | 𝐱, g∗ = 0)ቃ 
= 𝐸 ቂ൬ቀ𝑝∗൫g∗ = 1൯ − 𝑝∗൫gଵ = 0൯ቁ |𝐱 , g∗ = 1൰ − 𝛄భୀ∗ ′ ቀ(𝑑𝐱|𝐱, g∗ = 1) − (𝑑𝐱| 𝐱, g∗ = 0)ቁ

= DUET(𝑎∗)തതതതതതതതതതതതത. 

Proof:  The first equality follows immediately from Equations (6) and Assumption A2.  The sec-
ond follows from Equations (6) and Assumption A1.  The third follows from the definition of 
DUET. DUET(𝑎∗)തതതതതതതതതതതതത  might be estimated using a regression-adjusted difference-in-differences 

matching estimator (e.g. Heckman et al. 1997).  Muehlenbachs et al. (2015) and Haninger et al. 

(2017) use this approach in hedonic applications.  For the linear case, the parameter β1 represents 

the marginal contribution of g along the ex post hedonic, holding constant any effects mediated 

through x.  The estimand defined in the Lemma recovers an analogous effect, for those houses 
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actually treated by the policy, but using weaker econometric assumptions.  It is the effect of mov-

ing along the ex post hedonic, for treated houses. 

3.3. Quasi-Experimental Designs in Practice 

Section 4 discusses the economic interpretation of this estimand. But before turning to that discus-

sion, it may be useful to consider other quasi-experimental designs used in the literature. 

Repeated cross sections 

The analysis and discussion so far have been in terms of panel data at the individual level, with 

repeated observations for each h.  In the context of housing, this is known as the "repeat sales" 

model.  However, the basic insights hold if we only observe repeated cross sections, with a panel 

at the group level.  Suppose, for example, that individual houses can be grouped into local com-

munities c, with ξ defined at the community level, but x and maybe g still observed at the individual 

level.  Then, to take the linear case, we can rewrite model (4a)-(4c) as  

(9a) 

(9b) 

(9c) 

    𝑝  =  α0 + β0g  + γ0'𝐱  + ξc + ε , 𝑝∗  =  αa* + βa*g∗ + γa*'𝐱∗ + ξc + ε∗.      𝑝௧  =  α0(1-D1) + αa*D1 + β0g(1-D1) + βa*g∗
D1 + γ0'𝐱(1-D1)  

+ γa*'𝐱∗
D1 + ξc + ε௧ , 

where D1 is a dummy variable for the second period.  Here, Equation (9c) simply stacks Equations 

(9a) and (9b).  Thus, the model still can be estimated with individual level data on x and community 

fixed effects.  While some studies have used repeat sales (e.g. Figlio and Lucas 2004), most he-

donic DD designs are based on this kind of panel model.  Examples include Davis (2004), Linden 

and Rockoff (2008), Mastromonaco (2015), Muehlenbachs et al. 2015, and Pope (2008).  In prin-

ciple, one also could allow the spatial dummies to be time-varying.  Additionally, for the linear 

case, we can always collapse the data to the community-year level, with x now observed as the 

group-year average.  Consequently, analysists can estimate these DD models with repeated cross 

sections with group-level fixed effects, or even group level means (i.e. they can use either the 

within or the between estimator) (e.g. Currie et al. 2015, Lucas 2011). 

Omitting baseline characteristics in Equation (4c) (as in Equation 5) is equivalent to im-
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posing the condition that βa* = β0 in Equation (9c).10  Most previous studies do impose this as-

sumption of a constant slope for g over time.  As discussed above, this restriction likely introduces 

conflation bias, yielding neither βa* nor β0, unless the changes are small and over a short time 

period (Kuminoff and Pope 2014).  Interesting exceptions to this rule are Davis (2004) and Figlio 

& Lucas (2004), both of which look at information treatments (new evidence of a cancer cluster 

and new signals about school quality, respectively).  In both studies, there is no information prior 

to the treatment so there are no treated observations in the ex ante period, while fixed effects con-

trol for time-invariant differences at the geographic scale of the treatment.  With no variation in g , imposing βa* = β0 cannot bias the estimates of β1,a* (though ideally one would still allow γ to 

vary over time). 

Ultimately, recovering βa* requires an exogenous source of variation in dg.  The better our 

understanding of the variation in dg, and why it might be orthogonal to dε conditional on (g0, xt), 

the closer fixed effects designs approach quasi-experimental methods.  In the case of Davis (2004), 

Figlio and Lucas (2004), and Mastromonaco (2015), the shock to g and the hedonic equilibrium 

caused by new information is plausibly exogenous, either because of chance discovery or new 

disclosure rules imposed at the state or national level.  These designs allow for the recover of βa*.  

Similarly, the arrival of a sex offender to a very local neighborhood, studied by Linden and Rockoff 

(2008) and Pope (2008), is plausibly random after conditioning on community fixed effects.  Al-

lowing β and γ to vary over time in these studies would have identified DUET(𝑎∗)തതതതതതതതതതതതത. 

In their study of the value of brownfield remediation, Haninger et al. (2017) use an alter-

native DD strategy in which they use only cross-sectional variation, comparing the difference be-

tween housing prices within 0.2 km of cleaned up brownfields and those within 0.2 km of remain-

ing brownfields to the analogous difference for houses within 0.5 km of brownfields.  They argue 

this strategy enables them to identify the ex post hedonic function.  Currie et al. (2015) use a similar 

design for openings and closings of Toxic Release Inventory (TRI) facilities, but extend the logic 

to triple differences.  Essentially, they find the difference-in-differences between property values 

                                                            
10 To see the connection, note that we can rewrite the terms β0g(1-D1) + βa*g∗

D1 + ξc by adding and subtracting 
β0gD1 and βa*gD1.  Grouping terms, this becomes (β0g + ξc) + (βa*g∗ - βa*g + βa*g - β0g)D1  =  (β0g + ξc) + 
(βa*𝑑g + dβg)D1.  That is, it is equivalent to entering g for both time periods (which then is absorbed by the fixed 
effect) and identifying βa* from 𝑑g  and dβ from g using just the second period observations, as we would if first 
differencing (only now there are more than one observation per community).  Imposing constant slopes, i.e. dβ = 0, is 
equivalent to dropping g, as discussed above. 
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within 1 mile of a site that opened (or closed) relative to one that did not change status, and com-

pare that difference-in-difference for its matched control between 1-2 miles from the site.  Though 

they have no quasi-experimental variation in openings and closings per se, this strategy relies on 

the fairly weak assumption that openings and closings may be correlated with unobserved eco-

nomic conditions within 2 miles, but not differentially between 1 and 2 miles. 

Regression discontinuity designs 

The exogeneity of g can be made more credible using regression discontinuity (RD) designs (e.g. 

Baum-Snow and Marion 2009, Cellini et al. 2010, Chay and Greenstone 2005, Gamper-Rabindran 

and Timmins 2013, Greenstone and Gallagher 2008, and Lang 2018).  With RD, the key source of 

variation in g is the movement across a threshold of some continuous forcing variable, with unob-

servables varying continuously across the threshold.  Within the neighborhood of the threshold, 

assignment to the treatment can be thought of as being as good as randomly assigned, as in a 

controlled experiment (Lee and Lemieux 2010).  This random assignment has two key implications 

for interpreting hedonics.  First, the average treatment effect is the same as the treatment on the 

treated, so RD designs can identify the latter.  Second, RD estimates are unbiased even when re-

searchers do not include a full set of controls, though they are less efficient in small samples. 

In principle, RD designs can be used in either a panel or a cross-sectional setting.  Consider 

the panel-data setting first.  As an example, Chay and Greenstone (2005), estimating hedonic re-

gressions of housing prices on air quality, persuasively argue that recessions or local economic 

shocks can simultaneously reduce housing prices in unobserved ways while improving air quality 

(by dampening economic activity), thus biasing DD (or fixed effects) hedonic estimates of air 

quality downward.  They argue that national ambient air quality thresholds, which trigger regula-

tion, are a plausible source of exogenous variation in air quality.  Accordingly, they regress 1970-

1980 changes in housing prices on 1970-1980 changes in air quality, using mid-decade regulatory 

thresholds as an instrument.  They essentially estimate Equation (5), using the RD as a source of 

variation in dg.  Although they do not control for baseline conditions, the as-good-as-random ar-

gument for RD suggests this is not necessary (though it may be efficient).  As discussed by Kumi-

noff and Pope (2014), if areas just below the threshold are a valid counterfactual to areas just above 

(with similar baseline conditions and similar trends in prices), this RD strategy implicitly condi-

tions on g0.  Thus, it identifies DUET(𝑎∗)തതതതതതതതതതതതത. 
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Similarly, Greenstone and Gallagher (2008) argue that a discontinuity in priority scores 

assigned to Superfund's National Priority List is an exogenous source of variation in the assign-

ment of cleanup to toxic sites (see also Gamper-Rabindran and Timmins 2013).  However, in this 

case, they model the ex post cross-sectional hedonic price function directly, regressing ex post 

prices on cleanup status (instrumented by the discontinuity in scores), controlling for baseline con-

ditions.  Thus, again, this strategy identifies the movement along the ex post hedonic induced by 

the treatment. 

Finally, Cellini et al. (2010) and Lang (2018) consider the dynamic effects over time of 

funding school capital projects and of conservation of open space, respectively.  They use discon-

tinuities in the voting outcome (e.g. at 50%) as an exogenous source of variation in passage of 

referenda authorizing such funding.  Both papers use longer time periods and innovatively allow 

the referenda to have evolving effects over time.  However, they also include referenda that pass 

at different points in time.  Thus, they implicitly impose the condition that βa* = β0 for each lag.  

As they are simultaneously identifying the effects of multiple cross sections, the usual RD argu-

ments do not apply to the errors caused by mis-specifying an evolving hedonic function. 

In sum, RD designs can identify the direct treatment effect on the treated.  However, they 

only identify such effects locally, around the threshold of treatment.  Yet it is the average direct 

effect on all the treated that is usually of interest, and which will be shown in Section 4 to be a 

lower bound on welfare.  Two responses to this limitation are possible.  One is simply to assume 

uniform treatment effects for all values of the forcing variable (Greenstone and Gallagher 2008).  

As an alternative, Dong and Lewbel (2015) have proposed using kinks in the hedonic price function 

around the threshold to identify changes in slopes of the running variable, and to extrapolate these 

changes out over the domain of the treated.  They discuss and evaluate this approach in the context 

of Greenstone and Gallagher's hedonic study. 

Instrumental variables designs 

Even in settings where an RD design is not available, one may not want to impose the conditional 

independence assumptions required for fixed effects regression or DD matching.  If so, one could 

invoke additional exclusion restrictions and use instrumental variables (IV).  For example, adapt-

ing the work of Chay and Greenstone (2005), Bento et al. (2015) recently have used the proportion 

of years in a time window that exceed the regulatory threshold as an instrument for air quality, 
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making it continuous rather than discrete.  In a very different application, Gopalakrishnan et al. 

(2011) use coastal geological features to instrument for beach width in a cross-sectional hedonic 

price regression of coastal properties.  As with RD, the use of IV again raises the question of local 

average effects, and if interpreted through the lens of this paper would seem to require an assump-

tion of homogenous effects.  It also raises the possibility of identifying effects in multiple cross-

sections, a point I return to at the end of the paper. 

4. The Welfare Interpretation of Capitalization Effects:  The Direct Unmedi-
ated Effect is a Lower Bound on Hicksian Equivalent Surplus 

The previous section showed that quasi-experimental hedonic studies can identify DUET(𝑎∗)തതതതതതതതതതതതത, the 

direct unmediated effect on the treated, if they allow for changing hedonic functions where appro-

priate.  DUET(𝑎∗)തതതതതതതതതതതതത is a well-defined economic concept.  It is the difference along the ex post he-

donic price function between the value of a house at the new and old level of the amenity respec-

tively, netting out effects mediated through dx:  pa*(g1, x0) − pa*(g0, x0) =  డೌ∗(,𝐱బ)డ 𝑑gଵ .  The 

most important thing to emphasize is that the effect is based on the ex post hedonic function.  In 

other words, the counter factual is not the price in the ex ante scenario; nor is it what the price of 

the house would have been in the absence of the policy, because that counterfactual equilibrium is 

never observed.  The counterfactual for a treated observation is what the price of that one individ-

ual house would have been if its g were not affected by the policy but the policy had otherwise 

gone forward (and the price function had thus shifted).  The different counterfactuals are only the 

same in the case of Palmquist's (1992) localized externality; in general they are different. 

What is the economic interpretation of this estimand?  Summed over houses, the expression  డೌ∗డ 𝑑gଵ  is a lower bound on the sum of the consumer's Hicksian equivalent surplus (ES) for 

the improvement plus the change in profits, for all households in the city, not just those living (or 

owning) the treated houses at some point of time.  The equivalent surplus is similar to the equiva-

lent variation, but differs insofar as it measures the willingness to accept (WTA) to forego the 

realized change in g, in contrast to the g's that would be chosen when foregoing the price change.  

It is the change in money that holds utility constant at ex post levels for a change in g, or equiva-

lently, the area under the Hicksian demand curve for g (evaluated at ex post utility) between g0 

and g1.  Whereas equivalent variation is more appropriate for price changes, ES often is used for 



19 
 

exogenous changes in quantities or qualities (see Hicks 1943 or Freeman et al. 2014, Ch. 3). 

The argument for this lower bound on ES is quite simple in a partial equilibrium context 

where there are no supply or implicit price effects on x and no effects on profits, so that the only 

effects are the change in the distribution of g (Griffith and Nesheim 2013).  By a simple revealed 

preference argument, the household consuming g1 could save expenditures amounting to  డೌ∗ௗ 𝑑gೌ∗బ  by consuming g0 instead.  But because it does not choose to do this, the household's 

minimum WTA must be greater than this amount.  This can be seen immediately in Figure 2.  The 

figure depicts a Marshallian bid function for g intersecting the two marginal price functions at g0 

and g1.  It also depicts a Hicksian demand function evaluated at u1, which intersects the Marshallian 

function at g1.  Whereas Hicksian equivalent variation would be the area under this Hicksian de-

mand function from the level of g chosen under p0 to achieve u1, depicted here as g(p0( ), u1), up 

to g1, Hicksian equivalent surplus is the area under the function from g0 to g1.  The difference is in 

the point of evaluation.  The former is associated with the solutions to the expenditure minimiza-

tion problem given the two hedonic price functions and u1.  The latter is the Hicksian value for the 

realized change in g, determined from the Marshallian problem.  Clearly,  డೌ∗ௗ 𝑑g∗  is a lower 

bound on ES =  ℎ(𝑔, 𝑢ଵ)𝑑g∗ .  The argument is analogous to the well-known fact that a Paasche 

quantity index is a lower bound for the value of a quantity change. 

In fact, under Assumption A1 (local non-interference) and an additional assumption of 

non-negative profits, this bound remains true even in general equilibrium with an endogenous 

change in the entire hedonic price function, endogenous changes in the supply of x (for example, 

with upgrades or additions occurring to the housing stock in response to the policy), and resorting 

of households.  The required assumption on profits is: 

ASSUMPTION A3 (non-negative profits).  The change in aggregate profits due to adjustments in x 
from their counterfactual level are non-negative when evaluated at the counterfactual level of g:   ൣ൫𝑝∗(gᇱ, 𝐱∗) − 𝑝∗(gᇱ, 𝐱ᇱ)൯ − ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯൧ ≥ 0. 
A special case of Assumption A3 would be the case of zero profits.  However, the weaker assump-

tion of non-negative profits is all that is required.  This assumption seems reasonable intuitively:  

landlords would not make the investment in changes to x unless it increased profits. 
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Defining HT as the number of treated houses, we can state the following Proposition, the 

key result of this section. 

PROPOSITION 1.  Given A1 and A3, 𝐻் ∙ DUET(𝑎∗)തതതതതതതതതതതതത ≤ (ES + ∆profits) for an exogenous change in 
the distribution of g.  The result holds even when hedonic prices, households, and landlords adjust 
to the change endogenously, with these effects included in the welfare measure.  It also holds when 
there are other changes in the economic environment potentially shifting the price function or the 
levels of x over time, but does not include these in the welfare measure. 

Proof:  See Appendix. 

The proposition states that DUET(𝑎∗)തതതതതതതതതതതതത, times the number of treated units, is a lower bound on wel-

fare for all households effected by the policy, whether directly or indirectly.  All households are 

included because they potentially are affected by the policy through the changing price function.11  

Note that, although panel data are used to control econometrically for unobservables, DUET(𝑎∗)തതതതതതതതതതതതത 

is the average movement along the ex post hedonic function and ES uses the ex post expenditure 

function.  Thus, only the ex post situation is relevant for the economic concept.  If there are changes 

in current period demands or tastes, then the result remains valid, but the evaluation is from the 

perspective of ex post preferences. 

The formal proof follows the outline of the verbal argument in Bartik (1988), clarifying a 

few ambiguous points.12  Denote the expenditure function for household i as ei(p( ), u) where p() 

is the hedonic price function and the price of other goods is normalized to one.  It is the solution 

to the expenditure minimization problem when the household faces hedonic price function p().  

Denote the restricted expenditure function as �̃�(p(g, x), g, x, u); it is the solution to the expenditure 

minimization problem when the household is constrained to choose the bundle (g, x).  The basic 

idea is to define the welfare measure as follows: 

                                                            
11 As noted above, the bound is exact when the price function does not change.  In that case, the welfare effect also 
applies only to landlords of the treated houses (see Palmquist 1992). 
12 Bartik's argument actually was that the movement along the ex ante price function would be an upper bound on 
welfare.  He does not link this measure to what can be identified econometrically.  As noted in the previous section, 
it is the ex post price function that is identified with panel data, which provides a lower bound by similar logic.  
Additionally, Bartik (1988) does not provide a mathematical poof.   
     Additionally Kanemoto (1988) provided another related bounding proof which has a somewhat similar flavor to 
Bartik's.  However, his model is quite different, involving capitalization into land values in long-run equilibrium.  
Furthermore, he shows pre-policy prices are a lower bound on a rather unusual version of compensating variation for 
a subset of the economy, whereas my bound uses the identified ex post prices as a bound on conventional ES. 
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(10) 
𝑑𝑊 =    ൣ�̃�൫𝑝ᇱ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯ − 𝑒(𝑝∗( ), 𝑢∗)൧ +   ൣ൫𝑝∗(g∗, 𝐱∗) − 𝑝ᇱ(gᇱ, 𝐱ᇱ)൯ − ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯൧ . 

where ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯ represent the characteristics, in the counterfactual scenario a', of a house ac-

tually occupied by household i in the counterfactual scenario.  The first term in square brackets is, 

by definition, the Hicksian equivalent surplus (ES) for the change in g.  If preferences have 

changed over time, then this measure reflects preferences for t=1.  The second term in brackets is 

the change in landlord profits.  It is the change in rents, resulting from both the shift in the hedonic 

price function and adjustments in x as well as exogenous changes in g, minus the change in costs, 

evaluated at baseline levels of g. 

As shown in the appendix, using Assumption A.3, this measure is equivalent to: 

(11) 

𝑑𝑊 =   ቂ�̃� ቀ𝑝∗ ቀg൫ᇲ൯ᇱ , 𝐱൫ᇲ൯ᇱ ቁ , g൫ᇲ൯ᇱ , 𝐱൫ᇲ൯ᇱ , 𝑢∗ቁ − 𝑒(𝑝∗( ), 𝑢∗)ቃ        +  ൣ൫𝑝∗(gᇱ, 𝐱∗) − 𝑝∗(gᇱ, 𝐱ᇱ)൯ − ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯൧ +  ൫𝑝∗(g∗, 𝐱∗) − 𝑝∗(gᇱ, 𝐱∗)൯ .  

Now, in the first line, the term in square brackets is non-negative for each i:  the value of a con-

strained expenditure minimization problem is no less than the value of an unconstrained expendi-

ture minimization problem at the same prices and utility.  Additionally, the second line is non-

negative by Assumption A3.  Meanwhile, the third line is the observed measure, the sum of price 

changes along the ex post price function holding x constant.  Since the desired welfare measure is 

the observed value plus a positive number, the observed value is less than the change in welfare. 

Thus, there is a clear welfare interpretation of price effects in a DD framework.  They can 

identify a lower bound on ES for changes in g.  (For decreases in g, the lower bound means the 

estimate is "too negative," which is the same as an upper bound on the welfare loss, in absolute 

values.)  In general, the gap represented by the bound is unknown.  In simulations presented below, 

the lower bound welfare estimate for improvements in g ranges from 92% of ES for small changes 

to as low as low as 75% of ES for larger changes. 
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5.  Extensions and Discussion 

5.1.  Open Cities. 

For expositional reasons it has been useful to think in terms of a closed region with a constant set 

of houses and households.  As briefly noted earlier, however, that assumption plays no role in the 

results of the paper.  Whether there are other cities (unaffected by the policy directly, that is, with 

no exogenous change in their distribution of g), with households endogenously moving in and out, 

would, of course, affect the true welfare measure ES.  It also would affect the distributional impacts 

of the policy.  Importantly, though, even if prices in the other cities are affected by the policy in 

the study region, there is no exogenous change in g in those cities and, presumably, no endogenous 

changes.  In the language of Section 3, with open cities there may be indirect effects elsewhere, 

but no direct effects.  And it is only those direct effects that are used to construct the lower bound. 

5.2.  Transactions Costs. 

In many hedonic applications, such as the regular, repeated purchase of computers, we might plau-

sibly take the choice to purchase a new model as exogenous to the change in attributes.  In other 

cases, such as the housing example emphasized in this paper, changes in available attributes might 

cause people to re-optimize to a new {g, x} bundle.  In the housing setting as well as other contexts, 

such as automobile purchases, the transactions costs of changing attribute bundles is not trivial. 

The analysis of Section 4.1 can be extended to include such mobility or other transactions 

costs.  In the case when there are no transactions costs, we can compute hypothetical compensa-

tions at alternative prices and a given utility level, without specifying the cost-minimizing solution 

at the actual price giving rise to that utility level.  Transactions costs, however, create path depend-

ency.  Thus, we must at least specify a starting point from which the consumer moves when re-

optimizing, because transactions costs will be a function of the initial as well as the final point.  In 

particular, in Equation (10), when evaluating the hypothetical compensation �̃� equivalent to the 

policy shock (when the consumer is constrained to be at the counterfactual bundle), we take the 

perspective of moving the consumer from their optimal ex post bundle.  That is, when we compute 

the hypothetical expenditure required to maintain ex post utility at the counterfactual price level 

and the counterfactual bundle ൫g(𝑎′)𝑎′ , 𝐱(𝑎′)𝑎′ ൯, the required expenditure includes any money needed 



23 
 

to pay transactions costs when moving back to the bundle consumed in a'.  In the case of an im-

provement, the notion here is that the consumer's willingness to accept compensation to forego the 

improvement requires paying transaction costs to move away from the improved point and back 

to a particular bundle ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯.   

Denote the utility achieved in the ex post scenario a*, when households have to pay trans-

actions costs moving from some reference point R, as 𝑢் (ோ),∗.  Let 𝑒் (ோ)(𝑝, 𝑢) be the minimal 

cost of achieving some level of utility in the presence of transactions costs, when those transaction 

costs are incurred from a specific reference point R.  Then, in the first line in Equation (10), we 

replace the expression  ൣ�̃�൫𝑝ᇱ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯  − 𝑒(𝑝∗( ), 𝑢∗)൧ ≡ 𝐸𝑆  

with the expression  ቂ�̃�் (∗)ቀ𝑝ᇱ൫g(𝑎′)ᇱ , 𝐱(𝑎′)ᇱ ൯, g(𝑎′)ᇱ , 𝐱(𝑎′)ᇱ , 𝑢் (ோ),∗ቁ − 𝑒் (ோ)ቀ𝑝∗( ), 𝑢் (ோ),∗ቁቃ ≡ 𝐸𝑆் .  

The term 𝑒் (ோ)ቀ𝑝∗( ), 𝑢் (ோ),∗ቁ is the expenditure required to achieve the ex post utility with 

transactions costs, 𝑢் (ோ),∗, when the consumer actually does have to pay those transactions costs.  

The term �̃�் (∗)ቀ𝑝ᇱ൫g(𝑎′)ᇱ , 𝐱(𝑎′)ᇱ ൯, g(𝑎′)ᇱ , 𝐱(𝑎′)ᇱ , 𝑢் (ோ),∗ቁ is, as before, the expenditure required to 

maintain the ex post utility when constrained to be at the counterfactual bundle and given counter-

factual prices, but with two differences.  First, now transactions costs must be paid from the ex 

post point a* and figured into the required expenditure level.  Second, the utility level at which it 

is evaluated also differs. 

As shown in the appendix, all other terms also remain unchanged, so the argument flows 

through without any other alterations.  We are left in the end with the expression: 

(12) 

𝑑𝑊 =    ቂ�̃�் (∗)ቀ𝑝∗൫g(𝑎′)ᇱ , 𝐱(𝑎′)ᇱ ൯, g(𝑎′)ᇱ , 𝐱(𝑎′)ᇱ , 𝑢் (ோ),∗ቁ – 𝑒் (ோ)ቀ𝑝∗( ), 𝑢் (ோ),∗ቁቃ +  ൣ൫𝑝∗(gᇱ, 𝐱∗) − 𝑝∗(gᇱ, 𝐱ᇱ)൯ − ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯൧+   ൫𝑝∗(g∗, 𝐱∗) − 𝑝∗(gᇱ, 𝐱∗)൯ . 
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If it were not for the transactions costs paid, this expression would be the same as Equation (11) 

evaluated at a different utility level.  Consequently, most of the argument flows through.  However, 

we have to account for the fact that the reference points for the two expenditure functions in (12) 

are different:  one involves TC(a*) whereas the other involves TC(R).  In the appendix, I show that 

lower bound result flows through with the following additional assumption. 

ASSUMPTION A4 (super-additivity).  Let TC(a, a') be the transactions cost of moving from a bundle 
a to a bundle a'.  Then TC(a, a'') ≤ TC(a, a') + TC(a', a''). 

This mild assumption states that the transactions cost of moving directly from bundle a to a'' is no 

higher than the transactions cost of moving first from a to a' and then from a' to a''.   

With this additional assumption, we have the following proposition. 

PROPOSITION 2.  Given A1, A3, and A4, 𝐻𝑇 ∙ DUEℋᇱ(𝑎∗)തതതതതതതതതതതതതത ≤ (ESTC + ∆profits) for an exogenous 
change in the distribution of g for a set of houses ℋ′.  The result holds even when hedonic prices, 
households, and landlords adjust to the change endogenously, with these effects included in the 
welfare measure.  It also holds when there are other changes in the economic environment poten-
tially shifting the price function or the levels of x over time, but does not include these in the 
welfare measure. 

Proof:  See the Appendix 

Thus, the main results of this paper apply even in the case of transaction costs. 

5.3  The Direct Mediated Effect. 

The analysis to this point has focused on the direct unmediated effect, in which we control for 

changes in x.  But some characteristics may be unobserved and some recent hedonics papers have 

intentionally omitted contemporaneous characteristics (while controlling for baseline levels), pre-

sumably to include mediated effects.  What if we do not control for such changes?  As noted above, 

it should not matter in an RD design, at least in expectation.  In a DD design, unfortunately, the 

observed measure incorporates the gross benefits of general equilibrium adjustments to x, without 

netting out the costs of providing them.13  This can undermine the lower bound interpretation, 

although we can still establish sufficient conditions under which it holds. 

To see this, rewrite Equation (11) as:  

                                                            
13 An exception might be other neighborhood amenities that are freely provided but change as a result of 
the policy.  For example, g might be transportation infrastructure, which could affect air quality.  One 
would not want to net these effects out.  In might be simplest in these cases to think of g as a vector. 
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(13) 
𝑑𝑊 =   ∑ ൣ�̃�൫𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯ − 𝑒(𝑝∗( ), 𝑢∗)൧ + −  ∑ ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯ + ∑ ൫𝑝∗(g∗, 𝐱∗) − 𝑝∗(gᇱ, 𝐱ᇱ)൯ . 

Here, the first set of terms remains the same as in Equation (11), as do the change in costs, while 

the last set of terms is the direct effect gross of any change in x, which is now what we observe.  

For the lower bound to still hold (i.e. for the last set of terms to be less than dW), we would need 

(14) 
 ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯ ≤∑ ൣ�̃�൫𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯ − 𝑒(𝑝∗( ), 𝑢∗)൧  . 

Essentially, the change in costs from the change in x, which are associated with the change in g, 

cannot be too big; more precisely, it cannot be bigger than the ES for households from the changes 

in g.  A sufficient, but not necessary, condition is that they are non-positive. 

This analysis suggests it is important to control for changes in x whenever possible to have 

the cleanest welfare interpretation.  However, that interpretation will still be valid if changes in x 

are small or if changes in the cost of providing them are negative.  It is worth emphasizing here 

that the question centers on changes in x, not levels.  Unobserved, unchanging levels of x cancel 

out in the comparison, which motivate the use of DD strategies at the outset. 

5.4  Changes in Population Density or Housing Density 

The discussion so far has focused on the prices of a fixed set of housing units.  What if population 

mobility leads to systematic changes in population density and/or construction of new housing 

units?  Consider first changes in population density over a fixed set of housing units.  As presented, 

the model allows households to systematically re-adjust among housing units, so that population 

density in space may shift depending on households' composition.  Furthermore, households may 

come and go from an open region, affecting density in the region.  As discussed in Section 5.1, 

such affects may change true welfare, but they do not change the construction of the lower bound 

on welfare, which depends only on the price effects of treated housing units. 

Changes in the number of housing units on existing parcels can be accommodated by treat-

ing the parcel as the level of observation, h, rather than the housing unit.  Then changes in housing 

units on the parcel could be thought of as changes in xh and incorporated into the analysis like 
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other changes in x.  As discussed in Section 5.3, it is generally best to condition on such changes, 

to net out their price effects.  Finally, there remains the possibility of subdividing or assembling 

parcels.  Future research might consider how to incorporate such reconfigurations into the model. 

5.5  Effects at Other Parts in the Distribution 

Estimating the average direct effect on the treated makes most sense for an ex-post welfare evalu-

ation of a policy.  However, in principle, one could imagine asking other questions of the data.  

For example, perhaps one would want to know the direct effect of treatment for some other subset 

of houses ℋ′.  That is, given the equilibrium a*, we might want know the average effect on prices 

of changing treatment status for that subset.  For such questions, one would merely adapt Assump-

tion A2 to establish the conditional independence assumption needed to estimate DUEℋᇱ(𝑎∗)തതതതതതതതതതതതതത.14 

Under the appropriate assumptions, then, one could claim to identify the movement along 

the observed ex post hedonic function pa*( ) for any house in the set ℋ′ if its g were to have 

changed by some specified level.  Thus, the results of Section 3 generalize easily.  However, the 

effects identified would still be the movement along p*( ). 

This movement along pa*( ), even for some margin of the distribution ℋ′ that differs from 

the actual ex post treatments, can be interpreted in two ways.  One possibility is that we are con-

sidering an alternative ex post distribution of g, evaluated relative to the same baseline a'.  For 

small tweaks from the actually observed ex post distribution, under which the observed price func-

tion is plausibly the same, we could continue to use the results of Section 4 to interpret the results 

as a lower bound for the welfare effects of such an alternative policy.  However, for a very different 

policy, treating a very different set ℋ′, we would expect a different ex post hedonic price function.  

While a movement along that alternative price function would still be a lower bound on ES, with-

out observing it such a lower bound cannot be constructed.  This is simply a recognition of the fact 

that ex post policy evaluation requires ex post data. 

                                                            
14 Specifically, the assumptions required would be: 

 E[εభୀ∗ − ε | x0, g∗ = 1, ℎ ∈ ℋ′]  =  E[εభୀ∗ − ε | x0, g∗ = 0]  

 E[εభୀଵ∗ − ε | x0, g∗ = 1]  =  E[εభୀଵ∗ − ε | x0, g∗ = 0, ℎ ∈ ℋ′].  

If ℋ′ is the entire sample then these assumptions collapse to the usual assumptions needed for an Average Treatment 
Effect (in this case, average direct unmediated treatment effect). 
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But another way the set of treated houses ℋ′ may differ is to imagine an alterative coun-

terfactual equilibrium a' to which we are comparing the actual ex post equilibrium a*.  For exam-

ple, one might one to compare the welfare effects of the actual policy to a smaller policy, in which 

a subset ℋ′′ would have been treated anyway.  The true ES would be different, then, but the ex 

post hedonic would remain unchanged and the lower bound can still be constructed from it.  One 

would simply evaluate DUE for the right set of houses.  In this way, the lower bound results of 

Section 4 also extend to other margins of the distribution. 

6. Simulations 

Because the true welfare measure can never be known in an actual application, the lower bound 

discussed in this paper can only be illustrated and assessed using simulations.  Accordingly, this 

section illustrates the paper's findings by simulating hedonic housing equilibria and shocking the 

equilibria with changes to g.  Prices are determined in an equilibrium model, the "true" welfare 

measures calculated, and the lower bound welfare measures estimated using the econometric meth-

ods discussed above.  Of course, the bounds depend on the underlying parameters assumed. 

I simulated equilibria for 100 economies, each with 1000 households and houses.  House-

holds have utility over numeraire consumption, a scalar-valued index of local public goods g, and 

a scalar-valued index of housing attributes x.  Housing bundles are obtained by purchasing a lot of 

a fixed size with attributes g at the hedonic market price, and purchasing housing capital x at a 

constant price p.  Household's i's preferences for a house at lot j can be represented by an indirect 

utility function of the following form: 

(15) 𝑣൫𝑝, 𝑔 , 𝑦൯ = ௬ାఊೕୣ୶୮ቆ౮౦ ቀഀశഃೕቁభశഁభశഁ ቇ  

These preferences represent a variant of the repackaging model, a standard approach to modeling 

differentiated products (see von Haefen 2007).  With these preferences, housing demand, condi-

tional on g, takes the form: 

(16) 𝑥∗|𝑔 = exp൫𝛼 + 𝛿𝑔 + 𝛽ln𝑝 + ln𝑦൯. 
Thus, the characteristic of interest, g, enters preferences in two ways.  First, it enters through the 

demand for housing, x, as a weak complement.  Increases in g, ceteris paribus, increase the demand 
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for x at a location (and the consumer surplus).  Second, through the additive term in the numerator 

of Equation (15), it enters as a perfect substitute to numeraire consumption.   

The utility parameters are set as follows: 𝛼 is uniformly distributed on (-2.2, -1.8), 𝛽 = 

−1.1, 𝛿 is triangularly distributed on (0.025, 0.035, 0.07) to allow outliers in tastes for public 

goods, and 𝛾=100.  Income is log-normally distributed with mean 11.1 and standard deviation 0.4 

(and truncated at $30,000 and $200,000).  These parameters were calibrated so that equilibrium 

rents (including land and capital expenditures) as a percent of income range from 20% of income 

at the 10th percentile of the distribution to 41% at the 90th percentile, with a mean of 29%, which 

approximates the US expenditure shares for housing. 

The public good g is uniformly distributed on (1, 3) in the baseline scenario.  In the ex post 

scenarios, either 10%, 25%, or 50% of observations are "treated" by a policy.  The probability of 

being treated is linearly decreasing over the support of g1 from 0.75 at g1=1 to 0.25 at g1=3.  If a 

house is treated, its level of g improves such that g1 = g0 + (3-g0)/3 + 1.  Households respond to 

these policy shocks by re-optimizing.  In the base model, they do so without transactions costs, but 

in alternative models transactions costs are introduced at $2000, $10,000, or $20,000 (converted 

to a flow using a 5% discount rate). 

Finally, equilibrium prices in each scenario were perturbed by a two-component error.  One 

component, εjt, is normally and independently distributed and calibrated such that the standard 

deviation of the error is equal to 1% of the mean price.  This error term can be interpreted as either 

measurement error in price (the dependent variable) or alternatively as an unobserved characteris-

tic of the home that enters preferences as a perfect substitute for the numeraire good (so it enters 

the price function orthogonally to g and x).  The second component, ξj, is fixed over time, but is 

correlated both with g1 and with the treatment conditional on g1.  That is, it represents a time 

invariant factor correlated with public goods and with their improvement.  The existence of such 

a term motivates, econometrically, using DD models.   

Panel A of Table 1 shows the results from the main DD estimates (Equation 4c), when 

there are no transactions costs.  The first column shows the true ES across the three scenarios, with 

"small" the case where 10% of houses are treated (i.e., 100 out of 1,000), "medium" the case with 

25%, and "big" 50%.  The second column shows a "best estimate" of the lower bound, in which 

the true fixed effect and true value of housing capital are subtracted from the property value, and 
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the remaining value from the second period fitted to ex post g using local linear regression.  These 

values are not meant to represent a realistic econometric model, but rather to represent the lower 

bound construct to be estimated.  The next four columns give the estimates from four DD models.  

The models all condition on baseline levels as well as fixed effects, as in the generalized DD 

estimator suggested by Kuminoff et al. (2010).  The first variant is a simple linear model such as 

that in Equation (4c), regressing changes in price on changes in g, changes in x, and baseline g and 

x.  The second uses a translog model regressing logged price on a quadratic of logged g and logged 

x, using both periods, and with fixed effects.  The third uses local linear regression in g, partialing 

out linear estimates of the effects of changes in x and baseline g and x (Yatchew 1998).  The final 

model uses an inverse-probability weighted regression model with the double-robust property, first 

predicting the probability of treatment using a logit model based on a quadratic of baseline g, then 

predicting the change in price from treatment while regression-adjusting for changes in x, using 

the inverse of the first-stage probabilities as weights. 

The best estimate of the lower bound is about 92% of the ES value in the small scenario, 

gradually decreasing as the scenario gets bigger to 75% in the biggest scenario.  This pattern makes 

sense:  for small changes, the marginal value approximates all the welfare information, so small 

changes along the hedonic can capture it well, whereas for larger changes the approximations fails 

to capture the curvature in the willingness to pay function as well as any shifts in the price function.  

Still, the estimates are the right order of magnitude and provide reasonably useful information.  

The empirical estimates are all relatively close to the best estimate of the lower bound, suggesting 

they can recover that lower bound and can be useful if properly interpreted.  The results also are 

consistent with the simulations of Klaiber and Smith (2013), who find in their own simulation 

exercise that DD hedonics yield welfare estimates lower than a true measure of welfare (in their 

case, the sum of compensating variations). 

Panels B and C of Table 1 repeat the ES and "best estimate" columns, but report the results 

under alternative econometric designs.  Panel B uses the same basic econometric models as 

Panel A, but uses only a cross-sectional model with ex-post data.  Thus, the ξj component of the 

error is no longer differenced out.  Because it is positively correlated with g, this omission creates 

an upward bias in the lower bound measures, which overstate the importance of g in the cross 

section.  This, of course, is the motivation for using difference-in-differences in the first place.  
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(Note the matching model is omitted from this panel, as selection into treatment is based on base-

line data, which by assumption are not available.)  The table shows that the cells in the final four 

columns are higher than their counterparts in Panel A, but closer to the true welfare values.  How-

ever, there is something of a "two wrongs make a right" flavour to the results, since in this case an 

upper bias on a lower bound brings us closer to the true ES without overshooting it. 

Panel C returns to the DD model but now omits the regression adjustment for changes in 

x.  These models represent the direct mediated effect discussed in Section 5.4.  Because g and x 

are complements, these models, like those of Panel B, increase the estimates of the lower bound.  

Again, all cells in Panel C are higher than their respective counterparts in Panel A, and all are 

higher than the "best estimate" of the lower bound.  They are no longer lower bounds relative to 

the true ES, suggesting that Equation (14) is not satisfied here. 

Table 2 reports the results when imposing transactions costs, in the case of the medium-

sized policy.  Again, the first column shows the true ES across the three scenarios, and the second 

column shows the "best estimate" of the lower bound.  Panel A shows the results from the main 

DD estimates.  The first row of the panel repeats the corresponding row from Table 1, with no 

transactions costs, for comparison.  For the remaining rows, the true ES changes to reflect Equa-

tion (12) rather than (11), as discussed in Section 5.2.  First, the ex post utility level is lower, as 

households have to pay transactions costs if they want to re-optimize; second, the compensation 

envisioned when placing somebody at their ex ante level of g includes the transactions costs to put 

them there.  In these simulations, the latter effect slightly dominates, with the ES increasing from 

$1,527 to $1,933 as transactions costs increase.  Nevertheless, the patterns are similar to Table 1.  

The best estimate of the movement along the ex-post hedonic continues to be a lower bound for 

ES, as do most of the empirical estimates, with the exception of the local linear model, which 

performs poorly in the high transactions-cost simulations).  Panel B shows the results from the 

cross-sectional models.  Again, ignoring the fixed effect biases the hedonic price function, leading 

to an upward bias on a measure of a lower bound.  Ignoring changes in housing capital has a similar 

effect as in Panel C of Table 1 as well, again with an upward bias on the lower bound measure 

(these estimates are not reported but are available upon request). 

7. Application to Changes in Toxic Air Emissions 

In this section, I illustrate DD hedonic studies with an application to changes in exposure to plants 
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emitting toxic air pollutants, a question also recently considered by Currie et al. (2015) and 

Mastromonaco (2015).  In particular, I estimate a variant of Equation (9c), using two cross sections 

of individual houses and treating local geographic areas as the panel unit.  My strategy resembles 

that of Currie et al. (2015) in spirit.  They treat plants as observations, looking at the effect of plant 

openings and closings on average property values within a 1 mile ring of the plant, relative to the 

effect at 1-2 miles.  In contrast, I have microdata on housing transactions, so treat houses as obser-

vations, looking at the effect of a changing number of plants within a 2-mile ring of the house, 

while controlling for conditions at 1-mile grid cells using fixed effects.  I also consider controlling 

for changing conditions using 2-mile-cell-by-year fixed effects.  Additionally, whereas Currie et 

al. assume constant hedonic coefficients (as in Equation 5), to avoid conflation bias I allow the 

hedonic coefficients to evolve between the two time periods, as in Equation (9c).  Thus, this ap-

proach identifies DUE(𝑎∗)തതതതതതതതതതത and the lower bound on welfare. 

The specific application is to the Los Angeles area (including all of LA and Orange Coun-

ties and portions of Riverside, San Bernardino, and Ventura Counties), between 1995 and 2000.  

Data on toxic emissions come from the US EPA's TRI database.  I consider only air emissions, 

either directly from stacks (point sources) or fugitive (nonpoint).  As discussed by Currie et al. 

(2015) and Mastromonaco (2015), TRI data are good at identifying polluting plants, but exhibit 

measurement error in emission levels.  Accordingly, I focus on the extensive margin of whether a 

plant is emitting at all, rather than emission levels.  These comings and goings of plants too can be 

subject to measurement error, if they fall below the TRI reporting threshold rather than actually 

shut down.  Currie et al. overcome this problem by merging TRI data to confidential data on plants 

operations.  Unfortunately, those data are not available to me.  However, I approximate their ap-

proach by coding a plant as operating at year t if it appears in the TRI database at any point between 

t and t-8 and between t and t+8.  Thus, plants that come, go, and return from the TRI reports are 

assumed to be operating throughout the period.  (Eight years takes the 1995 data back to the be-

ginning of the TRI program.) 

The data include the latitude and longitude of facilities.  Exposure to TRI facilities was 

imputed to a house in a given census block in two ways.  The first uses the number of facilities 

within two miles.  The second is a distance-weighted version, where a facility has a weight of 

max{0, 1- ½Distance}, where Distance is the distance in miles from the facility to a given census 

block.  Thus, e.g., a facility 2 or more miles away from a given census block receives a weight of 
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zero, a facility 1 mile away is given a weight of ½, and a facility co-located with a census block is 

given full weight.  The top panel of Table 3 gives summary statistics for these measures, by year.  

It shows a decline in exposure to TRI, with the average house experiencing an 8% reduction in the 

number of facilities, using either measure. 

Data on real estate transactions were acquired from Fidelity National Data Service, a mar-

ket research firm providing proprietary data.  They include the sales price, date of the sale, number 

of bedrooms, number of bathrooms, square footage, lot size, year built, and the census block in 

which it is located.  After restricting the data to single family homes and arm's length transactions, 

and after discarding certain outliers, the data include nearly 140,000 observations.15  The bottom 

panel of Table 3 summarizes the housing data.  Housing values increased over the period and the 

housing stock aged, but other characteristics remained fairly constant. 

Typically, researchers use census tracts or zip codes as geographic units for constructing 

spatial fixed effects.  However, these geographic units may change over time.  Additionally, they 

are based on population density, so they have widely varying sizes within a county.  This is prob-

lematic if small geographies are systematically more homogeneous than large ones, so that there 

is more variation with which to estimate effects from the latter, and if large geographies also vary 

systematically in unobserved ways from other areas.  Finally, geographies creating homogeneous 

areas (like Census tracts) may inflate the spatial scale of very localized effects by systematically 

aggregating the affected area to similar areas nearby.  For all these reasons, arbitrary zones like a 

1-mile grid are preferable to census geographies when controlling for spatial fixed effects (see 

Banzhaf and Walsh 2008).  Accordingly, I impose a 1 square mile grid over the area, using the 

grid cells for spatial fixed effects.  Alternatively, I consider grids of ½-mile or 2-miles. 

Identifying DUE(𝑎∗)തതതതതതതതതതത requires the assumption that changes in the number of active TRI 

sites are orthogonal to changes in unobserved factors affecting prices, after conditioning on base-

line conditions and grid-cell fixed effects.  To gauge the plausibility of this assumption, I look at 

pre-existing price trends.  In particular, I regress 1990-1995 prices on future 1995-2000 changes 

                                                            
15 I drop all observations with housing prices below $50,000 or above $2m, with lot sizes smaller than 1000 sq. feet 
or larger than 10 acres, with living area smaller than 500 sq ft or larger than 5,000 sq ft, with zero bathrooms or more 
than 7.5 bathrooms, or more than 10 bedrooms.  At the low end, these observations likely reflect either coding errors 
or non-primary residences; at the high end, they represent extremely grand houses, where mis-specification of a linear 
regression is likely to pose problems.  These dropped observations account for about 2.7% of the data. 
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in exposure interacted with a time trend, plus contemporaneous exposure and the hedonic variables 

listed in Table 3.  Table 4 shows the results for the coefficient of interest, the interaction between 

the time trend and the future change in facilities.  It shows the change, in percentage points, in 

annual housing appreciation over 1990-95, for each additional plant to which the house would 

become exposed between 1995 and 2000.  The coefficients are negative and statistically significant 

at conventional levels for the unweighted model, and marginally so for the weighted model.  How-

ever, they are not economically meaningful.  A one-plant increase in future exposure reduces 1990-

95 appreciation by 0.0001 to 0.0003 percentage points per year, or less than $1 at the mean of the 

data.  I also consider more flexible variants of this model, interacting cubic time trends with each 

of four categories of changes in future exposure:  increases, no change, a 1-plant decrease, and a 

decrease of 2+ plants.  Figure 3 shows the results.  As seen in the graph, housing prices in LA were 

declining in the early 1990s after a long boom.  Note, first, that the price levels are not monotonic 

by category.  More importantly, the trends are fairly parallel—remarkably so for the last three 

years of the period.  This evidence reassuringly suggests that TRI sites were not closing in areas 

that are already gentrifying. 

For the main model of interest, I regress log price on nearby TRI sites, a cubic of lot area, 

living area, bathrooms, bedrooms, and age, with separate functions estimated for 1995 and 2000, 

plus time invariant fixed effects for the grid cell, and year-quarter dummies to pick up proportion-

ate housing price inflation.  This is the generalized DD regression of Equation 9c.  After estimating 

the model, I use the 2000 price function to estimate the direct unmediated effect of the observed 

1995-2000 change in exposure.  I then add up the total value for the study area, re-weighting the 

data so as to reflect the number of owner-occupied housing units in each Census Tract.16  This is 

the lower bound on ES.  I then bootstrap these values, which are a weighted forecast, to obtain 

confidence intervals on the lower bound welfare measure. 

Table 5 presents the results using 1-mile grid cells for fixed effects.  Each row represents 

a separate regression.  The first column presents the coefficient on TRI exposure in 1995, which 

as discussed in Section 3.1 is only identified under the strong assumptions that changes in unob-

servables are uncorrelated with baseline conditions, and is not used in the construction of the lower 

                                                            
16 Specifically, I first predict the direct unmediated effect at each house in the 2000 transactions sample, then compute 
Census tract level means of these values, and finally aggregate up to a total market-wide value using the total number 
of owner-occupied homes in the tract. 
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bound on ES.  The second column presents the coefficient for 2000, which is identified under the 

weaker assumption that changes in unobservables are uncorrelated with changes in exposure, con-

ditional on baseline exposure and other variables.  All standard errors and confidence intervals 

cluster by grid cell.  The first row shows the results from using the number of TRI facilities within 

two miles as the measure of exposure, with 1-mile-grid fixed effects, but imposing the condition 

that the hedonic equilibrium is constant over time (except for inflation shifting it up).  Thus, the 

1995 and 2000 coefficients on TRI facilities are identical.  As discussed by Kuminoff and Pope 

(2014), this model likely suffers from conflating movement along a hedonic price function with 

shifts in the function.  The second row shows the same model, but allowing the coefficients to vary 

(Equation 9c).  The 2000 coefficient increases slightly in absolute magnitude, so in this sample it 

appears conflation bias would lead to a downward bias.  Results using alternative ½-mile or 2-mile 

grid cells are similar and are available upon request.  The next two rows introduce time varying 

fixed effects, first by adding county-year fixed effects to the time-invariant 1-mile-grid effects, 

then by replacing them with year-by-2-mile-grid effects.  The next four rows repeat these models, 

but using distance-weighted TRI sites within 2 miles rather than the raw count.  All TRI coeffi-

cients are negative, as would be expected, and statistically significant. 

The last column of Table 5 presents the lower bound welfare measure based on the 2000 

coefficients, with bootstrapped confidence intervals.  The bootstrap takes into account sampling 

error in estimation, forecasting (i.e. predicting direct effects), and reweighting tracts.  The final 

column shows the estimated lower bound for the change in TRI sites in the LA area in billions of 

2000 dollars.  Excluding rows 1 and 5 (which impose constant coefficients), the values range from 

$6.2b to $8.6b, as a present value for what presumably is a permanent shock.  With about 5.4 mil-

lion households in the area covered, and at a discount rate of 5%, these values work out to about 

$58-$79 per LA household per year.  Thus, in this case even the lower bound measure is substantial 

and may be informative for policy. 

8. Conclusions 

For decades, economists have used the hedonic model to estimate demands for the implicit char-

acteristics of differentiated commodities, including otherwise unpriced local public goods and 

amenities.  The traditional cross-sectional approach to hedonic estimation has recovered marginal 
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willingness to pay for amenities when unobservables are conditionally independent of the ameni-

ties, but has been criticized as biased when this condition is not met (Greenstone 2017). 

In response, economists have introduced panel econometric models using DD and related 

approaches to identify capitalization effects.  Unfortunately, the interpretation of these effects has 

not been clearly perceived in the literature, perhaps because there is a range of meanings to the 

word "capitalization" and "causal effect" when the price function shifts.  In this paper, I show that 

DD and related hedonic methods can identify what is known in the causal literature as the "average 

direct effect" on prices of a change in amenities, which in this case can be interpreted as a move-

ment along the ex post hedonic price function.  I further show that this is a lower bound measure 

on Hicksian equivalent surplus.  Simulations suggest the lower bound provides valuable infor-

mation, on the order of 75% to 92% of the actual equivalent surplus. 

Future work might consider how quasi-experimental methods might be extended to account 

for price and distributional effects.  For example, Crépon et al. (2013), Hudgens and Halloran 

(2008), and Manski (2013) propose ways to identify indirect effects using variation in treatment 

programs across groups (markets, in the hedonic context), while still identifying direct effects from 

variation in treatment assignment within a group.  Such methods might allow researchers to iden-

tify total price effects, and hence transfers among subpopulations of buyers and sellers.  As Sieg 

et al. (2004) discuss, such price changes can have important distributional welfare effects. 

Additional work might consider ways to average different bounds to improve the approxi-

mation proposed here.  In particular, some quasi-experimental strategies can plausibly identify 

effects in multiple cross-sections, especially when they use RD or IV strategies.  Examples include 

Greenstone and Gallagher (2008), Gamper-Rabindran and Timmins 2013, Gopalakrishnan et al. 

2011, and Haninger et al. 2017.  When they do, there is at least the potential to identify separate 

effects in two or more cross sections.  If the movement along the hedonic price function can be 

estimated in the ex ante period as well as the ex post, it would be possible to construct an upper 

bound analogous to the lower bound discussed here (Bartik 1988).  If so, it may be further possible 

to average these effects to get a second-order approximation to welfare, as suggested by Banzhaf 

(2019).  This would allow quasi-experimental methods to replace Rosen's two-stage strategy for 

non-marginal welfare measures.  
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Figure 1.  Defining Capitalization Effects 

 
Figure 1 illustrates the indirect effect (IE), direct effect (DE), and total effect (TE) of a policy shifting the distribu-
tion of an amenity g.  The policy shifts the hedonic price function from pa'( ) to pa*( ).  Even the price of untreated 
houses are affected by this shift, moving from pA to pB, which is IE.  Treated houses move from pA to pC, which is 
TE for these units.  This total effect can be decomposed into IE+DE.  
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Figure 2.  Bounds for ES for Changes in Characteristics 

 
Figure 2 shows the Hicksian Equivalent Surplus (ES) as the area under the Hicksian demand curve h( ) from g0 to 
ga*.  A partial-equilibrium version of the lower bound is illustrated by the fact that this area exceeds the movement 
along the hedonic, or the area  డೌ∗ௗ 𝑑gೌ∗బ .  The text shows this bound extends to general equilibrium. 
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Figure 3.  Pre-existing Trends in Housing Prices. 

 
Figure 3 shows 1990-1995 mean predicted prices for four categories of houses, those with 1995-2000 
decreases in TRI exposure of 2+ plants, a decrease of one plant, no change, and increases in expsoure. 
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Table 1.  Results of Simulations 

Scenario 

Median Value Across 100 Simulations 
(5th and 95th Percentiles in Parentheses) 

ES "Best Estimate" of 
Lower Bound Linear Translog Semi-parametric 

Local linear 
Semi-parametric 

Matching 

A.  Base Differences-in-Differences Model 

Small $508 
(398 - 588) 

$471 
(373 - 537) 

$435 
(352 – 498) 

$326 
(240 – 424) 

$680 
(421 – 1,307) 

$472 
(370 – 537) 

Medium $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$1,131 
(1,006 – 1,221) 

$1,021 
(858 – 1143) 

$1,516 
(1,157 – 2,157) 

$1,231 
(1,119 – 1,331) 

Large $3,219 
(3,054 - 3,406) 

$2,409 
(2,303 - 2,508) 

$2,102 
(2,019 – 2,223) 

$2,051 
(1,872 – 2,274) 

$2,416 
(2,090 – 3,064) 

$2,019 
(1,926 – 2,115) 

B.  Second Period Cross-Sectional Model 

Small $508 
(398 - 588) 

$471 
(373 - 537) 

$507 
(397 – 607) 

$590 
(423 – 763) 

$607 
(483 – 730) N/A 

Medium $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$1,435 
(1,306 – 1,580) 

$1,658 
(1,434 – 1,978) 

$1,686 
(1,531 – 1,832) N/A 

Large $3,219 
(3,054 - 3,406) 

$2,409 
(2,303 - 2,508) 

$2,975 
(2,822 – 3,167) 

$3,380 
(2,904 – 3,891) 

$3,314 
(3,101 – 3,479) N/A 

C.  Direct Mediated Effects (x omitted) 

Small $508 
(398 - 588) 

$471 
(373 - 537) 

$1,276 
(1,031 – 1,484) 

$1,160 
(950 – 1,386) 

$732 
(465 – 1,353) 

$1,298 
(1,053 – 1,511) 

Medium $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$3,225 
(2,912 – 3,493) 

$2,986 
(2,662 – 3,263) 

$1,554 
(1,2013 – 2,216) 

$3,253 
(2,942 – 3,523) 

Large $3,219 
(3,054 - 3,406) 

$2,409 
(2,303 - 2,508) 

$6,061 
(5,629 – 6,478) 

$5,728 
(5,342 – 6,074) 

$2,471 
(2,126 – 3,106) 

$5,975 
(5,627 – 6,366) 

This table shows the welfare effects and bounds in the simulated equilibria, for policies with small, medium, and large changes in g.  Each cell shows the median 
value across 100 simulations, plus the 5th and 95th percentiles.  The first column shows the true equivalent surplus.  The second shows the lower bound as the 
movement along the (known) price function.  The remaining four columns show empirical counterparts to this bound, using econometric estimators.  Panel A uses 
DD methods; Panel B uses only the ex-post cross section (ignoring time-invariant unobservables); and Panel C ignores changes in x.  
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Table 2.  Results of Simulations with Transactions Costs 

Transactions 
Cost 

Median Value Across 100 Simulations 
(5th and 95th Percentiles in Parentheses) 

ES "Best Estimate" 
of Lower Bound Linear Translog Semi-parametric

Local linear 
Semi-parametric

Matching 

A.  Base Differences-in-Differences Model 

None $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$1,131 
(1,006 – 1,221) 

$1,021 
(858 – 1143) 

$1,516 
(1,157 – 2,157) 

$1,231 
(1,119 – 1,331) 

$2,000 $1,616 
(1,469 - 1,776) 

$1,220 
(1,079 – 1,343) 

$891 
(742 – 1,014) 

$999 
(845 – 1,172) 

$1,069 
(874 – 1,353) 

$1,122 
(976 – 1,243) 

$10,000 $1,803 
(1,578 - 2,009) 

$866 
(512 – 1,117) 

$566 
(270 – 790) 

$710 
($328 – $959) 

$2,887 
(1,785 – 4,900) 

$668 
(325 – 938) 

$20,000 $1,933 
(1,435 - 2,144) 

$636 
(7 – 934) 

$531 
(-103 – 797) 

$467 
(-363 – 765) 

$5,206 
($2,904 – 10,073)

$521 
(-156 – 885) 

B.  Second Period Cross-Sectional Model 

None $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$1,435 
(1,306 – 1,580) 

$1,658 
(1,434 – 1,978) 

$1,613 
(1,433 – 1,829) N/A 

$2,000 $1,616 
(1,469 - 1,776) 

$1,220 
(1,079 – 1,343) 

$1,190 
(984 – 1354) 

$1,705 
(1,267 – 2,213) 

$1,613 
(1,432 – 1,830) N/A 

$10,000 $1,803 
(1,578 - 2,009) 

$866 
(512 – 1,117) 

$859 
(567 – 1,084) 

$1,335 
(1,032 – 1,715) 

$1,249 
(917 – 1,500) N/A 

$20,000 $1,933 
(1,435 - 2,144) 

$636 
(7 – 934) 

$834 
(213 – 1,085) 

$1,194 
(598 – 1,411) 

$1,028 
(393 – 1,316) N/A 

This table shows the welfare effects and bounds in the simulated equilibria, for the policy giving the "medium" change in g, under four different transactions costs 
of zero, $2,000, $10,000, and $20,000.  Each cell shows the median value across 100 simulations, plus the 5th and 95th percentiles.  The first column shows the true 
equivalent surplus.  The second shows the lower bound as the movement along the (known) price function.  The remaining four columns show empirical counter-
parts to this bound, using econometric estimators.  Panel A uses DD methods; Panel B uses only the ex-post cross section (ignoring time-invariant unobservables) 
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Table 3.  Summary Statistics of Housing Amenities, by Year 

 1995 Mean  
(Std. Dev.) 

2000 Mean 
 (Std. Dev.) 

A.  Measures of TRI Exposure 

No. TRI facilities within 2 miles 2.50 
(4.31) 

2.29 
(3.80) 

Distance-weighted No. TRI facil-
ities within 2 miles 

0.74 
(1.44) 

0.68 
(1.3) 

B.  Structural Characteristics   

Sale Price 193,736 
(129,691) 

270,914 
(190,782) 

Lot Size (sq. feet) 9,617 
(14,285) 

9,979 
(16,736) 

Living Area (sq. feet) 1,672 
(640) 

1,723 
(701) 

Bedrooms 2.05 
(0.73) 

2.09 
(0.82) 

Bathrooms 3.20 
(0.84) 

3.22 
(0.92) 

Age 31.13 
(20.86) 

36.15 
(21.71) 

 

Table 4.  Pre-Existing Trends in Housing Prices 

 Number of Facilities  
within 1 mile 

(1) 

Weighted Number of  
Facilities within 1 mile 

(2) 

Time Trend x 1995-2000  
Change in facilities  

-0.000123 
(0.0000465) 

-0.000272 
(0.000150) 

R2 0.78 0.78 
This table shows the coefficients from regressing housing transactions between 1990 and 1995 on 1995-2000 
changes in the number of TRI facilities within 1 mile interacted with a time trend.  The regressions control 
for time trends (without interaction), contemporaneous TRI exposure, the hedonic variables listed in Table 3, 
and 1-mile grid-cell fixed effects.  Standard errors clustered by grid cell reported in parentheses. 
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Table 5.  Results of Application to TRI data. 

Measure of  
TRI Exposure Model 1995 Coef. 

(Standard Error) 
2000 Coef. 

(Standard Error) 

Estimated Lower 
Bound, $b 

(95% CI from boot-
strap) 

No. TRI facilities 
within 2 miles 

1 mi grid FE 
(Time invariant 

Coef) 

-0.01248 
(0.0013) 

-0.01248 
(0.0013) 

6.36 
(5.40 – 7.32) 

No. TRI facilities 
within 2 miles 1 mi grid FE -0.00968 

(0.0019) 
-0.01492 
(0.0015) 

7.53 
(6.18 – 8.19) 

No. TRI facilities 
within 2 miles 

1 mi grid FE 
+ 

County-Year FE 

-0.00866 
(0.0020) 

-0.01609 
(0.0016) 

8.22 
(6.73 – 9.71) 

No. TRI facilities 
within 2 miles 

2 mi grid – Year 
FE 

-0.00264 
(0.0010) 

-0.01606 
(0.0015) 

8.55 
(7.33 – 9.78) 

Distance-weighted 
1 mi grid FE 

(Time invariant 
Coef) 

-0.03399 
(0.0035) 

-0.03399 
(0.0035) 

5.37 
(4.53 – 6.20) 

Distance-weighted 1 mi grid FE -0.02638 
(0.0053) 

-0.03976 
(0.0042) 

6.24 
(5.12 – 7.37) 

Distance-weighted 
1 mi grid FE 

+ 
County-Year FE 

-0.02242 
(0.0056) 

-0.04353 
(0.0045) 

6.90 
(5.63 – 8.17) 

Distance-weighted 2 mi grid – Year 
FE 

-0.01246 
(0.0027) 

-0.04281 
(0.0040) 

7.10 
(6.03 – 8.16) 

Each row corresponds to a separate regression using a different measure of TRI exposure and/or fixed ef-
fects.  Standard errors clustered by grid cells.  The final column shows the estimated lower bound on ES, in 
millions of dollars, for the LA area, from the observed 1995-2000 changes in TRI exposure. 
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APPENDIX.  PROOF OF PROPOSITIONS. 

Proof of Proposition 1. 

As noted in the text, our measure of the change in welfare is: 

(10) 
𝑑𝑊 =    ൣ�̃�൫𝑝ᇱ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯ − 𝑒(𝑝∗( ), 𝑢∗)൧ +   ൣ൫𝑝∗(g∗, 𝐱∗) − 𝑝ᇱ(gᇱ, 𝐱ᇱ)൯ − ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯൧ . 

The right side of Equation (10) can be decomposed as follows: 

(17) 

𝑑𝑊  =     ቂ�̃� ቀ𝑝∗ ቀg൫ᇲ൯ᇱ , 𝐱(ᇱ)ᇱ ቁ , g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗ቁ − 𝑒(𝑝∗( ), 𝑢∗)ቃ+  ቂ�̃� ቀ𝑝ᇱ ቀg(ᇱ)ᇱ , 𝐱(ᇱ)ᇲ ቁ , g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗ቁ − �̃�൫𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯ቃ+  ൫𝑝∗(g∗, 𝐱∗) − 𝑝∗(gᇱ, 𝐱∗)൯ +  ൫𝑝∗(gᇱ, 𝐱∗) − 𝑝∗(gᇱ, 𝐱ᇱ)൯
 

             +  ൫𝑝∗(gᇱ, 𝐱ᇱ) − 𝑝ᇱ(gᇱ, 𝐱ᇱ)൯ −  ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯.  

Fixing indices so that h=i(a'), which we can do because of the bijective mapping between houses 

and households, the expression can be re-arranged as: 

(18) 

𝑑𝑊 =    ൣ�̃�൫𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯ − 𝑒(𝑝∗( ), 𝑢∗)൧ +  ൣ൫𝑝∗(gᇱ, 𝐱∗) − 𝑝∗(gᇱ, 𝐱ᇱ)൯ − ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯൧+   ൫𝑝∗(g∗, 𝐱∗) − 𝑝∗(gᇱ, 𝐱∗)൯  

 
+  ቂቀ�̃�൫𝑝ᇱ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯ − �̃�൫𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯ቁ − ቀ𝑝ᇱ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯ − 𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯ቁቃ . 

Note that, for each i, the term in the fourth line minus the term in the last line is equal to zero by 

the definition of �̃�:  The money necessary to maintain utility when (g, x) is held fixed is equal to 

the change in the price of the bundle (g, x).  Thus, the expression simplifies to: 
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(11) 

𝑑𝑊 =    ൣ�̃�൫𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢∗൯ − 𝑒(𝑝∗( ), 𝑢∗)൧               +  ൣ൫𝑝∗(gᇱ, 𝐱∗) − 𝑝∗(gᇱ, 𝐱ᇱ)൯ − ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯൧ +  ൫𝑝∗(g∗, 𝐱∗) − 𝑝∗(gᇱ, 𝐱∗)൯.
 

But, in the first line, the term in square brackets is non-negative for each i:  the value of a con-

strained expenditure minimization problem is no less than the value of an unconstrained expendi-

ture minimization problem at the same prices and utility.  Additionally, the second line also is 

non-negative by Assumption A3.  Thus, 

(19)  ൫𝑝∗(g∗, 𝐱∗) − 𝑝∗(gᇱ, 𝐱∗)൯ ≤ 𝑑𝑊. 
This completes the proof.  The term on the left is the sum of price changes along the ex-post he-

donic holding x constant at its ex-post level, which is the measurement of interest, and it is less 

than the welfare measure. 

Note that Assumptions A1 and A3 are necessary but not sufficient conditions for the 

bound, in the sense that the proposition is not an if-and-only-if statement. 

Proof of Proposition 2 

Our measure of the change in welfare is now: 

(20) 
𝑑𝑊 =  ቂ�̃�் (∗)ቀ𝑝ᇱ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢் (ோ),∗ቁ − 𝑒் (ோ)ቀ𝑝∗( ), 𝑢் (ோ),∗ቁቃ +   ൣ൫𝑝∗(g∗, 𝐱∗) − 𝑝ᇱ(gᇱ, 𝐱ᇱ)൯ − ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯൧ . 

It is similar to Equation (10), but now 𝑢் (ோ),∗ is the utility achieved in scenario a* when the 

household has to pay transaction costs from the reference pointy R.  Additionally, the expenditure 

function 𝑒் (ோ)ቀ𝑝∗( ), 𝑢் (ோ),∗ቁ is the same as in Equation (10) but it takes into account the ex-

penditure necessary to pay the transaction cost.  Likewise the constrained expenditure function �̃�் (∗)( ) takes such expenditures into account. 
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Repeating the same steps as the proof for Proposition 1, we can derive the following ex-

pression: 

(21) 

𝑑𝑊 =  ቂ�̃�் (∗)ቀ𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑢் (ோ),∗ቁ − 𝑒் (ோ)ቀ𝑝∗( ), 𝑢் (ோ),∗ቁቃ               +  ൣ൫𝑝∗(gᇱ, 𝐱∗) − 𝑝∗(gᇱ, 𝐱ᇱ)൯ − ൫𝑐(gᇱ, 𝐱∗) − 𝑐(gᇱ, 𝐱ᇱ)൯൧ +  ൫𝑝∗(g∗, 𝐱∗) − 𝑝∗(gᇱ, 𝐱∗)൯.
 

which parallels Equation (11). 

To prove the proposition, we must show that the first term, in square brackets, is non-nega-

tive for all i, as in the case without transaction costs. 

We will make use of two facts.  The first is that 

(22) 
𝑢் (ோ),∗  =  𝑢൫(g∗, 𝐱∗), 𝑦 − 𝑝∗( g∗, 𝐱∗) − 𝑇𝐶(𝑅, 𝑎∗)൯ 

                ≥ 𝑢൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ , 𝑦 − 𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯ − 𝑇𝐶(𝑅, 𝑎ᇱ)൯. 

The first line simply states that the utility achieved is the utility from the services of the bundle 

consumed and expenditure on other goods, which is income minus the cost of the hedonic bundle 

minus the transaction costs to obtain it when the reference point is R.  The second line follows by 

revealed preference:  because (g∗, 𝐱∗) was chosen to maximize utility given the price function 

and the transaction costs from reference point R, it must yield higher utility than the bundle ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ  ൯ given the same price function and same reference point for transactions.   

The second fact we will use is that  

(23) 

�̃�் (∗) ቀ𝑝∗ ቀg൫ᇲ൯ᇲ , 𝐱൫ᇲ൯ᇲ ቁ , ቀg൫ᇲ൯ᇲ , 𝐱൫ᇲ൯ᇲ ቁ , 𝑢் (ோ),∗ቁ− �̃�் (ோ) ቀ𝑝∗ ቀg൫ᇲ൯ᇲ , 𝐱൫ᇲ൯ᇲ ቁ , ቀg൫ᇲ൯ᇲ , 𝐱൫ᇲ൯ᇲ ቁ , 𝑢் (ோ),∗ቁ 

= ቀ𝑇𝐶(𝑅, 𝑎∗) + 𝑇𝐶൫𝑎∗, 𝑎′൯ቁ − 𝑇𝐶൫𝑅, 𝑎′൯. 

This expression merely states that the expenditure needed to achieve a given level of utility at a given 
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bundle of hedonic attributes, under a given price function, but under two different transactions costs, 

differs only by the level of those transactions costs.  In one case, the household is going directly from 

R to a', in another indirectly via a*.   

From these two facts, we can complete the proof through the following steps: �̃�் (∗) ቀ𝑝∗ ቀg(ᇱ)ᇱ , 𝐱൫ᇲ൯ᇲ ቁ , ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, 𝑢் (ோ),∗ቁ 

= �̃�் (ோ)ቀ𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, 𝑢் (ோ),∗ቁ + ൫𝑇𝐶(𝑅, 𝑎∗) + 𝑇𝐶(𝑎∗, 𝑎′)൯ − 𝑇𝐶(𝑅, 𝑎′) 

≥ �̃�் (ோ) ൬𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, ቀg𝑖(ᇱ)ᇱ , 𝐱𝑖(ᇱ)ᇱ ቁ , 𝑢 ቀ൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯, 𝑦 − 𝑝∗൫g(ᇱ)ᇱ , 𝐱(ᇱ)ᇱ ൯ − 𝑇𝐶(𝑅, 𝑎′)ቁ൰ 

+ ൣ൫𝑇𝐶(𝑅, 𝑎∗) + 𝑇𝐶(𝑎∗, 𝑎′)൯ − 𝑇𝐶(𝑅, 𝑎′)൧ 
=  𝑒் (ோ)ቀ𝑝∗( ), 𝑢் (ோ),∗ቁ +  ൣ൫𝑇𝐶(𝑅, 𝑎∗) + 𝑇𝐶(𝑎∗, 𝑎′)൯ − 𝑇𝐶(𝑅, 𝑎′)൧ 
≥  𝑒் (ோ)ቀ𝑝∗( ), 𝑢் (ோ),∗ቁ. 

The first equality follows from re-arranging Equation (20).  Next, the inequality follows from Ex-

pression (22), plus the fact that the expenditure function is increasing in u.  The next equality follows 

from the fact that �̃�் (ோ)( ) = 𝑒் (ோ)ቀ𝑝∗( ), 𝑢் (ோ),∗ቁ=y.  That is, the expenditure necessary to 

achieve 𝑢் (ோ),∗ when actually paying the prices of scenario a* and the transactions cost from R is 

just y; likewise, the expenditure necessary to achieve the utility of ൫g(𝑎′)𝑎′ , 𝐱(𝑎′)𝑎′ ൯ and numeraire con-

sumption 𝑦 − 𝑝∗൫g(𝑎′)𝑎′ , 𝐱(𝑎′)𝑎′ ൯ − 𝑇𝐶(𝑅, 𝑎ᇱ), when constrained to be at that hedonic bundle and to 

pay those prices and transactions costs is just y.  The last inequality follows by Assumption A4:  the 

transaction costs of moving directly from R to a' is no higher than that from moving indirectly via 

a*.  This completes the proof.   
 


