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Abstract

We propose an extended SVAR model to investigate the responses of the macroeconomic

volatility to financial uncertainty shocks. The empirical model features the time-varying

stochastic volatility-in-mean process where parameters allow for (i) the bilateral simultaneity

between the shocks hitting the level and volatility of the endogenous variables, and (ii) the

feedback from the endogenous variables to the volatility. Using the U.S. data, our findings

show that macroeconomic volatility arises as an endogenous response to a rise in financial

uncertainty. Moreover, shutting down the volatility feedback leads financial uncertainty

shocks to react more strongly to macroeconomic variables. Consequently, the effects of

financial uncertainty on macroeconomic volatility become more severe, especially in the

short horizon.
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1 Introduction

Uncertainty has been considered as the main source of economic fluctuations over the last

two decades.1 Various proxies of uncertainty (either macroeconomic or financial) have been

used to understand its role in the dynamic interactions among macroeconomic and financial

variables. Major studies of this research strand include, among others, Christiano et al.

(2014); Gilchrist et al. (2014); Caggiano et al. (2014); Jo (2014); Jurado et al. (2015);

Rossi and Sekhposyan (2015); Baker et al. (2016); Caldara et al. (2016); Berger et al.

(2016); Cesa-Bianchi and Rebucci (2017); Bloom et al. (2018); Shin and Zhong (2020);

Carriero et al. (2018); Cesa-Bianchi et al. (2019) and Cuaresma et al. (2020). The existing

literature primarily relies on the restrictive identification assumptions within the homoscedastic

structural VAR model with stochastic volatility-in-mean (SVAR-SVM) to draw conclusions

on uncertainty effects. This methodological framework assumes, however, that shocks to the

stochastic volatility equations are contemporaneously independent from shocks hitting the

level of endogenous macroeconomics variables, which may cause statistical biases regarding

the sign and causal direction between uncertainty and macroeconomic variables. The recent

work of Ludvigson et al. (2015) explicitly pointed out the potential existence of endogeneity

bias in previous studies.

The challenge of the uncertainty literature pertains to the origins of uncertainty and the

mechanisms through which uncertainty is transmitted. The existing literature asserts that

uncertainty has its roots in economic fundamentals such as productivity, capital investment

decisions, and precautionary savings (e.g., Kimball (1989); Bloom (2009); Fernández-Villaverde

et al. (2011); Leduc and Liu (2016); Basu and Bundick (2017); Bloom et al. (2018)). Other

studies argue that uncertainty could serve both as a cause and as a propagating mechanism

through information or financial market frictions (e.g., Van Nieuwerburgh and Veldkamp

(2006); Bollerslev et al. (2009); Christiano et al. (2014); Gilchrist et al. (2014); Arellano et al.

1See Bloom et al. (2018) for a review of the literature.
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(2019)). From this perspective, econometric essays to explore the impacts of uncertainty

shocks on the volatility of macroeconomic variables are ultimately unsatisfactory as the

commonly-used VAR identification schemes, based on either sign restrictions, long-run

restrictions, and instrumental variables estimation, are likely exposed to an unobserved bias

caused by omitted variables and non-fundamentals of the errors (Carriero et al., 2018).

Moreover, the specification of volatility using the SVAR approach faces its own challenges

due to the fact that the volatility of each variable in the system has its own shock which is

independent from the shocks hitting the level of the variables. This implies that unexpected

movement in the common component of the volatilities of the vector autoregressive variables

impacts the conditional variances, but not the conditional means. This assumption would

lead, in turn, to a distorted estimate of endogenous feedback channel (Carriero et al., 2018).

Another drawback of the VAR models in the uncertainty literature is that they are characterized

by a homoscedastic error structure, which cannot provide a convincing evidence with respect

to the time-varying macroeconomic volatility. Thus, the use of heteroskedastic structure

with time-varying conditional variance is more adequate because it allows more flexibility in

modeling the conditional variance via stochastic volatility.

In line with the above-mentioned literature, the goal of this paper is to assess whether

and to what extent financial uncertainty2 is a source or a consequence of macroeconomic

volatility3? Answers to these questions will provide important implications not only for stock

market investments but also for the regulation of the macroeconomy. For example, if financial

uncertainty shocks immediately cause significant macro-financial fluctuations and tend to

have prolonged effects on the real economy, macroprudential policy interventions would be a

2Financial uncertainty is defined as uncertainty in financial markets. It refers to the situation where
information is imperfect or unknown. Various proxies of financial uncertainty are used in the literature.
We use different identification schemes through SVAR modeling, namely Cholesky decomposition, sign
restrictions and recursive structure.

3For the three macroeconomic variables that we consider (GNP growth, GNP deflator inflation
and unemployment), the macro-economic volatility is approximated by the standard deviation of these
variables.
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policy option to reduce the propagation of these shocks to the real economy, thus avoiding

systematic risk.

To conduct our empirical investigation, we develop a SVAR model with stochastic volatility-

in-mean (SVAR-SVM) where the volatility of system variables is modeled in a similar spirit to

the stochastic volatility-in-mean model originally developed by Koopman and Hol Uspensky

(2002).4 Technically, our proposed model contributes to the related literature with respect to

three important dimensions. First, it incorporates a correlated stochastic volatility structure

to allow financial uncertainty to contemporaneously react to changes in macroeconomic

variables. In the meanwhile, both the level and the volatility of endogenous macroeconomic

variables are affected by correlated shocks. Second, it enables us to identify the effect of the

endogenous volatility feedback through the structure of innovations.5 A few studies have

emphasized the possible endogeneity effects of uncertainty (e.g., Bachmann et al. (2013);

Mumtaz and Theodoridis (2018); Carriero et al. (2018); Mumtaz and Theodoridis (2018)).

Our methodology differs, however, from this literature in the sense that we model the impact

of both the conditional mean and the conditional variance on macroeconomic fundamentals

via time-varying stochastic volatility. This specification provides a more realistic appraisal

of volatility dynamics compared to those predicted by regime-switching models or GARCH

specifications. It is also worth noting that contrary to previous studies that impose constant

coefficients in the conditional mean, we allow the conditional mean’s coefficients to vary over

time in order to take the possibility of dynamic simultaneous feedback effects into account.

Finally, our work extends the existing uncertainty literature by using a large time-series data

which allows for long-term fluctuations in the macroeconomic volatilities, and thereby, avoids

the problem of omitted variable bias.

4This type of volatility modeling is alternative to the ARCH-M model and has been proven efficient.
5Our identification scheme is obtained by a heteroscedasticity structure in which the shocks of

the transition equation (volatility) are able to efficiently unveil the correlation with shocks attributed
to the observation equation (level). As a result, it allows the observed data to dynamically impact the
volatilities.
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Our results, from applying our setup to U.S. financial and macroeconomic data, mainly

show that volatilities of financial uncertainty shocks are high at short horizons and become

smaller as the horizon increases, suggesting the time-variation in volatility. There is robust

evidence to support the fact that higher financial uncertainty shocks raise the volatility of

macroeconomic variables with, however, a delayed effect. From a technical perspective,

our specification of correlated errors in both observation and transition equations is found

to improve the capability of identifying the endogenous movements of uncertainty shocks.

Moreover, the inclusion of stochastic volatilities in the mean equation as well as of volatility

feedback effects produces more accurate forecasts. Overall, our findings lead to the conclusion

that financial uncertainty is endogenous and neglecting the volatility feedback effects of

financial uncertainty would very likely imply distorted estimation of the impacts of financial

uncertainty shocks on macroeconomic volatility.

The rest of the paper is organized as follows. Section 2 describes the sample data and

the main variables we use in this study. Section 3 presents the theoretical framework of our

SVAR-SVM model with time-varying parameters. Section 4 reports the results. Section 5

concludes the paper.

2 Data and Variables

To explore the impact of financial uncertainty shocks on the U.S. economy, we collect quarterly

data from DataStream and the Federal Reserve Bank of St Louis (FRED) spanning the

period from 1990:Q1 to 2018:Q2. The sample period covers several financial crises and

prolonged turbulent times, allowing us to consider a number of historical events of high

financial volatility for shock identification. The end point of the sample was contingent on

the data availability.

Our model is estimated using a set of six endogenous variables Yt = (Mt,Ft)
0 that
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encompass three macroeconomic variables Mt and three financial indicators Ft. The macroe-

conomic variables include the quarterly real GNP growth (y), the quarterly GNP deflator

inflation (P ), and the quarterly civilian unemployment rate (U ). The financial indicators

include the yield spread of BAA corporate bonds over the 10-year Treasury bill rate (S),

the house price index (HPI), and the S&P500 index (S&P ). The data on unemployment

rate, real GNP growth and GNP deflator inflation are obtained from FRED, while the spread

between BAA corporate bond yield and the 10-year Treasury bill rate, house price index and

the S&P500 index are obtained from DataStream.

To remove the potential impact of the endogeneity problem at the earliest stage, we

set the lag length of the endogenous macroeconomic variables to two. This is consistent

with the conjecture employed in VAR models that use quarterly data (Cogley and Sargent,

2005; Primiceri, 2005). Since the exact impact of the lagged volatility of the structural

shocks on macroeconomic variables could not be captured easily, we allow it to last within a

3-month period. We also implement linear detrending to take into account the low-frequency

movements in the macroeconomic variables.

Table 1: Descriptive statistics

Statistic Mean St. Dev. Min Max Skewness Kurtosis Jarque-Berra N

GNP growth (y) 0.5319 0.7614 �2.65 2.09 �1.3202 6.1412 79.991 ** 114

GNP deflator (P) 0.6672 0.5075 �0.16 2.72 2.0248 7.2870 165.202 ** 114

Unemployment (U) 6.0970 1.4472 3.90 10.53 0.9229 3.7673 18.982 ** 114

Yield spread (S) 2.3746 0.7870 1.08 5.82 1.5677 7.2624 133.001 ** 114

House price (HPI) 129.22 40.3410 75.30 202.53 0.0184 1.5491 10.005 ** 114

S&P 500 index 1173.8 588.9992 317.05 2732.58 0.4946 2.8919 4.704 * 114

Notes: In this table, descriptive statistics for the variables y, P , U and S are obtained from
time-series that are multiplied by 100 with the actual observation values. For the Jarque-Berra
test, ** and * denote significance at 1% and 10% levels respectively, both indicating the rejection
of normality. N denotes the number of quarterly observations.

Descriptive statistics of variables, given in Table 1, show that all series, and particularly

the GNP growth (y), the GNP deflator inflation (P ) and the S&P 500 index (S&P ), are

characterized by high variability as their standard deviation exceeds 50% of their average.
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Moreover, all time series exhibit strong deviations from the normal distribution as their

skewness and kurtosis values depart widely from 0 and 3, with the exception of S&P500 index

whose distribution only depart slightly from normality. This characteristic is formally validated

by the Jarque-Berra test which statistically rejects normality for all time series. High volatility

and deviations from normality emphasize the role of uncertainty in the U.S. economic and

financial systems.

3 Empirical Model

As stated earlier, we develop a SVAR-SVM model to investigate the responses of macroeco-

nomic volatility to financial uncertainty shocks. This section successively presents its general

framework and its empirical specifications that we apply to the US market economy.

3.1 Volatility-in-mean specification

We consider the general class of the stochastic volatility model (called SVM model) in the

spirit of the seminar work of Koopman and Hol Uspensky (2002), where the conditional

variance of the observable variables enters into the conditional mean equation.

In more formal terms, consider the variance equation of the stochastic volatility model of

the following form:

�2
t = �⇤2exp(ht) (1)

with �⇤ a positive scaling factor measuring the volatility level. We define the volatility process

�2
t as the product of the positive scaling factor and the exponential of the stochastic volatility

process ht. We formally assume that ht = ln(�2
t /�⇤2) with :

ht = ✓ht�1 + ⌘t (2)
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where ✓ represent a diagonal matrix implying that each element of ht follows an autoregressive

processes AR(1). In this setup, ✓ captures the shocks persistent effect and ⌘t is the error

term of stochastic volatility.

Without losing generality, the mean equation can be rewritten as:

Yt = c+
kÿ

i=1

�iyt�i + b�⇤2exp(ht) + �t✏t, ✏t
iid
⇠ (0, 1) (3)

where b represents the risk premium coefficient and captures the volatility-in-mean effect. To

simplify the exposition, we specify the variance equation in logarithmic form, that is:

�t = �⇤exp(
ht

2
) (4)

This is a common feature in stochastic volatility models with the aim to implicitly

implement non-negativity constraints, and imply that the elements of ht have log-normal

distributions.

As can be seen in Eq. (1),Eq. (2),Eq. (3) and Eq. (4), the mean and its volatility evolve

stochastically as:

Yt = c+
kÿ

i=1

�iyt�i + b�⇤2exp(ht) + �⇤exp(
ht

2
)✏t, ✏t

iid
⇠ (0, 1) (5)

ht = ✓ht�1 + ⌘t, ⌘t
iid
⇠ (0, 1) (6)

3.2 The SVAR with stochastic volatility (SVAR-SVM)

We consider the following generalization of the state–space structural vector autoregression

(SVAR) with stochastic volatility (SV) which is very close to the SVM formula specified by

Koopman and Hol Uspensky (2002), and Lemoine and Mougin (2010).
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Y
______]
______[

Yt = c+
Pÿ

j=1

�jYt�j +
Kÿ

k=1

bkÂht�k + Â✏t

Âht = ↵+ ✓Âht�1 +
Kÿ

j=1

�jYt�j + Â⌘t

(7)

(8)

where Yt denotes N ⇥ 1 vector of endogenous variables, while Âht are N ⇥ 1 vector of stochastic

volatilities. In the empirical model, one can interpret Â⌘t as the innovation to the volatility

and Â✏t, the innovation to the level, both are modelled as Â⌘t = S1/2⌘t and Â✏t = H1/2
t ✏t.

Now suppose that �j , bk are the corresponding (N ⇥N) coefficient matrices at each

point in time. We denote the parameter bk as the risk premium coefficient that allows us to

examine the volatility-in-mean feedback effect while �j is a regression coefficient measuring

the dynamics of endogenous variables in the mean equation. Thus, the above equation

Eq. (7) is known as the measurement or observation equation with Yt�j denoting lagged

terms of endogenous variables while Âht is the log volatility and c an (N ⇥ 1) intercepts vector.

Eq. (8) is known as the transition equation or volatility equation for the stochastic

volatilities where Âht refers to the log-volatility of the structural shocks. In order to understand

the vector Âht, let log-volatility of the structural shocks be a stacked vector the main diagonal

matrix Ht = diag
1
exp(Âht)

2
. Formally, the stochastic volatilities are expressed by the (N ⇥ 1)

vector Âht = [h1,t,h2,t, ..,hN ,T ] where each element of Âht is assumed to follow VAR model.

We follow Kim et al. (1998); Mumtaz and Zanetti (2013) and Mumtaz and Theodoridis

(2019), and allow Âht to depend on its first lag with ✓ being the (N ⇥N) coefficient matrices

of the volatility persistence. More precisely, we explicitly treat ✓ as a non-diagonal matrix

with the elements of Âht enabling us to model the dynamic relationship amongst endogenous

variables themselves with ↵ as an (N ⇥ 1) intercept vector.

In the model given in Eq. (7)-Eq. (8), the (N ⇥N) coefficient matrices �j ensure that

lagged endogenous variables would influence Âht and, intuitively, affect the endogenous variables

of Yt. In a reduced form, we define the correlation amongst the disturbances by Â⌘t = S1/2⌘t
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and Â✏t = H1/2
t ✏t. We retain the form of Eq. (7)�Eq. (8) but assume that the disturbances

are correlated as follows:

Ψ =

Q
ccccca

⌘t¸˚˙˝
N⇥1

✏t¸˚˙˝
N⇥1

R
dddddb

iid
⇠ N (0,Σ) , Σ¸˚˙˝

M⇥M

=

Q
ca

Σ⌘t
Σ
0

⌘t,✏t

Σ⌘t,✏t Σ✏t

R
db

where the diagonal elements of Σ involve restrictions equal to 1. The time-varying vari-

ance–covariance matrix Ωt of the system takes the following form:

Ωt =

Q
ca
S1/2 0

0 H1/2
t

R
db

Q
ca

Σ⌘t
Σ
0

⌘t,✏t

Σ⌘t,✏t Σ✏t

R
db

Q
ca
S1/2 0

0 H1/2
t

R
db

0

The shocks to the observation equation Eq. (7) have a variance Ht = diag
1
exp(Âht)

2
so

that Âht = [h1,t,h2,t, ..,hN ,T ]. The observation equation of the state-space system is then

defined as:

Yt �H1/2
t µ✏t|⌘t = c+

Pÿ

j=1

�jYt�j +
Kÿ

k=1

bkÂht�k + Â✏t (9)

var (✏t) = Ωt = H1/2
t Σ✏t|⌘tH

1/2
t

0

µ✏t|⌘t = ⌘tΣ
�1
⌘t

Σ
0

⌘t|✏t

Σ✏t|⌘t = Σ✏t
� Σ⌘t✏t

Σ
�1
⌘t

Σ⌘t

0

✏t

where µ✏t|⌘t denotes the conditional mean of ✏t and Σ✏t|⌘t is the conditional variance.

The shocks to the transition equation Eq. (8) have a variance S = diag (Âs) with
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s̃¸˚˙˝
N⇥1

= [s1, s2, ..., sn]
0. Taking into account the residuals µt and Σ, we set the transition

equations as follows:

h̃t � S1/2µ⌘t|✏t = ↵+ ✓Âht�1 +
Kÿ

j=1

�jYt�j + Â⌘t (10)

var (⌘t) = S1/2
Σ⌘t|✏tS

1/20

µ⌘t|✏t = ✏tΣ
�1
✏t

Σ⌘t|✏t

Σ⌘t|✏t = Σ⌘t
� Σ⌘t

0

✏t
Σ
�1
⌘t

Σ⌘t

0

µt

Several features differentiate our model from the SVARs typically used in the uncertainty

literature. First, the contemporaneous value and the lagged values of Âht are allowed to affect

Yt through volatility shocks process. As such, our specification fits naturally well into the

theoretical framework and becomes more attractive in modelling volatility dynamics because

the structure of the stochastic volatility is technically able not only to identify financial

uncertainty shocks, but also to interpret the direct impact of innovations to the volatility of

these structural shocks Âht�k on the level of the endogenous variables Yt. In practical terms,

the specification of model allows us to place an economic interpretation on the shocks as

it allows the model to tackle the analysis of the impact of volatility while maintaining the

flexibility of the state space framework.

Second, to shed light on the time-variation of uncertainty, our structure of stochastic

volatility finds its root in the formulation used in time-varying VAR models (see, e.g. Cogley

and Sargent (2005); Primiceri (2005); Gambetti et al. (2008); Canova and Gambetti (2009,

2010)). Compared to the earlier models, we allow for time-varying volatility impacts in both
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the mean and the variance of variables. More importantly, the log-volatility of structural

shocks, Âht�k, are time-varying and included in the measurement equation as regressors, which

provides more precise estimates for typical macroeconomic applications because it helps avoid

the risk of losing information about prior sensitivity. Indeed, measuring uncertainty under level

specification proved to be sensitive to the scaling of the variables and far more computationally

unstable (Mumtaz and Zanetti, 2013; Mumtaz and Theodoridis, 2015). Third, our model

contains an important advantage over the univariate stochastic volatility of mean model or

the standard Bayesian VAR with stochastic volatility. More precisely, many scholars, such as

Clark and Ravazzolo (2012) among others, have dealt with an independent auto-regressive or

random walk process for each log-variance, while here we build on the fact that the elements

of Âht may co-move together. In short, our assumption is useful and flexible enough to capture

possible changes in volatility of shocks to macroeconomic and financial variables. This is

a feature that is missing from previous papers that consider stochastic volatility-in-mean

models.

Fourth, there is a very limited number of studies which have been dealt with volatility

shocks through Bayesian methods. Related earlier SVAR-based studies are given by Mumtaz

and Zanetti (2013) and Mumtaz and Theodoridis (2015) which uses in particular changes in

the volatility of the variables for identifying uncertainty shocks. Certainly, estimation and

Bayesian inference in such models are not yet fully developed. The issue here has to do the

usually maintained uncorrelated assumption between shocks to the volatility equation, ⌘t, and

the ones to the observation equation, ✏t . Our framework goes one step further by allowing for

correlated shocks, which implies the non-zero co-variance between level shocks and volatility

shocks. When considering such correlation, the structural shocks can be identified in a

second step and, without loss of generality, SVAR techniques can simply distinguish between

uncertainty and level shocks rather than imposing a strict exogeneity a priori. Accordingly,

the above generalised stochastic volatility in mean framework described in Eq. (9)-Eq. (10)
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enables to track the dynamic effects of volatility of structural shocks on the volatility of

macroeconomic variables.

It is also worth mentioning that the presence of the terms
qK

k=1 bk
Âht�k and

qK
j=1 �jYt�j

allows to reflect the dynamic lead–lag dependence between the level and volatility of the

endogenous variables, rather than to rely on lagged changes generated from the data in

the transition equation (see Mumtaz and Theodoridis (2015); Chan (2017)). Our model

specification makes the level (volatility) shocks evolving over time with lead-lag impact on

volatility (level). Hence, this research can also be thought of a novel method to quantify

endogenous uncertainty effect with the multivariate extension of the stochastic volatility-in-

mean model proposed by Koopman and Hol Uspensky (2002) and applied by Lemoine and

Mougin (2010). Note also that our model imposes additional structure to the stochastic

volatility models with leverage as in Asai and McAleer (2009); Jacquier et al. (2004); Omori

et al. (2007); Pitt et al. (2014).

3.3 Identification of the policy shocks

To capture the financial uncertainty shocks, we consider three identification schemes.

• Cholesky decomposition:

To statistically identify the stochastic volatilities, we impose a normalization on the

innovation of the covariance matrix Ωt. This can be conceivably attained by a Cholesky

factorization of the covariance matrix as follows: Ωt = A0

0,tA0,t .

While such a normalization does not fully describe the macroeconomic behavior, an

appropriate ordering of the endogenous variables in the vector Yt would grant an

economic interpretation to the orthogonalized shocks (see Primiceri (2005) and Canova

and Gambetti (2009)). Therefore, we assume the ordering of financial indicators before

the macroeconomic variables. Accordingly, the variables are ordered as follows :
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1) Yield spread of BAA corporate bonds over the 10-year Treasury bill rate S; 2) House

price index (HPI); 3) The S&P 500 index (S&P ); 4) Quarterly real GNP growth

(y); 5) Quarterly GNP deflator inflation (P ); and 6) unemployment rate (U ). The

structure of the variance matrix of shocks, Ht, is given by the following diagonal form:

Ht =

Q
ccccccccca

exp(h1t) 0 . . . 0

0 exp(h2t) . . . 0

...
...

. . .
...

0 0 . . . exp(h3t)

R
dddddddddb

where h1t is the shock to the credit spread (S), h2t is the shock to house price index

(HPI) and h3t is the shock to the S&P 500 index (S&P ) .

• Sign restrictions:

To define the shock of interest, we would typically impose a restriction scheme on the

appropriate elements of the A0 matrix. In particular, we allow for contemporaneous

sign restrictions on the shocks where the structural shocks are modelled as ut = A�1
0,t ✏t.

This structure implies that A0,t represents the contemporaneous response of the

endogenous variables to structural shocks ✏t. Accordingly, we require that shocks to

h1t, h2t and h3t meet the following conditions:

i) Financial uncertainty shocks to h1t have a positive correlation with house price index

(HPI) and the S&P500 index (SP ), while shocks to h2t and h3t have a negative

impact on GNP deflator inflation (P ) and civilian unemployment rate (U ). We assume

that uncertainty shocks to h1t display a correlation that is bigger in magnitude.

ii) Financial uncertainty shocks to h1t, h2t and h3t are restrained to be at least two

standards deviations larger than their mean during the financial crisis.

These assumptions allow us to explore an important number of events of high financial
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volatility for shock identification.

• Recursive structure:

The recursive identification schemes assume that shocks to h1t have no contempora-

neous impact on macroeconomic variables but they can affect the house price index

(HPI), and the S&P 500 index (S&P). In order to identify the U.S. financial uncer-

tainty shocks, the recursive structure needed in identifying the structural parameters

takes the following form:

Ã = A�1:

Ã =

Q
cccccccccccccccca

1 0 0 0 0 0

ã21 1 0 0 0 0

ã31 ã32 1 0 0 0

ã41 ã42 ã43 1 0 0

ã51 ã52 ã53 ã54 1 0

ã61 ã62 ã63 ã64 ã65 1

R
ddddddddddddddddb

More technically, the underlying structure of Ã implies that an increase in the BAA

corporate bond yield relative to the 10-year Treasury bill rate (S) leads to a contempo-

raneous increase in house price index (HPI), and the S&P500 index (S&P ).

4 Empirical results

We now use our empirical model to examine the responses of macroeconomic variables to

the uncertainty associated with the shocks affecting three financial indicators including the

yield spread of BAA corporate bonds over the 10-year Treasury bill rate (S), h1t, the house

price index (HPI) h2t, and the S&P 500 index (S&P ), h3t under the identification schemes
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described in the previous section. We begin with reporting the estimated volatility of the

financial structural shocks, then present the results of impulse response functions and forecast

error variance decomposition.

4.1 Estimated volatility of the financial structural shocks

Figure 1 plots the estimated volatility of the structural shocks associated with the three

financial indicators (i.e., financial uncertainty), together with the 90% credible confidence

intervals.6 As can be seen, the results are quite similar across the three shock identification

schemes we discussed in the previous section, in terms of both size and fluctuation patterns.

The financial uncertainty related to the yield spread shock ht is larger than the uncertainty

from the house and equity prices, but it exhibits a more pronounced decline. There is evidence

of time variation in these estimated financial uncertainties because they show high values at

horizons of one and two quarters, and become much smaller as the horizon increases. More

importantly, their long-lasting patterns of change suggest a potential of sizable and delayed

transmission of financial uncertainty shocks on the macroeconomy till the end of the sample.

It is worth noting that when assessing their distance to the mean, the general contours

of the estimated volatility series are found to be fairly similar across the three identification

schemes. This evidence has important methodological implications as it proves that our key

results neither depend on the prior setting in the baseline calibration nor on the degree of

fatness of shocks’ distributions. Also, the large fluctuations in financial uncertainty emphasize

the importance of having the volatility term ht in the mean equation. These results are highly

consistent with those documented by Clark (2011), in that the magnitude and the evolution

of uncertainty shocks do not depend on the identification scheme.

Table 2 reports the estimated posterior moments and pseudo-standard errors of the

6Credible confidence interval is an interval of posterior probability distribution within which an
unobserved parameter value falls with given particular probability.
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Fig. 1: Estimated Standard Deviation of the Structural Shocks ht
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Table 2: Estimated posterior moments

Parameter

Posterior
mean

Standard
error

90% credible
interval Parameter

Posterior
mean

Standard
error

90% credible
interval

Growth Deflator

c 0.518 0.248 (0.063, 0.653) c 0.163 0.418 (0.147, 1.242)
� 0.480 0.004 (0.522, 0.384) � 0.570 0.002 (0.590, 0.494)
b 0.025 0.054 (0.019, 0.051) b 0.025 0.002 (0.046, 0.044)
↵ 0.954 0.019 (0.914, 0.019) ↵ 0.951 0.012 (0.928, 0.965)
✓ 0.94 0.006 (0.861, 0.952) ✓ 0.85 0.004 (0.074, 0.003)
� 0.018 0.005 (0.421, 0.971) � 0.25 0.002 (0.632, 0.844)

Unemployment Yield spread

c 0.172 0.227 (0.213, 0.248) c 0.164 0.350 (0.176, 0.234)
� 0.567 0.003 (0.592, 0.535) � 0.665 0.002 (0.690, 0.622)
b 0.019 0.001 (0.017, 0.264) b 0.015 0.001 (0.016, 0.210)
↵ 0.456 0.015 (0.827, 0.981) ↵ 0.751 0.014 (0.865, 0.975)
✓ 0.72 0.004 (0.623, 0.835) ✓ 0.644 0.003 (0.525, 0.792)
� 0.015 0.003 (0.417, 0.625) � 0.051 0.004 (0.465, 0.677)

House prices index S&P 500 index

c 0.145 0.277 (0.253, 0.448) c 0.192 0.350 (0.236, 0.394)
� 0.660 0.004 (0.532, 0.772) � 0.615 0.004 (0.750, 0.701)
b 0.026 0.019 (0.035, 0.043) b 0.015 0.001 (0.018, 0.020)
↵ 0.456 0.012 (0.724, 0.831) ↵ 0.360 0.011 (0.268, 0.543)
✓ 0.715 0.003 (0.825, 0.885) ✓ 0.750 0.002 (0.788, 0.798)
� 0.014 0.002 (0.453, 0.843) � 0.465 0.003 (0.449, 0.434)

Note: Parameter c is the intercept in the observation equation (first equation below),
while ↵ is the intercept of the log-stochastic volatility in the transition equation (second
equation below). Y

______]
______[

Yt = c+
Pÿ

j=1

�jYt�j +
Kÿ

k=1

bkÂht�k + Â✏t

Âht = ↵+ ✓Âht�1 +
Kÿ

j=1

�jYt�j + Â⌘t

Parameter � represents the dynamics of endogenous variables in the observation equation
while b measures volatility-in-mean feedback. ✓ captures the volatility persistence while
� captures the lagged effects from the data in the transition equation. The results are
based on 150,000 iterations (with 50,000 burns).
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volatility models’ parameters. The results reveal that the sign of the posterior means is in

line with what macroeconomic reasoning would suggest. Indeed, the coefficients associated

with the lagged endogenous variables � and � are positive and statistically significant. Their

posterior mean together with 90% confidence intervals show relatively more pronounced

estimate, implying that the one-quarter ahead fluctuations in macroeconomic variables cause

significant changes in the current volatility. Moreover, the volatility feedback parameter, bk,

is significant and positive, suggesting the importance of the impact of financial uncertainty

on macroeconomic volatility throughout the sample.

In what follows, we analyze time-varying dynamics in the volatility of shock process. For

tractability, we consider the posterior evidence regarding the volatility of the structural shocks,

ht and volatility feedback, bk through our sampling interval.

In Figure 2, we have plotted the evolution of parameters and the associated 90% credible

intervals. We have several important findings. As can be seen from the left panel of Figure 2,

peaks in volatility are observed during the first and third terciles of our sample. At the

same time, we see that the evolution of ht closely tracks with that of volatility feedback, bk,

throughout the first period.

Clearly, this pattern is viewed as a compelling evidence that an increase in volatility

coupled with a large ht value may trigger an increasing volatility feedback effect. More

importantly, the most striking feature among these evolution is that volatility and its feedback

have a high degree of comovement for a short period.

As this volatility tends to change on a long time horizon, there are not many extreme ht

values, and also volatility feedback, bk, behave quite differently. One can look at Figure 2

for a visual impression in co-movements where we observe a divergence between the two

patterns. At this point, volatility tends to relax much faster with very limited feedback in

future volatility. It is also visible from right panel in Figure 2 that the volatility feedback had

been steadily decreasing until the end of the period.
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However, one must also keep in mind that this is not attributable to the highly persistent

overall conditional volatility, We believe that this could be a consequence of the fact that the

shocks of observation equation in Eq. (7) are correlated with the shocks of the transition

equation in Eq. (8).

It should additionally be noted that the estimates associated with the parameters of ht

process are particularly useful for explaining a larger fraction of volatility. As a matter of

fact, the coefficient of second moment shocks ✓t are similar for all series, and the relative

standard deviations are highly persistent in terms of their magnitudes and fluctuations, with

the posterior mean of ✓t estimated to be about 0.84� 0.95 and having a 90% credible

confidence interval of [0.928, 0.995]. Our results are consistent with those of Shin and Zhong

(2020) in that it emphasizes the centrality of second moment structural shocks in identifying

the real effects of uncertainty shocks.

It is interesting to note that our results are particularly relevant and novel when viewed

in the context volatility-in-mean effect. In particular, we provide an additional stylized fact

showing that setting both first and second moment responses to identify our structural

financial uncertainty shocks ensures the existence of endogenous financial transmission. In

other words, endogenous financial uncertainty is not coincidental but structural in nature.

This provides an empirical implication that the transmission effect of uncertainty shocks to

the U.S macroeconomic volatility is robust at long horizons.

In short, the assumption of correlated error in both the observation and transition

equations improves the capability of clarifying the endogenous movements of uncertainty

shocks. Additionally, allowing for a direct impact of volatility in the transition equation is

quite robust and flexible in modeling uncertainty shocks.

20



4.2 Macroeconomic responses to structural shocks of financial

variables

In this section, we analyze the implications of correlated errors in stochastic volatility models

through the use of impulse response functions and forecast error variance decompositions.

4.2.1 Generalized Impulse response functions (GIRF)

We start by performing a Monte Carlo integration to compute the generalized impulse response

functions (GIRF) as described in Koop et al. (1996). For this purpose, we specify the GIRF

as:

GIRF = E
1
Yt+k

--- Âht,Z,Yt, ⌘t,j = �, et,j = ⌫
2
�E

1
Yt+k

--- Âht,Z,Yt
2

Let Z denote the set of parameters of SVAR model, where k is the horizon, and ⌘t,j is

the shock to the volatility equation, while, et,j is shock to the observation equation. To be

precise, the first term in equation above involves the forecast of the endogenous variables

conditioned on one of possible structural shocks �, ⌫ while the second term can be treated

as a baseline forecast i.e. conditioned on scenario usually associated with shock equals zero.

Intuitively, the “generalized” impulse-responses are calculated as the difference between

two conditional expectations. In particular, we simulate the model under an innovation � to

the volatility shock and ⌫ to the level shock.

In Figure 3, we present the impulse responses of each macroeconomic variable at a

different horizon using the estimated parameters. For comparability across episodes, the

interpretation of the shocks follows the appropriate identification schemes. In addition, for

each identified volatility, the responses have been normalized to reflect a common size
Ò
�2
⌘✏

of the uncertainty shock. According to Figure 3, the estimated responses supports the

view that higher financial uncertainty shocks raise the volatility of macroeconomic variables
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(i.e. unemployment, GNP and inflation). More specifically, we notice that the impulse

response estimates to financial uncertainty ht shock exhibit fairly persistent rise in volatility

for conditional output (Y ).

Accordingly, volatility can roughly be described as increasing by 50% over the first part of

the sample. On the other hand, the response of GNP deflator inflation (P ) and unemployment

(U ) differ more significantly. As expected, macroeconomic volatilities are subject to relative

changes over time where financial uncertainty shocks seem to be a plausible reason for this

variation within the first 10 quarters. However, the impact of these shocks on macroeconomic

volatilities exhibits a temporary effect and becomes close to zero in the long-term (see

Figure 2). Generally speaking, the responses are qualitatively in line with those reported by

Carriero et al. (2018).

4.2.2 Variance decomposition

So far, from the analysis of impulse response function, we have found that endogenous

financial uncertainty shocks may have hump-shaped pattern effects on the macroeconomic

variables of the SVAR model.

To further elicit the sources of volatility of macroeconomic variables, we conduct a forecast

error variance decomposition. Over the entire sample, we compute a variance decomposition

based on the contributions of the volatility shock and level shock to the forecast error

variance (FEV) of the endogenous variables. Table 3 reports the median estimates for the

FEV decomposition over different sub-periods using the method described by Uhlig (2004).

According to these estimates, the volatility shock is almost evenly important at short horizons

(2Q� 4Q). Our finding indicates that the contribution of the volatility shock accounts for

35% of the fluctuations in the quarterly real GNP growth (Y ) and inflation (P ), which is

consistent with the findings of Christiano et al. (2014) but somewhat different from those

of Caggiano et al. (2014) in terms of significance levels and the coefficient signs. However,
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the effects on unemployment are quite modest for most of the sample; and this contribution

appears to be significant, and quantitatively more robust than what has been brought forward

by Bachmann et al. (2013) and Jurado et al. (2015).

The most striking fact about stochastic volatility that we have found so far is that

introducing correlated error feature into SVAR model makes the variance of the structural

shocks time-varying. This indicates that in terms of the structural shocks, the contribution to

the forecast error variance in subsequent periods is also time-varying. We can see from the

Table 3 that the overall contribution is relatively important on impact and it weakens over time.

Additionally, we observe at the 8- and 12-quarter horizons, both level and volatility shocks

account for about 8-10% of the fall in the forecast error variance of the long-run uncertainty

expectations. These results are in line with the second order “variance” phenomenon found

by Carriero et al. (2018) rather than the first order “level” shock displayed by Bloom (2009)

and Mumtaz and Theodoridis (2018).

Overall, our results are not in all cases consistent with the findings of Caldara et al. (2016)

and Gilchrist et al. (2014). However, theoretically speaking, this is not surprising as this

partial inconsistency illustrates the differences in the methodologies. Compared to set of

alternative models such as a small-scale VAR, our model with stochastic volatility-in-mean

formulation is more reliable in detecting endogenous uncertainty shocks.

4.3 Volatility-in-mean feedback effects

To get a better understanding of how introducing endogenous volatility feedback effects

drastically changes the volatility dynamics under the different identification schemes. We

consider the effects of erroneously imposing the restriction (bk = 0) to the feedback coefficient

bk (see Eq. (7)) but we also take the correlation between the shocks to the level and volatility

into account.

In the spirit of the study of Clark (2011) and Clark and Ravazzolo (2012), we evaluate
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Table 3: Contribution to volatility and levels of endogenous variables

Variable Horizon Decomposition of volatility shocks Decomposition of level shocks

GNP growth (y) 2 Q 34.819 22.206
(23.5,28.40) (23.2,24.2)

4 Q 23.901 18.167
(15.52,18.65) (11.37,12.51)

8 Q 17.684 14.316
(10.48,12.58) (8.57,9.52)

12 Q 9.654 6.18
(2.08,2.48) (1.07,2.42)

Unemployment (U) 2 Q 8.874 6.245
(9.52,12.44) (8.32,9.62)

4 Q 10.658 9.265
(7.08,8.46) (6.82,7.22)

8 Q 8.840 6.235
(6.32,7.02) (5.72,6.02)

12 Q 4.902 3.245
(2.74,4.40) (1.40,3.10)

Inflation (P) 2 Q 34.736 29.425
(13.64,14.20) (12.12,13.14)

4 Q 27.405 26.278
(13.02,12.65) (11.02,11.40)

8 Q 22.632 20.279
(1.79,11.89) (1.62,11.72)

12 Q 17.893 15.719
(10.24,0.40) (10.12,0.19)

Notes: This table reports the changes in forecast error variances by level shocks and volatility shocks using the VAR model with
time-varying stochastic volatility
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the accuracy of point real-time forecast (defined as posterior medians) within a Monte Carlo

simulation framework and root mean square errors (RMSEs) between unrestricted model

and a model with the feedback effects bk restricted to be zero, (i.e., bk = 0).

In Table 4, we present the results of the benchmark model and the restricted model. Here

again, the results more formally quantify our findings. The posterior distributions exhibit

diverging patterns but improve the point forecast over time relative to the unrestricted model.

In particular, it can be observed that most of the improvement in forecast is found at short

horizon (1Q� 2Q). This confirms the evidence that achieving more accurate SVAR forecasts

can be done not only by including stochastic volatilities in the mean equation but also

including the feedback effects as well. Nevertheless, we do find some evidence of endogeneity,

the coefficients are broadly different from zero (bk 6= 0) and particularly recover the true

value of data with precise estimates which do not completely die out even at the 8-quarter

ahead horizons. There are indeed some differences between the two models. Specifically,

we find that imposing a restriction would lead to unbiased and inefficient estimates. With

this caveat in mind, available evidence renders some support to the claim that ignoring the

possibility of endogenous volatility feedback effects would complicate the task of generating

informative disclosures of historical movements in volatility.

Intuitively, the evidence from estimation results predicts that if financial uncertainty

was treated as exogenous, then the resulting posterior distributions would be considerably

distorted and would fail to recover the true values of the coefficients that affect not only the

conditional mean of Yt but also the underlying conditional variance as well.

To sum up, these results indicate that shutting down the volatility feedback effects of

financial uncertainty would very likely lead to distorted estimation of the effects of financial

uncertainty shocks on macroeconomic volatility, and it would create a confusion between

its contemporaneous and lagged effects. In other words, this pattern shows that financial

uncertainty might be endogenous.
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Table 4: Monte Carlo results: Comparison between imposing bk = 0 vs bk 6= 0

Para-
meter

1Qa
2Qb

4Qc
6Qd

8Qe
10Qf

Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

bk = 0

β 0.098 0.009 0.245 0.009 0.013 0.089 0.003 0.078 0.007 0.114 0.006 0.028

σ 0.004 0.014 0.077 0.015 0.065 0.002 0.074 0.000 0.325 0.082 0.916 0.262

θ 0.185 0.045 0.069 0.078 0.005 0.046 0.078 0.055 0.194 0.0070 0.928 0.081

δ 0.165 0.036 0.078 0.004 0.063 0.015 0.045 0.077 0.243 0.049 0.097 0.087

bk 6= 0

β 0.002 0.889 0.764 0.445 0.057 0.447 0.008 0.070 0.940 0.027 0.936 0.029

σ 0.001 0.446 0.003 0.096 0.065 0.047 0.005 0.054 0.101 0.011 0.100 0.012

θ 0.004 0.410 0.004 0.080 0.045 0.004 0.014 0.036 0.040 0.007 0.050 0.005

δ 0.005 0.780 0.002 0.070 0.052 0.046 0.051 0.065 0.002 0.042 0.004 0.042

Data generating process DGP a DGP=0.1 b DGP=0.22 c DGP= 0.25 d DGP= 0.21 e DGP= 0.22
f DGP= 0.20
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5 Conclusion

In this paper, we have attempted to answer a crucial question: Is financial uncertainty

an exogenous source of macroeconomic volatility or an endogenous response to economic

fundamentals? In this regard, we develop a time-varying stochastic volatility-in-mean model

where shocks to the transition and observation equations are correlated. We apply our model

to the U.S. macroeconomic and financial variables.

Our results point towards the conclusion that endogenous financial uncertainty shocks do

matter for macroeconomic volatility. Ultimately, the results indicate that more severe increase

in endogenous volatility shocks may cause more negative impact on macroeconomic volatility

(i.e., an increase in the magnitude of volatility). Results are robust to a number of identification

schemes of uncertainty shocks. It is also found that shutting down the feedback channel raises

the volatility shocks and leads uncertainty shocks to react more strongly to macroeconomic

variables (i.e. unemployment, GNP and inflation), in turn, causing macroeconomic volatility

effects to be more severe, especially in the short horizon. The empirical results carried out

from this paper are helpful in shedding further important implications for the policymakers.

In particular, uncertainty shocks are found to cause immediate and significant macro-financial

fluctuations and tend to have prolonged effects on the real economy. Our results therefore

support the immediate adoption of macro-prudential policy interventions geared toward

limiting the propagation of these shocks to the real economy.

For further research on this topic, it is recommended to extend the analysis by checking

on whether or not the stochastic volatility model with the time-varying parameter variants

also fit other macroeconomic or financial time series better.
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