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Abstract

This study explores how agricultural technology affects the endogenous takeoff of
an economy in the Schumpeterian growth model. Due to the subsistence requirement
for agricultural consumption, an improvement in agricultural technology reallocates
labor from agriculture to the industrial sector. Therefore, agricultural improvement
expands the firm size in the industrial sector, which determines innovation and triggers
an endogenous transition from stagnation to growth. Calibrating the model to data,
we find that without the reallocation of labor from agriculture to the industrial sector
in the early 19th century, the takeoff of the US economy would have been delayed by
about four decades.
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The spectacular industrial revolution would not have been possible without
the agricultural revolution that preceded it. [...] The introduction of the turnip
[...] made possible a change in crop rotation which [...] brought about a tremen-
dous rise in agricultural productivity. As a result, more food could be grown
with much less manpower. Manpower was released for capital construction. The
growth of industry would not have been possible without the turnip and other
improvements in agriculture. Nurkse (1953, p. 52-53)

1 Introduction

According to Nurkse (1953), among many others, improvements in agricultural technology
that released labor from agriculture were crucial for the industrial revolution. The industrial
revolution in turn sparked the great divergence (Pomeranz 2001) and centuries of sustained
economic growth. History thus suggests that improvements in agricultural technology propa-
gate pervasively throughout the economy and have momentous consequences that far exceed
what one can see by looking at the sector in isolation.
Modern growth economics has investigated extensively the forces driving the process,

typically building on the theory of endogenous technological change (Romer 1990). Since
at its core the theory has dynamic increasing returns, it identifies the size of the market
in which firms operate as a, if not the, crucial factor determining incentives to innovate. A
spectacular application of these ideas is the Unified Growth Theory of Galor and Weil (2000);
see also Galor (2005, 2011). Models in this tradition produce an endogenous takeoff and a
transition from stagnation to growth. Following these two influential branches of growth
economics, and to place industry solidly at the forefront of the analysis, Peretto (2015) has
developed an IO-based Schumpeterian growth model with endogenous takeoff in which firm
size determines the incentives to innovate; see, e.g., Cohen and Klepper (1996a, b) and
Laincz and Peretto (2006) for evidence on this channel. We use this model to formalize
Nurkse’s idea and then investigate the role that agriculture plays in shaping the growth path
of the economy. This strikes us as a first-order question in light of studies like, among others,
Lagakos and Waugh (2013) that document large and persistent productivity differences in
agriculture across countries.
In the baseline Schumpeterian model firm size is increasing in population size and de-

creasing in the number of firms. All else equal, a larger population causes an earlier transition
from stagnation to growth. However, countries with large population, such as China and
India, did not experience an early industrial takeoff, arguably because the vast majority
of their population was in agriculture and thus not contributing to firm size in industry.
To capture this idea we introduce an agricultural sector and investigate how it affects the
takeoff and the subsequent growth pattern. We preserve the analytical tractability of the
original model and derive a closed-form solution for the equilibrium growth rate throughout
the entire transition from stagnation to balanced growth. We find that higher agricultural
productivity causes an earlier takeoff with faster post-takeoff growth and final convergence
to scale-invariant growth.
At the heart of the mechanism driving this result is a subsistence requirement for agricul-

tural consumption, which yields that when agricultural productivity improves labor moves
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from agriculture to industry. This reallocation alone can be sufficient to ignite industrializa-
tion. More generally, we have that: (i) for given agricultural technology, the model predicts
a finite takeoff date with an associated wait time that is co-determined by initial firm size
and decreasing in agricultural productivity; (ii) for given firm size, the model identifies the
minimum size of the improvement in agricultural technology–an Agricultural Revolution–
that triggers an immediate Industrial Revolution. The combination of (i) and (ii) says
that low agricultural productivity delays industrialization and creates a temporary drag on
post-industrialization growth. The drag is only temporary and not permanent because our
Schumpeterian growth model with endogenous market structure sterilizes the scale effect.
These properties provide a new lens for interpreting the empirical evidence. As men-

tioned, economies with large populations (e.g., China, India) failed to industrialize for
decades after smaller ones did (e.g., UK, USA). Growth theories based on increasing returns
have problems explaining this fact. The typical argument is that they had bad institutions
(e.g., Acemoglu and Robinson, 2012). Our analysis develops the complementary hypothesis
that their large, relatively unproductive agricultural sectors played an important role in de-
termining their industrialization lags. Moreover, the scale-invariance of steady-state growth
implies that while agricultural productivity does not affect income growth asymptotically, it
has permanent and large effects on the overall time-profile of income. This property sheds
new light on the debate about the role that agriculture (more generally, the primary sector)
plays in shaping the dynamics of cross-country income differences.
We calibrate the model to US data to perform an illustrative quantitative analysis. The

agricultural share of the US workforce was about 80% in the early 19th century (see Baten
2016) and decreased to about 70% in 1830 and 60% in 1840 (see Lebergott 1966 and Weiss
1986). We find that this reallocation of labor from agriculture to industry was a powerful
push toward the takeoff of the US economy. In line with our analytical result, absent this
reallocation the takeoff of the US economy would have occurred four decades later. Finally,
we derive a formula that shows that a one-fifth increase in industrial employment reduces
the wait time to takeoff by about a decade.
This study relates to the literature on endogenous technological change. Romer (1990)

develops the first R&D-based growth model driven by the invention of new products (horizon-
tal innovation). Aghion and Howitt (1992), Grossman and Helpman (1991) and Segerstrom
et al. (1990) develop the creative-destruction Schumpeterian growth model driven by the
improvement of the quality of products (vertical innovation). Peretto (1994, 1998, 1999),
Smulders (1994), and Smulders and van de Klundert (1995) combine the two dimensions of
innovation to develop the creative-accumulation Schumpeterian growth model with endoge-
nous market structure.1 We contribute to this literature by incorporating an agricultural
sector in the creative-accumulation model. We find that the scale-invariance property arising
from the two dimensions of innovation is important in allowing the allocation of resources
to affect the endogenous takeoff but not economic growth in the long run.
This study also relates to the literature on endogenous takeoff. The seminal study in this

literature is Galor and Weil (2000) that develops unified growth theory, which shows that

1Laincz and Peretto (2006), Ha and Howitt (2007), Madsen (2008, 2010) and Ang and Madsen (2011)
provide early evidence for this class of models. Garcia-Macia et al. (2019) provide the latest evidence that
growth is driven by the in-house innovation activity of existing firms. Howitt (1999) combines the two
dimensions of technology to develop a creative-destruction version of the theory.
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the quality-quantity trade-off in childrearing and the accumulation of human capital enable
an economy to escape the Malthusian trap and experience an endogenous transition from
stagnation to growth.2 We focus, instead, on the role of Schumpeterian technological progress
as a complementary channel for the endogenous takeoff of the economy. More generally, and
in line with the overall thrust of this literature, we formalize the idea of Nurkse (1953),
and the related big push idea of Murphy et al. (1989), in a very tractable dynamic general
equilibrium model that allows us to obtain analytical results and then quantify the effects of
agricultural technology on the industrialization path of the economy–a path consisting of
an endogenous takeoff followed by post-takeoff accelerating growth, with final convergence
from below to scale-invariant innovation-led steady-state growth.

2 A Schumpeterian model of endogenous takeoff

The model features both improvement of existing intermediate goods (vertical innovation)
and creation of new intermediate goods (horizontal innovation). Incentives to undertake
these activities depend on firm size. Consequently, whether the economy experiences the
endogenous takeoff depends on the size of the market for intermediate goods. In the original
version (Peretto, 2015) the size of this market is proportional to the size of the labor force.
By incorporating an agricultural sector with subsistence consumption, we disentangle the
size of the market for intermediate goods from the size of the labor force and obtain a
structure where the size of the intermediate sector, and therefore the size of intermediate
firms, depends on the reallocation of labor from agriculture.

2.1 Household

There is a representative household with Lt = L0e
λt identical members, where L0 = 1 and

λ > 0 is population growth rate. The household has Stone-Geary preferences

U0 =

∫
∞

0

e−(ρ−λ)t [ln ct + β ln(qt − η)] dt, (1)

where ct and qt denote, respectively, consumption per capita of an industrial and of an agri-
cultural good. The parameter β > 0 determines the importance of industrial consumption
relative to agricultural consumption. The latter features a subsistence requirement η > 0.3

The parameter ρ > λ is the subjective discount rate.
The household maximizes utility subject to the asset-accumulation equation

ȧt = (rt − λ)at + wt − ct − ptqt, (2)

2See also Galor and Moav (2002), Galor and Mountford (2008), Galor et al. (2009) and Ashraf and Galor
(2011). Galor (2011) provides a comprehensive review of unified growth theory.

3This is a common feature of structural change models (see, e.g., Matsuyama (1992), Laitner (2000) and
Kongsamut et al. (2001)), which study the implications of structural change for long-run (i.e., asymptotic)
growth but not for endogenous takeoff. See Herrendorf et al. (2014) for an excellent survey of this literature
and Herrendorf et al. (2020) for a recent contribution.
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where at is wealth per capita and rt is the real interest rate. Each member of the household
supplies inelastically one unit of labor to earn the wage wt. Let the industrial good be our
numeraire and pt be the price of the agricultural good. The household sets:

ċt
ct
= rt − ρ; (3)

qt = η +
βct
pt
. (4)

The first equation summarizes the intertemporal consumption-saving decision as the growth
path of industrial consumption ct. The second summarizes the intratemporal allocation of
expenditure across the two goods as the demand for agricultural consumption qt.

2.2 Agriculture

We follow Lagakos andWaugh (2013) and model agriculture as a competitive sector operating
a linear technology

Qt = ALq,t, (5)

where the parameter A > η is labor productivity and Lq,t is employment in agriculture.
Profit maximization yields

wt = ptA, (6)

which says that the wage in agriculture is equal to the marginal product of labor.
We omit land for simplicity. Including land produces the same qualitative results about

endogenous takeoffs but the analysis is much more algebra-intensive. Vollrath (2011), among
many others, studies the effects of land intensity and labor intensity in agriculture on indus-
trialization. Our results are in line with the general insights produced by that work.

2.3 Industrial production

A representative competitive firm operates the assembly technology

Yt =

∫ Nt

0

Xθ
t (i)

[
Zαt (i)Z

1−α
t Ly,t/N

1−σ
t

]1−θ
di, (7)

where {θ, α, σ} ∈ (0, 1). The key features are: (i) there is a continuum of non-durable
differentiated intermediate goods i ∈ [0, Nt]; (ii) Xt (i) is the quantity of intermediate good
i; (iii) the productivity of good i depends on its own quality Zt (i) and on average quality

Zt ≡
∫ Nt
0
Zt (j) dj/Nt; (iv) overall productivity in assembly depends on product variety Nt.

Two parameters regulate technological spillovers: α captures the private return to quality
and hence 1 − α determines vertical technological spillovers; 1 − σ captures a congestion
effect of product variety so that the social return to variety is σ.
Let Pt (i) be the price of Xt (i). Profit maximization yields the conditional demands:

Ly,t = (1− θ)
Yt
wt
; (8)
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Xt (i) =

(
θ

Pt (i)

)1/(1−θ)
Zαt (i)Z

1−α
t Ly,t

N1−σ
t

. (9)

These expressions yield that the competitive industrial firm pays (1− θ)Yt = wtLy,t for

industrial labor and θYt =
∫ Nt
0
Pt (i)Xt (i) di for intermediate goods.

2.4 Intermediate goods and in-house R&D

A monopolistic firm produces differentiated intermediate good i with a linear technology
that requires Xt (i) units of the industrial good to produce Xt (i) units of intermediate good
i at quality Zt (i), that is, the marginal cost of production is one. The firm also pays
φZαt (i)Z

1−α
t units of the industrial good as a fixed operating cost. To improve the quality

of its product, the firm devotes It (i) units of the industrial good to in-house R&D. The
innovation technology is

Żt (i) = It (i) . (10)

The firm’s gross profit (i.e., profit before-R&D) is

Πt (i) = [Pt (i)− 1]Xt (i)− φZ
α
t (i)Z

1−α
t . (11)

The value of the monopolistic firm is

Vt (i) =

∫
∞

t

exp

(
−

∫ s

t

rudu

)
[Πs (i)− Is (i)] ds. (12)

The monopolistic firm maximizes (12) subject to (9) and (10).
We solve this dynamic optimization problem in Appendix A and find that the uncon-

strained profit-maximizing markup ratio is 1/θ. However, we assume that competitive fringe
firms can produce Xt(i) at quality Zt(i) but at the higher marginal cost µ ∈ (1, 1/θ).

4 The
monopolistic firm then sets

Pt(i) = min {µ, 1/θ} = µ (13)

and prices fringe firms out of the market. The optimization problem also delivers the firm’s
rate of return to innovation,

rqt (i) = α
Πt (i)

Zt (i)
= α

[
(µ− 1)

Xt (i)

Zt (i)
− φZα−1t (i)Z1−αt

]
,

which is linear in quality-adjusted firm size Xt (i) /Zt (i). This property is at the heart of
the mechanism that we study: incentives to innovate depend on quality-adjusted firm size,
which in turn depends on the size of the market. We now turn to this component of the
logical chain.
In models of this class the equilibrium of the market for intermediate goods is symmetric,

that is, intermediate firms start with the same initial quality Z0 (i) = Z0 for i ∈ [0, Nt] and,
facing a symmetric environment, make identical decisions. Consequently, they grow at the

4Specifically, we allow for diffusion of knowledge from monopolistic firms to fringe firms that enables
the latter to constrain the pricing behavior of the former. This structure disentangles markups from the
technological parameter θ.
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same rate and symmetry holds at any point in time. Using the limit price (13), quality-
adjusted firm size is

Xt (i)

Zt (i)
=
Xt

Zt
=

(
θ

µ

)1/(1−θ)
Ly,t

N1−σ
t

=

(
θ

µ

)1/(1−θ)
Lt

N1−σ
t

Ly,t
Lt
.

We define the industrial employment share ly,t ≡ Ly,t/Lt and the composite variable

xt ≡ θ
1/(1−θ) Lt

N1−σ
t

. (14)

This variable compresses the two state variables Lt (population) and Nt (mass of firms) to
the ratio Lt/N

1−σ
t and, therefore, makes the analysis of the model’s dynamics simple.

With this notation, quality-adjusted firm size becomes

Xt

Zt
=

(
θ

µ

)1/(1−θ)
xt

θ1/(1−θ)
Ly,t
Lt

=
xtly,t
µ1/(1−θ)

.

Accordingly, the rate of return to innovation is

rqt = α
Πt
Zt
= α

[
µ− 1

µ1/(1−θ)
xtly,t − φ

]
. (15)

To summarize, this structure captures two sides of the idea explored in this paper. First,
agricultural employment implies ly,t < 1 and thus reduces firm size in the intermediate
sector and thereby depresses incentives to innovate. Second, the reallocation of labor from
agriculture to industrial production is an essential component of the dynamics of takeoff and
subsequent sustained growth: as ly,t rises, the return to innovation rises faster than in the
absence of structural change.

2.5 Entrants

Upon payment of a sunk cost of δXt, δ > 0, units of the industrial good, a new firm enters
the market and offers a new differentiated good of average quality. This structure preserves
the symmetry of the intermediate goods market equilibrium at all times. The asset-pricing
equation governing the value of firms (old and new) is

rt =
Πt − It
Vt

+
V̇t
Vt
. (16)

Entry is positive when the free-entry condition holds, i.e., when

Vt = δXt. (17)

Substituting (9) and (13) in (11) and then using the resulting expression, (10), (16) and (17)
yield the return to entry as

ret =
µ1/(1−θ)

δ

(
µ− 1

µ1/(1−θ)
−
φ+ zt
xtly,t

)
+ zt +

ẋt
xt
+
l̇y,t
ly,t
, (18)

where zt ≡ Żt/Zt is the growth rate of average quality.
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2.6 Aggregation

We define the general equilibrium in Appendix A. (9) and (13) yield the reduced-form rep-
resentation of industrial production

Yt = (θ/µ)
θ/(1−θ)Nσ

t ZtLy,t. (19)

The associated growth rate of industrial output per capita, yt = Yt/Lt, is

gt ≡
ẏt
yt
= σnt + zt +

l̇y,t
ly,t
. (20)

This growth rate has three components: (i) the growth rate of the variety of intermediate
goods, nt ≡ Ṅt/Nt; (ii) the growth rate of the average quality of intermediate goods, zt; (iii)
the growth rate of the industrial labor share ly,t.

2.7 Labor allocation

The combination of labor demand from agriculture (6) and industry (8) yields

pt =
(1− θ)Yt
ALy,t

. (21)

Substituting the agricultural technology (5) and the relative price (21) in the demand func-
tion for qt in (4) yields the industrial labor share ly,t as

ly,t =

(
1 +

β

1− θ

ct
yt

)
−1 (

1−
η

A

)
. (22)

This equation says that for given consumption-output ratio ct/yt, the industrial labor share
ly,t is increasing in A if and only if η > 0. This property produces sectoral reallocation
whereby an improvement in the agricultural technology releases labor from agriculture to
the industrial sector.

3 Agriculture, takeoff and long-run growth

We now develop the main insight of the paper. We first show that the economy begins in a
pre-industrial era in which the growth rate of industrial output per capita is zero. It then
enters the industrial era, which consists of two phases. In the first, only the development of
new products marketed by new firms drives the growth rate of industrial output per capita.
In the second, product-quality improvement by existing firms adds its contribution and
produces an acceleration of the growth rate.5 The economy finally converges to a balanced
growth path that features constant growth of income per capita fueled by both vertical and
horizontal innovation.

5We consider the realistic case in which product creation happens before quality improvement. See Peretto
(2015) for details on this property of the baseline growth model.
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Next, we show that agriculture shapes this process of phase transitions and convergence:
agricultural productivity determines the timing of the first phase transition, the endogenous
takeoff of the economy, and of the second phase transition, the activation of vertical inno-
vation. This timing effect has momentous consequences: although agricultural productivity
does not affect steady-state growth due to the model’s sterilization of the scale effect, it has
permanent and large effects on the economy’s time-profile of income. This property sheds
new light on the debate about the role that agriculture plays in shaping the dynamics of
cross-country income differences.

3.1 The model’s global dynamics

The equilibrium law of motion of the state variable xt is

ẋt = [λ− (1− σ)nt]xt, (23)

where the entry rate nt is either zero or an increasing function of xt (see Appendix A). The
process is thus initially explosive and then becomes implosive. It converges to the balanced
growth path if the following condition holds

δφ >
1

α

[
µ− 1− δ

(
ρ+

σ

1− σ
λ

)]
> µ− 1. (24)

Specifically, the state variable xt converges to

x∗ = µ1/(1−θ)
(1− α)φ− [ρ+ σλ/(1− σ)]

(1− α)(µ− 1)− δ [ρ+ σλ/(1− σ)]

1 + β
(
1 + ρ−λ

µ
δθ
1−θ

)

(
1− η

A

)

as the growth rate of product variety converges to n∗ = λ/(1 − σ). Steady-state firm size
and income per capita growth are:

x∗l∗y = µ
1/(1−θ) (1− α)φ− [ρ+ σλ/(1− σ)]

(1− α)(µ− 1)− δ [ρ+ σλ/(1− σ)]
; (25)

g∗ = α

[
(µ− 1)

(1− α)φ− [ρ+ σλ/(1− σ)]

(1− α)(µ− 1)− δ [ρ+ σλ/(1− σ)]
− φ

]
− ρ > 0. (26)

This structure has two properties worth stressing.
First, the existence condition (24) consists of two inequalities that ensure that the steady

state x∗ exists. To establish whether it is the attractor of the model’s dynamics, we need to
investigate the conditions for the occurrence of the two phase transitions discussed above.
We do so in the remainder of this section, placing the role of agriculture at the center of
the investigation. The exercise shows that the two inequalities also provide the condition for
the occurrence of the second phase transition. The two conditions in (24) are then jointly
sufficient for the full transition to the steady state x∗.
Second, (26) says that steady-state growth is independent of the sectoral allocation of

labor due to the scale-invariance of the Schumpeterian growth model with endogenous market
structure. This property is central to the paper’s insight. As we investigate the role of
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agriculture in driving the phase transitions, we find that because steady-state growth is
invariant to A, cross-country differences in agricultural technology produce a pattern of
divergence-convergence, namely: (i) differences in A generate differences in growth that are
solely due to differences in the timing of takeoff; (ii) such differences are only temporary
and eventually vanish so that all else equal there is long-run growth equalization. It is
worth stressing that differences in growth rates vanish, not differences in income levels.
That is, differences in agricultural productivity imprint themselves on income levels and are
amplified by the initial divergence in income dynamics caused by the different takeoff times.
The amplification can be large since it leverages differences in growth rates that last several
decades due to the model’s slow convergence to the steady state.

3.2 The pre-industrial era

In the pre-industrial era firm size xtly,t is small and there are two possible configurations of
the intermediate-good sector. First, initially demand for each intermediate good is so small
that a would-be monopolist operating the increasing-returns technology would earn negative
profit (see Appendix A for details). Since the increasing-returns technology is not viable, the
existing N0 intermediate goods are produced by competitive firms that do not innovate and
make zero profit at the equilibrium price Pt(i) = µ. Anticipating this, entrepreneurs are not
willing to pay the sunk entry cost and thus there is no variety innovation either. Initially,
therefore, all technologies in this economy exhibit constant returns to scale and firm size
grows only because of exogenous population growth.
The second possible configuration occurs when the size of the market for intermediate

goods grows sufficiently large that a would-be monopolist operating the increasing-returns
technology could earn positive profit. We assume, however, that although the increasing-
returns technology is now viable agents do not deploy it yet because doing so requires pay-
ment of the sunk entry cost.6 The idea is that only innovation, in this case a process inno-
vation, allows a new firm to monopolize an existing market. Hence, the pre-industrial era
ends only when the present value of monoplistic firms is sufficiently large that the free-entry
condition (17) holds.
As a result of the pre-industrial market structure outlined above, in the pre-industrial

era the household’s industrial consumption is ct = wtly,t = (1− θ)yt, which yields

ct
yt
= 1− θ. (27)

Substituting this result in (22) yields

ly =
1

1 + β

(
1−

η

A

)
. (28)

This says that the industrial labor share in the pre-industrial era is stationary and increasing
in agricultural productivity A. The associated growth rate of industrial output per capita is

gt = σnt + zt +
l̇y,t
ly,t

= 0 (29)

6In Appendix B, we consider an extension of the model that does not rely on this assumption and show
that the dynamics are less realistic.
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because nt = zt = l̇y,t/ly,t = 0.

3.3 The industrial era: phase 1

Horizontal innovation (but not yet vertical innovation) activates when firm size xtly,t grows
sufficiently large. To see this, note that when the free-entry condition holds the consumption-
output ratio ct/yt and the industrial labor share ly,t jump to the steady-state values (deriva-
tion in Appendix A): (

c

y

)
∗

=
(ρ− λ)δθ

µ
+ 1− θ; (30)

l∗y =
1

1 + β
(
1 + ρ−λ

µ
δθ
1−θ

)
(
1−

η

A

)
. (31)

The growth rate of product variety is (derivation in Appendix A)

nt =
µ1/(1−θ)

δ

(
µ− 1

µ1/(1−θ)
−

φ

xtl∗y

)
+ λ− ρ > 0, (32)

which is positive if

xt >

[
1 + β

(
1 + ρ−λ

µ
δθ
1−θ

)]
µ1/(1−θ)φ

µ− 1− δ(ρ− λ)

(
1−

η

A

)
−1

≡ xN . (33)

Note that nt is increasing in the agricultural technology A via the industrial labor share
l∗y, which is increasing in A, and increasing in the state variable xt so that (23) describes a
stable process. The growth rate of industrial output per capita is gt = σnt.
The interpretation of this property in terms of the baseline growth model is that there

exists a threshold of xt below which the economy operates under pre-industrial conditions
and firm size grows only because of exogenous population growth. Eventually, the economy
crosses the threshold xN but it takes

TN =
1

λ
log

(
xN
x0

)
(34)

years to achieve such takeoff (derivation in Appendix A). Since xN is decreasing in A, the
combination of (32) and (34) says that economies with higher agricultural productivity A
take off earlier and exhibit faster post-takeoff growth than economies with lower A.
An alternative interpretation is as follows. We write (33) as

A >
η

1− 1
µ−1−δ(ρ−λ)

[
1 + β

(
1 + ρ−λ

µ
δθ
1−θ

)]
µ1/(1−θ)φ/xt

. (35)

This now says that, given xt, when the agricultural technology A is below this critical thresh-
old the economy remains in the pre-industrial equilibrium. However, if A rises above the
threshold, the economy takes off immediately. In this sense, we have a condition determining
when and how an Agricultural Revolution can trigger the Industrial Revolution. The two
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interpretations are complementary. The first holds A constant and uses the model’s dynam-
ics to compute the wait time to industrialization, i.e., how long it takes for xt to go from
its initial value x0 to the threshold value xN . As shown, the wait time is lower the larger is
A. The second interpretation fixes xt and asks how large an improvement in A is needed to
trigger immediately the activation of Schumpeterian innovation. (35) says that economies
with larger firms require smaller agricultural improvements to take off.
The important component of this mechanism is that when the agricultural technology im-

proves the economy reallocates labor from the agricultural sector to the industrial sector and
that this reallocation alone can be sufficient to ignite industrialization. Figure 1 presents the
time path of the growth rate gt when A increases at time t and causes the economy to escape
the pre-industrial era and enter the first phase of the industrial era. The figure highlights the
two complementary interpretations discussed above: (i) for given A, the model predicts a
finite takeoff date with an associated wait time determined by the initial condition x0 (equiv-
alently, initial firm size x0ly); (ii) for given firm size xtl

∗

y, the model identifies the minimum
size of the improvement in A–an Agricultural Revolution–that triggers an immediate In-
dustrial Revolution. The combination of (i) and (ii) says that low agricultural productivity
delays industrialization and creates a temporary drag on post-industrialization growth. The
drag is only temporary because our Schumpeterian growth model with endogenous market
structure sterilizes the scale effect.

Figure 1: Agricultural revolution and industrialization

3.4 The industrial era: phase 2

When firm size xtl
∗

y is sufficiently large, horizontal and vertical innovation occur simultane-
ously. This is the second phase of the industrial era. Given active horizontal innovation, the
consumption-output ratio and the industrial labor share remain at the steady-state values
(30)-(31). The growth rate (derivation in Appendix A),

gt = α

[
µ− 1

µ1/(1−θ)
xtl

∗

y − φ

]
− ρ > 0, (36)
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is increasing in the agricultural technology A via the industrial labor share l∗y and increasing
in firm size xtl

∗

y. The entry process (derivation in Appendix A) driving the dynamics of xt is

nt =
µ1/(1−θ)

δ

(
µ− 1

µ1/(1−θ)
−
φ+ zt
xtl∗y

)
+ λ− ρ > 0, (37)

where

zt =

(
1−

µ1/(1−θ)σ

δxtl∗y

)−1{[
µ− 1

µ1/(1−θ)
xtl

∗

y − φ

] [
α−

µ1/(1−θ)σ

δxtl∗y

]
− ρ+ σ (ρ− λ)

}
.

Given (24), this phase transition occurs when

xt >

[
1 + β

(
1 +

ρ− λ

µ

δθ

1− θ

)]
Ω
(
1−

η

A

)
−1

≡ xZ > xN , (38)

where

Ω ≡ arg solve
ω

{[
µ− 1

µ1/(1−θ)
ω − φ

] [
α−

µ1/(1−θ)σ

δω

]
= ρ− σ (ρ− λ)

}
.

As in the previous case, the standard interpretation of this condition is that for given A
there exists a threshold of firm size above which firms invest in-house and growth accelerates
due to quality innovation.
The complementary interpretation of the threshold follows from rewriting (38) as

A >
η

1−
[
1 + β

(
1 + ρ−λ

µ
δθ
1−θ

)]
Ω/xt

. (39)

This says that for given xt a sufficiently large level-change in the agricultural technology A
can cause the immediate activation of quality innovation if it causes the threshold xZ to fall
below xt.

3.5 Summary

We can summarize our main global dynamics result as follows.

Proposition 1 Given (24) and x0 < xN < xZ, the economy begins in the pre-industrial era
with no innovation of any kind. It then experiences the endogenous takeoff and enters the
first phase of the industrial era where horizontal innovation alone fuels industrial growth.
Finally, the economy enters the second phase of the industrial era with both vertical and
horizontal innovation and converges to the balanced growth path. Agricultural productivity
A determines the timing of the two-phase transitions but does not affect the steady-state
growth rate of the economy. Specifically, economies with higher agricultural productivity take
off earlier and exhibit temporarily faster post-takeoff growth than economies with lower A,
eventually converging to the scale-invariant growth rate g∗.
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Proof. See Appendix A.

These properties are important when looking at the data. As mentioned, economies with
large populations (e.g., China, India) failed to industrialize for decades after smaller ones
did (e.g., UK, USA). Growth theories based on increasing returns have obvious problems
explaining this fact. The typical argument is that they had bad institutions (e.g., Acemoglu
and Robinson, 2012). Our analysis says that their reliance on a large, relatively unproductive
agricultural sector played an important role in determining their industrialization lags both
in term of the timing of the takeoff and of the steepness of the post-takeoff income profile.
The scale-invariance of steady-state growth implies that while agricultural productivity does
not affect income growth asymptotically, it has permanent and large effects on the overall
time-profile of income.

4 Quantitative analysis

In the early 19th century, the agricultural share of the US workforce decreased from about
80% to 60%.7 We perform a counterfactual analysis to assess how large an effect this real-
location of labor from agriculture to industry had on the takeoff of the US economy.
Recall that firm size, which determines the timing of the takeoff, is

xtly,t = xt(1− lq,t),

where lq,t ≡ Lq,t/Lt is the agricultural labor share. The takeoff occurs when xt reaches the
threshold xN . In terms of firm size we have

xtly,t > xN l
∗

y.

A decrease in the agricultural labor share lq,t from 80% to 60% yields an increase in the
industrial labor share ly,t from 20% to 40%.8 This expands firm size xtly,t by a factor of 2
for given xt. In the pre-industrial era the state variable xt grows at rate λ. In the US, the
long-run population growth rate is 1.8%.9 Therefore, without the increase in the industrial
labor share, xt would take

t =
ln 2

λ
=

0.7

1.8%
= 39 years

to increase by a factor of 2. In other words, without the reallocation of labor from agriculture
to industry in the early 19th century, the takeoff of the US economy would have been delayed

7See Baten (2016), Lebergott (1966) and Weiss (1986).
8Here we are putting manufacturing and services together as the industrial sector that requires innovation;

see e.g., United Nations (2011) for a review on the importance of innovation in the services sector. Kongsamut
et al. (2001) show that manufacturing and services require the same technology growth rate in order for a
balanced growth path to exist in their model.

9Data source: Maddison Project Database. The waiting time to takeoff is lower if the population growth
rate is higher.
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by about four decades. Furthermore, we can define χ ≡ dly,t/ly,t, i.e., the percent change in
ly,t, and for χ small obtain the approximation

t =
ln(1 + χ)

λ
≈
χ

λ
years.

This says that, given a population growth rate λ of 1.8%, a one-fifth increase in industrial
employment reduces the wait time to takeoff by about a decade.
We now calibrate the rest of the model to data in the US economy in order to perform a

quantitative analysis. In addition to the population growth rate λ, the model also features
the following parameters: {ρ, α, σ, β, θ, δ, φ, µ}.10 We set the discount rate ρ to a conventional
value of 0.05. We follow Iacopetta et al. (2019) to set the degree of technology spillovers
1 − α to 0.833 and the social return of variety σ to 0.25. Then, we calibrate β using the
current agricultural share of GDP in the US, which is about 1%.11 Furthermore, we calibrate
{θ, δ, φ} by matching the following moments of the US economy: 60% for the labor income
share of GDP, 62% for the consumption share of GDP, and 1% for the long-run growth
rate. Finally, we calibrate the markup ratio µ by matching the average growth rates of the
simulated path from our model and the historical path in the US. The calibrated parameter
values are {β, θ, δ, φ, µ} = {0.016, 0.404, 2.547, 1.212, 1.630}.
To explore how well our model matches the historical path of the growth rate in the US,

we first use historical data to calibrate a time path for the subsistence ratio η/A. Specifically,
we calibrate the initial value of η/A using an agricultural labor share of 80% at the beginning
of the 19th century; see Baten (2016). Then, we use an agricultural labor share of 60% in
1840 and 53% in 1860 in Lebergott (1966) and Weiss (1986) and also an agricultural share
of GDP of 30% in 1900, 20% in 1920-1930, 10% in 1950 and 2% in 1980 in Kongsamut et
al. (2001) to compute a piecewise linear path of η/A. We model these changes in A as MIT
shocks (i.e., a sequence of unanticipated, permanent changes). Based on this imputed path
of η/A, Figure 2 simulates the path of the agricultural share of GDP, which decreases from
about 70% in the early 19th century to 1% at the end of the 20th century as in the US data.
Figure 3 presents the simulated path of the growth rate of industrial output per worker

and the HP-filter trend of the US growth rate12 along with a simulated path of the growth
rate without agricultural improvement (i.e., η/A remains at its initial value). Here we pick
an initial value x0 such that the takeoff of the economy occurs before the mid-19th century.
Following the occurrence of horizontal innovation, vertical innovation also starts to happen
half a decade later. After that the economy keeps growing and reaches a growth rate as high
as 3% due to the expansion of the industrial sector, which helps to accelerate the rate of
innovation. Around the time of the Great Depression in the 20th century, there is a pause
in the reallocation of labor from agriculture to the industrial sector, which translates into a
temporary slow down in technological progress before a recovery. Before the end of the 20th
century, the growth rate of the economy gradually falls towards the long-run growth rate
due to the deceleration of sectoral reallocation. This simulated pattern replicates the data
reasonably well with the average growth rate increasing from 1.08% in the 19th century to

10There is also the subsistence ratio η/A, which we will calibrate using historical data.
11Here we assume that the subsistence requirement is no longer binding in modern days; i.e., η/A→ 0.
12Unfortunately, we don’t have historical data on labor productivity growth in the US, so we use data on

the growth rate of output per capita as a proxy.
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2.24% in the 20th century before decreasing to 1.04% in the 21st century, whereas the corre-
sponding data are 1.20%, 2.12% and 1.13% in the 19th, 20th and 21st centuries respectively.
In contrast, the simulated path of the growth rate without agricultural improvement cannot
capture this inverted-U pattern in the data.

Figure 2: Agricultural share of GDP Figure 3: Economic growth

5 Conclusion

In this study, we have developed a Schumpeterian growth model with an agricultural sector
in which the size of firms in the industrial sector determines the endogenous takeoff of the
economy. The primary goal of the exercise is to shed new light on the important role of
agriculture in a dynamic process that historians describe narratively as follows (e.g., Nurkse
1953): at the heart of industrialization, large improvements in agricultural productivity lib-
erate labor from food production and reallocate it to industrial production. The secondary
goal is to shed new light on the role of agriculture in explaining why countries with large
populations, such as China and India, did not experience an early industrial takeoff. Our ex-
planation is that the vast majority of their population being in agriculture did not contribute
to firm size in the industrial sector. The model delivers analytical insights on the mechanism
through which how an agricultural revolution determines the timing of the endogenous take-
off. A sectoral reallocation that expands firm size in the industrial sector produces an earlier
transition from stagnation to growth. Our quantitative analysis indicates that the decline
in the agricultural share of the US workforce in the early 19th century contributed to the
takeoff of the US economy. Without the reallocation of labor from agriculture to industry,
the takeoff of the US economy would have been delayed by four decades.
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Appendix A

Equilibrium. The equilibrium is a time path of allocations {at, qt, ct, Yt, Xt, It, Ly,t, Lq,t}
and prices {rt, wt, pt, Pt, Vt} such that:

• the household consumes {qt, ct} to maximize utility taking {rt, wt, pt} as given;

• competitive firms produce Qt to maximize profits taking {wt, pt} as given;

• competitive firms produce Yt to maximize profits taking {wt, Pt} as given;

• monopolistic intermediate-good firms choose {Pt, It} to maximize Vt taking rt as given;

• entrants make entry decisions taking Vt as given;

• the aggregate value of monopolistic firms equals the household’s wealth, atLt = NtVt;

• the labor market clears, Lq,t + Ly,t = Lt;

• the market for the agricultural good clears, qtLt = ALq,t;

• the market for the industrial good clears, Yt = ctLt +Nt (Xt + φZt + It) + ṄtδXt.

Dynamic optimization of monopolistic firms. The current-value Hamiltonian for mo-
nopolistic firm i is

Ht (i) = Πt (i)− It (i) + ζt (i) Żt (i) + ξt (i) [µ− Pt (i)] , (A1)

where ξt (i) is the multiplier on Pt (i) ≤ µ. We substitute (9)-(11) into (A1) and derive

∂Ht (i)

∂Pt (i)
= 0⇒

∂Πt (i)

∂Pt (i)
= ξt (i) , (A2)

∂Ht (i)

∂It (i)
= 0⇒ ζt (i) = 1, (A3)

∂Ht (i)

∂Zt (i)
= α

{

[Pt (i)− 1]

[
θ

Pt (i)

]1/(1−θ)
Ly,t

N1−σ
t

− φ

}

Zα−1t (i)Z1−αt = rtζt (i)− ζ̇t (i) . (A4)

If Pt (i) < µ, then ξt (i) = 0. In this case, ∂Πt (i) /∂Pt (i) = 0 yields Pt (i) = 1/θ. If the
constraint on Pt (i) is binding, then ξt (i) > 0. In this case, we have Pt (i) = µ. Therefore,
we have proven (13). Then, the assumption µ < 1/θ implies Pt (i) = µ. Substituting (A3),
(14) and Pt (i) = µ into (A4) and imposing symmetry yield (15), where ly,t ≡ Ly,t/Lt.

Monopolistic profit in the pre-industrial era. In the pre-industrial era, the firm size
xtly,t is so small that monopolistic firms with increasing returns technology cannot earn a
positive profit; i.e.,

xtly,t < φµ
1/(1−θ)/(µ− 1)⇔ Πt < 0,
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where ly is given in (28). In this case, the existing intermediate goods N0 are produced by
competitive firms that make zero profit. When xtly reaches φµ

1/(1−θ)/(µ − 1), we assume
that the increasing returns technology is not yet deployed until xt reaches xN ; see Appendix
B for the case without this assumption.

Dynamics of the consumption-output ratio in the industrial era. The value of assets
owned by each member of the household is

at = VtNt/Lt. (A5)

If nt > 0, then Vt = δXt in (17) holds. Substituting (17) and µXtNt = θYt into (A5) yields

at = δXtNt/Lt = (θ/µ) δYt/Lt = (θ/µ) δyt, (A6)

which implies that at/yt is constant. Substituting (A6), (3) and (8) into (2) yields

ẏt
yt
=
ȧt
at
= rt − λ+

wtly,t + wtlq,t − ct − ptqt
at

=
ċt
ct
+ ρ− λ+

(1− θ)µ

δθ
−
µ

δθ

ct
yt
, (A7)

where we have also used wtLq,t = ptQt. Equation (A7) can be rearranged as

ċt
ct
−
ẏt
yt
=
µ

δθ

ct
yt
−
(1− θ)µ

δθ
− (ρ− λ) , (A8)

which shows that the dynamics of ct/yt is characterized by saddle-point stability such that
ct/yt jumps to its steady-state value in (30) whenever nt > 0. Then, substituting (30) into
(22) yields l∗y in (31).

Proof of Proposition 1. In the pre-industrial era, the firm size xtly is not sufficiently large
for horizontal and vertical innovation to be viable such that the variety growth rate and the
quality growth rate are both zero (i.e., nt = zt = 0). In this case, the industrial labor share
ly is given by (28) and the state variable xt = θ

1/(1−θ)Lt/N
1−σ
0 increases at the population

growth rate λ. Therefore, in the pre-industrial era, the dynamics of xt is simply

ẋt = λxt > 0. (A9)

In the first phase of the industrial era, the firm size xtl
∗

y becomes sufficiently large for
horizontal innovation (but not vertical innovation) to be viable such that nt > 0 and zt = 0.
In this case, the variety growth rate nt is given by (32), which is positive if and only if

xt >
µ1/(1−θ)φ/l∗y

µ− 1− δ(ρ− λ)
≡ xN > x0, (A10)

where l∗y is given by (31) and increasing in A. Given x0, the state variable xt increases at
the rate λ until it reaches xN ; therefore, the time this process takes is

TN =
1

λ
log

(
xN
x0

)
.
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After reaching xN , the dynamics of xt in (23) becomes

ẋt = [λ− (1− σ)nt]xt =
1− σ

δ

{
φµ1/(1−θ)

l∗y
−

[
µ− 1− δ

(
ρ+

σλ

1− σ

)]
xt

}
> 0, (A11)

which uses (32) for nt.
In the second phase of the industrial era, the firm size xtl

∗

y becomes sufficiently large for
both horizontal and vertical innovation to be viable such that nt > 0 and zt > 0. In this
case, the quality growth rate zt is positive if and only if

xt >
Ω

l∗y
≡ xZ > xN , (A12)

where l∗y is given by (31) and the composite parameter Ω is defined as before:

Ω ≡ arg
ω
solve

{[
µ− 1

µ1/(1−θ)
ω − φ

] [
α−

µ1/(1−θ)σ

δω

]
= ρ− σ (ρ− λ)

}
.

In this regime, the equilibrium growth rate in (36) is derived from gt = rqt − ρ, where r
q
t

is given in (15). Then, we use (36), (37) and zt = gt − σnt to derive nt and the linearized
dynamics of xt as

ẋt =
1− σ

δ

{[
(1− α)φ−

(
ρ+

σλ

1− σ

)]
µ1/(1−θ)

l∗y
−

[
(1− α) (µ− 1)− δ

(
ρ+

σλ

1− σ

)]
xt

}
≥ 0,

(A13)
where we have used σµ1/(1−θ)/

(
xtl

∗

y

)
∼= 0. Then, we can use nt to derive zt = gt − σnt.

Given (24), the autonomous dynamics of xt is stable and captured by (A9), (A11) and
(A13). Given an initial value x0, the state variable xt increases according to (A9) until xt
reaches the first threshold xN , which is decreasing in A via l

∗

y. Then, xt increases according to
(A11) until xt reaches the second threshold xZ , which is also decreasing in A via l

∗

y. Finally,
xt increases according to (A13) until xt converges to its steady state

x∗ =
µ1/(1−θ)

l∗y

(1− α)φ− [ρ+ σλ/(1− σ)]

(1− α)(µ− 1)− δ [ρ+ σλ/(1− σ)]
, (A14)

where l∗y is given in (31).
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Appendix B

In this appendix, we extend the baseline model to allow for the possibility that in the
pre-industrial era (i.e., nt = zt = 0), monopolistic profits become positive (i.e., Πt > 0)
before the takeoff occurs. When nt = 0, the entry condition in (17) does not hold. However,
the asset-pricing equation in (16) still holds and becomes

rt =
Πt
Vt
+
V̇t
Vt
, (B1)

where It = zt = 0. We use (A5) and nt = 0 to derive ȧt/at = V̇t/Vt − λ and then substitute
this equation into (2) to obtain

V̇t
Vt
− λ =

ȧt
at
= rt − λ+

wtly,t + wtlq,t − ptqt − ct
at

. (B2)

Substituting (B1) into (B2) yields

ct =
Πt
Vt
at + wtly,t =

Nt
Lt
Πt + (1− θ) yt, (B3)

where we have used (A5), wtlq,t = ptqt and wtly,t = (1− θ) yt. Then, substituting (11) and
Pt = µ into (B3) yields

ct =
NtXt (µ− 1− φZt/Xt)

Lt
+(1− θ) yt = θµ

θ/(1−θ)

(
µ− 1

µ1/(1−θ)
−

φ

xtly,t

)
yt+(1− θ) yt, (B4)

where the second equality uses θYt = µNtXt and (14). The consumption-output ratio is

ct
yt
= θµθ/(1−θ)

(
µ− 1

µ1/(1−θ)
−

φ

xtly,t

)
+ 1− θ, (B5)

which would increase from (27) to (30) if the firm size xtly,t increases from φµ
1/(1−θ)/(µ− 1)

to φµ1/(1−θ)/[µ − 1 − δ(ρ − λ)]. Finally, we substitute (B5) into (22) and manipulate the
equation to obtain the equilibrium firm size:

xtly,t =
βθφ
1−θ
µθ/(1−θ) +

(
1− η

A

)
xt

1 + β
(
1 + θ

1−θ
µ−1
µ

) , (B6)

which continues to be increasing in the level of agricultural technology A.
Given that the dynamics of xt is still given by (A9) in the pre-industrial era, the firm

size xtly,t gradually increases towards the threshold in (A10) to trigger the takeoff as before.
The only difference is that as xt increases overtime, ly,t in (B6) is gradually decreasing from
ly in (28) to l

∗

y in (31) (instead of jumping from ly to l
∗

y at the time of the takeoff). This
additional dynamics in ly,t gives rise to negative growth in the industrial output per capita
before the takeoff, which is less realistic than the dynamics in the baseline model.
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