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Abstract

One positive impact of the 1973 oil crises has been the concerted effort across the world to

reduce energy consumption through energy use efficiency improvements. Improving energy

efficiency ensures the objective of conserving energy and thus promoting sustainable

development. Recognition of this fact has now appeared in terms of including the aim of

improving efficiency as an important component of electrical energy policy in all the countries

across the globe. Conserving electrical energy through energy efficiency measures can meet the

high challenge of increasing energy demands at reasonable costs in a sustainable manner.

Moreover, improving energy efficiency also has the potential of reducing the environmental and

health threats associated with the use of hydrocarbons and of encouraging clean energy systems.

In this study, our focus is on electrical energy conservation by means of efficiency

improvements. A large number of studies have demonstrated that the aggregate energy efficiency

inherently encompasses a number of factors that affect energy intensity, viz., a structural effect,

representing the effect of changes in economic structure, an activity effect, representing the

changes in the levels of aggregate activity, a wealth effect, representing changes in GDP, and an

underlying energy efficiency effect, including a technical effect and an energy quality effect.

This new light has in turn led to the development of the techniques of factorization or

decomposition.

Energy efficiency research in general has opened up three avenues of enquiry, namely, the

measurement of energy productivity, the identification of impact elements (such as the three

factors mentioned above) and the energy efficiency assessment. The traditional interest in energy

efficiency has centred on a single energy input factor in terms of productivity that has become

famous through an index method proposed by Patterson (1996). The enquiry that has proceeded

from the problems associated with this method has led to identifying the effect source of

variation, in terms of some decomposition analysis. Almost all the earlier studies have in general

employed the method of indicators pyramid, based on which energy efficiency changes have

been decomposed from other factors at each level of disaggregation using factorization method.

Factorization has been conducted either on the energy-GDP ratio or almost equivalently on total

consumer energy use and carried on to the finest level of subsector, subject to data availability.



The Laspeyres index decomposition approach was in vogue earlier that has now been replaced

with methodologically superior Divisia approach, in terms of Logarithmic Mean Divisia index

(LMDI). Finally, a new energy efficiency estimation method, criticizing the single factor energy

efficiency method, has come up utilizing a multi-variate structure. Here we have a parametric

(econometric) approach, in terms of frontier production function analysis, and a non-parametric

approach, in terms of data envelopment analysis (DEA).

Following the introductory chapter, the next chapter presents a detailed discussion of a techno-

economic approach to conceptualizing energy efficiency. Chapter three discusses all the

traditional analytical methods and the index decomposition approach to measuring energy

efficiency. The next three chapters constitute the core of the study: Chapter four takes up the

analytical and empirical exercises based on Logarithmic Mean Divisia index for the State of

Kerala with the available data. The next two chapters present the theoretical and empirical

analyses in terms of the multi-variate energy efficiency approaches: Chapter five with stochastic

frontier production function and Chapter six with data envelopment analysis.

A major problem that we experienced during the execution of this project was availability and

suitability of the required data for Kerala. Finally we had to satisfy ourselves mostly with the

available time series data on electricity supply only. In Chapter four on decomposition analysis,

we use along with the power sector data, petroleum consumption data also available only for a

limited number of recent years.
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Chapter 1

Introduction

1.1 Introduction

One positive impact of the 1973 oil crises has been the concerted effort across the world to

reduce energy consumption through energy use efficiency improvements. Improving energy

efficiency ensures the objective of conserving energy and thus promoting sustainable

development. Recognition of this fact has now appeared in terms of including the aim of

improving efficiency as an important component of electrical energy policy in all the

countries across the globe. Conserving electrical energy through energy efficiency measures

can meet the high challenge of increasing energy demands at reasonable costs in a

sustainable manner. Moreover, improving energy efficiency also has the potential of

reducing the environmental and health threats associated with the use of hydrocarbons and of

encouraging clean energy systems.

Energy conservation is usually defined as a deliberate reduction in using energy below a

certain level of current state of affairs (Munasinghe and Schramm 1983). This may be

achieved at both the ends of supply and demand, and works through load management of

electricity usage, including direct (mechanical) controls on end-use equipments and power

cuts on supply side and time-differential tariffs and other management measures on the

demand side. “Load management meets the dual objectives i) of reducing growth in peak

load, thus nipping the need for capacity expansion, and ii) of shifting a portion of the load

from the peak to the base-load plants, thereby securing some savings in peaking fuels. By

moving toward achieving these objectives electric utilities stand to win a cut in operating and
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capacity costs, share the gain with the consumers and provide a partial solution to the

country’s energy dilemma.” (Pillai 2002: 4-5).

In this study, our focus is on electrical energy conservation by means of efficiency

improvements. Improving energy efficiency is expected to reduce energy demand through its

rational use in the end-use devices; every unit of energy input consumed will bring in greater

amount of useful energy output. The energy efficiency of most of the end-use appliances that

we use is pretty low, with consequent losses and higher demand for inputs, leading to

environmental damages. This in turn suggests that improving energy efficiency can manage

energy demand in better ways and contribute highly to a better environment. It is estimated

that higher energy efficiency standards for residential and commercial appliances in the US

could result in a cumulative total energy savings of nearly 26 quads for the period 2010–2030

(1 quad  293,071,000,000 kilowatt-hours) (Rosenquist et al., 2004).

The International Energy Agency (IEA, 2018) estimates that the primary energy demand has

grown by 39% since 2000, whereas the global economy, by nearly 85%. “The forces driving

energy demand, led by strong economic growth, outpaced progress on energy efficiency. As

a result energy intensity – primary energy use per unit of gross domestic product (GDP) – fell

by just 1.7% in 2017, the slowest rate of improvement since 2010” (IEA, 2018: 17). IEA

points out that in fact the higher economic activity would have led to a much higher energy

demand, without energy efficiency progress. “Efficiency improvements made since 2000

prevented 12% additional energy use in 2017” (ibid).

The International Energy Agency generally traces three types of energy efficiency policy:

mandatory codes and standards; market-based instruments; and incentives (ibid). “In 2017,

34% of global energy use was covered by mandatory energy efficiency policies, but progress

implementing new policies was slow for a second year running. Utility obligation
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programmes remained largely unchanged in 2017. Spending on energy efficiency incentives

in 16 major economies was estimated to be around USD 27 billion” (ibid).

Energy efficiency has become essential to the environment and economic growth. The global

energy-related carbon dioxide (CO2) emissions rose by 1.6% in 2017, with a grim prospect of

continued growth, far from the climate goals (International Energy Agency, 2018). Energy

efficiency is accepted as the cheapest way to reduce global emission of greenhouse gases

(such as carbon dioxide, methane, nitrous oxide and sulfur hexafluoride) (Enkvist, Nauclér,

and Rosander, 2007). They have developed a cost curves approach to measure abatement

cost of avoided greenhouse gases emissions (by subtracting potential cost savings (for

example, from reduced energy consumption) from the annual additional operating cost (with

depreciation) and dividing it by the amount of avoided emissions; note that this formula

implies negative costs if there are considerable cost savings). “The abatement cost for wind

power, for example, should be understood as the additional cost of producing electricity with

this zero-emission technology instead of the cheaper fossil fuel-based power production it

would replace. The abatement potential of wind power is our estimate of the feasible volume

of emissions it could eliminate at a cost of 40 euros a ton or less.” (ibid.)

According to the International Energy Agency (IEA: World Energy Outlook 2006), the

global energy-related CO2 emissions, under the current situation, would increase by 55%

between 2004 and 2030, or 1.7% per year; and that power generation would contribute half

of the increase in global emissions over this period with developing countries accounting for

over three-quarters of the increase. Indian contribution also was found to be very high (IEA,

2006: 41). The Report states that “[p]olicies that encourage the more efficient production and

use of energy contribute almost 80% of the avoided CO2 emissions. …. More efficient use of

fuels, mainly through more efficient cars and trucks, accounts for almost 36% of the

emissions saved. More efficient use of electricity in a wide range of applications, including

lighting, air-conditioning, appliances and industrial motors, accounts for another 30%. More

efficient energy production contributes 13%. Renewables and biofuels together yield another
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12% and nuclear the remaining 10%.” (IEA, 2006: 42). According to the Report, “the new

policies and measures analysed yield financial savings that far exceed the initial extra

investment cost for consumers ….. On average, an additional dollar invested in more

efficient electrical equipment, appliances and buildings avoids more than two dollars in

investment in electricity supply. This ratio is highest in non-OECD countries. ….. The

payback periods of the additional demand-side investments are very short, ranging from one

to eight years. They are shortest in developing countries ….” (IEA, 2006: 43).

It is estimated that efficiency gains made since 2000 have “prevented 12% more greenhouse

gas emissions and 20% more fossil fuel imports, including over USD 30 billion (United

States dollars) in avoided oil imports in IEA countries” (IEA, 2018: 17).

What follows is divided into four sections. The next part of the chapter discusses the concept

and empirical methods of energy efficiency and introduces decomposition of energy

consumption change in terms of Divisia index. Part 3 presents the initiatives of the central

Government of India and the State Government of Kerala in energy efficiency policies and

programmes. And the empirical exercise of indicator decomposition of energy efficiency in

Kerala is given in the fourth section; the temporal trends of the indicators and their Divisia

indices are presented. The final section concludes the study.

1.2 Energy Efficiency: Indian Background

Energy efficiency policy framework in India comes under the purview of the Energy

Conservation Act, enacted in 2001 and amended in 2010. This Act in turn is reinforced

through the National Mission on Energy Efficiency, one of the eight missions under the 2008

National Action Plan on Climate Change. The Act led to the formation of the Bureau of

Energy Efficiency (BEE) under the Ministry of Power, and the State Designated Agencies

(SDA) in the States in order to realise the institutional framework for formulating energy

efficiency policies and implementing them. The SDAs, being the State counterparts of the
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BEE, “have contributed significantly towards creating awareness on efficient use of energy

among consumers and manufacturers, implementing demonstration projects, and supporting

execution of BEE’s programmes in States” (Government of India, 2018a: v). The Act also

put in place the much-needed institutional framework for formulating energy efficiency

policies and implementing them. The BEE was instrumental in developing and implementing

a number of initiatives such as the Energy Conservation Building Code, an expansion of the

Standards and Labelling programme for the most energy-intensive cooling appliances like

room air conditioners, fans and refrigerators, an innovative industrial energy efficiency

programme called Perform Achieve and Trade (PAT), and the extension of fuel efficiency

standards to commercial heavy-duty vehicles. “India has recently implemented performance

standards for electric motors at the IE2 level. Unlike in other major economies, however,

these standards are not mandatory” (IEA, 2018: 151). Another milestone is NITI Aayog’s

energy scenario modelling tool, viz., India Energy Security Scenarios (IESS) 2047, which

offers a platform to facilitate academic and policy discourse about potential pathways for the

Indian energy sector. According to this modeling exercise, there is substantial potential to

impact energy efficiency and reduce energy demand by 2047.

The IEA Report (2018) has also highlighted an Indian initiative towards energy efficiency;

acknowledging the supremacy of light emitting diode (LED) bulb in efficiency, as it

consumes less electricity, lasts longer, and does not contain harmful mercury, the

Government of India launched a programme in 2014, called UJALA (Unnat Jyoti by

Affordable LEDs for All), to promote LED bulbs in Indian households. “Energy Efficiency

Services Limited (EESL), an Indian state-owned “super” energy services company (ESCO)

[under Ministry of Power], has radically pushed down the price of LEDs available in the

market and helped to create local manufacturing jobs to meet the need for energy efficient

lighting. LEDs now cost less than USD 1 (around INR 60), down 80% from the first round of

procurement in 2014. Through its Unnati Jyoti by Affordable LEDs for ALL (UJALA)

programme, EESL has replaced over 308 million lamps with LEDs, without the need for any
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subsidies.” (IEA, 2018: 152, Box 6.4.). Similarly, EESL has undertaken a bulk procurement

of 100,000 super-efficient air conditioners as a demand aggregation strategy that successfully

brought down the cost of high-efficiency equipment (Government of India, 2018b: 3).

“Mission Innovation (MI) launched on 30 November 2015, during COP21 in Paris in the

presence of the Prime Minister of India, is a global platform to foster and promote R&D for

accelerated and affordable clean energy innovation. India is a key member of this global

initiative and is a member of all seven Innovation Challenges” (ibid).

According to the IEA, energy efficiency improvements in India in the residential buildings

and industry and service sectors since 2000 have helped to avoid an additional 6% more

energy use in 2017 (IEA, 2018: 149). “Efficiency improvements also prevented nearly 145

Mt CO2-eq in emissions and 5% more imports of fossil fuels in 2017” (ibid; Mt CO2-eq =

metric tons carbon dioxide equivalent, a standard unit for measuring carbon footprints, based

on the global warming potential of greenhouse gases). Nearly 70% of this gain came from the

industry and service sectors, where the gross value added more than tripled during the period

from 2000, and structural changes were responsible for avoiding 1% more energy use. The

latter is explained in terms of the shifts in “economic activity from energy-intensive industry

sectors to less-intensive manufacturing and service sectors”; however, the “impact of these

changes was almost completely offset by structural changes that boosted energy use,

specifically increases in residential building floor area and appliance ownership, shifts to less

efficient modes of transport, and decreasing vehicle occupancy rates” (ibid).

Another milestone was the first edition of the State Energy Efficiency Preparedness Index,

brought out by the Alliance for an Energy Efficient Economy (AEEE) under the leadership of

the Bureau of Energy Efficiency (BEE) aligned with NITI Aayog, that assesses State policies

and programmes aimed at improving energy efficiency in buildings, industries,

municipalities, transportation, agriculture and electricity distribution companies (DISCOMs).

Energy efficiency indicators in each sector in each State are developed to measure the impact

of State-level energy efficiency initiatives. Both qualitative and quantitative indicators,
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including outcome-based indicators, are used. The indicators include information on sector-

wise energy consumption, energy saving potential and the States’ influence in implementing

energy efficiency in terms of their policies and regulations, financing mechanisms, and

institutional capacity. The Index is formed from 63 indicators, with 59 across the sectors of

buildings, industry, municipalities, transport, agriculture and DISCOMs; and 4 cross-cutting

indicators.

The study finds that most of the States have implemented one or more national programmes

of BEE and EESL, while a few have their own (State-level) initiatives as well. For example,

even though most of the States have implemented UJALA for energy efficient lighting in the

building sector, only less than half of them have notified the Energy Conservation Building

Code (ECBC) and incorporated ECBC in municipal building bye-laws. In terms of energy

efficiency preparedness, it is found that Kerala, with 77 points, leads among the States and

union territories, followed by Rajasthan (68) and Andhra Pradesh (66.5).

1.3 Energy Efficiency: Kerala Background

Fuel wood, petroleum products and electric power are the conventional sources of energy in

Kerala. Power sector of Kerala is comparatively small (her installed capacity is less than one

percent of all-India capacity), and is heavily dependent on hydro-power, capacity expansion

of which is limited in terms of unavailability of technically favourable sites and of

unfavourable ecological impacts. High population density and fragile ecology have already

precluded the nuclear option from Kerala. The only other alternative, fossil-fuel-fired thermal

stations, itself is again limited, such that Kerala at present is heavily dependent on power

import; thus in 2016-17, import accounted for about 84% of the total energy available in the

State. It is worth noting at the same time that Kerala was declared a fully electrified State on

May 29, 2017 (Government of Kerala, 2018: Box 5.12).
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Considering the limited availability of fossil fuels and their unlimited contribution to global

warming, Government of Kerala has turned to alternative sources of power generation,

especially from environment friendly non-conventional energy sources, such as municipal

waste, agro waste, industrial waste, sewage and other biomass, small-hydel units, solar photo

voltaic, wind, tide, wave, geothermal etc. Agency for Non-conventional Energy and Rural

Technology (ANERT), an autonomous body under the Power Department of Kerala

Government, is the nodal agency for the implementation and propagation of non-

conventional sources of energy in the State. It is also the nodal agency in the State for the

Ministry of New and Renewable Energy Sources (MNRE) of Government of India.

Energy Management Centre (EMC) is the State designated agency of the Bureau of Energy

Efficiency for promoting energy conservation and energy efficiency through enforcing

Energy Conservation Act, 2001 in Kerala.

As already stated, Kerala has ranked first among the Indian States in the first edition of the

energy efficiency preparedness index of the Alliance for an Energy Efficient Economy

(AEEE). The index has 21 indicators in the buildings sector “to capture the States’ initiatives

and progress on energy efficiency in buildings, covering various aspects such as Energy

Conservation Building Code (ECBC), programmes and incentives for ECBC construction

and energy efficient appliances, institutional capacity for supporting energy efficiency in

buildings, energy savings and energy intensity” (Government of India, 2018a: 11). Kerala

has got the highest 29 out of 30 scores in the buildings sector energy efficiency preparedness.

In the industrial sector with 13 indicators for energy efficiency preparedness, Kerala has

bagged again the highest 21 out of 25 scores. In the municipalities sector with 9 indicators,

primarily focussed on public infrastructure such as street lighting and water pumping, Kerala

has come third (with 7 out of 10 scores) after Maharashtra (with a score of 8) and Tamil

Nadu (with 7.5). In the transport sector with 5 indicators, with 3 indicators for energy

efficiency of State Road Transport Corporations (SRTC) and 2 for electric and hybrid

vehicles, Kerala has lagged behind a number of States, with a score of only 6 out of 15. In the
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agriculture and DISCOMs sector with 11 indicators, related to demand side management

(DSM) regulations, programmes and savings, and transmission and distribution (T&D) losses

for DISCOMs in the State, Kerala has come third with 10 out of 15 scores.

1.4 Significance of the study

The linkage between energy intensity and energy efficiency with productivity is

expected to impart valuable knowledge to evolve policies in the State’s power sector

for the socio-economic growth and development. Returns from enhancing energy

productivity and in turn from lowering energy intensity of the economic activities

significantly contribute in general to the economy as a whole, and in particular to

energy security and mitigation of carbon foot print.

This in turn requires an examination into the extent to which aggregate energy

intensity trends are attributable to shifts in the underlying sectoral structure and

efficiency improvements within individual sectors. The present study proposes to

undertake such an exploration into the economy of the State of Kerala. To our

knowledge, such a study is unique in India.

The energy productivity and economic prosperity index can quantifiably measure the

effectiveness with which energy resources are being used; and this can give signals to

policy makers to plan for a high energy-productivity growth and sustainable

development scenario. The State can achieve higher economic output per unit of

energy input either by changes in economic structure or through technical energy

efficiency gains.
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1.5 Objectives of the Study

The main objective of the study is to examine the extent to which aggregate energy

intensity trends are attributable to shifts in the underlying sectoral structure, activity,

and efficiency improvements within individual power consuming sectors, viz.,

domestic, commercial, industrial, agricultural, and buildings sectors, of Kerala. In

particular, the study seeks to

a) establish sector wise energy intensity;

b) identify the sector wise energy-productivity ratios;

c) estimate the energy savings from efficiency improvements; and

d) set up a simulation for energy intensity reduction both in a business-as-usual

and in a revised policy scenario, factoring in energy efficiency and the

renewable.

1.6 Data and Methods

The study is designed to rely mainly on secondary data, available from various

departments of the State Government. In respect of the case studies some field survey

also is required.

An analytical framework required to identify the driving forces behind changes in

energy efficiency is structured in terms of the interaction between the human and

environmental systems, in which the dynamic nature of the interactive system is

assessed within a driving forces pressure - state - impact - response framework; this
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was originally used as the stress - response framework in the context of ecosystem

response as an anthropocentric issue (Friend and Rapport, 1979). The former model

(for example, Niessen et al., 1995) starts with the premises that the social and

economic developments tend to exert pressure on the environment, causing

environmental changes that in turn impact on the social and economic functions of the

environment; these impacts then elicit a social response that in turn feeds back to the

driving forces. The present study also makes use of this framework, as energy

efficiency is indeed an anthropocentric issue with interactions among its driving

forces, state and social response.

Almost all the earlier studies have in general employed the method of indicators

pyramid, based on which energy efficiency changes have been decomposed from

other factors at each level of disaggregation using factorization method. Factorization

has been conducted either on the energy-GDP ratio or almost equivalently on total

consumer energy use and carried on to the finest level of subsector, subject to data

availability. The Laspeyres index decomposition approach was in vogue earlier that

has now been replaced with methodologically superior Divisia approach. The present

study also follows suite.

1.7 Project Deliverables (models/papers/case studies /report)

a) Classified data bank

b) White papers and Research publications in peer reviewed journals and

conferences with Case studies
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c) Models establishing interrelations between energy, energy efficiency and

productivity, sector-wise and for the whole State's economy

d) Organisation of presentations in front of invited audience as suggested by

EMC to discuss and disseminate the knowledge

e) Final research project report with information on survey, analysis, design and

development of the algorithms, models and policy recommendations for

implementations.

1.8 Motivation

EMC, an autonomous body under Department of Power, Government of Kerala, since

its inception in 1996 is actively involved in efficient use of energy and its

conservation and development of Small Hydro Power. In the capacity of State

Designated Agency since 2003, EMC is responsible in enforcing the Energy

Conservation Act, 2001(Central Act 52 of 2001) in the State.

The Centre for Development Studies (CDS) is an internationally reputed institution

known for its research in applied economics and topics germane to socio-economic

development. The CDS is financially supported by the Government of Kerala and the

Indian Council of Social Science Research (ICSSR). The Reserve Bank of India and

the Planning Commission has instituted endowment units for research in selected

areas at CDS. The Union Ministry of Overseas Indian Affairs has set up a migration

unit to study issues relating to international migration from India.
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This research, first of its kind Study in Indian States, is expected to bridge an

important gap in the power sector and the report of the study is expected to serve as a

well-researched knowledge base and input to policy formulation.

Principal Investigator

Dr. Vijayamohanan Pillai. N

Associate Professor, Centre for Development Studies

EMC Team

Co-Principal Investigator

Sri. A M Narayanan, Senior Energy Consultant, Energy Management Centre

Research Review

Advisor: Shri. K.M. Dharesan Unnithan, Director, Energy Management Centre

Lead Member: Dr. R. Harikumar, Joint Director

Members:

Sri. Dinesh Kumar A N

Sri.Johnson Daniel

Sri.Subhash Babu B V

Sri. Sandeep K
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Sri. Sarath Krishnan S

Sri. Aneesh Rajendran

External Review Team

Invited External Expert(s) as nominated by Director, Energy Management Centre

1.9 Structure of the Report

Following this introductory chapter, the next chapter presents a detailed discussion of a

techno-economic approach to conceptualizing energy efficiency. Chapter three discusses all

the traditional analytical methods and the index decomposition approach to measuring energy

efficiency. The next three chapters constitute the core of the study: Chapter four takes up the

analytical and empirical exercises based on Logarithmic Mean Divisia index for the State of

Kerala with the available data. The next two chapters present the theoretical and empirical

analyses in terms of the multi-variate energy efficiency approaches: Chapter five with

stochastic frontier production function and Chapter six with data envelopment analysis.

1.10 Merits

The merits of this study may be summarized as follows:

(i) A comprehensive documentation of conceptualization of energy productivity.

(ii) A comprehensive documentation of analytical methods of measuring energy
productivity.

(iii) First study in the Indian context, utilizing all the three important methods of
measuring energy productivity.
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(iv) Utilizing energy efficiency decomposition method for simulation purposes.

1.11 Limitations

A major problem that we experienced during the execution of this project was availability and

suitability of the required data for Kerala. Finally we had to satisfy ourselves mostly with the

available time series data on electricity supply only. In Chapter four on decomposition

analysis, we use along with the power sector data, petroleum consumption data also available

only for a limited number of recent years.
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Chapter 2

Conceptualizing Energy Efficiency:

A Techno-Economic Approach

2.1 Introduction

A comprehensive documentation of a techno-economic conceptualization of energy

productivity and its analytical methods of measurement is an essential prerequisite for a

study like this. The former, the techno-economic conceptualization, is important because it

constitutes the basis on which the entire study is erected; it delineates significantly the

approach to defining the concept under study and the definition itself in its subtle structure,

which in turn determines the way towards discovering and deconstructing the measurement

methods. The present chapter is an attempt at the first of the tasks, the documentation of the

techno-economic conceptualization of energy productivity, which we complete in the

following seven sections. The next part of the paper discusses the energy efficiency

indicators in terms of its conceptual definition. Part three differentiates in this light between

energy efficiency and energy conservation. Following this background, a brief discussion of

the laws of conservation of mass and thermodynamics is given in part four and the next

section turns light onto energy efficiency indicators at different aggregation levels. Section

six deals with the determinants of energy efficiency indicators, and is followed by a

conceptual framework for energy efficiency in Kerala, given in part seven. The final section

concludes the study.
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2.2 Energy Efficiency Indicators

Traditionally, there are two basically reciprocal Energy Efficiency Indicators: one,

in terms of energy intensity, that is, energy use per unit of activity output, and the other,

in terms of energy productivity, that is, activity output per unit of energy use. As a

general concept, “energy efficiency refers to using less energy to produce the same amount

of services or useful output. For example, in the industrial sector, energy efficiency can be

measured by the amount of energy required to produce a tonne of product.” (Patterson, 1996:

377). Thus Patterson defines energy efficiency broadly by the simple ratio of the useful

output of a process in terms of any good produced that is enumerated in market process, to

energy input into that process (ibid.).

Defining energy efficiency in this sense (of useful output per unit of input) also helps us to

define energy efficiency as “a change to energy use that results in an increase in net benefits

per unit of energy” (section 3 of the Energy Efficiency and Conservation Act 2000 of New

Zealand), where net benefits represent useful output.

2.3 Differentiating between Energy Efficiency and Energy Conservation

The concept of energy efficiency thus defined also clarifies the differences among the

concepts of energy efficiency, energy conservation and energy saving. These differences may

be better explained using Figure 1. The quadrants A and B represent energy efficiency,

defined in terms of net benefits per unit of input. They also capture the idea of energy

efficiency improvement, “defined [by Energy Efficiency and Conservation Authority, 1997]

as any change in energy use that results in increased net benefits per unit of energy, whether

or not total energy use increases or decreases” (Lermit and Jollands (2001, p. 7). Thus,

quadrant B represents energy efficiency improvement, by increasing net benefits per unit of

energy use through increasing energy use and quadrant A, on the other hand, represents

energy efficiency improvement, by increasing net benefits per unit of energy use through



18

decreasing energy use (for example, by installing double-glazing windows that can reduce

heating energy bill costs during winter).

Figure 2.1: The energy efficiency and conservation quadrants

Source: Adapted from Lermit and Jollands (2001, p. 7).

Cases like quadrant B simply show that energy efficiency improvement need not imply

energy savings and render monitoring energy efficiency difficult. “If energy efficiency were

the same as energy savings, then all that would be required would be to estimate the amount

of energy saved compared to some base year and add up energy savings across sectors.

However, this does not necessarily equate to energy efficiency.” (Lermit and Jollands (2001,

p. 8).

Increase in (positive) net benefit
per unit of energy use

Increasing energy useDecreasing energy use

Decrease in (negative) net
benefit per unit of energy use

BA

C D
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As already explained in the earlier Chapter, energy conservation, as an important

complement to energy efficiency, is defined in terms of reduction in total energy use, and is

thus represented by quadrants A and C. Thus, this can happen in two ways: quadrant A

represents efficiency-improving energy conservation, where energy savings lead to an

increase in net benefits per unit of energy use; and quadrant C represents efficiency-reducing

energy conservation, where energy savings lead to a decrease in net benefits per unit of

energy use, “as is the case with the proverbial “cold bath in the dark”” (ibid.).

In short, the above discussion reminds us that energy efficiency is a context-specific concept,

not necessarily equivalent to energy savings, and is usually defined as net benefits (useful

output) per unit of energy input, but without an unequivocal operationally useful quantitative

measure. This necessitates construction of a series of indicators specific to the context (or

level of sectoral disaggregation, as discussed below).

2.4 The Laws of Conservation of Mass and Thermodynamics

It goes without saying that an economic system is bound to operate within the immutable

constraints set by the law of conservation of mass and the laws of thermodynamics (Boulding

1966; Ayres and Kneese 1969; Daly and Umana 1981). The conservation law states that

mass cannot be created or destroyed and hence the total mass of all materials entering any

process (input) must equal the total mass of all materials leaving (output) plus the mass of

any materials accumulating or left in the process. That is, input = output + accumulation.

When there is no accumulation of materials in a process, “what goes in just comes out”, and

such a process is called a steady-state process. This mass-balance principle (Ayres and

Kneese, 1969) thus implies that, for a given material output, equal or greater quantities of

material must be used as inputs, leaving a residual in terms of a pollutant or waste product, if
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any. This in turn means that any production process, involving material input-output

relationships, is subject to some minimal material input requirements.

The first law of thermodynamics is a specialized version of the law of conservation of

energy, reformulated for thermodynamic systems. It states that energy cannot be created or

destroyed: it can only be transformed from one form of energy to another. Thus work (which

is a form of energy) can be transformed completely into heat. The second law of

thermodynamics, on the other hand, relates to the reverse transformation of heat into work,

and states that it is not possible to completely transform heat into work; this means that no

energy-conversion process is 100% efficient. Thus this law in its simplest form becomes

useful in assessing the thermal efficiency of heat engines, and in a more general form

introduces the concept of the ‘quality’ of energy.

As all activities involve work and thus energy, so do all economic activities; all economic

production processes must require a minimum quantity of energy (Baumgärtner, 2004); this

in turn implies that there is a limit to the substitution of other factors of production for

energy, and this makes energy always an essential factor of production (Stern, 1997).

As we know, the production function helps in defining marginal products of inputs and in

distinguishing between allocative efficiency and technical efficiency. In addition to the

marginal productivities, we can also have average productivities of the inputs, the partial

factor productivity, in terms of the output divided by the input. Thus, taking energy as one of

the inputs in a production function yields marginal and partial (average) energy productivity,

the inverse of the latter being energy intensity.

One of the first detailed empirical analyses of consumption of fuels and water power in the

United States economy was by F. G. Tryon in 1927, who stated that “Anything as important

in industrial life as power deserves more attention than it has yet received from economists
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.... A theory of production that will really explain how wealth is produced must analyze the

contribution of this element energy.” (Tryon, 1927: 271).

However, the significance of energy in economic growth started to attract the researchers’

curiosity only by the start of the 1950s. In October 1950, Harold J. Barnett came out with an

Information Circular for the U.S. Bureau of Mines, entitled Energy Uses and Supplies, 1939,

1947, 1965. In it he documented for the first time that the consumption of energy relative to

GNP (i.e., energy intensity) had been declining persistently over a long period of time

following World War I. This led to an interest among the researchers to analyze the role of

energy in economic growth, and the prime importance of energy in economic productivity

growth was first established in a classic study Energy and the American Economy, 1850-

1975 by Sam H. Schurr and Bruce C. Netschert (along with their associates Vera F.

Eliasberg, Joseph Lerner and Hans H. Landsberg) in 1960. They noted that both energy

intensity and labour intensity of production had fallen from 1920 to 1955, and the total factor

productivity had risen. The simultaneous decline of both energy and labor intensity of

production left the factor substitution possibility a puzzle and pointed towards technical

change as a possible critical explanatory factor. Schurr and his associates found that the

electricity consumption had increased by a factor of more than ten during the period from

1920 to 1955, while utilization of all other forms of energy only doubled. It was also noticed

that the thermal efficiency of conversion of fuels into electricity during this period increased

by a factor of three, and the electrification of industrial processes had led to much greater

flexibility in the application of energy to industrial production. Significant fall in energy

intensity was found in many developed and developing countries in the recent decades also

(Gales et al., 2007, Stern, 2010a).
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As we know, higher levels of aggregation conceal many relationships and effects,

functioning at the micro levels. As we move down the pyramid to micro levels, these

relationships and effects appear more clearly, providing better understanding of the ground

reality that throws more light on the macro-level reality. However, the quantity and quality of

data required at the bottom of the pyramid increases substantially, and the data availability

becomes more and more difficult.

2.6 Determinants of Energy Efficiency Indicators

It is generally believed (for example, Schipper, et al., 1992; Phylipsen et al., 1998) that

energy consumption is essentially determined by the following effects:

(i) Activity (Ai) – economic or human activity level (output/income produced,

population/households supported, passenger-km travelled, etc)

(ii) Structure (Si) – the composition of activity (shares of different sectors or

subsectors of human/economic activities)

(iii) Energy intensity (Ii =Ei/Ai) – quantum of energy required to deliver one unit of

economic/human activity.

Thus the total energy consumption across all the sectors� = ∑ �� = ∑ �� ��� ���� = ∑ �� �����
where E is the total energy consumption, A (= ∑ ��� ) is the activity level, Si (= Si /S ) is the ith

sector’s activity share and Ii (= Ei /Ai) is that sector’s energy intensity.
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Recent contributions have included two additional parameters; climate and behaviour.

However, in practice, we can find that they are only part of the basic factors given above, as

climate is a structural factor, for example, for heating applications, and behaviour is a part of

energy intensity.

The level of aggregation, as outlined above in the pyramid structure, determines the exact

definitions and units of these factors. Thus at the highest aggregation level of the macro

economy, the activity is measured in economic terms (GDP or value-added, VA), and hence

energy intensity, in terms of energy consumption (Giga Joule per unit of GDP (GJ/GDP) or

per unit of value-added (GJ/VA); similarly, structure is defined as the share of the different

sectors (primary, secondary and tertiary). At a lower level of aggregation, for instance, the

steel industry within the industry sector, activity may be measured in either value-added or

tonnes of steel produced, energy intensity in either GJ/VA or GJ/tonne steel, and structure in

terms of the share of primary and secondary steel in total or in some other shares.

A detailed illustration of this for the bottom micro-level sectors is given in Table 2.1 below.

For example, the residential or domestic sector consists of a number of subsectors such as

space heating/cooling, water heating, cooking, lighting, appliances, etc. Activity in each

subsector is measured in terms of the corresponding population or number of households,

structure in the case of space heating/cooling and lighting is defined in terms of floor area per

capita and intensity in terms of energy per square feet floor area. In transport sector,

passenger and freight transport are the two subsectors, with passenger-km and ton-km as

respective activities. The other two factors are similarly defined. Both in services and

manufacturing, value-added measures the activity with corresponding shares and intensity

factors.
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Table 2.1: Micro-level Determinants of Energy Efficiency Indicators

Sector (i) Subsector (j) Activity (Aj) Structure (Sj) Intensity (Ij = Ej/Aj)

Residential
or domestic

Space heating/cooling Population,
Number of
Households
and Floor area
(sq. ft.)

Floor area/capita Energy/floor area
Water heating Person/HH Energy/capita
Cooking Person/HH Energy/capita
Lighting Floor area/capita Energy/floor area
Appliances Ownership/capita Energy/appliance

Transport

Passenger Passenger-km

Share in total
Passenger-km

Energy
per passenger-km

Car
Bus
Rail
Domestic air
Freight

Ton-km

Share in total
Ton-km

Energy per Ton-km

Trucking
Pipelines
(Natural gas
Petroleum)
Air
Water

Services Any sector Value-added Share in total VA Energy/VA
Manufacturing Any sector Value-added Share in total VA Energy/VA

Source: Adapted from Schipper, et al. 2001; and

https://www.energy.gov/sites/prod/files/2015/06/f24/index_methodology.pdf

A number of different formulations are used to generate energy efficiency indicators such as

those given in the Table 2.2 below.
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Table 2.2: Determinants of Energy Efficiency Indicators

Aggregation
level

Indicator Combines effects of The indicator can assess The indicator cannot assess

Economy as
a whole

Energy
per GDP

Share of different sector and subsectors,
energy intensity of each of the (sub-) sectors,
costs of the production factors (energy, material, labour) and
value of products and services delivered,
share of sectors that do not generate (account for) value

Energy required to produce an amount of GDP Energy efficiency,
level of development,
future trends,
improvement potentials

Sectoral intensity

Industry Energy
per VA

Share of different types of subsectors,
energy intensity of each of the sub-sectors,
costs of the production factors (energy, material, labor) and
value of products delivered

Final energy required to produce an amount of
VA in this sector

Share of primary resources to generate VA;
Future trend in energy consumption;
Energy efficiency;
Improvement potential

Residential Energy
per capita

Dwelling size (square feet/house),
household size (number of people/house),
type of dwellings,
number of appliances,
usage of appliances (number of hours),
climate,
efficiency of dwelling and appliances,
behaviour

Energy required for a certain level of welfare
or services provided;
Energy efficiency;
Energy efficiency improvement potential

Transport Energy
per

passenger-
km or per
ton-km

Share of passenger transport and freight transport,
share of various modes (car, bus, truck, train, boat, plane),
occupancy load (number of passengers or ton per vehicle),
distance travelled by each of the modes,
energy intensity of each of the modes

Source: Adapted from G.J.M. Phylipsen, Energy Efficiency Indicators: Best practice and potential use in developing country policy
making. 30 June 2010 Phylipsen Climate Change Consulting, Commissioned by the World Bank. P. 19.
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2.7 A Conceptual Framework for Energy Efficiency in Kerala

A conceptual framework for monitoring energy efficiency of Kerala may be summarized as

follows (Fig. 2.3):

Source: Adapted from Lermit and Jollands (2001, p. 17).

The illustration is self-explanatory, and hence we do not venture for a tautology. However,

it is essential to note that we follow this framework in our empirical exercise in the

following chapters: we consider both the human and sectoral activity as the driving forces

Driving Forces State of Nature Response

Driving forces of energy
efficiency in Kerala

Human Activity

Population,
Population distribution,
Weather,
Attitudes to energy
efficiency

Sectoral Activity

Economic growth,
Technology development
and deployment,
Capacity utilization,
Prices of energy, capital
and labour,
Economic diversity

State of energy
efficiency in Kerala

Energy-GDP ratio
broken down into
sectors and

activity effect,
structural effect,
intensity effect

Energy per capita

CO2 emission per
capita

Response of government,
society, and economy

Implementation of
programmes under EMC
and ANERT

Energy policy decisions

Energy use information

Decisions/actions
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of energy efficiency in Kerala, and accept the state of nature of energy efficiency in terms

of energy-GDP ratio, broken down into different sectors and effects, such as activity effect,

structural effect, and intensity effect.

2.8 Conclusion

The present chapter has attempted at a comprehensive documentation of the techno-

economic conceptualization of energy productivity as a prelude to a comprehensive

documentation of the analytical methods of its measurement, which we take up in the next

chapter.

We have in this chapter started with a discussion of the energy efficiency indicators in

terms of its conceptual definition. Defining energy efficiency in the Patterson’s sense of

useful output per unit of input leads us to define energy efficiency also as an increase in net

benefits per unit of energy. This helps us differentiate between energy efficiency and

energy conservation, which is an important complement to the former. Energy conservation

is defined in terms of reduction in total energy use, which can happen in two ways: one

representing efficiency-improving energy conservation, where energy savings go along

with an increase in net benefits per unit of energy use; and the other representing

efficiency-reducing energy conservation, where energy savings results in a decrease in net

benefits per unit of energy use.

Following this background is a brief discussion of the laws of conservation of mass and

thermodynamics and of some of the important earlier studies on energy-economic growth

relationship. Then we have turned the light onto energy efficiency indicators at different

aggregation levels, presented in a pyramidal structure, and onto the determinants of energy

efficiency indicators. It is generally believed energy consumption is essentially determined
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by three effects, viz., activity, structure and intensity. A detailed illustration of this for the

bottom micro-level sectors also is provided thereafter. For example, the residential or

domestic sector consists of a number of subsectors such as space heating/cooling, water

heating, cooking, lighting, appliances, etc. Activity in each subsector is measured in terms

of the corresponding population or number of households; structure in the case of space

heating/cooling and lighting is defined in terms of floor area per capita and intensity in

terms of energy per square feet floor area. The chapter concludes with a conceptual

framework that we follow in our empirical exercise in the later chapters.

2.222aa8

1
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Chapter 3

Measuring Energy efficiency:

The Techno-Economic Empirical Methods

3.1 Introduction

Given the documentation of the techno-economic conceptualization of energy productivity

in the last chapter, the present chapter, structured into six sections, seeks for a

comprehensive documentation of some of the analytical methods of its measurement. The

next section of this chapter presents an introduction to a comprehensive list of the

estimation methods of energy productivity indicators. Note that the methods fall under

three heads: traditional single factor productivity analysis, decomposition analysis and

multi-factor productivity analysis. The present chapter documents the first two approaches,

while the theoretical framework of the multi-factor productivity analysis is given in

the later chapters. Part three of this chapter starts with the traditional indicators identified

by Patterson to monitor changes in energy efficiency in terms of thermodynamic,

physical-thermodynamic, economic-thermodynamic and economic indicators. When

we analyze the indicator in terms of energy intensity changes, the corresponding index

falls under two major decomposition methods, namely, structural decomposition

analysis and index decomposition analysis. Section four discusses the structural

decomposition analysis in terms of its two approaches, viz., input-output method and

neo-classical production function method; and the next section presents the index

decomposition analysis in terms of Laspeyres’ and Divisia indices. The last section

concludes the documentation.
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3.2 Energy Efficiency Indicators: Estimation Methods

Energy efficiency research in general has opened up three avenues of enquiry, namely, the

measurement of energy productivity, the identification of impact elements (such as the three

factors mentioned above) and the energy efficiency assessment. The traditional interest in

energy efficiency has centred on a single energy input factor in terms of productivity that

has become famous through an index method proposed by Patterson (1996). The enquiry

that has proceeded from the problems associated with this method has led to identifying the

effect source of variation, in terms of some decomposition analysis. Finally, a new energy

efficiency estimation method, criticizing the single factor energy efficiency method, has

come up utilizing a multi-variate structure. This trajectory is explained in detail in the

following Figure 2.3 and Table 2.3.
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Table 3.1: Energy Efficiency Indicators: Estimation Methods

Indicator Estimation method Problems and applicability

Energy productivity
(reciprocal of energy
intensity)

Ratio between useful
output and energy
input

Easy for data acquisition and calculation
Productivity does not equate to efficiency
Calculation commonly using GDP and energy use,
and unable to remove other impacts on GDP

Unable to reflect individual elements of efficiency
Unable to reflect the differences between resource
allocation efficiency and technical efficiency

Energy productivity
after factor
decomposition

Laspeyres Index
Divisia Index

Driven by energy productivity changes analysis, the
relation between energy consumption and economy
being purified
Limited by decomposition method, and difficulty to
get empirical support

Comprehensive
energy efficiency
index

Technical efficiency
Allocative efficiency
Economic efficiency
(Commonly used
estimation methods
include:
stochastic frontier
analysis,
DEA)

Can be used to compare efficiency differences
between manufacturers, can also estimate efficiency
changes trend over time
Can be applied to the comparisons in the levels of
manufacturer, industry, region, and nation
Unable to evaluate the efficiency of individual
elements, (Hu and Wang (2006) further proposed
TFEE method for the relative analyses)

Source: Adapted from Yang(2012); Ou(2014).
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3.3 Traditional Energy Productivity Indicator

Recognizing that the actual measure of energy efficiency varies with the context in which

the concept is used with different numerators and denominators, Patterson (1996) has

identified four indicators to monitor changes in energy efficiency: thermodynamic,

physical-thermodynamic, economic-thermodynamic and economic.

First we have thermodynamic indicators, the ‘most natural and obvious way to

measure energy efficiency’ as thermodynamics is the ‘science of energy and energy

processes’ (Ibid.). Traditionally, it measures the heat content, or work potential. The

thermodynamic indicators are a measure of the thermal, or enthalpic, efficiency, the

sum of the ratio of useful energy output of a process to input into a process. As a

thermodynamic indicator, Patterson uses the example of a light bulb: it has an

enthalpic efficiency of around six percent. This means that six percent of the input of

energy (electricity) is converted to the desired output (light energy) and 94 percent is

converted to ‘waste’ heat (Patterson, 1996, 378). One flaw with this straightforward

measurement of energy is that it does not differentiate between energy quality. This

means that thermodynamic indicators are unsatisfactory indicators in general in a

policy context as they are related to a process and do not allow for a comparison across

different processes with different energy input and output. They are thus less suited

for macro-level use (Patterson, 1996, 386).

Second, physical-thermodynamic indicators: Unlike in thermodynamic efficiency

ratios, numerator in this indicator is not heat content or work potential, but output

measured in physical units rather than in thermodynamic units. Physical units

specifically reflect the end use service that consumers require. For instance, in

relation to transport, the output is given as distance. That is, the energy efficiency is
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the sum of the ratio between output in a physical unit (kilometers) and the change in

energy input.

Third, economic-thermodynamic indicators: these are hybrid indicators in which

energy input is measured in thermodynamic units and output is measured in terms of

market prices (Rs). The most commonly used aggregate measure of a nation’s ‘energy

efficiency’ is the GDP (Gross Domestic Product)-energy ratio, being reported annually by

international organisations (for example, European Environment Agency, 2016;

International Energy Agency, 2017); this ratio is also used in its inverse form as energy

intensity (Patterson, 1996: 377, footnote). Even though this concept is of utmost

importance in national energy policies, “there are [many] critical methodological problems

that stand in the way of the establishment of such operational indicators of energy

efficiency.” (Patterson, 1996: 386). However, he argues that “indicators such as energy-

GDP ratio are more useful for macro-level policy analysis” that however, “encounter

problems with separating the structural effects from the underlying technical energy

efficiency trends.” (Patterson, 1996: 387; Wilson et al. 1994). There are many other

factors such as changes in the sectoral mix in the economy, energy for labour

substitution, and changes in the energy input mix that can influence changes in

energy-GDP ratio, though they have nothing to do with technical energy efficiency

(Patterson 1996). Note that the other measure, energy productivity ratio, is the

reciprocal of energy-GDP ratio, suffering from the same problems.

Last, we have economic indicators, in which output is measured in terms of

economic value (Rs) and energy input is still measured in thermodynamic terms.

Some critics argue that both the input and output measurements be in terms of

economic value (Rs), using monetary values of input and output. The most widely

advocated pure economic indicator of energy efficiency (intensity) is the ratio of
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national energy input (Rs) to national output (GDP in Rs), or its reciprocal,

productivity measure. The greatest advantage of this measure is its ease of

applicability regarding data acquisition and calculation, using GDP and energy use.

However, it also suffers from a number of problems: productivity in general cannot be

equated to efficiency, as it is highly unable to remove the other impacts on GDP, and

thus to reflect individual elements of efficiency; it is again difficult to reflect the

differences between resource allocation efficiency and technical efficiency

The following Table summarizes the four indicators:

Table 3.2: Energy Efficiency Indicators

3.4 Factor Decomposition Analysis

As we know, energy intensity is obtained by dividing energy consumption by GDP,

which implies the quantum of energy consumption that must be input in order to

increase one unit of GDP. Analyzed in terms of energy intensity changes, the index falls

under two major decomposition methods, namely, Structural Decomposition Analysis

and Index Decomposition Analysis.

Indicators Numerator (Energy)

units

Denominator (Activity)

unitsThermodynamic indicator Thermodynamic units Thermodynamic units

Physical-thermodynamic Thermodynamic units Physical units

Economic-thermodynamic Thermodynamic units Economic/monetary units

Economic indicator Economic/monetary Economic/monetary units
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Structural Decomposition Analysis (SDA)

SDA has both inputs and outputs as its theoretical foundation, and is hence also known

as equilibrium analysis. There are two approaches here: input-output method and neo-

classical production function method.

Input–output model is a quantitative representation of the interdependence among various

sectors of a national economy. It was Wassily Leontief (1906–1999; a Russian-American

economist) who developed this method, for which he earned the Nobel Prize in Economics

in 1973. The model development was highly influenced by the work of the classical

economist Karl Marx (1818–1883; German), who had represented an economy as

consisting of two interdependent departments. Even before Marx, a cruder version of this

model of sectoral interdependence of an economy had been provided by Francois Quesnay

(1694–1774; a French economist and physician of the Physiocratic school) in terms of

Tableau économique. The general equilibrium theory of Léon Walras (1834–1910; a

French mathematical economist) in his Elements of Pure Economics also was a forerunner

and a generalization of Leontief's seminal model.

Input-output model functions under three assumptions: (1) fixed coefficient; (2) fixed

proportion; and (3) single product (Miller and Blair, 2009). The first assumption

stipulates that the technical relation between input and output be constant; this is

possible when the production function of each industry exhibits constant returns to

scale; that is, when all the inputs simultaneously increase n times, its output also

increases n times. The second assumption requires that each industry uses the same

fixed input proportion to the product, implying an irreplaceable nature among the

inputs of production. And the third assumption is that each industry produces only one

kind of product.
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The second approach is in terms of a production function. A production function of a firm

is a mathematical expression of the technological relationship between the quantities of

inputs and quantities of outputs that the firm produces with those inputs. One of the key

concepts of orthodox neoclassical economics, the production function helps in defining

marginal products of inputs and in distinguishing between allocative efficiency and

technical efficiency, the two components of economic efficiency, which is the main focus

of orthodox economics. In the neoclassical economics, allocative efficiency in the use of

inputs in production is very significant in the resulting process of distribution of income to

those factor inputs, based on their marginal products.

The Cobb–Douglas production function is the first specific functional form, widely used in

empirical studies on the technological relationship between two or more inputs (physical

capital, labor and energy, for example) and the corresponding output. This function was

developed and empirically tested with data by Charles Cobb ((1875–1949; an American

mathematician and economist) and Paul Douglas (189 –1976; an American politician and

economist) during 1927–1947. A few other more flexible production functions, such as the

constant elasticity of substitution (CES and its variant versions) and transcendental

logarithmic (translog) production functions, have also appeared in a large number of

empirical studies. However, the Cobb–Douglas production function is generally preferred

to these more complex forms as the use of the latter has in general yielded nothing better in

many cases and the former has got a lot of empirical justification for its use in the light of

the fact that the factor shares are roughly constant (Felipe and McCombie 2013, pp. 1-2).

For example, Hoover (2012, p. 330) says: “The approximate constancy of the labor share

confirms the prediction of our model and provides a good reason to take the Cobb–Douglas

production function as a reasonable approximation of aggregate supply in the U.S.

economy.” Moreover, the other functions, though more flexible, suffer from a number of

problems: the CES function is non-linear and is thus more difficult to estimate
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econometrically; the translog function, on the other hand, is often beset by severe

multicollinearity in its estimation (Felipe and McCombie 2013, p. 2).

However, the wider popularity of the Cobb–Douglas production function does not mean

that it is free from errors, especially when its aggregate form is used at the national

economy level. “Most notably, there are the problems posed by both the Cambridge capital

theory controversies and what may be generically termed the ‘aggregation problems.’”

(Felipe and McCombie 2013, p. 3).

The Cambridge capital theory controversy was a dispute between two groups of

economists, one including the ‘post-Keynesians’ such as Joan Robinson and Piero Sraffa at

the University of Cambridge in England and the other with the ‘neoclassicals’ such as Paul

Samuelson and Robert Solow at the Massachusetts Institute of Technology, in Cambridge,

Massachusetts, during the 1950s and the 1960s. The debate was concerned with the

theoretical problems of aggregating heterogeneous individual capital goods into a single

variable to represent ‘capital’ as an input at the aggregate economy level. The debate in

general led to the conclusion that no such aggregate variable could be constructed

(Harcourt, 1972; Cohen and Harcourt, 2003, 2005).

The second criticism runs in terms of the ‘aggregation problem’. This is concerned with the

attempts to aggregate several micro variables (relationships) into one macro variable

(relationship). It is generally accepted that the conditions under which micro- production

functions are summed to get an aggregate relationship are severely restrictive such that the

concept of the aggregate production function becomes untenable (Brown, 1980; Fisher,

1992; Felipe and Fisher, 2003). Both these problems may be summed up in terms of the

fallacy of composition: what is true of some parts of the whole may not be true of the

whole. In passing, note that the paradox of thrift in Keynesian economics is a good

example for fallacy of composition: while individual thrift is good, collective thrift may be

bad for the economy.
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3.5 Index Decomposition Analysis (IDA)

As already mentioned, the 1973 oil crisis opened the eyes of the world countries to the

prime need for energy consumption reduction through energy use efficiency improvements;

this in turn essentially required complete evaluation of energy consumption patterns and

identifying the driving factors of changes in energy consumption.

Second of all, the growing awareness of environmental issues and especially of the need to

reduce carbon dioxide (CO2) and other greenhouse gases (GHG) in order to prevent global

warming also created a demand for effective tools to decompose aggregate indicators. As

the ultimate objective of the Kyoto protocol is to achieve stabilization of GHG in the

atmosphere (UNFCCC 1992), emission level targets are given to every committed country.

Since energy consumption is the main cause of GHG emissions, there is a need to

understand the patterns of energy use and how they affect GHG emissions. Information on

the factors contributing to emission growth becomes therefore more and more important.

This need led to the development of the Index Decomposition Methodology in the late

1970s in the United States (Myers and Nakamura 1978) and in the United Kingdom

(Bossanyi 1979). These pioneering studies then spurred a number of different

decomposition methods, most of which were derived from the index number theory,

initially developed in economics to study the respective contributions of price and quantity

effects to final aggregate consumption. A variant of factor decomposition analysis, IDA

takes energy as a single factor of production, and explores various effects on energy

intensity changes, by decomposing these changes into pure intensity changes effect and

industrial structure changes effect. The first component (pure intensity changes effect)
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implies that when the industrial structure remains unchanged, the energy intensity change

may be taken as the result of energy use efficiency changes in some sector, and the second

implies that given the fixed energy efficiencies of various industries and their different

energy intensity levels, the total energy intensity changes effect may be taken as the result

of the dynamic changes of the yield of each industry.

IDA, as applied to time series data of a specific period, involves results which are very

sensitive to the choice of the base period during the study period. In terms of the selection

of base period, the approach usually considers Laspeyres Index of fixed weights and

Divisia Index of variable weights.

Laspeyres Index

The Laspeyres Index was developed by the German economist Etienne Laspeyres (Ernst

Louis Étienne Laspeyres; 1834 – 1913) in 1871 as a price index for measuring inflation

(price rise), and is a base year quantity weighted method. This index has the advantage of

being mathematically simple and easy to understand. If Pi0 and Pit are the prices and qi0

and qit, the quantities of the ith good in the base year and current year respectively, then

the Laspeyres price index is given by� = ∑ �������∑ ������� .

Here the numerator is the total expenditures on all the goods in the current period (t) using

base (0) quantities, and the denominator is the total expenditures on all the goods in the

base period using base quantities. A Laspeyres index of unity (when the numerator = the

denominator) means that a consumer is able to afford the same basket of goods in the

current period as he was in the base period. The quantities remaining the same, it is only

the price that varies; and this simple method helps determine inflation rate. This situation
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gives rise to the economic concept of compensating variation: by how much do we need to

raise a consumer’s income in order to meet a price rise (inflation)?

Later on the German economist Hermann Paasche (1851–1925) developed a new index,

taking current period as fixed base period weights. Thus the Paasche price index is a

current period quantity weighted method and is given by� = ∑ �������∑ ������� .

In Laspeyres’ index number, the money value in exchange of the goods consumed in the

base year at base year prices is taken as the weights and in Paasche’s index number, the

money value of the goods consumed in the current year at base year prices is taken as

weights. The former has an upward bias and the latter, a downward bias. To reduce the

bias, it is suggested to take the average of the two types of weights as the weight. Thus the

Marshall and Edgeworth’s index number is based on a weight in terms of the arithmetic

mean of these weights.

Fisher in 1972 further proposed the geometric mean of Laspeyres Index and Paasche Index

as an Ideal Index Number.

Laspeyres Index of Energy Efficiency

As already explained, factorization approach helps decompose the changes in energy

consumption into three main factors: changes in production or output (activity, A), changes

in the mix of sub-sectors (structure, S), and changes in the amount of energy required for

each unit of output in each subsector (intensity, I). That is,
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∆� = ∆���� + ∆���� + ∆���� + ����
where ∆� = ����� � − ����� �, is the change in energy consumption, and ACT = Activity,

STR = Structure, INT = Intensity, RSD = Residual. In estimation, the residual term is

usually ignored, and the other terms are estimated as follows:

An example of the use of Laspeyres Index of fixed weights for energy efficiency estimation

is Jenne and Cattell (1983), in the case of the energy use trends of the UK’s industries

during 1968-1980. Other studies are Sun (1998) in the case of China's energy consumption

efficiency during 1980-1994, and Reddy and Ray (2010) in a study on the final energy

consumption and energy intensity of Indian manufacturing industries. This study has found

that the decline in energy intensity is purely due to structural effect change, rather than to

the improvement of actual energy efficiency.

Divisia Index of variable weights

Divisia Index was proposed by Francois Divisia (1889–1964), a French economist, in

1925 for continuous-time data on prices and quantities of goods consumed. The biggest

advantage of this index is that it can almost fully explain the changes effect of energy

intensity in terms of those of its components, as the residual effect involved is much less
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compared with other indices; moreover, the Divisia Index gives the weights of each effect

as functions of time (varying with time). An important property of this index is that a

Divisia price (quantity) index has a rate of growth equal to a weighted average of rates of

growth of its component prices (quantities).

In productivity measurement studies, Divisia index was first employed by Solow (1957)

with two important innovations: he used Divisia index method to obtain the rate of growth

of total factor input by weighting rates of growth of capital and labour; and interpreted the

resulting Divisia index of total factor productivity as shifts in an aggregate production

function. Later on, Denison (1962, 1967) followed Solow by measuring growth in the U.S.

total factor productivity and making international comparisons of productivity growth

using Divisia index. He obtained Divisia index of rate of growth of total factor input by

weighting rates of growth of capital and labor, which were in turn measured using Divisia

indexes obtained from weighted rates of growth of individual components of labor and

capital.

Divisia factor decomposition analysis of Energy Efficiency

Divisia index decomposition approach has become very popular these days in the context

of analysis of energy intensity changes (see Ang and Zhang (2000), and Ang (2004) for a

survey of index decomposition analysis in this field). There are two common Divisia index

decomposition methods: Arithmetic mean (AMDI) and Logarithmic Mean Divisia index

(LMDI). The AMDI method was first used by Gale Boyd, John McDonald, M. Ross and D.

A. Hansont in 1987, for “separating the changing composition of the US manufacturing

production from energy efficiency improvements” using Divisia index approach (as the

title shows). This was followed by a number of studies, some attempts being directed

towards modifying the index. These efforts were finally culminated in Ang and Choi
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(1997), who used logarithmic mean function as weights for aggregation with the attractive

property that the decomposition leaves no residuals at all. Ang et al. (1998) called this

model “Logarithmic Mean Divisia index (LMDI)”. There are two LMDI measures: LMDI-

I and LMDI-II. Both the indices have a number of desirable properties that make them very

popular (Ang 2004). A practical guide to these measures is available in Ang (2005). For

both the measures, decomposition can be done either additively or multiplicatively. In

additive decomposition method, we decompose the aggregate indicator (total energy

consumption) in terms of its arithmetic change (or difference), with both the aggregate and

decomposed changes given in physical unit. In multiplicative model, the aggregate

indicator is decomposed in terms of its ratio change, with both the aggregate and

decomposed changes given in indexes.

Two important studies using this method are: (i) Sheinbaum-Pardo, Mora-Pérez and

Robles-Morales (2012) to assess the relative contributions of fuel switching to activity,

structure and intensity in different industrial sub-sectors in Mexico; and (ii) Wang, Liu,

Zhang and Song (2014), to analyze the main drivers of energy consumption in China in

1991-2011, using a Cobb-Douglas production function and LMDI method.

In this study, we use the multiplicative model of LMDI-I, which we denote simply by

LMDI.

3.6 Conclusion

Following the documentation of the conceptualization of energy productivity in the last

chapter, we have attempted in this chapter at a comprehensive documentation of the

analytical methods of its measurement. We have started with an introduction to a

comprehensive list of the estimation methods of energy productivity indicators. In general

these methods can be grouped under three heads: traditional single factor productivity
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analysis, decomposition analysis and multi-factor productivity analysis. In the present

chapter we have documented the first two approaches, leaving the theoretical framework

of the multi-factor productivity analysis to the later chapters.

The traditional indicators as identified by Patterson to monitor changes in energy

efficiency are in terms of thermodynamic, physical-thermodynamic, economic-

thermodynamic and economic indicators. The last one, in which output is measured

in terms of economic value (Rs) and energy input in thermodynamic terms, is the

commonly used indicator. When we analyze the indicator in terms of energy intensity

changes, the corresponding index falls under two major decomposition methods,

namely, structural decomposition analysis and index decomposition analysis. We

have discussed in detail the structural decomposition analysis in terms of its two

approaches, viz., input-output method and neo-classical production function method;

the problems and limitations of these approaches are also considered. We have then

turned to the index decomposition analysis in terms of Laspeyres’ and Divisia

indices. The discussion is finally zeroed in on the Logarithmic Mean Divisia index

(LMDI), the recently developed method that has captured wider popularity in applied

studies. We measure energy efficiency in Kerala using this method in the next chapter.
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Chapter 4

Measuring Energy Efficiency in Kerala:

Index Decomposition Analysis

4.1 Introduction

The first of the core chapters of this Report, this Chapter seeks to measure energy

productivity in Kerala in terms of index decomposition analysis. As already indicated, this

we carry out using the Logarithmic Mean Divisia Index (LMDI) method. The Chapter is

structured in five sections; the next part details the method of decomposing the changes in

energy consumption over time into three different effects of activity, structure and intensity

in the framework of the LMDI approach. In section three, we present the results from the

decomposition exercise; first we analyse the two sectors of power and petroleum

separately, and then the combined sector is analysed for decomposition. Section four then

turns to a simulation analysis for energy consumption in Kerala under different

scenarios and the final section concludes the study.

4.2 Decomposition of Energy Consumption Change: Method

As already explained, the changes in energy consumption over time (E) may be attributed

to three different effects:

(i) an activity effect that refers to the overall level of activity (Q) in an economy; in general

different units are used for different sectors of the economy to measure activity (for

example, for the residential (or commercial) sector, we use either square footage of floor

space or number of households (or commercial units), for the industrial sector, we use the
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money value of output produced, for the transport sector, we have passenger-miles, and so

on);

(ii) a structural effect which refers to changes in the structure of activities in terms of their

inter-sectoral or intra-sectoral shares (Si); this reflects the impact on energy use emanating

from the changes in the relative importance of sectors or sub-sectors with different

absolute energy intensities; and

(iii) an intensity effect that represents the effect of changing energy intensity for sectors or

sub-sectors (Ii).

Thus the decomposition identity may be written as� = ∑ �� = ∑ �� ��� ���� = ∑ �� �����
where E is the total energy consumption, Q (= ∑ ��� ) is the activity level, Si (= Qi /Q ) is the

ith sector’s activity share and Ii (= Ei /Qi) is that sector’s energy intensity.

Assuming from period 0 to T, the aggregate (E) changes from E
0 to E

T, our objective is to

find out the contributions of the components to the change in the aggregate. Thus, the

change in energy use in multiplicative decomposition model is given by

������ ≡ ��/�� = ��������� ���������� ����������
And in the additive decomposition model by

∆������ ≡ �� − �� = ∆���������+ ∆���������� + ∆����������
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These equations simply indicate that change in total energy consumption is due to changes

in activity level, Q (activity effect), sectoral shares, Si (structural effect) and sectoral energy

intensities, Ii (energy intensity effect).

These effects evaluated for the multiplicative model of the LMDI‐I are:

��������� = exp �∑ ���� ln �������
���������� = exp �∑ ���� ln ������������������� = exp �∑ ���� ln ���������
where ��� =

(�������)/(�����������)
(�����)/(���������)

The effects evaluated for the additive model of the LMDI‐I are:

∆��������� = ∑ ��� ln ������
∆���������� = ∑ ��� ln ��������∆���������� = ∑ ��� ln ��������

where �� = (��� − ���)/(ln��� − ln���)
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4.3 Decomposition of Energy Consumption Change: Empirical Analysis

For the empirical exercise of decomposition, we consider two energy sectors of Kerala:

power sector and petroleum sector. Since the petroleum consumption data is available only

for the period from 2007-08 to 2016-17, we take this as our study period for the analysis.

As the measure of activity, we have the usual real gross State domestic product (GSDP at

2011-12 prices), available in the Economic Review of the Government of Kerala. First we

analyse the two sectors separately, and then the combined sector is analysed for

decomposition. Corresponding to the three broad sectors of primary, secondary and tertiary

of the GSDP, we consider the sub-sectors of agriculture, industry and others of the power

sector, data on which are available from the Kerala State Electricity Board’s publications

(Power System Statistics, System Operations), and unpublished records. The petroleum data

are from Monthly Petroleum Products Sale data, compiled by SLC, Kerala; and

Monthly data of Petroleum, Planning and Analysis Cell, Ministry of Petroleum and

Natural gas. For the LMDI exercise, we have utilized the “LMDI Program for Stata

module” by Kerry Du (2017).

For our analysis, first we consider the power sector of Kerala. Table 4.1 presents

electricity consumption and real GSDP in Kerala (sector-wise and total) for the study

period (from 2007-08 to 2016-17).

From this basic data, we estimate the sectoral energy intensity of electricity (unit (or

kWh) of electricity used per Rupee of real GSDP) and the sectoral shares of GSDP,

which are given in Table 4.2. These are then input into the LMDI decomposition

exercise, and the results therefrom are given in Table 4.3.
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Table 4.1: Electricity Consumption and Real GSDP in Kerala

Electricity Consumption MU Real GSDP, Rs Lakh

Agriculture Industry Others Total Primary Secondary Tertiary Total

2007-08 230.55 4123.68 9042.38 13396.61 4341828 4571935 12819755 21733518

2008-09 225.22 4002.37 8650.06 12877.65 4643108 4576364 13841297 23060769

2009-10 257 4481.09 9286.9 14024.99 4504923 4854334 15522423 24881679

2010-11 231.56 4616.59 9829.99 14678.14 4131565 5576848 16503211 26211624

2011-12 286.18 4926.43 10969.02 16181.63 4266424 8369967 17390244 30026635

2012-13 306.08 5007.11 11526.02 16839.21 4104417 8580866 19042425 31727708

2013-14 310.25 5132.05 13426.35 18868.65 4052624 8865392 20439675 33357691

2014-15 298.28 5236.64 13249.43 18784.35 4263300 9033930 21507602 34804832

2015-16 279.48 5209.23 13889.87 19378.58 3636758 9825120 22933704 36395582

2016-17 321.98 5260.116 14505.44 20087.54 3794551 10164829 24640455 38599835

Table 4.2: Sectoral Energy Intensity and Sectoral Share of GSDP

Sectoral Intensity, Electricity, kWh/Re Sectoral Share of GSDP

Primary Secondary Tertiary Primary Secondary Tertiary

2007-08 0.00053 0.00902 0.00705 0.2 0.21 0.59

2008-09 0.00049 0.00875 0.00625 0.201 0.198 0.6

2009-10 0.00057 0.00923 0.00598 0.181 0.195 0.624

2010-11 0.00056 0.00828 0.00596 0.158 0.213 0.63

2011-12 0.00067 0.00589 0.00631 0.142 0.279 0.579

2012-13 0.00075 0.00584 0.00605 0.129 0.27 0.6

2013-14 0.00077 0.00579 0.00657 0.121 0.266 0.613

2014-15 0.0007 0.0058 0.00616 0.122 0.26 0.618

2015-16 0.00077 0.0053 0.00606 0.1 0.27 0.63

2016-17 0.00085 0.00517 0.00589 0.098 0.263 0.638
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Table 4.3: LMDI Decomposition Result

From
Energy Consumption
Change

Intensity
Effect

Structure
Effect

Activity
Effect

2007-08 to 2008-09 0.961 0.912 0.994 1.061

2008-09 to 2009-10 1.089 0.991 1.019 1.079

2009-10 to 2010-11 1.047 0.963 1.032 1.053

2010-11 to 2011-12 1.102 0.938 1.026 1.146

2011-12 to 2012-13 1.041 0.972 1.014 1.057

2012-13 to 2013-14 1.121 1.057 1.008 1.051

2013-14 to 2014-15 0.996 0.955 1 1.043

2014-15 to 2015-16 1.032 0.966 1.022 1.046

2015-16 to 2016-17 1.037 0.975 1.003 1.061

The results show that the electrical energy consumption increased in all but two years:

2008-09 and 2014-15 over the respective previous years. It is significant to note that

energy efficiency improvement contributed to energy intensity reduction in all but one

year: 2013-14 over 2012-13. Energy efficiency improvement reduced energy use by

about 9% in 2008-09 over 2007-08 and nearly 5% in 2013-14 over the previous year; no

energy efficiency improvement means that consumption would have increased. Note

that these two years correspond to quadrant A in Fig. 2.1 on energy efficiency and

conservation quadrants, given above.

On the other hand, the activity structure change led to increase in energy use in all but

one year (2008-09 over 2007-08) and the activity effect was always greater than unity.

The latter is so expected, as unity minus activity effect represents the growth rate of the

economic activity (here the real GSDP), and higher the growth rate, greater the social

benefit. Hence, we have to take the activity effect as given. Note that according to the

LMDI decomposition, energy consumption change is the product of these three effects,
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intensity, structure and activity effects; for example, for 2008-09 over 2007-08, energy

consumption change = 0.961 = 0.912 x 0.994 x 1.061. Thus, given the activity effect,

the combined effect of structure and intensity must more than compensate the activity

effect in order for an effective energy conservation. That is, the combined effect of

structure and intensity must be sufficiently smaller.

Energy conservation means that the energy consumption change is less than unity; this

in turn requires the combined effect of activity (A), structure (S) and intensity (I)

be less than unity (A x S x I < 1); that is, the given activity effect be less than the

reciprocal of the combined effect of the other two (∆A <  �∆�∆�); for example, for 2008-

09 over 2007-08, an energy consumption change of 0.961 implies ∆A = 1.061 <�∆�∆� = �
(�.���)(�.���) = 1.1031. Note that this also means that the combined effect of

structure and intensity must be sufficiently smaller, as already stated (∆S∆I <  �∆�).

Note that an energy consumption change of 0.961 for 2008-09 over 2007-08 implies a

3.9% fall in energy use in that year. An approximate decomposition of this energy

saving as obtained from the three effects is as follows:

Energy saved in efficiency improvement = 1 – 0.912 = 0.088

Energy saved in structural change = 1 – 0.994 = 0.006

Total energy saved = 0.088 + 0.006 = 0.094.

Surplus energy used for activity change = 1 – 1.061 = (–) 0.061

Therefore, Net energy saved = 0.094 – 0.061 = 0.033

Energy saved in consumption = 1- 0.961 = 0.039
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Next we turn to the petroleum sector of Kerala; Table 4.4 presents the sector-wise a

product-wise petroleum consumption in Kerala for the study period ( from 2007-08 to

2016-17) and the next Table (4.5) provides the combined data for two sectors, industry

(secondary) and others (tertiary) to correspond to the National Income Accounts

classification that we followed in the last part (for the power sector). The activity

measure that we use is the same, real GSDP (2011-12 prices) for the same period, from

2007-08 to 2016-17.

As earlier, from this basic data, we estimate the sectoral energy intensity of petroleum

(MT/lakh Rupees of real GSDP) and the sectoral shares of GSDP, which are given in

Table 4.6. The corresponding LMDI decomposition results are given in Table 4.7.

The results show that the petroleum energy consumption increased in all the years over

the respective previous years, without any exception. At the same time, it is significant

to note that energy efficiency improvement contributed to energy intensity reduction in

all but two years: 2008-09 over 2007-08 and 2016-17 over 2015-16. In 2011-12,

energy efficiency improvement reduced energy intensity by about 10% over 2010-11.

However, the structure effect was less than unity only for three years (2010-11, 2011-

12 and 2015-16 over the respective previous years) and the activity effect was always

greater than unity. That no year witnessed energy conservation effort in this sector

implies that the combined effect of intensity and structure was not sufficient to cover

the growth in the economic activity. Note that the activity effect is temporally different

in this sector compared with the earlier model, because here we considered only two

sectors, secondary and tertiary.
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Table 4.4: Consumption of Petroleum Products in Kerala, TMT

Product LPG Naphtha
Auto
LPG

MS
HSD - For
Automobiles

HSD-
Industrial

HSD-
Commercial
DG Sets etc

SKO*-
PDS

SKO-
Fishing

LDO FO/LSHS Bitumen Lubes ATF
Natural
Gas

All
Products

2007-08 517.53 397.92 0 555.95 1403 84.8 169.4 134.47 89.65 0.55 297.7 111.72 41.19 202.9 0 4006.73

2008-09 514.5 609.31 10.79 619.12 1496.4 87.86 164.18 131.87 87.92 1.96 380.1 143.26 37.75 228.7 0 4513.73

2009-10 559.49 646.67 15.24 705.81 1575.3 96.54 179.3 135.65 90.43 1.36 408 148.52 44.72 271 0 4877.98

2010-11 627.4 487.8 12.6 757.7 1726.5 101.4 188.3 110.7 73.8 0.5 347.5 178.7 42.6 297.8 0 4953.1

2011-12 647.9 272.7 11.7 800.4 1887.2 110.9 205.9 93.4 62.3 0.1 322.8 222.5 42.5 302 0 4982.3

2012-13 662.5 403.3 11 846 2111.1 110.6 205.4 59.4 39.6 0.1 338.7 170.9 40.6 314.9 0 5314

2013-14 662.6 269.3 8.9 917.2 2331.9 72.8 135.2 56.9 38 0.1 264.3 221.5 42 337.9 0.1 5358.6

2014-15 715.6 181.1 8.5 1024 2325.8 86 159.7 56.9 37.9 0.1 263.7 178.4 42.1 358.1 0.1 5437.9

2015-16 769.2 23.5 6.5 1129.8 2317.6 111.2 206.5 58.8 39.2 0.1 322.6 193.4 43.7 382.1 0.2 5604.4

2016-17 848.1 0 5.5 1259.6 2329.5 109.6 203.5 48.5 32.3 0.3 314.9 173.3 42.8 428.1 287.7 6083.8

2017-18 933.3 4 5.7 1404 2372.2 114.2 212.2 37.3 30 0.8 243.7 234 41 473.7 291 6397.1

Sector
Domest
ic

Industrial Transport Transport Transport Industrial Commercial Domestic Transport Industrial Industrial Infrastructure Transport Transport Industrial

Source: (i) Monthly Petroleum Products Sale data, compiled by SLC, Kerala; (ii) Monthly data of Petroleum Planning and Analysis Cell,
Ministry of Petroleum and Natural gas.



56

Table 4.5: Sectoral Consumption of Petroleum Products and Real GSDP in

Kerala

Petroleum, TMT Real GSDP, Rs Lakh

Industrial Others Total Secondary Tertiary Total
2007-08 780.96 3225.77 4006.733 4571935 12819755 17391690
2008-09 1079.2 3434.51 4513.729 4576364 13841297 18417661
2009-10 1152.6 3725.39 4877.977 4854334 15522423 20376756
2010-11 937.17 4015.98 4953.144 5576848 16503211 22080059
2011-12 706.47 4275.79 4982.261 8369967 17390244 25760211
2012-13 852.6 4461.35 5313.95 8580866 19042425 27623291
2013-14 606.56 4752.06 5358.619 8865392 20439675 29305067
2014-15 530.98 4906.96 5437.9371 9033930 21507602 30541532
2015-16 457.52 5146.86 5604.3813 9825120 22933704 32758824
2016-17 712.51 5371.27 6083.779 10164829 24640455 34805284

Table 4.6: Sectoral Energy Intensity and Sectoral Share of GSDP

Sectoral Intensity,
Petroleum, MT/lakh Rs Sectoral Shares of GSDP

Secondary Tertiary Secondary Tertiary
2007-08 0.171 0.252 0.263 0.737
2008-09 0.236 0.248 0.248 0.752
2009-10 0.237 0.24 0.238 0.762
2010-11 0.168 0.243 0.253 0.747
2011-12 0.084 0.246 0.325 0.675
2012-13 0.099 0.234 0.311 0.689
2013-14 0.068 0.232 0.303 0.697
2014-15 0.059 0.228 0.296 0.704
2015-16 0.047 0.224 0.3 0.7
2016-17 0.07 0.218 0.292 0.708
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Table 4.7: LMDI Decomposition Result

From

Energy
Consumption
Change

Intensity
Effect

Structure
Effect

Activity
Effect

2007-08 to 2008-09 1.127 1.061 1.003 1.059

2008-09 to 2009-10 1.081 0.976 1 1.106

2009-10 to 2010-11 1.015 0.94 0.997 1.083

2010-11 to 2011-12 1.006 0.901 0.957 1.166

2011-12 to 2012-13 1.067 0.984 1.011 1.072

2012-13 to 2013-14 1.008 0.944 1.007 1.061

2013-14 to 2014-15 1.015 0.968 1.006 1.042

2014-15 to 2015-16 1.031 0.965 0.996 1.073

2015-16 to 2016-17 1.086 1.014 1.007 1.062

Finally we turn to the decomposition analysis for the combined energy sector of Kerala

(electricity and petroleum sectors taken together); as conversion factor for petroleum,

we take one metric ton oil equivalent = 11630 kwh and thus one thousand metric ton

(TMT) oil equivalent = 11.63 MU. The converted petroleum data in MU is given in

Table 4.8. For the combined energy sector, we consider the three usual economic

activity sectors: agriculture (primary), industry (secondary) and others (tertiary), and

real GSDP (at 2011-12 prices) for activity measure for the period from 2007-08 to

2016-17; the corresponding data are reported in Table 4.9. The information required for

decomposition analysis (that is, the sectoral intensities and shares) is given in Table

4.10. The decomposition results are presented in the next Table (4.11).
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Table 4.8: Sectoral Consumption of Petroleum Products in Kerala

Petroleum Mu
Industrial Others Total

2007-08 9082.58 37515.7 46598.3
2008-09 12551.36 39943.3 52494.67
2009-10 13404.63 43326.2 56730.87
2010-11 10899.23 46705.8 57605.06
2011-12 8216.23 49727.5 57943.7
2012-13 9915.77 51885.5 61801.24
2013-14 7054.3 55266.4 62320.74
2014-15 6175.3 57067.9 63243.21
2015-16 5321.01 59858 65178.95
2016-17 8286.52 62467.8 70754.35
2017-18 7603.29 66795.3 74398.56

Table 4.9: Sectoral Energy Consumption (Electricity and Petroleum)

and Real GSDP in Kerala

Energy Consumption, MU Real GSDP, Rs Lakh
Agricult
ure Industry Others Total Primary Secondary Tertiary Total

2007-08 230.55 13206.26 46558.11 59994.91 4341828 4571935 12819755 21733518
2008-09 225.22 16553.73 48593.36 65372.32 4643108 4576364 13841297 23060769
2009-10 257 17885.72 52613.14 70755.86 4504923 4854334 15522423 24881679
2010-11 231.56 15515.82 56535.82 72283.2 4131565 5576848 16503211 26211624
2011-12 286.18 13142.66 60696.49 74125.33 4266424 8369967 17390244 30026635
2012-13 306.08 14922.88 63411.49 78640.45 4104417 8580866 19042425 31727708
2013-14 310.25 12186.35 68692.79 81189.39 4052624 8865392 20439675 33357691
2014-15 298.28 11411.94 70317.34 82027.56 4263300 9033930 21507602 34804832
2015-16 279.48 10530.24 73747.82 84557.53 3636758 9825120 22933704 36395582
2016-17 321.98 13546.63 76973.28 90841.89 3794551 10164829 24640455 38599835
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Table 4.10: Sectoral Energy Intensity and Sectoral Share of GSDP

Sectoral Intensity , units/Rs Sectoral Share

Primary Secondary Tertiary Primary Secondary Tertiary
2007-08 0.00053 0.029 0.036 0.2 0.21 0.59
2008-09 0.00049 0.036 0.035 0.201 0.198 0.6
2009-10 0.00057 0.037 0.034 0.181 0.195 0.624
2010-11 0.00056 0.028 0.034 0.158 0.213 0.63
2011-12 0.00067 0.016 0.035 0.142 0.279 0.579
2012-13 0.00075 0.017 0.033 0.129 0.27 0.6
2013-14 0.00077 0.014 0.034 0.121 0.266 0.613
2014-15 0.0007 0.013 0.033 0.122 0.26 0.618
2015-16 0.00077 0.011 0.032 0.1 0.27 0.63
2016-17 0.00085 0.013 0.031 0.098 0.263 0.638

Table 4.11: LMDI Decomposition Result

From

Energy
Consumption
Change

Intensity
Effect

Structure
Effect

Activity
Effect

2007-08 to 2008-09 1.09 1.028 0.999 1.061

2008-09 to 2009-10 1.082 0.979 1.024 1.079

2009-10 to 2010-11 1.022 0.944 1.027 1.053

2010-11 to 2011-12 1.025 0.908 0.986 1.145

2011-12 to 2012-13 1.061 0.981 1.023 1.057

2012-13 to 2013-14 1.032 0.968 1.014 1.051

2013-14 to 2014-15 1.01 0.965 1.004 1.043

2014-15 to 2015-16 1.031 0.965 1.022 1.046

2015-16 to 2016-17 1.074 1.005 1.008 1.061
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Fig. 4.1: Energy Consumption Change

Fig. 4.2: Structure Effect
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Fig.4.3: Activity Effect

Fig. 4.4: Intensity effect
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We have the same results as for the petroleum sector: increase in total energy

consumption for all the years compared with the respective previous years; contribution

of energy efficiency improvement to energy intensity reduction in all but two years:

2008-09 and 2016-17 over the respective previous years. In 2011-12, energy efficiency

improvement reduced energy intensity by about 10% over 2010-11 as in the petroleum

sector case. However, the structure effect was less than unity only for two years (2008-

09 and 2011-12 over the respective previous years) and the activity effect was always

greater than unity. The net result of all these is that the energy consumption did increase

in all the years under consideration. It is significant to note that the energy efficiency

achieved in the power sector, though in a limited way, got melted away in the

combined sector under the flames from the petroleum sector performance.

4.4 Simulation for Energy Consumption Under Different Scenarios

We have already seen that the decomposition identity may be written as� = ∑ �� = ∑ ���� ��� Q��
where E is the total energy consumption, Q (= ∑ ��� ) is the activity level (in our case, real

GSDP), Qi /Q is the ith sector’s activity share (Si) and Ei /Qi is that sector’s energy

intensity (Ii). We can make use of this identity to simulate energy consumption under

different scenarios.

The following Table reports the annual growth rate of real GSDP of Kerala for the last

few years:

Real GSDP Annual Growth Rate (%)
2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 2015-16 2016-17
6.11 7.9 5.35 14.55 5.67 5.14 4.34 4.57 6.06
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Based on this, for simulation purposes, we assume an annual growth rate of real GSDP

of 6%; thus, given the real GSDP of Rs 38599835 lakh of 2016-17 and 6% annual growth

rate, the first year of simulation will have a real GSDP of Rs. 40915825 lakh. We also

assume that the energy efficiency improvement leads to annual 10% fall in energy

intensity in all sectors and also the real GSDP sectoral shares remain the same. Given

this information, we estimate the total energy for the next four years after 2016-17; we

find that the annual energy conservation in this scenario amounts to 4.6%. Also note

that these assumptions imply an activity effect of 1.06, structure effect of unity, and

intensity effect of 0.9; and yield an annual change in energy consumption of 0.954 (=

1.06 x 1 x 0.9), with an energy conservation of 4.6%.

Table 4.12: Simulation for Energy Consumption under Scenario 1

Intensity, kWh/Re Sectoral shares Real
GSDP Rs
Lakh

Energy
consumption

Year Primary Secondary Tertiary Primary Secondary Tertiary MU
Fall
%

2016-17 0.00085 0.013 0.031 0.098 0.263 0.638 38599835 90841.89

Year 1 0.00076 0.012 0.028 0.098 0.263 0.638 40915825 86663.16 -4.6

Year 2 0.00069 0.011 0.025 0.098 0.263 0.638 43370775 82676.66 -4.6

Year 3 0.00062 0.01 0.023 0.098 0.263 0.638 45973021 78873.53 -4.6

Year 4 0.00056 0.009 0.02 0.098 0.263 0.638 48731402 75245.35 -4.6
Assumptions: (i) Annual growth rate of real GSDP = 6%; (ii) Energy efficiency improvement leads to
annual 10% fall in energy intensity in all sectors; and (iii) RealGSDP sectoral shares remain the same.

The following Tables represent different scenarios of simulation.

Table 4.13 assumes (i) 5% annual growth rate of real GSDP; (ii) annual 10% fall in

energy intensity in all sectors thanks to energy efficiency improvement; and (iii) real

GSDP sectoral shares remain the same. This scenario involves an annual energy

conservation of 5.5%.
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Table 4.13: Simulation for Energy Consumption under Scenario 2

Intensity, kWh/Re Sectoral shares Real
GSDP Rs
Lakh

Energy
consumption

Year Primary Secondary Tertiary Primary Secondary Tertiary MU Fall %
2016-17 0.00085 0.013 0.031 0.098 0.263 0.638 38599835 90841.89
Year 1 0.00076 0.012 0.028 0.098 0.263 0.638 40529827 85845.59 -5.5
Year 2 0.00069 0.011 0.025 0.098 0.263 0.638 42556318 81124.08 -5.5
Year 3 0.00062 0.01 0.023 0.098 0.263 0.638 44684134 76662.25 -5.5
Year 4 0.00056 0.009 0.02 0.098 0.263 0.638 46918341 72445.83 -5.5

Assumptions: (i) Annual growth rate of real GSDP = 5%; (ii) Energy efficiency improvement leads to
annual 10% fall in energy intensity in all sectors; (iii) Real GSDP sectoral shares remain the same.

Table 4.14: Simulation for Energy Consumption under Scenario 3

Intensity, kWh/Re Sectoral shares Real
GSDP Rs
Lakh

Energy
consumption

Year Primary Secondary Tertiary Primary Secondary Tertiary MU Fall %

2016-17 0.00085 0.013 0.031 0.098 0.263 0.638 38599835 90841.89
Year 1 0.00081 0.013 0.03 0.098 0.263 0.638 40529827 90614.79 -0.25
Year 2 0.00077 0.012 0.028 0.098 0.263 0.638 42556318 90388.25 -0.25
Year 3 0.00073 0.011 0.027 0.098 0.263 0.638 44684134 90162.28 -0.25
Year 4 0.00069 0.011 0.025 0.098 0.263 0.638 46918341 89936.87 -0.25
Assumptions: (i) Annual growth rate of real GSDP = 5%; (ii) Energy efficiency improvement leads to
annual 5% fall in energy intensity in all sectors; (iii) Real GSDP sectoral shares remain the same.

Table 4.15: Simulation for Energy Consumption under Scenario 4

Intensity, kWh/Re Sectoral shares Real
GSDP Rs
Lakh

Energy
consumption

Year Primary Secondary Tertiary Primary Secondary Tertiary MU Fall %
2016-17 0.00085 0.01333 0.03124 0.0983 0.2633 0.6384 38599835 90841.89

Year 1 0.00076 0.01199 0.02811 0.0893 0.2660 0.6447 40915825 87498.55 -3.68

Year 2 0.00069 0.01079 0.02530 0.0802 0.2686 0.6512 43370775 84278.54 -3.68

Year 3 0.00062 0.00972 0.02277 0.0710 0.2713 0.6577 45973021 81177.31 -3.68

Year 4 0.00056 0.00874 0.02050 0.0617 0.2740 0.6643 48731402 78190.45 -3.68

Assumptions: (i) Annual growth rate of real GSDP = 6%; (ii) Energy efficiency improvement leads to
annual 10% fall in energy intensity in all sectors; (iii) Real GSDP shares of secondary and tertiary sectors
increase by 1% per annum and the primary sector share correspondingly decreases.
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Table 4.16: Simulation for Energy Consumption under Scenario 5

Intensity, kWh/Re Sectoral shares
Real
GSDP Rs
Lakh

Energy
consumption

Year Primary Secondary Tertiary Primary Secondary Tertiary MU
Fall
%

2016-17 0.00085 0.0133 0.0312 0.0983 0.2633 0.6384 38599835 90841.89
Year 1 0.00076 0.0120 0.0281 0.1163 0.2581 0.6256 40915825 84992.39 -6.44
Year 2 0.00069 0.0108 0.0253 0.1340 0.2529 0.6131 43370775 79520.71 -6.44
Year 3 0.00062 0.0097 0.0228 0.1513 0.2479 0.6008 45973021 74402.37 -6.44
Year 4 0.00056 0.0087 0.0205 0.1683 0.2429 0.5888 48731402 69614.53 -6.44

Assumptions: (i) Annual growth rate of real GSDP = 6%; (ii) Energy efficiency improvement leads to
annual 10% fall in energy intensity in all sectors; (iii) Real GSDP shares of secondary and tertiary sectors
decrease by 2% per annum and the primary sector share correspondingly increases.

Table 4.14 assumes (i) annual growth rate of real GSDP of 5%; (ii) annual 5% fall in

energy intensity in all sectors owing to energy efficiency improvement; and (iii) real

GSDP sectoral shares remain the same. This results in 0.25% energy saving per

annum.

Table 4.15 assumes (i) 6% annual growth rate of real GSDP; (ii) annual 10% fall in

energy intensity in all sectors energy following efficiency improvement; and (iii) an

increase in the real GSDP shares of secondary and tertiary sectors by 1% per annum

and a corresponding decrease in the primary sector share. This yields 3.68% energy

saving per year.

Table 4.16 assumes (i) 6% annual growth rate of real GSDP; (ii) annual 10% fall in

energy intensity in all sectors from energy efficiency improvement; and (iii) a decrease

in the real GSDP shares of secondary and tertiary sectors by 2% per annum with a

corresponding increase in the primary sector share. Strangely this leads to greater

energy conservation; this evidently can be due to the predominance of energy-
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inefficient petroleum sector through the secondary and tertiary sectors. The real

contributions of these two sectors (secondary and tertiary) can come out of this mask

only when this sector becomes energy-efficient.

4.5 Conclusion

In this first core chapter of the Report, we have applied the index decomposition analysis to

measure energy productivity in Kerala in terms of the Logarithmic Mean Divisia Index

(LMDI) method. This method helps us to decompose the changes in energy consumption

over time into three different effects of activity, structure and intensity. As already

indicated, non-availability of suitable time-series data for Kerala has forced us to limit our

ambition down to an empirical decomposition exercise for Kerala in terms of only two

sectors, power and petroleum, that too, for a limited period (from 2007-08 to 2016-17);

first we have analysed the two sectors of power and petroleum separately, and then the

combined sector has been analysed for decomposition.

Note that energy conservation means the energy consumption change be less than

unity; this in turn requires the combined effect of activity, structure and intensity be less

than unity. The activity effect is expected to be greater than unity; since unity minus

activity effect represents the growth rate of the economic activity (here the real GSDP),

and higher the growth rate, greater the social benefit. Hence, we have to take the

activity effect as given. This in turn requires that given the activity effect, the combined

effect of structure and intensity must more than compensate the activity effect in order

for an effective energy conservation. That is, the combined effect of structure and

intensity must be sufficiently smaller. The empirical exercise for Kerala power sector

shows that this was possible only for two years during the study period (from 2007-08
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to 2016-17). Energy consumption reduced by about 9% in 2008-09 over 2007-08 and

nearly 5% in 2013-14 over the previous year.

It is significant to note that energy intensity in the power sector reduced in all but one

year: 2013-14 over 2012-13, thanks to energy efficiency improvements; and this lies

behind the energy use reduction in the two years of 2008-09 and 2013-14; no energy

efficiency improvement means that consumption would have increased. Thus in these

two years, social benefit increased along with positive energy conservation. That this

occurred only for two years is explained by the performance of the other component,

structure effect, that was greater than unity in all but one year (2008-09 over 2007-08).

In short, despite energy intensity reduction thanks to energy efficiency improvement in

the power sector of Kerala for a number of recent years, energy conservation along

with increased social benefit (real GSDP) could not be achieved because of the

anomaly in the real GSDP structure (composition of sectoral shares). If the current state

of nature dictates this activity structure as given, then the only recourse for energy

conservation is through higher levels of energy efficiency improvement for greater

reduction in intensity.

The results for the petroleum sector (with only two sectors, secondary and tertiary),

however, show that no year witnessed energy conservation effort in this sector. This is

despite energy intensity reduction (thanks to energy efficiency improvement) in all but

two years: 2008-09 over 2007-08 and 2016-17 over 2015-16. The structure effect was

less than unity only for three years (2010-11, 2011-12 and 2015-16 over the respective

previous years). Their combined effect was incapable of containing the activity effects

of the secondary and tertiary sectors for occasioning any energy conservation. Such

performance of the petroleum sector has overshadowed that of the power sector, and

the combined sector of energy in Kerala has shown almost similar results as the
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petroleum sector, with the net result that the energy consumption increased in all the

years under consideration.

Following this, we have then turned to a simulation analysis for energy consumption in

Kerala under different scenarios that offer energy savings. This exercise shows some

strange results, emanating from the peculiar characteristics of the petroleum sector in

Kerala. As already remarked earlier, the petroleum consumption data relating only to

the secondary and tertiary sub-sectors, the less-efficient petroleum sector overweighs

the combined energy sector of Kerala to such an extent that the energy-efficiency

potential of these two sub-sectors gets clouded. In this situation, the simulation with an

assumption of a small reduction in the real GSDP shares of secondary and tertiary

sectors yields greater energy conservation. A sufficiently high degree of energy

efficiency in the petroleum sector can indeed reverse this anomaly.
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Chapter 5

Measuring Energy Efficiency in Kerala:

Stochastic Frontier Production Function Analysis

5.1 Introduction

The present chapter starts our multi-factor productivity analysis, with the stochastic

frontier production function method. The chapter is structured in six parts. The next

section discusses the theoretical framework of frontier production function in general;

section 3 continues the discussion with frontier approach and introduces both the

deterministic and stochastic frontiers. A detailed presentation of the panel data

stochastic frontier model that we utilize in our empirical exercise for the Kerala power

sector also follows in the same section. Part four discusses the regression results from

the empirical study. For a comparative purpose, we also present the regression results

from a pooled data stochastic frontier approach in section five. The last section

concludes the chapter.

5.2 Frontier Production Function

A production function in microeconomic theory is defined as yielding maximum

output (y) from a specified set of inputs (x), given the existing technology, and is given

as

y = f (x;), (1)
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where  represents the production parameters. The function is assumed to be single-

valued continuous one, with continuous first- and second-order partial derivatives.

“The production function differs from the technology in that it presupposes technical

efficiency and states the maximum output obtainable from every possible input

combination.” (Henderson and Quandt 1971; 54). Thus, the production function

determines a production frontier, points on which represent technically efficient input

combinations. Points such as B and C in Fig. 5.1 are thus technically efficient, but point

A is not. The technical efficiency of the firm at point A with an input level of x’ is given

by x’A / x’B, where the denominator is the ‘frontier output’ and the numerator, the

actual output of the firm, both associated with that input level; that is, the distance

between the points A (actual output) and B (frontier output) represents its technical

inefficiency at that input level.

Fig. 5.1: Technical Efficiency with a Frontier Production Function

y

x’
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It was the seminal paper of Farrell (1957) that stimulated econometric modeling of

production functions as frontiers. According to him, the overall efficiency (now called

economic efficiency) of a production unit is composed of two components, viz., technical

efficiency and price efficiency (now called allocative efficiency); the former refers to the

capability of the unit to produce maximum output from a given bundle of inputs, and the

latter to the capability of the unit to utilize the inputs in an optimum proportion subject to the

given input prices. In this chapter, we are considering the technical efficiency only

(represented in Fig. 5.1 by points B and C).

However, there is a difference between the two efficient points B and C. We know that

a ray through the origin as in Fig. 5.1 has a slope equal to y/x (that is, output/input) and

is thus a measure of productivity. The ray from the origin has the maximum slope

when it is at tangent to the production frontier and the point of tangency thus defines the

point of maximum possible productivity. In Fig. 5.1, the point C represents optimum

productivity, in addition to technical efficiency. Note that in this Report, we consider only

technical efficiency.

Remember the efficiency of a production unit is measured in relation to an efficient

production function (representing an efficient firm), which is in fact unknown and must be

estimated using the sample data. For estimation, Farrell suggested (i) a parametric frontier

function, such as the Cobb-Douglas production function, estimated from the data in such a

way that no actual data point should lie to the right or above it, or (ii) a non-parametric

piecewise-linear convex isoquant, estimated from the data in such a way that no actual data

point should lie to the left or below it. Farrell used his models with agricultural data for the

48 states of the US.
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5.3 Frontier Production Function Analysis

There are two types of production frontiers: (i) deterministic and (ii) stochastic frontiers.

Deterministic frontiers

The econometric model of the deterministic production frontier is obtained from the

above equation (1) by adding an inefficiency term to the right side frontier and indexing

the model for each of the n firms under study, as follows:

yi = f(xi;) exp(–ui), i = 1, 2, ... , n (2)

where yi is the actual production level of the ith firm in the sample;

f(xi; ) models the frontier, represented by a suitable functional form, such as Cobb-

Douglas or Translog, of the of inputs xi and production parameters  of the ith firm;

ui is a non-negative random variable representing the technical inefficiency of the ith

firm;

n is the number of firms in the cross-sectional sample of the industry, and

exp represents exponential.

Remember that the technical efficiency of a firm is defined in terms of the ratio of the

actual level of production of the firm to its frontier output. In the case of the above

deterministic frontier model, the actual output for the ith firm is given by

f(xi;) exp(–ui), and the frontier output is f(xi;) such that the technical efficiency of the

ith firm (TEi) is given by
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TEi = actual output/frontier output

= f(xi;) exp(–ui) / f(xi;)

= exp(–ui). (3)

Using appropriate estimation methods, we can have the frontier parameter estimates,

which, along with the given sample input levels of individual firms, will yield the

corresponding frontier output estimates; a comparison of the actual level of output with

this will reveal the technical efficiency of each of the firms in the sample. It was Aigner

and Chu (1968) who first estimated such a model by considering Cobb-Douglas

production frontier and using linear programming technique. Taking natural log of (2),

we obtain the technical inefficiency of the ith firm as the difference between the log of

its actual and frontier output levels. Aigner and Chu (1968) sought to minimize the sum

of the inefficiency subject to the constraint that ui is non-negative; they also suggested

quadratic programming as another solution method. The first econometric estimation

came with Afriat (1972), who assumed gamma distribution for the ui random variables and

used the maximum likelihood method. Then Richmond (1974) followed, using a modified

least squares method, known as modified (or corrected) ordinary least squares (MOLS or

COLS), making the estimates unbiased and consistent. Schmidt (1976) assumed

exponential and half-normal distributions for the random variable and estimated the

model by the maximum likelihood method.

Note that the random variable in this model, assumed to be non-negative, stands to

capture both the statistical noise and the inefficiency of the firm, and this is the major

limitation of this model; all the deviations from the frontier is taken to indicate the effect

of inefficiency. Another problem is that it does not satisfy the regularity condition of

maximum likelihood (ML) method that the dependent variable be distributed

independent of the parameter vector.
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Attempts to solve these problems of the deterministic frontier method led to the

development of the stochastic frontier approach.

Stochastic frontiers

Introduced by Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck

(1977) independently, the stochastic frontier approach to efficiency analysis defines the

frontier property in a stochastic, rather than a deterministic, sense and seeks to

decompose the random error term into two components, one for the random noise and

the other for technical efficiency. This effectively helps us estimate technical efficiency

directly. For detailed reviews of literature, see Forsund, Lovell and Schmidt (1980),

Schmidt and Sickles (1984), Schmidt (1986), Bauer (1990), Seiford and Thrall (1990),

Lovell (1993), Greene (1993), Ali and Seiford (1993) and Kumbhakar and Lovell (2000).

Since our data set contains information on three sectors (primary, secondary and

tertiary) over a period of time that defines a panel data, we discuss first the features of

panel data stochastic frontier and then the pooled data stochastic frontier.

Panel Data Stochastic Frontier

As earlier, we start with a frontier production function, but this time in a panel

framework:

yit = f(xit;), i = 1, 2, ... , n; t = 1, 2, …, T, (4)
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where f(xit; ) is the frontier production level of the ith firm at time t in the sample. As

stated above, the random disturbance term in this model has two components, one

having a strictly nonnegative distribution, representing technical efficiency, and the

other representing the usual idiosyncratic error having a symmetric distribution. These

two components we introduce in (4) as follows.

Note that the basic assumption of the (stochastic) frontier production function is that

each firm is subject to some degree of inefficiency and hence potentially produces less

than the frontier output. Thus we modify (4) as

yit = f(xit;)it, i = 1, 2, ... , n; t = 1, 2, …, T, (5)

where it, lying in the interval (0;1] represents the degree of technical efficiency of firm

i at time t. Since the actual output is strictly positive, (yit > 0), the degree of technical

efficiency also is assumed to be strictly positive (it > 0). When it = 1, there is no

inefficiency and the firm produces its optimal output, determined by the frontier

function f(xit; ). On the other hand, when it < 1, the firm produces less, depending

upon the degree of inefficiency.

Now we modify (5) by adding the usual noise term (as the output is subject to random

shocks, vit),

yit = f(xit;)it exp(vit), i = 1, 2, ... , n; t = 1, 2, …, T. (6)

Taking the natural log of (6), we get

ln(yit) = ln f(xit;) + ln(it) + vit, i = 1, 2, ... , n; t = 1, 2, …, T. (7)
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If we define inefficiency term  uit = ln(it), we can rewrite the above equation as

ln(yit) = ln f(xit;) + vituit, i = 1, 2, ... , n; t = 1, 2, …, T. (8)

Note that we are subtracting uit from ln f(xit;); hence, if we restrict uit0, we will get

0 < it 1, as required above.

The above equation is estimated under different specifications of the uit term. In

general, there are two models: (i) time-invariant inefficiency model and (ii) time-

varying decay model; the former is the simplest specification.

In the time-invariant inefficiency specification, the inefficiency term uit is assumed to be

a time-invariant truncated normal random variable, truncated at zero with mean  and

variance 2. Note that the time-invariant model implies uit = ui, and hence we have the

following assumptions:

ui iid N+( ;u
2), and vit iid N(0;v

2),

where ui and vit are distributed independently of each other and of the covariates in the

model.

In the time-varying decay model, the inefficiency term is specified as

uit = exp{(tTi)} ui, (9)

where

= the decay parameter,

Ti = the last period in the ith panel, and
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ui iid N+( ;u
2), and vit iid N(0;v

2), both distributed independently of each

other and of the covariates in the model ( iid = independently and identically

distributed as; N+ = truncated (at zero) normal distribution; and N = normal

distribution).

With the above specification (9), the time-varying decay model functions as follows:

when> 0, the degree of inefficiency decreases over time;

when< 0, the degree of inefficiency increases over time.

Note that since t = Ti in the last period, the last period for firm i is assumed to contain

the base level of its inefficiency, and hence, when  > 0, the degree of inefficiency

decays toward the base level and when < 0, it increases to the base level.

Also note that when  = 0, the time-varying decay model reduces to the time-invariant

model.

5.4 Panel Data Stochastic Frontier: Regression Results

For estimating the panel data stochastic frontier of the power sector in Kerala, we

consider three sectors as above (Primary, Secondary and Tertiary) for the period from

1970-71 to 2016-17. Because of the data unavailability for estimating a usual

production function in terms of factors of production, we propose the following

relationship:

Sectoral energy consumption = f(Sectoral number of consumers; Sectoral

GSDP at constant 2011-12 prices); all variables in log.
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Note that unlike the usual frontier function with factors of production, we have a

frontier function with activity factors.

Below we give the regression results for the time-invariant inefficiency model:

Table 5.1:

Panel Data Stochastic Frontier Results

for Time-invariant Inefficiency Model

Remember that we have used all the variables in log in the model specification; hence,

the estimated coefficients are to be taken as elasticity measures. The estimates are

highly significant; and energy consumption appears highly inelastic with respect to real
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GSDP and number of consumers, which signify positive implication for energy

efficiency in general!

In the third (bottom) panel of the results, we have the variance estimates of the error

components. Thus, sigma_v2 is the estimate of the variance of the usual idiosyncratic

error component, v
2, and sigma_u2 is that of the inefficiency component, u

2. The first

estimate reported, sigma2, is the estimate of the total error variance in terms of the sum

of the above two, S
2 = v

2 + u
2. The second one, gamma, gives the estimate of the

ratio of the variance of the inefficiency component to the total error variance estimate, 

=u
2/S

2.

The estimates given in the intermediate panel are;

/mu is the estimate of , the mean of the inefficiency term (ui iid N+( ;u
2)).

/lgtgamma is the estimate of the logit of ; logit of  is used to parameterize the

optimization, as must be between 0 and 1.

/lnsigma2 is the estimate of ln(S
2); ln(S

2) is used to parameterize the

optimization, as S
2 must be positive.

Below we report some summary indicators of the panel time-invariant technical

efficiency measures:
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Table 5.2 below reports the results for the time-varying decay inefficiency model:

Table 5.2:

Panel Data Stochastic Frontier Results

for Time-varying Decay Inefficiency Model
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We know that if  = 0, the time-varying decay model reduces to the time-invariant

model. In the above result, we find that the estimate of  is insignificant (zero); and the

other estimates are not much different from the estimates of the time-invariant model.

That means the time-varying decay model reduces to the time-invariant model. Its

implication that the sector-wise technical efficiency estimates of the Kerala power

sector are independent of time, that they remain constant over time, is highly significant

in that it may refer to a technically stagnant situation in energy efficiency.

Below we report some summary indicators of the panel time-varying decay technical

efficiency measures:

Next we turn to the pooled data stochastic frontier model, just for comparative purpose.

5.5 Pooled Data Stochastic Frontier: Regression Results

We start with our earlier model

ln(yit) = ln f(xit;) + vituit, i = 1, 2, ... , n; t = 1, 2, …, T. (8)
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where vit is the idiosyncratic error and uit is a time-varying panel-level effect. If the

panel-level effect is insignificant, we get the pooled data model. There are three

different models depending upon the distributional specification of the inefficiency

term; in all these models, the idiosyncratic noise term is assumed to be independently

distributed as normal, N(0; v
2). The three models are:

(i) Exponential model, in which the inefficiency component is independently

exponentially distributed with variance u
2;

(ii) Half-normal model, with the inefficiency component independently and

half-normally distributed, N+(0;u
2);

(iii) Truncated-normal model, with the inefficiency component independently

and truncated-normally distributed with truncation point at 0, N+(;u
2).

Table 5.3 presents the pooled data stochastic frontier model estimation results for the

Kerala power sector with three sectors (Primary, Secondary and Tertiary) for the period

from 1970-71 to 2016-17, for the same relationship as above:

Sectoral energy consumption = f(Sectoral GDP at constant 2011-12 prices;

Sectoral number of consumers); all variables in log.
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Table 5.3:

Pooled Data Stochastic Frontier Results for Half-Normal Model

As in the earlier model (Table 5.1), the estimates are highly significant; and energy

consumption appears highly inelastic with respect to real GSDP and number of

consumers, which signify positive implication for energy efficiency in general!

In the bottom panel, sigma_v and sigma_u, represent the estimates of the standard

deviations of the two error components, v and u, respectively. The next term, sigma2, is

the estimate of the total error variance, S
2 = v

2 + u
2, and lambda represents the

estimate of the ratio of the standard deviation of the inefficiency term to that of the

idiosyncratic term, =u/v.
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In the intermediate panel, we have

/lnsig2v and /lnsig2u, to represent the estimates of lnv
2 and lnu

2 respectively.

Note that at the bottom of the output (last line), the result of a test that there is no

technical inefficiency term in the model is given, with the null hypothesis H 0: u
2 = 0,

against the alternative hypotheses H1:u
2 > 0. If we fail to reject the null hypothesis, the

stochastic frontier model reduces to an OLS model with normal errors. For our half-

normal model, we have the results that the likelihood ratio statistic (LR) = 91.27 with a

p-value of 0.000. Thus we reject the null hypothesis; the stochastic frontier model is

valid.

Below we report some summary indicators of the pooled data half-normal model

technical efficiency measures:

Next we turn to the exponential model results (Table 5.4).
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Table 5.4:

Pooled Data Stochastic Frontier Results for Exponential Model

Note that for our exponential model, the results of the likelihood ratio test shows that

the statistic (LR) = 0.09 with a p-value of 0.380. Thus we fail to reject the null

hypothesis; the stochastic frontier model reduces to an OLS model with normal errors.

Though we have tried to estimate the truncated normal model, the estimation process

has failed to converge.
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Table 5.5: Technical Efficiency Estimates: Primary Sector

Year

Pooled

Half-

Normal

Panel

Time-

Invariant

Panel

Time-

Varying Year

Pooled

Half-

Normal

Panel

Time-

Invariant

Panel

Time-

Varying

1970-71 0.0118 0.0389 0.0392 1994-95 0.0722 0.0389 0.0386

1971-72 0.0216 0.0389 0.0392 1995-96 0.0871 0.0389 0.0385

1972-73 0.0241 0.0389 0.0391 1996-97 0.0925 0.0389 0.0385

1973-74 0.0299 0.0389 0.0391 1997-98 0.0996 0.0389 0.0385

1974-75 0.0321 0.0389 0.0391 1998-99 0.1046 0.0389 0.0385

1975-76 0.0363 0.0389 0.0391 1999-00 0.1258 0.0389 0.0384

1976-77 0.0337 0.0389 0.0390 2000-01 0.1217 0.0389 0.0384

1977-78 0.0279 0.0389 0.0390 2001-02 0.0963 0.0389 0.0384

1978-79 0.0307 0.0389 0.0390 2002-03 0.0355 0.0389 0.0384

1979-80 0.0295 0.0389 0.0390 2003-04 0.0411 0.0389 0.0383

1980-81 0.0322 0.0389 0.0389 2004-05 0.0340 0.0389 0.0383

1981-82 0.0382 0.0389 0.0389 2005-06 0.0331 0.0389 0.0383

1982-83 0.0377 0.0389 0.0389 2006-07 0.0401 0.0389 0.0382

1983-84 0.0389 0.0389 0.0389 2007-08 0.0421 0.0389 0.0382

1984-85 0.0336 0.0389 0.0388 2008-09 0.0398 0.0389 0.0382

1985-86 0.0374 0.0389 0.0388 2009-10 0.0461 0.0389 0.0382

1986-87 0.0552 0.0389 0.0388 2010-11 0.0433 0.0389 0.0381

1987-88 0.0644 0.0389 0.0387 2011-12 0.0526 0.0389 0.0381

1988-89 0.0715 0.0389 0.0387 2012-13 0.0574 0.0389 0.0381

1989-90 0.0740 0.0389 0.0387 2013-14 0.0585 0.0389 0.0381

1990-91 0.0637 0.0389 0.0387 2014-15 0.0549 0.0389 0.0380

1991-92 0.0669 0.0389 0.0386 2015-16 0.0555 0.0389 0.0380

1992-93 0.0723 0.0389 0.0386 2016-17 0.0628 0.0389 0.0380

1993-94 0.0755 0.0389 0.0386

Tables 5.5, 5.6, and 5.7 provide the technical efficiency estimates for the three sectors,

primary, secondary and tertiary respectively, for the study period from 1970-71 to

2016-17 derived from the three models estimated, viz., (i) panel data stochastic frontier

time invariant model, (ii) panel data stochastic frontier time-varying model, and (iii)

pooled data half-normal model.
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Table 5.6: Technical Efficiency Estimates: Secondary Sector

Year

Pooled

Half-

Normal

Panel

Time-

Invariant

Panel

Time-

Varying Year

Pooled

Half-

Normal

Panel

Time-

Invariant

Panel

Time-

Varying

1970-71 0.7334 0.9063 0.9040 1994-95 0.9391 0.9063 0.9035

1971-72 0.6943 0.9063 0.9040 1995-96 0.9462 0.9063 0.9035

1972-73 0.7237 0.9063 0.9039 1996-97 0.6492 0.9063 0.9035

1973-74 0.7467 0.9063 0.9039 1997-98 0.7201 0.9063 0.9035

1974-75 0.7536 0.9063 0.9039 1998-99 0.9011 0.9063 0.9034

1975-76 0.7800 0.9063 0.9039 1999-00 0.9133 0.9063 0.9034

1976-77 0.8075 0.9063 0.9039 2000-01 1.0000 0.9063 0.9034

1977-78 0.8838 0.9063 0.9038 2001-02 0.8583 0.9063 0.9034

1978-79 0.8736 0.9063 0.9038 2002-03 0.7899 0.9063 0.9034

1979-80 0.7851 0.9063 0.9038 2003-04 0.7070 0.9063 0.9033

1980-81 0.8547 0.9063 0.9038 2004-05 0.7507 0.9063 0.9033

1981-82 0.8092 0.9063 0.9038 2005-06 0.7578 0.9063 0.9033

1982-83 0.8925 0.9063 0.9037 2006-07 0.7834 0.9063 0.9033

1983-84 0.7083 0.9063 0.9037 2007-08 0.7740 0.9063 0.9033

1984-85 0.8753 0.9063 0.9037 2008-09 0.7512 0.9063 0.9033

1985-86 0.9279 0.9063 0.9037 2009-10 0.8166 0.9063 0.9032

1986-87 0.8376 0.9063 0.9037 2010-11 0.7843 0.9063 0.9032

1987-88 0.7339 0.9063 0.9037 2011-12 0.6835 0.9063 0.9032

1988-89 0.8514 0.9063 0.9036 2012-13 0.6863 0.9063 0.9032

1989-90 0.9658 0.9063 0.9036 2013-14 0.6908 0.9063 0.9032

1990-91 0.9596 0.9063 0.9036 2014-15 0.6976 0.9063 0.9031

1991-92 0.9862 0.9063 0.9036 2015-16 0.6665 0.9063 0.9031

1992-93 0.8758 0.9063 0.9036 2016-17 0.6608 0.9063 0.9031

1993-94 0.8772 0.9063 0.9035



88

Table 5.7: Technical Efficiency Estimates: Tertiary Sector

Year

Pooled

Half-

Normal

Panel

Time-

Invariant

Panel

Time-

Varying Year

Pooled

Half-

Normal

Panel

Time-

Invariant

Panel

Time-

Varying

1970-71 0.2662 0.1519 0.1490 1994-95 0.6574 0.1519 0.1476

1971-72 0.2515 0.1519 0.1490 1995-96 0.6718 0.1519 0.1476

1972-73 0.1278 0.1519 0.1489 1996-97 0.7510 0.1519 0.1475

1973-74 0.2647 0.1519 0.1489 1997-98 0.7907 0.1519 0.1474

1974-75 0.1448 0.1519 0.1488 1998-99 0.8629 0.1519 0.1474

1975-76 0.1626 0.1519 0.1487 1999-00 0.8052 0.1519 0.1473

1976-77 0.3927 0.1519 0.1487 2000-01 0.8129 0.1519 0.1473

1977-78 0.8080 0.1519 0.1486 2001-02 0.6496 0.1519 0.1472

1978-79 1.0000 0.1519 0.1486 2002-03 0.7036 0.1519 0.1471

1979-80 0.9315 0.1519 0.1485 2003-04 0.7010 0.1519 0.1471

1980-81 0.8203 0.1519 0.1484 2004-05 0.6351 0.1519 0.1470

1981-82 0.8963 0.1519 0.1484 2005-06 0.7382 0.1519 0.1470

1982-83 0.5175 0.1519 0.1483 2006-07 0.8131 0.1519 0.1469

1983-84 0.3876 0.1519 0.1483 2007-08 0.8557 0.1519 0.1468

1984-85 0.3681 0.1519 0.1482 2008-09 0.7869 0.1519 0.1468

1985-86 0.4218 0.1519 0.1481 2009-10 0.7970 0.1519 0.1467

1986-87 0.4542 0.1519 0.1481 2010-11 0.8171 0.1519 0.1467

1987-88 0.4651 0.1519 0.1480 2011-12 0.8874 0.1519 0.1466

1988-89 0.5399 0.1519 0.1480 2012-13 0.8903 0.1519 0.1465

1989-90 0.4859 0.1519 0.1479 2013-14 1.0000 0.1519 0.1465

1990-91 0.6204 0.1519 0.1478 2014-15 0.9615 0.1519 0.1464

1991-92 0.6533 0.1519 0.1478 2015-16 0.9757 0.1519 0.1464

1992-93 0.7161 0.1519 0.1477 2016-17 0.9822 0.1519 0.1463

1993-94 0.5990 0.1519 0.1477

Fig. 5.1 provides a visual representation of these tables and brings out the patterns and

the trends of the efficiency estimates. As the theory has already suggested, the panel

data stochastic frontier time invariant model yields a constant estimate for each of the

three sectors, and the panel data stochastic frontier time-varying decay model presents
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smoothly falling estimates over the time; note that the latter model is statistically not

different from the former one such that their mean values are very close to each other

(as Table 5.8 shows). The mean technical efficiency estimates for the three sectors

derived from these two models are: primary sector = 0.039; secondary sector = 0.906;

and tertiary sector = 0.152. While the secondary sector performance goes well with the

general expectation, the tertiary sector presents poor results, contrary to the expectation,

and the primary sector remains as always the worst performer.

To be more precise, we have already seen that the time-varying decay model reduces to

the time-invariant model of the Kerala power sector. Its implication that the sector-wise

technical efficiency estimates of the Kerala power sector are independent of time, that

they remain constant over time, is highly significant in that it may refer to a technically

stagnant situation in energy efficiency. It goes without saying that this has immense

policy implications. If we take the time-varying decay model into confidence, there is,

though insignificant, a falling trend in the technical efficiency of all the three sectors

(Fig. 5.1, third column).

The pooled data stochastic frontier half-normal model, which we use only for a

comparative purpose, on the other hand, shows fluctuations in the estimates of all the

three sectors. Both the primary and the tertiary sector estimates trend upwards over

time through oscillations, whereas the secondary sector estimates show very high

fluctuations, without any particular trend. It should be noted that a sharp fall in 2002-03

marks the primary sector estimates and a steep rise in 1977-78, followed by a fall

around 1982-83, marks the tertiary sector estimates.
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Fig. 5.2: Technical Efficiency Estimates (Sector- and Model-wise)
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Table 5.8: Technical Efficiency Estimates: Summary Statistics

Sector
Model Mean Median Minimum Maximum Std.

Dev.
C.V.

Primary
Pooled Half Normal 0.0539 0.0433 0.0118 0.1258 0.0265 0.4919

Panel Time Invariant 0.0390 0.0390 0.0390 0.0390 0 0
Panel Time Varying 0.0386 0.0386 0.0380 0.0392 0.0004 0.0094

Secondary
Pooled Half Normal 0.8056 0.7852 0.6492 1 0.0964 0.1196

Panel Time Invariant 0.9063 0.9063 0.9063 0.9063 0 0
Panel Time Varying 0.9035 0.9035 0.9031 0.9040 0.0003 0.0003

Tertiary
Pooled Half Normal 0.6562 0.7036 0.1278 1 0.2452 0.3737

Panel Time Invariant 0.1519 0.1519 0.1519 0.1519 0 0
Panel Time Varying 0.1477 0.1477 0.1463 0.1490 0.0008 0.0055

Sector

Model Skewness Excess
kurtosis

5%
Percentile

95%
Percentile

Inter-quartile
range

Primary
Pooled Half Normal 0.9764 0.3304 0.0226 0.1149 0.0379

Panel Time Invariant undefined undefined 0.03895 0.03895 0

Panel Time Varying 0.0077 -1.2010 0.0380 0.0392 0.0006

Secondary
Pooled Half Normal 0.2721 -1.0031 0.6631 0.9781 0.1535

Panel Time Invariant undefined undefined 0.90629 0.90629 0

Panel Time Varying -0.0030 -1.2011 0.9031 0.9040 0.0005

Tertiary
Pooled Half Normal -0.5967 -0.6341 0.1519 0.9929 0.3552

Panel Time Invariant undefined undefined 0.15189 0.15189 0
Panel Time Varying 0.0031 -1.2011 0.1464 0.1490 0.0014

Table 5.8 reports the sector-wise summary statistics of the technical efficiency

estimates for the three models under consideration. The pooled data stochastic frontier

half-normal model stands apart from the other two models with much higher variation

of the estimates, coming out of lower minimum and higher maximum values (the

maximum being unity for secondary (in 2000-01) and tertiary sectors (1978-79 and

2013-14). Fig. 5.2 visualizes the sector-wise and model-wise mean values of these

estimates. Further information is given in the appendix to this chapter.
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Fig. 5.2: Mean Technical Efficiency Estimates (Sector- and Model-wise)
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theoretical framework of frontier production function in general; and then introduced
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The panel data stochastic frontier model comes in two variants – (i) time-invariant

inefficiency model and (ii) time-varying decay model; the former being the simplest

specification. The empirical results for the two models show that the differentiating

characteristic of the second model is insignificant and it reduces to the time-invariant

model, yielding constant efficiency estimates over time. The sector-wise difference

among these estimates is very high; while the secondary sector performance goes well

with the general expectation (with an efficiency of 0.906), the tertiary sector presents

poor results (0.152), contrary to the expectation, and the primary sector remains as

always the worst performer (0.039). That the sector-wise technical efficiency estimates

of the Kerala power sector are independent of time can significantly refer to a

technically stagnant situation in energy efficiency. The implication of the time-varying

decay model, even though statistically insignificant, of a falling trend in the technical

efficiency of all the three sectors also is a hot matter of serious concerns. It goes without

saying that this has immense policy implications, and we need to go a long way.
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Appendix to Chapter 5

Fig. 5.A1: Technical Efficiency Estimates: Primary Sector (Time-variant Model)

Table 5.A1: Technical Efficiency Estimates: (Time-variant Model)
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Fig. 5.A2: Technical Efficiency Estimates: Secondary Sector (Time-variant

Model)

Table 5.A2: Technical Efficiency Estimates: (Time-variant Model)
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Fig. 5.A3: Technical Efficiency Estimates: Tertiary Sector (Time-variant Model)

Table 5.A3: Technical Efficiency Estimates: (Time-variant Model)
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Appendix B

Table 5.B1: Panel Data Regression results
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Chapter 6

Measuring Energy Efficiency in Kerala:

Data Envelopment Analysis

6.1 Introduction

In this chapter we turn to the second approach in multi-factor productivity analysis, that

is, the non-parametric mathematical programming method of data envelopment

analysis. The chapter is structured in four parts. The next section presents the theoretical

framework of data envelopment analysis (DEA) as a prelude to our empirical exercise

for the Kerala power sector. Part three discusses the DEA results from the empirical

study. The last section concludes the chapter.

6.2 Data Envelopment Analysis (DEA)

As already stated in the last chapter, it was Farrell (1957) who stimulated econometric

modeling of production functions as frontiers. He decomposed the concept of economic

efficiency (which he called overall efficiency) of a production unit into two components, viz.,

technical efficiency and allocative efficiency (which he called price efficiency); the former

refers to the capability of the unit to produce maximum output from a given bundle of inputs,

and the latter to the capability of the unit to utilize the inputs in an optimum proportion

subject to the given input prices. He illustrated the concept using isoquant and price line

(now called isocost line; these are the basic tools used in economic textbooks) implyng a

production function of two inputs (X1 and X2) for a single output (Y), under the assumption of

constant returns to scale. “‘Returns to scale’ describes the output response to a proportionate

increase of all inputs. If output increases by the same proportion, returns to scale are constant
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for the range of input combinations under consideration. They are increasing if output

increases by a greater proportion and decreasing if it increases by a smaller proportion.”

(Henderson and Quandt 1971: 79).

An isoquant is “the locus of all combinations of X1 and X2 which yield a specified output

level”, that is, Y0, which is a parameter. (Henderson and Quandt 1971: 58). An isocost line is

“the locus of input combinations that may be purchased for a specified total cost: C0 = r1 X1 +

r2 X2 +b” (Henderson and Quandt 1971: 63), where r1 and the r2 are the respective prices of

the two inputs and b is the cost of the fixed inputs. The production unit is said to be in

equilibrium at C, where the isoquant, II’, is tangential to the price line (PP’). Thus the point C

represents an efficient point.

Fig. 6.1: Farrel’s Representation of Technical and Allocative Efficiencies

X1/Y
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Note that Farrel used isoquant in a two-input space as an output frontier (maximum

output) and hence all the points on the isoquant II’ are technically efficient. Thus the

points A and C are both technically efficient, but R is not. If a production unit is

producing at point R, its technical inefficiency is given by the distance AR, which

implies that the unit could proportionally reduce all inputs by this amount without

reducing its output. This distance can also be represented in percentage terms by the

ratio AR/OR. This allows us to measure the technical efficiency of the unit by one

minus AR/OR, which is equal to the ratio OA/OR. Since this ratio lies between zero

and one, it functions as a measure of the degree of technical efficiency of the production

unit; a value of one means the unit is technically efficient, and a value close to zero means

it is technically inefficient.

We have seen that the points A and C are both technically efficient; but there is some

difference between them; this is in terms of allocative efficiency. Note that Farrel used

price line in a two-input space as a cost frontier (minimum cost) and hence all the

points on the price line PP’ are allocatively efficient. Thus points B and C are both

allocatively efficient. But C is also on the isoquant and hence is also technically

efficient; Thus point C is both technically and allocatively efficient. But point A is only

technically efficient, not allocatively.

If the unit is producing at point R, its allocative efficiency is given by the ratio OB/OA,

because the distance BA can be taken as the fall in production costs corresponding to the

production at the technically and allocatively efficient point C, rather than at the technically

efficient, but allocatively inefficient, point A. The overall (economic) efficiency is then

defined by the ratio OB/OR, the distance BR being taken as representing a cost reduction.

This economic efficiency measure also is bounded by zero and unity. Also note that the
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overall (economic) efficiency at point R is obtained from the product of technical and

allocative efficiency: (OA/OR)(OB/OA) = OB/OR.

As already noted, the efficiency of a production unit is measured in relation to an efficient

isoquant (representing an efficient firm), which is in fact unknown and must be estimated

using the sample data. For estimation, Farrell suggested (i) a non-parametric piecewise-

linear convex isoquant, estimated from the data in such a way that no actual data point

should lie to the left or below it, or (ii) a parametric frontier function, such as the Cobb-

Douglas production function, estimated from the data in such a way that no actual data point

should lie to the right or above it. The second of these we have employed in the last chapter,

and the first one we are estimating in this chapter.

Very few researchers were enthused with Farrell’s (1957) proposal of the piecewise-linear

convex isoquant. Suggestions came up after a while from Boles (1966) and Afriat (1972) to

employ mathematical programming methods that also failed in appeal. However, a new

model, proposed by Charnes, Cooper and Rhodes (1978) by the name of ‘data envelopment

analysis (DEA)’, immediately caught the fancy of the world and a large number of papers

have followed it in applications and extensions. Charnes, Cooper and Rhodes (1978)

assumed constant returns to scale (CRS), whereas Banker, Charnes and Cooper (1984)

proposed a variable returns to scale (VRS) model. For detailed discussions, see Coelli, Rao,

O’Donnell and Battese (2005) and Cooper, Seiford and Tone (2006).

“Data Envelopment Analysis (DEA) was accorded this name because of the way it

"envelops" observations in order to identify a "frontier" that is used to evaluate

observations representing the performances of all of the entities that are to be evaluated.”

(Cooper, Seiford and Tone 2006: xix). DEA is a linear programming technique that seeks
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to optimize an objective function subject to certain inequality constraints. Here the

objective function relates to the frontier function of the production unit, called in the DEA

literature as decision making unit (DMU). The model seeks to estimate for each DMU an

efficiency measure in terms of weighted output-input ratio, which can be written in matrix

notation as a’Yi/b’Xi, where the numerator is a weighted average of all the outputs of the

ith DMU and the denominator is its weighted inputs, with a and b being column vectors of

output and input weights respectively. Then the linear programming (LP) problem is to

choose the optimal weights such as to maximize the efficiency measure (the weighted

output-input ratio) subject to the constraints that this measure (ratio) is less than or equal to

unity and the weights are non-negative:

Maxa,b (a'Yi/ b'Xi),

s t a'Yi/ b'Xi1, i = 1, 2,..., N,

a, b 0.

However, this formulation has a problem that it would yield an infinite number of

solutions. This problem can be averted by adding another constraint that β'Xi = 1. Thus

the above LP problem can be reformulated as

Maxα,β (α'Yi/ β'Xi),s t   β'Xi = 1α'Yi– β'Xi0, i = 1, 2,..., N,α, β 0.
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Note that the notations change from a and b to α and β to reflect the transformation,

which is known as the multiplier form of the LP problem.

We can use the duality in LP to derive an equivalent envelopment form of the

multiplier form problem:

min,,

st -Yi + y0,

Xi - x 0,

0,

where  is a scalar representing the efficiency score for the ith DMU that satisfies  1,

and  is a column (Nx1) vector of constants. The advantage of this envelopment form

is that it has fewer constraints than the multiplier form, and hence its appeal. A value of

= 1 means a point on the frontier representing a technically efficient DMU, according

to the Farrell (1957) definition.

6.3 Data Envelopment Analysis: Empirical Results

For estimating the DEA frontier of the power sector in Kerala, we consider three

sectors as above (Primary, Secondary and Tertiary) for the period from 1970-71 to

2016-17. As already indicated in the previous chapter, because of the data

unavailability for estimating the usual output-input relationship, we propose the

following relationship as in the last chapter:

Sectoral energy consumption = f(Sectoral number of consumers; Sectoral

GSDP at constant 2011-12 prices); all variables in log.

Note that unlike the usual frontier function with factors of production, we have a

frontier isoquant with two activity factors and one output.
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For estimating DEA, we have made use of a Stata module for DEA, provided by

Yong-bae Ji and Choonjoo Lee, (2010).

Tables 6.1 – 6.3 report the DEA estimates of efficiency measures for the three sectors

under the two scale assumptions of constant returns to scale (CRS) and variable returns

to scale (VRS); the latter includes both increasing (IRS) and decreasing returns to scale

(DRS). Thus we examine whether the observed performance of the sectors in each year is

along the frontier corresponding to a particular returns to scale. Scale efficiency measures

are also given; scale efficiency denotes whether a firm is operating at its optimal size or

not, implying degrees of capacity utilization. If the firm is in underutlization, then using

information on increasing or decreasing returns to scale, we can find out whether the firm

is too large or too small.
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Table 6.1: DEA Efficiency Estimates – Primary Sector

Year CRS VRS NIRS Scale RTS Year CRS VRS NIRS Scale RTS

1970-71 0.519 0.519 1.000 0.999 IRS 1994-95 0.691 0.696 0.696 0.992 IRS

1971-72 0.595 0.596 0.970 0.998 IRS 1995-96 0.712 0.717 0.717 0.994 IRS

1972-73 0.601 0.603 0.851 0.997 IRS 1996-97 0.720 0.725 0.725 0.993 IRS

1973-74 0.622 0.624 0.798 0.996 IRS 1997-98 0.728 0.731 0.731 0.996 IRS
1974-75 0.625 0.628 0.741 0.995 IRS 1998-99 0.734 0.737 0.737 0.996 IRS

1975-76 0.635 0.638 0.701 0.994 IRS 1999-00 0.754 0.757 0.757 0.996 IRS
1976-77 0.609 0.613 0.613 0.993 IRS 2000-01 0.750 0.753 0.753 0.996 IRS
1977-78 0.581 0.585 0.585 0.993 IRS 2001-02 0.723 0.726 0.726 0.996 IRS

1978-79 0.588 0.593 0.593 0.993 IRS 2002-03 0.607 0.610 0.610 0.996 IRS

1979-80 0.578 0.583 0.583 0.992 IRS 2003-04 0.624 0.626 0.626 0.996 IRS

1980-81 0.588 0.592 0.592 0.993 IRS 2004-05 0.606 0.609 0.609 0.994 IRS
1981-82 0.604 0.607 0.607 0.995 IRS 2005-06 0.603 0.607 0.607 0.993 IRS
1982-83 0.602 0.604 0.604 0.997 IRS 2006-07 0.624 0.626 0.626 0.996 IRS

1983-84 0.604 0.604 0.604 0.999 IRS 2007-08 0.629 0.632 0.632 0.996 IRS

1984-85 0.588 0.589 0.589 0.999 IRS 2008-09 0.624 0.628 0.628 0.994 IRS

1985-86 0.603 0.603 0.603 0.999 IRS 2009-10 0.640 0.643 0.643 0.995 IRS
1986-87 0.648 0.649 0.649 0.999 IRS 2010-11 0.632 0.634 0.634 0.996 IRS
1987-88 0.668 0.668 0.668 0.999 IRS 2011-12 0.655 0.658 0.658 0.996 IRS
1988-89 0.683 0.684 0.684 0.998 IRS 2012-13 0.664 0.667 0.667 0.996 IRS

1989-90 0.686 0.688 0.688 0.998 IRS 2013-14 0.666 0.669 0.669 0.996 IRS

1990-91 0.671 0.673 0.673 0.997 IRS 2014-15 0.660 0.662 0.662 0.996 IRS

1991-92 0.678 0.679 0.679 0.997 IRS 2015-16 0.658 0.661 0.661 0.996 IRS

1992-93 0.687 0.689 0.689 0.997 IRS 2016-17 0.673 0.676 0.676 0.996 IRS
1993-94 0.694 0.698 0.698 0.995 IRS

Note: CRS = Constant returns to scale; VRS = Variable returns to scale; NIRS = Non-increasing returns to
scale; RTS = Returns to scale; Scale = Scale efficiency.

Table 6.1 shows that energy efficiency in the primary sector is much lower than in the

other two sectors; the scale efficiency is below, but close to, optimum. Surprisingly, the

sector during the entire period is found to be in IRS stage.
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Table 6.2: DEA Efficiency Estimates – Secondary Sector

Year CRS VRS NIRS Scale RTS Year CRS VRS NIRS Scale RTS

1970-71 1.000 1.000 1.000 1.000 CRS 1994-95 0.995 0.998 0.998 0.997 DRS
1971-72 0.988 0.988 0.988 1.000 IRS 1995-96 0.997 1.000 1.000 0.997 DRS
1972-73 0.993 0.994 0.994 0.999 DRS 1996-97 0.948 0.950 0.950 0.997 IRS
1973-74 0.991 0.991 0.991 1.000 IRS 1997-98 0.960 0.962 0.962 0.998 IRS

1974-75 0.987 0.987 0.987 1.000 CRS 1998-99 0.987 0.990 0.990 0.997 DRS

1975-76 0.989 0.989 0.989 1.000 CRS 1999-00 0.988 0.991 0.991 0.997 DRS

1976-77 0.986 0.988 0.986 0.999 IRS 2000-01 0.999 1.000 1.000 0.999 DRS

1977-78 1.000 1.000 1.000 1.000 CRS 2001-02 0.981 0.985 0.985 0.996 DRS
1978-79 0.998 0.998 0.998 1.000 IRS 2002-03 0.973 0.979 0.979 0.994 DRS

1979-80 0.983 0.983 0.983 1.000 IRS 2003-04 0.961 0.968 0.968 0.992 DRS
1980-81 0.995 0.997 0.997 0.997 DRS 2004-05 0.971 0.981 0.981 0.990 DRS

1981-82 0.985 0.986 0.986 0.999 IRS 2005-06 0.973 0.984 0.984 0.989 DRS

1982-83 0.992 0.993 0.992 0.999 IRS 2006-07 0.978 0.990 0.990 0.987 DRS
1983-84 0.968 0.969 0.969 0.998 IRS 2007-08 0.979 0.992 0.992 0.987 DRS

1984-85 0.994 0.995 0.995 0.999 DRS 2008-09 0.976 0.988 0.988 0.988 DRS
1985-86 1.000 1.000 1.000 1.000 DRS 2009-10 0.988 1.000 1.000 0.988 DRS

1986-87 0.981 0.986 0.981 0.995 IRS 2010-11 0.987 0.999 0.999 0.987 DRS

1987-88 0.963 0.968 0.963 0.996 IRS 2011-12 0.985 0.998 0.998 0.987 DRS

1988-89 0.982 0.985 0.982 0.997 IRS 2012-13 0.987 1.000 1.000 0.987 DRS

1989-90 1.000 1.000 1.000 1.000 CRS 2013-14 0.986 0.999 0.999 0.987 DRS
1990-91 0.997 0.997 0.997 1.000 IRS 2014-15 0.987 1.000 1.000 0.987 DRS

1991-92 1.000 1.000 1.000 1.000 CRS 2015-16 0.988 1.000 1.000 0.988 DRS

1992-93 0.986 0.986 0.986 0.999 IRS 2016-17 0.986 1.000 1.000 0.986 DRS

1993-94 0.986 0.988 0.988 0.998 DRS
Note: CRS = Constant returns to scale; VRS = Variable returns to scale; NIRS = Non-increasing returns to
scale; DRS = decreasing returns to scale; RTS = Returns to scale; Scale = Scale efficiency.

However, the story is different for the other two sectors. Table 6.2 shows that energy

efficiency in the secondary sector is the highest for all the years, its performance in a

number of years being on or very close to the frontier; so is the scale efficiency also.

However, the returns to scale registers a variable pattern: in the initial years, the sector
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mostly experienced IRS or CRS, whereas from the late 1990s the sector fell in the stage

of DRS.

Table 6.3: DEA Efficiency Estimates – Tertiary Sector

Year CRS VRS NIRS Scale RTS Year CRS VRS NIRS Scale RTS

1970-71 0.830 0.832 0.830 0.998 IRS 1994-95 0.946 0.953 0.966 0.993 DRS

1971-72 0.823 0.824 0.823 0.999 IRS 1995-96 0.948 0.956 0.969 0.992 DRS
1972-73 0.737 0.737 0.737 0.999 IRS 1996-97 0.961 0.969 0.982 0.992 DRS
1973-74 0.830 0.831 0.830 0.999 IRS 1997-98 0.967 0.975 0.989 0.992 DRS
1974-75 0.753 0.754 0.753 0.999 IRS 1998-99 0.976 0.985 1.000 0.991 DRS

1975-76 0.769 0.769 0.775 1.000 CRS 1999-00 0.968 0.977 0.986 0.991 DRS

1976-77 0.881 0.882 0.881 1.000 IRS 2000-01 0.969 0.978 0.989 0.991 DRS
1977-78 0.973 0.973 0.973 1.000 IRS 2001-02 0.944 0.953 0.963 0.991 DRS
1978-79 1.000 1.000 1.000 1.000 CRS 2002-03 0.953 0.962 0.972 0.990 DRS
1979-80 0.991 0.991 0.995 1.000 IRS 2003-04 0.952 0.962 0.976 0.990 DRS

1980-81 0.975 0.976 0.982 0.999 IRS 2004-05 0.941 0.951 0.960 0.990 DRS

1981-82 0.986 0.988 1.000 0.999 DRS 2005-06 0.958 0.968 0.977 0.990 DRS

1982-83 0.918 0.920 0.933 0.998 IRS 2006-07 0.968 0.978 0.986 0.989 DRS
1983-84 0.882 0.884 0.901 0.998 IRS 2007-08 0.973 0.984 0.988 0.989 DRS
1984-85 0.876 0.878 0.893 0.998 IRS 2008-09 0.964 0.975 0.978 0.989 DRS

1985-86 0.893 0.895 0.919 0.998 IRS 2009-10 0.965 0.976 0.978 0.989 DRS
1986-87 0.903 0.905 0.934 0.998 IRS 2010-11 0.968 0.979 0.981 0.989 DRS

1987-88 0.906 0.908 0.938 0.997 IRS 2011-12 0.976 0.988 0.990 0.989 DRS

1988-89 0.924 0.927 0.961 0.997 IRS 2012-13 0.977 0.988 0.988 0.989 DRS
1989-90 0.912 0.915 0.947 0.997 IRS 2013-14 0.988 1.000 1.000 0.988 DRS

1990-91 0.941 0.945 0.980 0.996 IRS 2014-15 0.984 0.996 0.996 0.988 DRS
1991-92 0.948 0.952 1.000 0.996 IRS 2015-16 0.986 0.999 0.999 0.987 DRS

1992-93 0.959 0.963 1.000 0.996 DRS 2016-17 0.986 1.000 1.000 0.986 DRS

1993-94 0.935 0.942 0.954 0.993 DRS
Note: CRS = Constant returns to scale; VRS = Variable returns to scale; NIRS = Non-increasing returns to
scale; DRS = decreasing returns to scale; RTS = Returns to scale; Scale = Scale efficiency.
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The tertiary sector comes second to the secondary sector in terms of efficiency

performance, being close to the frontier for a few years (Table 6.3). In scale efficiency,

the same pattern as in the secondary sector holds here, the fall into DRS, however,

starting from the early 1990s.

Fig. 6.2: DEA Efficiency Estimates – Primary Sector- Model-wise
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Fig. 6.3: DEA Efficiency Estimates – Secondary Sector- Model-wise
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Fig. 6.4: DEA Efficiency Estimates – Tertiary Sector- Model-wise
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Table 6.4: DEA Efficiency Estimates – Summary Statistics

Variable Mean Median Minimum Maximum Std.
Dev.

C.V. Skewness Ex.
kurtosis

5%
Perc.

95%
Perc.

IQ range

Primary CRS 0.645 0.635 0.519 0.754 0.052 0.080 0.221 -0.368 0.579 0.744 0.079

Primary VRS 0.648 0.638 0.519 0.757 0.052 0.080 0.218 -0.329 0.584 0.746 0.077

Primary NIRS 0.679 0.667 0.583 1 0.088 0.130 1.881 4.171 0.586 0.923 0.107

Primary Scale 0.996 0.996 0.992 0.999 0.002 0.002 -0.153 -0.638 0.992 0.999 0.003

Secondary CRS 0.985 0.987 0.948 1 0.012 0.012 -1.065 1.076 0.960 1 0.014

Secondary VRS 0.990 0.991 0.950 1 0.011 0.011 -1.521 2.289 0.964 1 0.014

Secondary NIRS 0.990 0.991 0.950 1 0.012 0.012 -1.449 1.927 0.962 1 0.014

Secondary Scale 0.995 0.997 0.986 1 0.005 0.005 -0.740 -1.151 0.987 1 0.011

Tertiary CRS 0.931 0.953 0.737 1 0.064 0.069 -1.584 1.824 0.760 0.990 0.067

Tertiary VRS 0.937 0.962 0.737 1 0.067 0.071 -1.538 1.624 0.760 1 0.070

Tertiary NIRS 0.948 0.977 0.737 1 0.068 0.072 -1.772 2.186 0.762 1 0.055

Tertiary Scale 0.994 0.993 0.986 1 0.004 0.005 -0.060 -1.590 0.987 0.9999 0.009

Fig. 6.5: Mean DEA Efficiency Estimates – Sector- and Model-wise
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6.4 Conclusion

In this chapter we have taken up the non-parametric mathematical programming

method of data envelopment analysis, the second approach in multi-factor productivity

analysis. We have started with the theoretical framework of data envelopment analysis

(DEA) as a prelude to our empirical exercise for the Kerala power sector. This

approach originated with Farrell who decomposed the concept of economic efficiency

(overall efficiency) of a production unit into two components, viz., technical efficiency and

allocative efficiency (price efficiency); for illustrating this approach, he used the usual

economic concepts of isoquant and price line (isocost line) involving a production function

of two inputs and one output under the assumption of constant returns to scale.

In this context, for measuring the unknown efficiency of a production unit in relation to an

efficient isoquant (representing an efficient firm) using the sample data, Farrell suggested

(i) a non-parametric piecewise-linear convex isoquant, or (ii) a parametric frontier function,

such as the Cobb-Douglas production function. The second of these we have employed in

the last chapter, and the first one in this chapter.

The non-parametric linear programming data envelopment analysis (DEA) was proposed by

Charnes, Cooper and Rhodes (1978), which paved the way for a large number of papers in

applications and extensions. DEA model has two variants, one under the assumption of

constant returns to scale (CRS), and the other under variable returns to scale (VRS)

assumption. One advantage of this approach is that it can be used for multiple output-

multiple input cases, unlike in the parametric production function analysis.

Following the theoretical framework, we have turned to estimating the DEA frontier of

the power sector in Kerala, considering three sectors as in the earlier chapters (Primary,
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Secondary and Tertiary) for the period from 1970-71 to 2016-17. As in the previous

chapter, we have used the sectoral energy consumption as a function of sectoral

number of consumers and sectoral GSDP at constant 2011-12 prices (all variables

taken in log), unlike the usual frontier function with factors of production, to represent

frontier isoquant with two activity factors and one output. For estimating our DEA, we

have made use of a Stata module for DEA, provided by Chonjoo Lee and Ji Yong-Bae

(2009).

We have estimated the efficiency measures for the three sectors under the two scale

assumptions of constant returns to scale (CRS) and variable returns to scale (VRS); t he

latter includes both increasing (IRS) and decreasing returns to scale (DRS). Scale

efficiency measures are also given to find out whether a firm is operating at its optimal

size or not, implying degrees of capacity utilization.

The results have shown that energy efficiency in the primary sector is much lower than

in the other two sectors; the scale efficiency is below, but close to, optimum.

Surprisingly, the primary sector during the entire period is found to be in IRS stage.

The secondary sector is found to have the highest energy efficiency scores for all the

years, its performance in a number of years being on or very close to the frontier; the

scale efficiency also faring similarly. Coming to the returns to scale, the sector mostly

experienced IRS or CRS in the initial years, whereas from the late 1990s the sector fell

in the stage of DRS. The tertiary sector follows the secondary sector in terms of

efficiency performance, being close to the frontier for a few years. After the initial years

of mostly IRS, the sector fell into DRS, starting from the early 1990s.
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Chapter 7

The Way Forward

7.1 Introduction

An ambitious project, this study is first of its kind in India in that

(i) it contains a comprehensive documentation of conceptualization of energy

productivity,

(ii) as well as a comprehensive documentation of analytical methods of

measuring energy productivity;

(iii) it utilizes all the three important methods of measuring energy productivity:

logarithmic mean Divisia index decomposition method under single factor

productivity approach; and both parametric (stochastic production frontier)

and non-parametric (data envelopment analysis) under multi-factor

productivity approach; and

(iv) it utilizes logarithmic mean Divisia index decomposition method for energy

efficiency simulation purposes.

However, we have soon experienced a lot of difficulties in respect of the very

fundamental requirement for the successful completion of the project in terms of the

required and suitable data and other information, which we will discuss in detail

below, after the section on a summary.
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7.2 Summary

We have started out attempt at a comprehensive documentation of the techno-economic

conceptualization of energy productivity with a discussion of the energy efficiency

indicators in terms of its conceptual definition. Defining energy efficiency in the

Patterson’s sense of useful output per unit of input leads us to define energy efficiency also

as an increase in net benefits per unit of energy. This helps us differentiate between energy

efficiency and energy conservation, which is an important complement to the former.

Energy conservation is defined in terms of reduction in total energy use, which can happen

in two ways: one representing efficiency-improving energy conservation, where energy

savings go along with an increase in net benefits per unit of energy use; and the other

representing efficiency-reducing energy conservation, where energy savings results in a

decrease in net benefits per unit of energy use.

In this background, we have then turned to a brief discussion of the laws of conservation of

mass and thermodynamics and of some of the important earlier studies on energy-economic

growth relationship. Following this, light is thrown onto energy efficiency indicators at

different aggregation levels, presented in a pyramidal structure, and onto the determinants

of energy efficiency indicators. It is generally believed that energy consumption is

essentially determined by three effects, viz., activity, structure and intensity. A detailed

illustration of this for the bottom micro-level sectors also is provided thereafter. For

example, the residential or domestic sector consists of a number of subsectors such as

space heating/cooling, water heating, cooking, lighting, appliances, etc. Activity in each

subsector is measured in terms of the corresponding population or number of households;

structure in the case of space heating/cooling and lighting is defined in terms of floor area

per capita and intensity in terms of energy per square feet floor area. We have then

introduced a conceptual framework to be utilized in our empirical exercise in the later

chapters.
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After the documentation of the conceptualization of energy productivity, we have then

attempted at a comprehensive documentation of the analytical methods of its

measurement. We have started with an introduction to a comprehensive list of the

estimation methods of energy productivity indicators. In general these methods can be

grouped under three heads: traditional single factor productivity analysis, decomposition

analysis and multi-factor productivity analysis. This second document contains the first

two approaches only, the theoretical framework of the multi-factor productivity

analysis being left for the later chapters.

The traditional indicators as identified by Patterson to monitor changes in energy

efficiency are in terms of thermodynamic, physical-thermodynamic, economic-

thermodynamic and economic indicators. The last one, in which output is measured

in terms of economic value (Rs) and energy input in thermodynamic terms, is the

commonly used indicator. When we analyze the indicator in terms of energy intensity

changes, the corresponding index falls under two major decomposition methods,

namely, structural decomposition analysis and index decomposition analysis. We

have discussed in detail the structural decomposition analysis in terms of its two

approaches, viz., input-output method and neo-classical production function method;

the problems and limitations of these approaches are also considered. We have then

turned to the index decomposition analysis in terms of Laspeyres’ and Divisia

indices. The discussion is finally zeroed in on the Logarithmic Mean Divisia index

(LMDI), the recently developed method that has captured wider popularity in applied

studies.
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In the first core chapter of the Report, we have applied the index decomposition analysis to

measure energy productivity in Kerala in terms of the Logarithmic Mean Divisia Index

(LMDI) method. This method helps us to decompose the changes in energy consumption

over time into three different effects of activity, structure and intensity. As already

indicated, non-availability of suitable time-series data for Kerala has forced us to limit our

ambition down to an empirical decomposition exercise for Kerala in terms of only two

sectors, power and petroleum, that too, for a limited period (from 2007-08 to 2016-17);

first we have analysed the two sectors of power and petroleum separately, and then the

combined sector has been analysed for decomposition.

Note that energy conservation means the energy consumption change be less than

unity; this in turn requires the combined effect of activity, structure and intensity be less

than unity. The activity effect is expected to be greater than unity; since unity minus

activity effect represents the growth rate of the economic activity (here the real GSDP),

and higher the growth rate, greater the social benefit. Hence, we have to take the

activity effect as given. This in turn requires that given the activity effect, the combined

effect of structure and intensity must more than compensate the activity effect in order

for an effective energy conservation. That is, the combined effect of structure and

intensity must be sufficiently smaller. The empirical exercise for Kerala power sector

shows that this was possible only for two years during the study period (from 2007-08

to 2016-17). Energy consumption reduced by about 9% in 2008-09 over 2007-08 and

nearly 5% in 2013-14 over the previous year.

It is significant to note that energy intensity in the power sector reduced in all but one

year: 2013-14 over 2012-13, thanks to energy efficiency improvements; and this lies

behind the energy use reduction in the two years of 2008-09 and 2013-14; no energy

efficiency improvement means that consumption would have increased. Thus in these

two years, social benefit increased along with positive energy conservation. That this

occurred only for two years is explained by the performance of the other component,

structure effect, that was greater than unity in all but one year (2008-09 over 2007-08).
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In short, despite energy intensity reduction thanks to energy efficiency improvement in

the power sector of Kerala for a number of recent years, energy conservation along

with increased social benefit (real GSDP) could not be achieved because of the

anomaly in the real GSDP structure (composition of sectoral shares). If the current state

of nature dictates this activity structure as given, then the only recourse for energy

conservation is through higher levels of energy efficiency improvement for greater

reduction in intensity.

The results for the petroleum sector (with only two sectors, secondary and tertiary),

however, show that no year witnessed energy conservation effort in this sector. This is

despite energy intensity reduction (thanks to energy efficiency improvement) in all but

two years. The structure effect was less than unity only for three years. Their combined

effect was incapable of containing the activity effects of the secondary and tertiary

sectors for occasioning any energy conservation. Such performance of the petroleum

sector has overshadowed that of the power sector, and the combined sector of energy in

Kerala has shown almost similar results as the petroleum sector, with the net result that

the energy consumption increased in all the years under consideration.

Following this, we have then turned to a simulation analysis for energy consumption in

Kerala under different scenarios that offer energy savings. This exercise shows some

strange results, emanating from the peculiar characteristics of the petroleum sector in

Kerala. As already remarked earlier, the petroleum consumption data relating only to

the secondary and tertiary sub-sectors, the less-efficient petroleum sector overweighs

the combined energy sector of Kerala to such an extent that the energy-efficiency

potential of these two sub-sectors gets clouded. In this situation, the simulation with an

assumption of a small reduction in the real GSDP shares of secondary and tertiary
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sectors yields greater energy conservation. A sufficiently high degree of energy

efficiency in the petroleum sector can indeed reverse this anomaly.

After the index decomposition analysis, we have turned to the second approach, viz.,

multi-factor productivity analysis, with the stochastic frontier production function

method. We have started with a general theoretical framework of frontier production

function in general; and then introduced both the deterministic and stochastic frontiers.

In our empirical exercise for the Kerala power sector, we have utilized the panel data

stochastic frontier model, and for a comparative purpose only, we have also estimated a

pooled data stochastic frontier model.

The panel data stochastic frontier model comes in two variants – (i) time-invariant

inefficiency model and (ii) time-varying decay model; the former being the simplest

specification. The empirical results for the two models show that the differentiating

characteristic of the second model is insignificant and it reduces to the time-invariant

model, yielding constant efficiency estimates over time. The sector-wise difference

among these estimates is very high; while the secondary sector performance goes well

with the general expectation (with an efficiency of 0.906), the tertiary sector presents

poor results (0.152), contrary to the expectation, and the primary sector remains as

always the worst performer (0.039). That the sector-wise technical efficiency estimates

of the Kerala power sector are independent of time can significantly refer to a

technically stagnant situation in energy efficiency. The implication of the time-varying

decay model, even though statistically insignificant, of a falling trend in the technical

efficiency of all the three sectors also is a hot matter of serious concerns. It goes without

saying that this has immense policy implications, and we need to go a long way.
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After the parametric approach comes up the non-parametric mathematical

programming method of data envelopment analysis, the second approach in multi-

factor productivity analysis. We have started with the theoretical framework of data

envelopment analysis (DEA) as a prelude to our empirical exercise for the Kerala

power sector. This approach originated with Farrell who decomposed the concept of

economic efficiency (overall efficiency) of a production unit into two components, viz.,

technical efficiency and allocative efficiency (price efficiency); for illustrating this approach,

he used the usual economic concepts of isoquant and price line (isocost line) involving a

production function of two inputs and one output under the assumption of constant returns to

scale.

In this context, for measuring the unknown efficiency of a production unit in relation to an

efficient isoquant (representing an efficient firm) using the sample data, Farrell suggested

(i) a non-parametric piecewise-linear convex isoquant, or (ii) a parametric frontier function,

such as the Cobb-Douglas production function. The second of these we have employed in

the last chapter, and the first one in this chapter.

The non-parametric linear programming data envelopment analysis (DEA) was proposed by

Charnes, Cooper and Rhodes (1978), which paved the way for a large number of papers in

applications and extensions. DEA model has two variants, one under the assumption of

constant returns to scale (CRS), and the other under variable returns to scale (VRS)

assumption. One advantage of this approach is that it can be used for multiple output-

multiple input cases, unlike in the parametric production function analysis.

Following the theoretical framework, we have turned to estimating the DEA frontier of

the power sector in Kerala, considering three sectors as earlier (Primary, Secondary and
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Tertiary) for the period from 1970-71 to 2016-17. As in the previous exercise, we have

used the sectoral energy consumption as a function of sectoral number of consumers

and sectoral GSDP at constant 2011-12 prices (all variables taken in log), unlike the

usual frontier function with factors of production, to represent frontier isoquant with

two activity factors and one output. For estimating our DEA, we have made use of a

Stata module for DEA, provided by Chonjoo Lee and Ji Yong-Bae (2009).

We have estimated the efficiency measures for the three sectors under the two scale

assumptions of constant returns to scale (CRS) and variable returns to scale (VRS); t he

latter includes both increasing (IRS) and decreasing returns to scale (DRS). Scale

efficiency measures are also given to find out whether a firm is operating at its optimal

size or not, implying degrees of capacity utilization.

The results have shown that energy efficiency in the primary sector is much lower than

in the other two sectors; the scale efficiency is below, but close to, optimum.

Surprisingly, the primary sector during the entire period is found to be in IRS stage.

The secondary sector is found to have the highest energy efficiency scores for all the

years, its performance in a number of years being on or very close to the frontier; the

scale efficiency also faring similarly. Coming to the returns to scale, the sector mostly

experienced IRS or CRS in the initial years, whereas from the late 1990s the sector fell

in the stage of DRS. The tertiary sector follows the secondary sector in terms of

efficiency performance, being close to the frontier for a few years. After the initial years

of mostly IRS, the sector fell into DRS, starting from the early 1990s.
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7.3 Limitations, Scope for Further Research and Data Required

As already indicated, the major problem that we experienced during the execution of this

project was availability and suitability of the required data for Kerala. But for this, we could

have successfully carried out our ambitious study in its fulsome. This has indeed precluded

us from meeting some of the ancillary objectives such as (i) to estimate the State’s potential

to meet the power demand, factoring in energy efficiency enhancement and renewable

energy based electricity generation; (ii) to assess the positive effects of energy efficiency

on investment; (iii) to draw up an action plan and road map of supply side and sector-wise

demand side management strategies for enhancing energy productivity; (iv) to propose an

impact analysis of structural and regulatory reforms in energy sector; and (v) tp plan to

conduct some case studies to establish relationship between energy efficiency improvement

and productivity in domestic, commercial, industrial, agricultural, and buildings sectors.

Let us repeat we could have successfully carried out such an ambitious project in its

fulsome, but for the data problem.

In a positive sense, however, this experience has opened our eyes to the dire requirement for

developing a system for processing and storing varieties of data and other informative

materials in the energy sector at different aggregation levels not only for Kerala but also for

the entire country itself. We are providing an illustration below for the suitable kind of data

required for such a study of the bottom micro-level sectors.

As already discussed in chapter two (in Table 2.1), we can think of a number of subsectors

for the residential or domestic sector such as space heating/cooling, water heating, cooking,

lighting, appliances, etc. Activity in each subsector is measured in terms of the

corresponding population, number of households, and floor area (sq. ft.); structure in the

case of space heating/cooling and lighting is defined in terms of floor area per capita, in the

case of water heating and cooking, in terms of number of persons per household, and in the
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case of appliances, in terms of number of ownership per capita; and intensity in terms of

energy per square feet floor area. Thus for analyzing energy efficiency in the residential or

domestic sector, the data required are on population, number of households, number of

appliances per capita, floor area per capita, energy consumption per square feet floor area,

etc.

In transport sector, passenger and freight transport are the two subsectors, with passenger-

km and ton-km as respective activities. The other two factors are similarly defined. Thus

the data required here are on passenger-km and ton-km. Both in services and

manufacturing, value-added measures the activity with corresponding shares and intensity

factors, and the required data are on subsector-wise value added and energy consumption.

If these data were available, one could easily proceed with a comprehensive energy

efficiency study; and this is our recommendation for further research.
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Appendix

LMDI Program for Stata module by Kerry Du

Kerry Du, 2017. "LMDI: Stata module to compute Logarithmic Mean Divisia Index

(LMDI) Decomposition," Statistical Software Components S458435, Boston College
Department of Economics, revised 01 Jan 2018.

*! version 3.2.3, 2017-12-31
* By Kerry Du
capture program drop lmdi
program define lmdi, rclass

version 12.0
* syntax
* lmdi decom_var = varlist, t(varname) over(varlist) [ADD ///
* zero(real 1e-20) tol(real 0.01) sav(string) replace]
* lmdi decom_var = (factor_1_varlist).. factor_k_varname ...

factor_n_varname, ///
* t(varname) over(varlist) [ADD zero(real 1e-20) tol(real

0.01) sav(string) replace]
* lmdi decom_var = factor_1_varname ...

factor_k_varname...(factor_n_varlist), ///
* t(varname) over(varlist) [ADD zero(real 1e-20) tol(real

0.01) sav(string) replace]
*
* example
* lmdi E= (Es1 Es2 Es3) I Y, t(year) over(region sector)

//disp "`0'"
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gettoken cmla 0: 0, p(",")

syntax, t(varname numeric) over(varlist) [ADD zero(real 1e-20) TOLerance(real
0.01) SAVing(string) REPLACE]

preserve
gettoken yvar cmla: cmla, p("= ( ),")

if ("`yvar'"=="=" | "`yvar'"=="," | "`yvar'"=="(" | "`yvar'"==")"){
disp as red "The decomposed variable must be specified!"
exit 198

}
gettoken word cmla: cmla, p("= ( ),")

if !strmatch("`word'","=") {
disp as red `"Only one variable before "=" is allowed!"'
exit 198

}

local k=0
gettoken word cmla:cmla,p("= ( ),")
local idflag `over'
//local pjlist
while !("`word'"==","| "`word'"=="") {
//disp "`word'"

local k=`k'+1
if ("`word'"=="(" ){

local pj=0
gettoken word cmla: cmla,p("= ( ),")
while !("`word'"==")" | "`word'"==""){

//tempvar _eff`k'_`t'
//qui gen _eff`k'_`t'=`word'
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//disp "`word'"
local pj=`pj'+1
rename `word' _eff`k'_`pj'
local eff`k' `eff`k'' `word'
gettoken word cmla: cmla,p("= ( ),")

}

local pjlist `pjlist' `pj'
local reshvar `reshvar' _eff`k'_
gettoken word cmla: cmla,p("= ( ),")
//tempvar _eff`k'
//tempvar id`k'
//qui reshape long _eff`k'_, i(`t' `idflag') j(`id`k'')
//local idflag `idflag' `id`k''
//disp "`idflag'"

}
else {

//disp "`word'"
//tempvar _eff`k'
//qui gen `_eff`k''=`word'
rename `word' _eff`k'_
local eff`k' `word'
gettoken word cmla: cmla,p("= ( ),")

}
//disp "eff`k'=`eff`k''"

}

gettoken pj1 pjlist: pjlist
while !("`pjlist'"==""){

//disp "`pj1'"
gettoken pj2 pjlist: pjlist
//disp "`pj2'"
if !strmatch("`pj1'","`pj2'"){

disp as red "ERROR: the # of vars in different parenthese ( )
should be equal."

restore
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exit 198
}
local pj1 `pj2'

}

if !("`pj1'"=="") {
tempvar _newid
qui reshape long `reshvar', i(`t' `idflag') j(`_newid')
local idflag `idflag' `_newid'

}
//disp "`0'"

//local 0 ", `0'"
//syntax, t(varname) over(varlist) [ADD zero(real 1e-20) crtv(real 0.01)]

//syntax varlist, t(varname) over(varlist) [ADD zero(real 1e-20) crtv(real 0.01)]

/*
qui egen _chsum0=rowtotal(`sum')
qui egen _chsum1=total(_chsum0), by(`t')

cap assert abs(_chsum/`yvar'-1)<=`crtv'
if _rc!=0 {

disp as red "ERROR:The varlist can not form an identity"
restore
exit

}
*/

//disp "k=" `k'

tempvar chprod chsum2 lfun dfun Dtot2

qui gen `chprod'=1
forvalues i=1/`k' {

qui replace _eff`i'_=`zero' if missing(_eff`i'_)| _eff`i'_==0
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qui replace `chprod'=`chprod'*_eff`i'_

}

qui egen `chsum2'=total(`chprod'), by(`t')

cap assert abs(`chsum2'/`yvar'-1)<=`tolerance'

if _rc!=0 {
disp as red "ERROR:The specified variables can not form an identity"
restore
exit

}

qui gen `lfun'=0

qui bys `idflag' (`t'): replace `lfun'= ///
(`chprod'-`chprod'[_n-1])/ln(`chprod'/`chprod'[_n-1]) if

`chprod'!=`chprod'[_n-1]

tempvar _Dtot
if !("`add'"==""){

qui bys `idflag' (`t'): gen `_Dtot'=`yvar'-`yvar'[_n-1]
qui gen `Dtot2'=0
qui gen `dfun'=1

}
else {

qui bys `idflag' (`t'): gen `_Dtot'=`yvar'/`yvar'[_n-1]
qui gen `dfun'=0
qui gen `Dtot2'=1
qui bys `idflag' (`t'): replace `dfun'= ///
(`yvar'-`yvar'[_n-1])/ln(`yvar'/`yvar'[_n-1]) if `yvar'!=`yvar'[_n-1]

}



140

//disp "k="`k'

qui su `t'
local mint=r(min)

forvalues i=1/`k' {
tempvar tempEFF`i' _EFF`i'
qui bys `idflag' (`t'): gen

`tempEFF`i''=`lfun'/`dfun'*ln(_eff`i'_/_eff`i'_[_n-1])
//qui bys `idflag' (`t'): gen

`tempEFF`i''=`lfun'/`dfun'*ln(`_eff`i''/`_eff`i''[_n-1])
qui egen `_EFF`i''=total(`tempEFF`i''), by(`t')
//label var _EFF`i' `"Effecf of change in (`eff`i'')"'
qui replace `_EFF`i''=. if `t'==`mint'
if !("`add'"==""){

qui replace `Dtot2'=`Dtot2'+`_EFF`i''

}
else {

qui replace `_EFF`i''=exp(`_EFF`i'')
qui replace `Dtot2'=`Dtot2'*`_EFF`i''

}

local resmat `resmat' `_EFF`i''
local matcnames `matcnames' "Eff_`i'"
//local matcnames `matcnames' _EFF`i'

}

cap assert abs(`_Dtot'/`Dtot2'-1)/`_Dtot'<`tolerance' if ~missing(`_Dtot')
if _rc!=0 {

disp as red "Warning: The difference between the real change
and the decomposed effects in total is large than `=`crtv'*100'%."

disp as red " Please check your data preparation!"
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}

qui tab `t', nofreq
local nt=r(r)
sort `idflag' `t'
tempvar From To
qui bys `idflag' (`t'): gen `From'=`t'[_n-1] if _n>1
qui bys `idflag' (`t'): gen `To' =`t' if _n>1
sort `idflag' `t'

//tempvar t0
//qui bys `idflag' (`t'): gen `t0'=`t'[_n-1] if _n>1
//qui cap mkmat `t0' `t' `_Dtot' `resmat' in 2/`nt', mat(mat4prt)
qui cap mkmat `From' `To' `_Dtot' `resmat' in 2/`nt', mat(mat4prt)
if _rc!=0 {

disp _n as red "Warning: Matsize too small to create a `=`nt'-
1'x`=`k'+3', results are not displayed."

disp as red " You should improve the matsize, or save
the results in filename.dta."

}
else {

//matrix colnames mat4prt = "From" "To" "_Dtot"
`matcnames'

matrix colnames mat4prt = "From" "To" "Dtot" `matcnames'
//disp _n
matlist mat4prt, name(c) bor title("LMDI decomposition

results:")
//disp " The decomposition results are presented as follows."
//list _Period _Dtot _EFF* in 2/`nt', c sep(0) t
disp "Note:"
disp as yellow " Dtot : Change in `yvar' over times"
forvalues i=1/`k'{

disp as yellow " Eff_`i' : Effect of change
in ( `eff`i'' )"

}
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}

if !("`saving'"==""){
//qui putmata period=`_Period' in 1/`nt', replace
//qui putmata result=(`_Dtot' `resmat') in 1/`nt', replace
sort `idflag' `t'
qui drop if _n>`nt'
//list `_Dtot'
mata: effmat=st_data(.,"`_Dtot' `resmat'")
qui keep `t'
sort `t'
//qui getmata _Period=period ( _Dtot `matcnames')=result,

force
qui gen From=`t'[_n-1] if _n>1
qui gen To=`t' if _n>1
qui gen Dtot=.

mata: st_view(X2=.,.,"Dtot")
mata: X2[1::rows(effmat)]=effmat[.,1]

label var Dtot "change of `yvar'"
forvalues i=1/`k'{

qui gen Eff_`i'=.
mata: st_view(X3=.,.,"Eff_`i'")

mata: X3[1::rows(effmat)]=effmat[.,`=`i'+1']
label var Eff_`i' "Effect of change in ( `eff`i'' )"

}
//list From To Dtot Eff_* if _n>2, t sep(0)
save `saving', `replace'
disp _n
disp as yellow "The results are also saved in `saving'.dta."

}

restore

end
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