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Abstract

Exponential runtimes of algorithms for values for games with transferable utility like the
Shapley value are one of the biggest obstacles in the practical application of otherwise
axiomatically convincing solution concepts of cooperative game theory. We investigate to
what extent the hierarchical structure of a level structure improves runtimes compared to an
unstructured player set. Representatively, we examine the Shapley levels value, the nested
Shapley levels value, and, as a new value for level structures, the nested Owen levels value.
For these values, we provide polynomial-time algorithms (under normal conditions) which
are exact and therefore not approximation algorithms. Moreover, we introduce relevant
coalition functions where all coalitions that are not relevant for the payoff calculation have
a Harsanyi dividend of zero. Our results shed new light on the computation of values of
the Harsanyi set as the Shapley value and many values from extensions of this set.

Keywords Cooperative game - Polynomial-time algorithm - Level structure - (Nested)
Shapley/Owen (levels) value - Harsanyi dividends

1 Introduction

Since the introduction of the Shapley value (Shapley, 1953b), many cooperative game the-
orists have accumulated an ever-growing pool of axiomatizations of values for cooperative
games with transferable utility (7'U-values). These axiomatizations offer convincing argu-
ments for one or the other TU-value in a variety of situations and applications. But what
use is the most beautiful model if the complexity, even for small applications, is so high
that they cannot be computed in applicable time or if not all necessary data is available or
can be captured?

Within economics, the important concept of bounded rationality (Simon, 1972) means
that rationally acting individuals must take limited information and cognitive limitations
into account in their choices. The time required for decision-making and the limited com-
puting capacity must also be considered. In this respect, we refer, for example, to Futia
(1977), Rubinstein (1986), or Kalai and Stanford (1988). Bounded rationality, therefore,
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requires that in deciding which value should we use for the payoff calculation in practice,
computational ease has always to be satisfied. From a complexity theory perspective, com-
putational ease for a TU-value implies that the payoff can be calculated efficiently (i.e. in
polynomial-time with respect to the number of players).

Take, e.g., the Shapley value as a central single-valued solution concept. Usually, when
computing the Shapley value, the worths of all possible coalitions of players have to be
considered. In other words, if n is the number of players, we get an exponential runtime
in n, since we have 2" many different coalitions.! Therefore, in general, one has to rely
on approximation methods or heuristics, even for a relatively small number of players.
Reference is made here, e.g., to Zlotkin and Rosenschein (1994), Castro et al. (2009), and
van Campen et al. (2018).

Our approach, at least initially, is to compute exact values. Several classes of coalition
functions are known for which we can compute payoffs in polynomial-time using the Shapley
value. For example, formulas exist for airport games (Littlechild and Owen, 1973) and for
k-games (van den Nouweland et al., 1996), which coincide with weighted hypergraph games
with hyperedges of size k& (Deng and Papadimitriou, 1994), which require only a selection
of all coalitions for computation. Since the number of these coalitions is polynomial in n,
the payoff computations can be done efficiently.

For the Shapley levels value (Winter, 1989), Winter introduced a hierarchical structure
of coalitions, called level structure, which is related to the tree data structure. A level
structure comprises a series of ordered partitions (the levels) of the player set, each higher
level being coarser than the previous one, i.e., each component of a higher level contains at
least one or more components of the previous level which together contain the same players
(see Figures 1 and 2). Therefore, a level structure can also be seen as an extension of a
coalition structure (Aumann and Dreéze, 1974; Owen, 1977) which has only three levels if
we count the partition containing all singletons and the partition containing only the grand
coalition as levels.

Meanwhile, some different values for level structures (LS-values) exist, like the six values
for level structures in Chantreuil (2001), the value for level structures in Gémez-Ria and
Vidal-Puga (2011), the Banzhaf levels value in Alvarez-Mozos and Tejada (2011), or the
class of weighted Shapley hierarchy levels values (Besner, 2019b) which contain also the
Shapley levels value and the just mentioned LS-value from Gémez-Ruia and Vidal-Puga.
Sastre and Trannoy (2002) suggested an extension of their nested Shapley value? to level
structures which we will call nested Shapley levels value. We find a somewhat different
approach in Sanchez-Sénchez and Vargas-Valencia (2018), who proposed a value for coop-
erative nested games which satisfy nested constraints on a level structure. This value can
be seen as an extension of the collective value in Kamijo (2013) for coalition structures.

In this study, we take advantage of the tree-like structure of level structures to obtain
algorithms for LS-values which have a polynomial runtime. We investigate the Shapley

!This means that we have a huge amount of data to manage. Currently (as of 2019), the largest hard disk
drives available on the market have a storage capacity of 16 terabytes, which is less than 24* bytes. But
even if we did not have to store the worths of the coalitions, but could somehow use a subroutine that
computes them ad hoc at unit cost as proposed in Faigle and Kern (1992), we are already reaching our
limits here with a set of maybe 50 players. Purely theoretically, a 3.4 Ghz processor needs already about
92 hours for 2°0 calculation steps (elementary operations). Even a processor 1000 times faster could only
cope with a set of log, 1000 = 10 players more at the same time.

2Kamijo (2009) called this value two-step Shapley value.



levels value, the nested Shapley levels value, and as a new LS-value, the nested Owen levels
value. Similar to the Shapley levels value, we can this value also interpret as an extension
of the Owen value (Owen, 1977) to LS-values. For ordinary level structures, meaning that
there are no redundant levels and the number of subcomponents within a component is
bounded by a fixed degree, we get polynomial runtimes for algorithms for the last two LS-
values mentioned above. If we additionally require that each component of a higher level
contains at least two subcomponents in the lower ones, we also obtain a polynomial-time
algorithm for the Shapley levels value.

The decisive factor in getting polynomial runtimes is that not all coalitions have to be
taken into account in the payoff calculation. We call these coalitions relevant coalitions.
All other coalitions can take any worth, and we still get the same payoff. This leads us
to introduce relevant coalition functions where the relevant coalitions receive their original
worth and the other coalitions receive a worth so that their (Harsanyi) dividend (Harsanyi,
1959) is zero. Dividends can be seen as the cooperation benefits of one coalition over the
cooperation benefits of its subcoalitions.

Using relevant coalition functions, we also obtain polynomial runtimes for the Shapley
levels value, under the above conditions, if we use the well-known formula with dividends
in Calvo et al. (1996, Eq.(1)) as the basis for an algorithm. It turns out that games
with relevant coalition functions are closely related to the weighted hypergraph games with
variable-size hyperedges, mentioned in Deng and Papadimitriou (1994).

By adapting an algorithm in Algaba et al. (2007), we can compute the dividends of
relevant coalitions for a relevant coalition function in polynomial-time if the coalitions are
known and their number is polynomially bounded. Thus, we obtain algorithms with poly-
nomial runtime for values with a dividend representation like the values from the Harsanyi
set (Hammer et al., 1977; Vasil’ev, 1978) or the proportional Shapley value (Béal et al.,
2018; Besner, 2019a) if we know all coalitions with positive or negative dividends and their
number is polynomially bounded.

To legitimize the introduced nested Owen levels value and the nested Shapley levels
value in cooperative game theory, we provide new axiomatizations in the spirit of balanced
contributions as in Calvo et al. (1996).

The paper is organized as follows. Some preliminaries are given in Section 2. Section 3
confirms the exponential runtime of the Shapley value in general and offers some classes of
coalition functions, where the Shapley value can be computed efficiently. In Section 4, three
LS-values are presented with a short axiomatization, in Section 5, we provide algorithms
with polynomial runtime for LS-values, introduce relevant coalition functions and a new
formula with dividends for the Shapley levels value. Section 6 generalizes our results, and
Section 7 concludes and discusses some ideas for future work. For the sake of readability,
the Appendix (Section 8) contains all the more extensive proofs.

2 Preliminaries

2.1 TU-games

Given a countably infinite set U, the universe of players, we denote by A the set of all finite
subsets of 4. A TU-game (N, v) consists of a player set N € N and a coalition function
v: 2V - R, v(0) = 0. Each subset S C N, is called a coalition, v(S) is called the worth



of S, Q% denotes the set of all non-empty subsets of S, and (S,v) is the restriction of
(N,v) to the player set S € QY. We denote by n := |N| the cardinality of N and the set
of all TU-games (N, v) is denoted by VY. A game (N, ug), S € QY defined for all T C N
by us(T) = 1if S C T and ug(T") = 0 otherwise, is called an unanimity game. For all
S C N, the (Harsanyi) dividends A,(S) (Harsanyi, 1959) are defined inductively by

0, if S =0,
Ay (S) = {U(S) _ ZRQS A,(R), otherwise. W

S C N is called essential in (V,v) if A,(S) # 0. A playeri € N is called a dummy player
in (N,v) if v(SU{i}) =v(S) +v({i}), S C N\{i}. If we have additionally v({i}) = 0, the
dummy player i is called a null player. Two players 7,7 € N, i # j, are called symmetric
in (N,v), if v(SU{i}) =v(SU{j}) for all S C N\{i,j}.

For all N € NV, a TU-value or solution ¢ is an operator that assigns to any (N,v) € V¥
a payoff vector ¢(N,v) € RY. Forall N € N, (N,v) € V¥, the Shapley value Sh (Shapley,
1953b) is defined by

(5] = Dt (n = |S)!

n!

Shi(N,v) := Z

SCN, S3i

[0(S) = v(S\{i})] for all i € N. (2)

A well-known equivalent formula for the Shapley value is given by

Shi(N,v) = ) A[’S(’S) for all i € N. (3)
SCN, S3i

We refer to the following axioms for TU-values ¢ on V¥ which hold for all N € N.
Efficiency®, E'. For all (N,v) € V¥, we have Y, y ¢:i(N,v) = v(N).

Dummy player®, D’ For all (N,v) € V¥ and i € N a dummy player in (N, v), we have
¢i(N,v) = v({i}).

Additivity% A’ For all (N,v), (N,w) € VY, we have ¢(N,v) + ¢(N,w) = ¢(N,v + w).
Symmetry’, S For all (N,v) € V¥ and i, € N such that i and j are symmetric in
(N,v), we have ¢;(N,v) = ¢;(N,v).

Balanced contributions®, BC® (Myerson, 1980). For all (N,v) € V¥ and i,j € N, we
have ¢;(N,v) — ¢i(N\{j},v) = ¢;(N,v) — ¢;(N\{i},v).

Balanced contributions means that for any two players the amount that a player would win
or lose if the other player is eliminated from the game should be the same for both players.

2.2 LS-games

Since we also look at games on level structures where coalitions of players are regarded as
players, we want to exclude from the outset inconsistencies in the worths of coalitions in
the original game and associated coalitions in games where components are the players.?

3Let, e.g., N := {i,j, {i,j}} be a player set with three players where the third player is a coalition. In a
TU-game (N,v) € V¥, it does not matter if the worth v({i, j}) of the coalition {4, ;} differ from the worth

v({{i,7}}) of the singleton {{7,j}}.



Therefore, we use in this context only player sets N € N, where no individual ¢ € 4 is a
sub-member of any two players j, k € N, where an individual ¢ € U is called a sub-member
of a player j € Ul if © = j or j is a set which contains as elements “individuals”, or “sets of
individuals”, or “individuals and sets of individuals”, or “sets of sets of individuals”, and
so on, and ¢ is an element of one of these possibly nested sets. Thus, to avoid complicating
the notation, we tacitly assume that, in this context, N only contains sub-member-disjoint
player sets. A partition B := {Bj,..., B, } of a player set N € N, i.e., By # 0 for all
k,1<k<m, BeNB, =0,1<k<{¢<m,and |J;" By = N, is called a coalition
structure on N. Each B € B is called a component and B(i) denotes the component
that contains the player i € N.

For any N € N, a level structure (Winter, 1989) on N, is a finite sequence B :=
{B° ..., B"*1} of coalition structures B7, 0 < r < h+ 1, on N such that B° = {{z} i€ N},
B! = {N}, and B"*! is coarser than B" for each r, 0 < r < h, i.e., B"(i) C B"*}(3) for
all 7 € N. For each r, 0 < r < h + 1, B" denotes the r-th level of B. We denote by B the
set of all components B € B" of all levels B" € B, 0 < r < h, and "V denotes the set of all
level structures with player set V.

For B € BX0 <k <r < h+1, B(B) denotes the component of the r-th level that
contains as a (not necessary proper) subset the component B and is called an ancestor of
B,if k <r. If r =k + 1, we call the ancestor also parent of B. All components with the
same parent B € B", 1 <r < h+ 1, are called children of B and two different children of
B are called siblings in B"~!. Note that a component B can be its own parent or child (in
different levels). For By € B", we define (B,)" := {B : B is a child of B""Y(By)} as the set of
all children of B"*Y(By) if 0 < r < h,and (By)" :={N}ifr=h+1. By [(B)"|, 0<r <h,
we denote the degree of the component B "!(B,). The degree of a level structure
B is the maximal degree of all components B € (BU {N}) which are also parents.

Keep in mind that the definition of level structures also allows identical consecutive
levels. A level structure B is called strict if B"(i) C B"*(i) for all 7, 0 < r < h, and at
least one ¢ € N, possibly different for each level (see Figure 1), we call B totally strict if
Br(i) € B™(i) for all r, 0 <r < h, and all i € N (see Figure 2).

{1,2,3,4,5,6,7,8,9,10,11} Level: 3

{12345} {9,10,11} 5

(345} {67} (s} {9,10,11} )

{4 N5 6y W {8 A9 {10} {11 0

Figure 1: Structure of the components of a strict level structure in different levels

For any N € N, an LS-game is a triple (N, v, B) consisting of a TU-game (N,v) € V¥
and a level structure B € LY. We denote the set of all LS-games on N by VL.

We define B := {B',...., B "} € LF, 0 < r < h, as the induced rth level struc-
ture from B = {BY ..., B""'} where we regard the components B € B" as players. Each



{1,2,3,4,5,6,7,8,9,10,11} Level: 3

{12,345} {6,7,8.9,10,11} 5

{10,11}

{3,4,5} {6,7}

—_

{7 {8 {9y J{1op {11} 0

Figure 2: Structure of the components of a totally strict level structure in different levels

element of a coalition structure B := {{B € B": BC B'}:forall B € B’”*k}, 0<k<
h+1—r, is a set of all components of the r-th level which are subsets of the same component
of the (r + k)-th level. (B", i ) € VL?' is called the induced rth level game from B
and is given by
v'(Q) :==v(| ) B) forall Q C B".
BeQ

The following example illustrates our definitions.

Example 2.1. Let N = {1,2,3} and B = {B° B', B>} be given by B° = {{1}, {2}, {3}},
B' = {{1},{2,3}}, and B* = {N}. We regard, e.g., the components of the first level
as players. Then, the induced first level structure B! = {Blo, Bll} from B is given by

BY= {{{1}}. {{2.3}}} and B" = {{{1}.{2.3}} }.

For T'e QY and coalition structures B"|r := {BNT: B€ B, BNT # 0},0<r < h+1, we
denote by Bly := {B°|r, ..., B"*|;} € LT the restricted level structure of B on T. Then,
(T,v,B|r) € VLT is called the restriction of (N,v,B) to T and (B'|z,v", B"|r) € VLF'I*
is the induced rth level game from the restriction of (N, v, B) € VL™ on T.

For 0 <r <h, B, := {BO, vy BT, {N}} € LV is called the rth cut level structure from
B where all levels between the rth and the (h + 1)th level are cut out from B. (N,v,B,)
is called the rth cut of (N,v,B). Notice that for each B = {B° ..., B"'} we also have
B = Bj,. Thus, we often write briefly B = B), to make clear how many levels the level
structure comprises. For each (N,v,B) € VLY with a trivial level structure B = By
exists a corresponding TU-game (N, v) and for each (N,v,B) € VLY with B = B, exists a
corresponding game with coalition structure (Aumann and Dreze, 1974; Owen, 1977).

For all N € N, an LS-value ¢ is an operator that assigns to any (N,v, B) € VLY a
payoff vector o(N,v, B) € RY.

Let N € N, (N,v, B) e VLN, B=B,, T € QN, T > i, and

h
N r . T ) — 1
Kpr(i) := J:lo KE’T(Z), where KQ,T(l) = {B e Br:BCB+(i), BNT #0}| (4)

Then, the Shapley Levels value Sh” (Winter, 1989) is given by*

4This formula for the Shapley levels value comes from Calvo et al. (1996, Eq.(1)).



SRE(N,v,B) == Y Kpr(i)A,(T) for all i € N. (5)

If h = 0, Sh" coincides with Sh; if h = 1, a level structure coincides with a coalition
structure and it is well-known, that the Owen value Ow (Owen, 1977) can therefore
alternatively, as a special case of the Shapley levels value, be defined by

Owi(N,v,By) == Y Kp,(i)A,(T) for all i € N.

TCN, T

We refer to the following axioms for LS-values ¢ on VLY which hold for all N € N.
Efficiency, E. For all (N, v, B) € VL", we have Yien ©i(N,v,B) = v(N).

Null player, N. For all (N,v, B) € VLY and i € N a null player in (N,v), we have
wi(N,v,B) = 0.

Level game property, LG (Winter, 1989). For all (N, v, B) € VL, B=B,,, B€ B, 0 <
r < h, we have

Z SOZ(Na U?ﬁ) = @B(Bra Ura K)

ieB
This property states that the total payoff obtained by all members of a component is equal
to the component’s payoff in the corresponding induced level game where the component
is regarded as a player.

Balanced contributions, BC (Calvo et al., 1996). For all (N, v, B) € VL, B = By, and
two siblings By, By € B", 0 < r < h, we have

Z Qoi(Nﬂ}?ﬁ) - Z 901'<N\B47U7§|N\Be> = Z Qoi(Nﬂ}?ﬁ) - Z 90i<N\Bk7U7§|N\Bk)'

i€By i€By i€B, i€B,

BC means that for any two siblings, the sum of the amount that all players of one sibling
would win or lose if the other sibling is eliminated from the game should be the same for
both siblings.

2.3 Notes on time complexity

By time complexity we understand an estimation of the time to run an algorithm. Usually,
the time is specified by the number of elementary operations the algorithm needs to execute.
For simplicity’s sake, a fixed constant time is assumed for each elementary operation. If
we are interested in an (asymptotic) upper bound, we use big-O notation. In case that we
are interested in a (asymptotic) lower bound, we use the big-{2 notation as suggested by
Knuth (1976). Normally, the argument of the function used within the big-O or the big-{2
notation is the input size. In this respect, we cite Deng and Papadimitriou (1994) who
stated the following;:

“There is a catch, however: If the game is defined by the 2™ coalition values, there
may be little to be said about the computational complexity of the various solution
concepts, because the input is already exponential in n, and thus, in most cases,

the computational problems above can be solved very ‘efficiently’.



It is therefore common practice in this context, to use the number of players as the reference
for the time complexity analysis. Hence, we say that an algorithm is efficient if it runs in
polynomial-time with respect to the number n of players.

Notation 2.2. By t(A) we denote the number of elementary operations of algorithm A,
by t(F,) those within the FOR-loop starting in line r, by ¢(L,) those of the assignments
within line r, and by t(IF,) and ¢(FLSE,) those within the IF- or ELSE-branch starting in
line r.

3 The Shapley value

If we look at formulas (2) or (3) for computing the Shapley value, we see that even the
input of the used worths or dividends requires exponential time. But are we perhaps simply
not yet able to find an algorithm that does not need the worths of all coalitions for the
input? We will see later that for the Shapley levels value, which has with formula (5) a very
similar formula to formula (3), a formula can be found which, except in degenerated cases,
only requires the worths of polynomially many coalitions. Whether linear programs can be
solved in polynomial-time has long been an open problem, especially when it became clear
that the simplex algorithm as the main solution method requires exponential time. Finally,
the ellipsoid algorithm in Khachiyan (1979) showed that linear programs are solvable in
polynomial-time. However, the fact that generally no algorithm with polynomial-time can
be found for the Shapley value is confirmed by the following proposition.’

Proposition 3.1. There is no algorithm that computes the Shapley value in polynomial-
time for all (N,v) € VN and N € N with respect to the number of players n.

Proof. Let N € N, (N,v1),(N,vp) € VN K C N, v1(K) # v3(K), and v1(S) = v5(S) for
all S € QN S # K, such that each worth v;(S),v2(S) is independent from all other worths
v1(T),vo(T), T € QN, T # S. By (2), we have, for all i € K,

Sh,(N, ’UQ) — Shl(N, Ul)
|

= >0 B R ) v - 0 TR 6 wugsvgay)

| |
SSQN, s SSQN, n:
i EY]
(k—1)I(n—k)!

— [02(K) — 01 (K)] #0,

n!

where k := |K| and s := |S|. In other words, any algorithm that computes the Shapley
value returns a different result for the two coalition functions vy, vs. Therefore, since K
was arbitrary, the payoff to a player i depends on each worth of the 2"~! coalitions S C N
containing the player ¢ as long as the worths of the coalitions are independent of each other.
Consequently, all worths must be used at least once in the algorithm, i.e. they require at
least one elementary operation, which corresponds to a runtime of £2(2"!) for a single
player. L]

Erroneously stated in Castro et al. (2009) and van Campen et al. (2018)), the computation
of the Shapley value is not an NP-complete problem.

A similar result can be found in Faigle and Kern (1992, Theorem 3).



Remark 3.2. As the proof of Proposition 3.1 shows, not even a guess about the solution
generated in a non-deterministic way can be verified in polynomial time with respect to the
number of players by a deterministic Turing machine.’

Fortunately, there are some classes of games where the Shapley value can be computed
efficiently. Airport games are one possibility, as shown in Littlechild and Owen (1973).
This type of cost games can be decomposed into a sum of games where all players are
symmetric or null players. Therefore, here the additive Shapley value can be calculated
very efficiently by symmetry and the null player property of the value.

Another possibility are k-games, introduced by van den Nouweland et al. (1996). A
k-game coincides to a weighted hypergraph game with hyperedges of size k, introduced by
Deng and Papadimitriou (1994). A TU-game is called a k-game if the coalition function
takes the form:

v(S) = > (), k>0

TCS, |T|=k

As long as k is fixed and thus does not depend on n, we can compute the Shapley value for
such games in polynomial-time. This aspect is discussed in more detail in Section 6. As
a more recent result, we refer to Maafa et al. (2018), where it is shown that the Shapley
value of weighted graph games on a product of chains of equal fixed length in polynomial
time can be computed.

4 Values for level structures

In this section, we examine LS-values that generalize the Shapley value to LS-games and
calculate the payoff in a top-down procedure: We distribute the worth of the grand coalition
to its children, the components of the hth level, using a TU-value. Then, each payoff of
a component of the hth level is divided by the same TU-value among all its children, and
so on for all levels. Finally, we distribute the payoffs of the first level components to their
children and thus to the original players. The various LS-values differ in the definition of
the intermediate games’, i.e., the steps for each level.

4.1 The Shapley levels value as a weighted Shapley hierarchy levels value

We recall the definition of the Shapley levels value as a special case of the weighted Shapley
hierarchy levels values (Besner, 2019b) and a related notation.

Notation 4.1. For all N € NV, (N,v, B) € VLY, B= By, i € N, and T € Q80 0 < k <
h, we denote by T80 .= {B e B¥: B C B*'(i), B # B¥(i)} U {T} the set of all children
of the component Bk“( ), where the child B*i) is replaced by coalition 7.

Definition 4.2. (see Besner (2019b, Remark 3.5)) For all N € N, (N,v, B) € VL, B =
By, i € N, and for all k, 0 < k < h, T € QOB T8 the set from Notation 4.1, define

6 Actually, this is not really a decision problem but a #P-complete counting problem (see Faigle and Kern
(1992) and Brightwell and Winkler (1991)).
"Owen (1977) called such games quotient games.
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mh+l. ik
v =, and v} by

ﬁf(T) = ShT(TBk(i), 6f)f07” all T e QB’f(z‘)’
k

%

18 specified recursively via

Q) = (|J 9) for all @ € T

SeQ

where v

Then the Shapley levels value Sh* is given by

ShE(N,v,B) := 02({i}) for all i € N.
We use the following axiomatization as a starting point for further axiomatizations.
Theorem 4.3. (Calvo et al., 1996) Sh® is the unique LS-value that satisfies E and BC.

4.2 The nested Shapley levels value

In many hierarchically structured organizations, it is common for the actors of a single
organizational unit to act only among themselves. Interaction across organizational units
only takes place at a higher level. The top-down payoff calculation of the following value
is based on this principle.

Definition 4.4. Let N € N, (N,v, B) € VLY, B = By, i € N, 9} (N) := v(N), and for
all k, 0 < k < h, be vF(B*(i)) given by

0} (B*(1)) := Shy (i) (B | gr1s), 7). (6)
is specified recursively via

" O (BET(D)), if Q = B g,
UZ' (Q) = . k
v(Upeo B) if Q € B |pr+is).-

Then the nested Shapley levels value Sh¥%, suggested in Sastre and Trannoy (2002), is
wen b
groen oy ShYE(N, 0, B) := 0°({i}) for all i € N.

Remark 4.5. Due to the additivity of the Shapley value, we can interpret the top-down
distribution mechanism also in this way: Within each (parent) component, there is a recur-
sive two-step bargaining process. In a first step, the children divide as players in a game,
restricted to their parent, the original worth of the parent via the Shapley value. In a sec-
ond step, the surplus that the parent has received as a player over what it has earned alone
15 additionally distributed evenly among the children. We obtain the following equivalent
definition that especially shows the coincidence of the value with the nested Shapley value®
defined in Sastre and Trannoy (2002) in case of a level structure with h = 1:

For all N € N, (N,v, B) € VLY, B = B, ShNL s recursively defined by

Sk, (B o BY)

ShBh(i)(Bh, Uh), ’Lfk = h,
— ShNkL . Bchrl7 ’Uk+1, Bk+1 —0 BkJrl i ]
Shigiy (B | gy, v*) + AT P )Z 5T go<k<n
[(BH()" |

and Sh{"*(N,v, B) := Shyy(B%1°, BY) for alli € N.

k

)

where U

(7)

8Kamijo (2009) called this value two-step Shapley value.
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We introduce a new axiom that coincides obviously for a trivial level structure with BC.

Nested balanced contributions, NBC. For all N € N/, (N,v, B) € VLY, B = By, two
siblings By, By € B, 0 < r < h, we have

> @i(N,0,B) = > i (B @)\ By, v, Byl 5,)

i€ By 1€EBy,
= ZSOZ<N, v, ﬁ) - ZQD’L (BT+1(Z.>\B]§7 v, @|Br+l(z)\3k) .
i€By 1€By

An interpretation of this property would be as follows: The sum of the amount that all
players of one sibling would win or lose if the other sibling dropped out of the game and
this would result in a game then being played only within the parent component and no
longer on the entire level structure, should be the same for both siblings. Of course, the
higher redundant levels are then obsolete.

Proposition 4.6. Sh¥* satisfies E, LG, and NBC but not N.
We present an axiomatization of the nested Shapley levels value.
Theorem 4.7. ShF is the unique LS-value that satisfies E and NBC.

Similar as for the weighted Shapley hierarchy Shapley levels values, we can obtain the class
of nested weighted Shapley levels values, if we replace the Shapley value in (6) with a
weighted Shapley value (Shapley,1953a). A nested weighted balanced contributions
axiom could be used for axiomatization. We will not go into that here.

4.3 The nested Owen levels value

We can now imagine that the active interaction of components which are siblings no longer
takes place only within the parent component, but also with the siblings of the parent
component or even with siblings of other ancestors. The extreme case is the Shapley levels
value that takes into account the siblings of all ancestors in the payoff calculation. By
the following LS-value, we consider only the siblings of the parent component. The same
approach, restricted to a coalition structure, is used by Owen (1977) in his famous value.
Therefore, our LS-value, like the Shapley levels value, can be seen as an extension of the
Owen value to level structures. Again, we use a notation. In contrast to Notation 4.1, here
we define a set of players with components as players, where one component can only be
replaced by unions of its children and not by any subset.

Notation 4.8. Let N € N, (N,v, B) € VLY, B = By, i € N, S € Q8 be such that
S = Upepr-1pcgB is a union of children of B4) if 1 <k < h, and S = {i} if k = 0. We
denote by S50 .= {B e BF: B C B¥(i), B # B¥i)} U {S} the set containing all children
of the component B*"1(i), where the child B*(i) is replaced by coalition S.

Definition 4.9. Let Let N € N, (N,v, B) € VLY, B = By, i € N, define /! := v, and
let 07 (S) for all S C BNi), S = Upepe-1pcgB if 1 <k < h, or for S = {i} if k =0, be
given by -
vF(9) = Shg(B"| g+, 0F), if S = BYi),
' Shg(SB"®), SB'D) the set from Notation 4.8, otherwise,
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where vF is given by
v (Q) = v U T) for all Q C S8

TeQ

and ©F is specified recursively via

0 (Q) =o' (| T) for all Q C B¥|pesr.

TeQ

Then the nested Owen levels value Ow™' is given by
OwM (N, v, B) := v{({i}) for all i € N.

Remark 4.10. Due to the additivity of the Shapley value (and thus of the Owen and the
nested Owen levels value), similar to the nested Shapley levels value, we can give an alterna-
tive definition of the nested Owen levels value that justifies the naming. Within each parent
of a (parent) component B, a recursive two-step bargaining process is installed. In a first
step, all children of B receive as players in a game, restricted to the parent of B, a share
of the original worth of the parent of B via the Owen value. In a second step, the surplus
that B as a player on the whole game has received over what it has earned in the restriction
on its parent is additionally distributed evenly among the children of B. We obtain the
following equivalent definition, where B]]§+1|Bk+2(i) means the induced kth level structure of
the (k4 1)th cut of Blpgr+2(; -
For all N € N, (N,v, B) € VLY, B = By,, Ow™" is recursively defined by

Owllt, (B BY)
ShBh(i)<Bh7 Uh)7 if k=h,

OU}Bk(Z) (Bk|3k+2(i), ?Jk, Bl’;rl |Bk+2(i))
OwgkLH(i) (Bk—i—l7 Uk—H, Bk—i—l) _ Shlgkﬂ(i) (Bkz-i-l |Bk+2(i)7 Uk+1)

[ (B* ()" |

, if0<k<h-1,
(9)

and Ow]M (N, v, B) = Owgf]j(l’p’o, V% B%) for alli € N.

Remark 4.11. Ow™ coincides with Sh if h = 0 and with Ow if h = 1.

The following property is similar to NBC.

Nested balanced Owen contributions, NBOC. For all N € N, (N,v, B) € VL”,
B = By, two siblings By, By € B, 0 < r < h, we have

DN, v.B) = 3 0i(B2(0)\Be. v, Braalirrein )

1€ By 1€By,
= sz(N,'U,E) - ngi(Br+2(i>\Bk7U,Br+1|8r+2(i)\3k)7 (10)
i€By 1€By

where B"2(i) := B"*1(i) and B,y := By, if r = h.
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Also the interpretation is similar to NBC. Suppose one sibling leaves the game and this
would lead to a situation where the other sibling can only play a game within the parent
component of its parent (without its sibling). Then the sum of the payoffs that all players
of a sibling win or lose is the same for both siblings.

Proposition 4.12. Ow™ satisfies E, LG, and NBOC but not N.

Theorem 4.13. Ow™" is the unique LS-value that satisfies E and NBOC.

5 Runtime complexity for algorithms of LS-values

As far as we know, there are no studies of how the extension of a solution such as the
Shapley value to an LS-value such as the Shapley levels value affects time complexity.
The hierarchical structure of level structures is related to the data structure of trees in
computer science or rooted trees in graph theory”. In computer science, trees are one of
the most fundamental concepts for coping with complexity. In this context, only the use
of trees in databases, hierarchical file systems in operating systems, or search trees for the
management of information should be mentioned. We will show below that level structures
can analogously reduce complexity.

Proposition 5.1. For all N € N and each level structure B € LN, B = By, we have
(i) h <n—2, if B is strict,
(ii) h < (logyn) — 1, if B is totally strict.

Proof. Let N € .

(i) For a strict level structure B € LY, B = By, we have |[B"*!| < |B"| for all 7, 0 < r < h.
Due to |B°| = n, it follows |B"*| < n — (h + 1) and thus, by |B"™| =1, h <n —2.

(ii) Let B € LY, B = By, be totally strict. If o = 0, we have 2"*! = 2 < n. For each
additional level, the size of the player set must at least double. Therefore, for arbitrary h,
we have 2! <n < h < (logyn) — 1. |

5.1 Relevant coalitions

In the following, we want to state that we only need the worths of certain coalitions for the
computation of the LS-values in Section 4. In principle, the same observations also apply
to corresponding weighted variants.

Remark 5.2. For all N € N, to compute the Shapley levels value for a playeri € N and a
level structure B € LY, based on Definition 4.2, we need only to take into account the worths
of two groups of coalitions T C N: first, the singleton containing the player i, all siblings
of this singleton, and all siblings of ancestors of this singleton and second, all coalitions
that these components can form as unions. We denote the set of all these coalitions by R
as the set of relevant coalitions for player i on B. The worths of all other coalitions
S € ON\RY can take any worth and we get the same payoff for player i.

9n a different perspective, Alvarez-Mozos et al. (2017) describe how hierarchical structures can be trans-
formed into level structures.
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Remark 5.3. For all N € N, to compute the nested Shapley levels value for a playeri € N
and a level structure B € LY, based on Definition 4./, we need only to take into account
the worths of two groups of coalitions T C N: first, all components B € B, B 3 i, and
their siblings, and second all coalitions that children within one parent, containing player 1,
can form as unions among themselves. We denote the set of all coalitions from these both
groups by Rghi as the set of relevant nested Shapley coalitions for player i on B. The

worths of all coalitions S € QN\RE}“ can take any worth and we get the same payoff.

Remark 5.4. For all N € N, to compute a nested Owen levels value for a player i € N
and a level structure B € LY, based on Definition 4.9, we need only to take into account the
worths of three groups of coalitions T C N: first, all components B € B, B 3 i, and their
siblings, and second all coalitions that children within one parent, containing player i, can
form as unions among themselves, and third all coalitions that each of these coalitions can
form with siblings of their parent as unions. We denote the set of all coalitions from these

three groups by ngi as the set of relevant nested Owen coalitions for player v on B.

The worths of all coalitions S € QN\Rg“” can take any worth and we get the same payoff.

5.2 Runtimes of LS-values defined in a top-down procedure

If the degree of a level structure is not bounded, we cannot expect to find a polynomial-time
algorithm for our LS-values, since, e.g., all values for a trivial level structure coincide with
the Shapley value. Therefore, we use level structures of fixed degree for the algorithms.
Note that this means that the level structure must contain a certain number of levels,
depending on the degree and size of the player set. First, we indicate the complexities of
the intermediate games.

Theorem 5.5. For all D € N, (D,v) € VP d := |D|, it requires to compute Sh;(D,v) for
a single player i € D a time O(d2?).

Proof. We give a pseudocode algorithm based on Formula (2).

Algorithm 5.1. Compute Sh;(D,v)

Input: A playeri € D and v(S) for all S C D.
1: sum =10
2: for all SC D, S>i, do
S| —1D)!(d—|S)!
sum o= sum -+ L2V 6 vy 7 @)

3
4: end for
5
6

: Shi(D,v) := sum
: return Sh;(D,v).

Complezity: We have t(Algorithm 5.1) = 1 +t(Fy) + 1 = 24 2971¢(L3). If the factorials
are not stored, we have t(L3) € O(d). Therefore, Algorithm 5.1 has a time O(d24). O

We give the complexities of our LS-values.

Theorem 5.6. For all N € N, (N,v, B) € VL such that B is a totally strict level struc-
ture of fived degree d, it requires to compute Sh¥(N,v,B) for all players i € N a time
O(n%logn).
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Proof. We give a pseudocode algorithm based on Definition 4.2.

Algorithm 5.2. Compute ShX(N, v, B)
Input: A level structure B € LY, B = By, a player i € N, and v(S) for all S € R.

1: for all S € Ry do // the relevant coalitions for player i

2: o"(S) == v(S)

3: end for

4: fork=h to 0 do // the descending levels

5: for all T € Q¥ NRL do // all subsets of component B¥i) which are relevant
coalitions for player ¢

6: for all Q C TB do // all subsets from 789, defined in Notation 4.1

. Q) 1= 15 (Useo S)

8: end for

9: OF(T) = Shp(TE, k) // calls a method/function that computes Sh before

the assignment, e.g. Algorithm 5.1
10: end for
11: end for
12: ShE(N, v, B) := 9?({i})
13: return Sh¥(N,v,B).

Complexity: Let B be a totally strict level structure of degree d. We have, by Proposition
5.1, h < (logyn) — 1. It follows

Ri < 242471 .90 1 < 9.9t gl ) g glmen(@]) Ly —gpd-l 1 (1])

h times log, n times
In line 6, we have |T8k(i)| < d. It follows
t(Fg) < 24 (12)

Thus, we have

t(Algorithm 5.2)

HF) +H(F) +1 < 207 4 300 #(F5)
(11)
< 2n" + (logy n)2n? = [t(Fs) + t(Ly)]
Prop.5.1,(11)
2n971 + (logy n)2n412% + (logy n)2nd=1t(Ly).

—
cINA

)

By Theorem 5.5, we have t(Lg) € O(d2%). Therefore, Algorithm 5.2 has a time O(n¢~1logn).
The claim follows by running the algorithm for n players. Ll

Remark 5.7. Theorem 5.6 remains valid for arbitrary level structures of degree d as long
as h s logarithmic in n.

Despite this generally positive result, the time complexity of computing the level structure
value may be too high in a number of cases. In practice, the degree of B must be small,
even if n is not very large. In these cases, using the nested Shapley levels value may be
more appropriate.

Theorem 5.8. For all N € N, (N,v, B) € VLY, and B of fized degree d, it requires to
compute ShN(N, v, B) for all players i € N
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(i) a time O(n?) if B is strict,
(ii) a time O(nlogn) if B is totally strict.

Proof. We give a pseudocode algorithm based on Definition 4.4.

Algorithm 5.3. Compute ShN(N, v, B)

Input: A level structure B € LY, B = By, a player i € N, and v(S) for all S € Rghi.
1: oPTH(N) := v(N)
2: fork=h to 0 do // the descending levels
oF (Bk‘3k+1(i)) = TJfH(BkH(i)) // the worth for the restricted grand coalition
where all children of B¥*1(;) are players
4 for all Q C B|geyy, @ # 0, do  // all coalitions that the children of B*(i)
as players can form, except B*| BFH1()

o

5 Q) = vUpee B

6: end for

7 oF(BE(i)) = Shygk iy (Bk|3k+1(i),ﬁf) // calls a method/function that computes
Sh before the assignment, e.g. Algorithm 5.1

8: end for

9: ShNE(N, v, B) :== v?({i})
10: return ShN (N, v, B).

Complezity: (i) Let B be a strict level structure of degree d. We have
t(Algorithm 5.3) = 14t(Fy)+1= < 24 (n—1)[1+¢(Fy) +t(L7)]

< l4+n+(n- 1)(27?512) + (n — 1)t(L7).

By Theorem 5.5, we have t(L;) € O(d2%). Therefore, Algorithm 5.3 has for a strict level
structure a time O(n). The claim follows by running the algorithm for n players.

(ii) Let B be a totally strict level structure of degree d. By Proposition 5.1, the FOR-loop,
line 2, now runs at most log, n times instead of (n — 2) times. Analogous to (i), it follows

t(Algorithm 5.3) = 2 + logy n + logy n(2% — 2) 4 logy n - t(Ly).

By Theorem 5.5, we have t(L7) € O(d2?). Therefore, Algorithm 5.3 has for a totally strict
level structure a time O(logn). The claim follows by running the algorithm for n players.

L

Remark 5.9. As long as h is linear in n, Theorem 5.8 (i) remains valid and as long as h
is logarithmic in n, Theorem 5.8 (ii) remains valid for arbitrary level structures of degree
d. Again, the impact of d is not negligible in practice. Although, at least for small d, in
Algorithm 5.1, the factorials could be stored directly, resulting in a slightly better runtime
of O(29) for Sh;y(D,v), the influence of d is still exponential (see Footnote 1).

For Sh™F only the relationships of the children within the parent are relevant. Ow™ also
takes into account the relationships of the children of the parent to the siblings of the parent
with a runtime complexity of the same order.

Theorem 5.10. For all N € N, (N,v, B) € VLY, and B of fized degree d, it requires to
compute OwNE(N, v, B) for all players i € N
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(i) a time O(n?) if B is strict,

(ii) a time O(nlogn) if B is totally strict.

Proof. We give a pseudocode algorithm based on Definition 4.9.

Algorithm 5.4. Compute OwMN(N, v, B)

Input: A level structure B € LY, B = By, a player i € N, and v(S) for all S € ng".
1: if h =0 then

2: OwM(N,v,B) = Sh;(N,v) // calls a method/function that computes Sh
before the assignment, e.g. Algorithm 5.1
3: else // h>1
4 for all T C N, T = UpcpnpcrB do // all coalitions that the components of
the hth level can form with their own complete player sets among themselves
5: oPHT) = v(T)
6: end for
7 fork=h to 1 do // the descending levels
8: for all Q C B¥|giry, do // all coalitions that the children of B*+i(i)
as players can form
o #(Q) = 1 (UpeoT)
10: end for
11: uF(BNi)) = Shpw)(B¥|genay, 0F)  // calls a method/function that computes
Sh before the assignment, e.g. Algorithm 5.1
12: for all S C BYi), S = Upepr-18csB, do  // all coalitions that the children of
B¥(i) can form with their own complete player sets among themselves
13: for all Q C S5 do  // all subsets from the set containing all children
of B¥*1(i) where B¥ (i) is replaced by coalition S (see Notation 4.8)
" W(Q) = 0Ureo T)
15: end for
16: oF(S) = Shg(SB"D k) // calls a method/function that computes Sh
before the assignment, e.g. Algorithm 5.1
17: end for
18: end for
19: for all Q C B%py;) do // all coalitions that the components of the zeroth
level (the singletons), restricted to BY(3), as players can form
w 0(Q) = ' (UreoT)
21: end for
22: OwM(N,v,B) := v ({i})
25: end if

24: return OwM: (N, v, B).

Complexity: (i) Let B be a strict level structure of degree d. We have
t(Algorithm 5.4)



18

< H(IF) + t(ELSEs) = 1 + t(Ly) + t(Fy) + t(Fy) + t(Fie) + 1

. §5 ) 2+ t(La) 4+ 29— 14 (n — 2)[¢t(F3) + t(Ln) + t(F12)] + 24— 1
< 28 4 (L) + (n— 2)[ — 14 t(Ly) + (29 = 1) [t(Fis) + t(Ly )]]
< 2d+1+t(L2)+(n—2)[ =1+ t(Ln) + (2 =1 [2¢ =1+ t(L, )H

By Theorem 5.5, we have (L), t(L11),t(L1g) € O(d2?). Therefore, Algorithm 5.4 has for a
strict level structure a time O(n). The claim follows by running the algorithm for n players.

(ii) Let B be a totally strict level structure of degree d. By Proposition 5.1, the FOR-loop,
line 7, now runs at most (log,n — 1) times instead of (n — 2) times. Analogous to (i), it
follows

t(Algorithm 5.4) < 2% 4 1(Ly)
+(logyn — 1) [2d (L) + (20— 1)[20 — 1 4 t(LlG)”.

By Theorem 5.5, we have t(Ls), t(L11),t(L1s) € O(d29). Therefore, Algorithm 5.4 has for a
totally strict level structure a time O(logn) and the claim follows by running the algorithm
for n players. Ll

Remark 5.11. Theorem 5.10 (i) remains valid for arbitrary level structures of degree d as
long as h is linear in n, Theorem 5.10 (ii) remains valid for arbitrary level structures of
degree d as long as h is logarithmic in n. The effect of d is now quadratic to that of d in
Algorithm 5.3 (2% instead of 2¢). Therefore, in practice, the maximum degree d can now
only be half as large as that used for Sh™t to compute Ow™* in a reasonable time.

5.3 Relevant coalition functions

In this subsection, we will look again at the Shapley levels value. For the representation in
(5), we need the dividends, whose calculation normally takes exponential time.

Theorem 5.12. For all N € N, (N,v) € V¥, it requires to compute the dividends A,(T)
for all T € QN a time O(3™).

Proof. For the proof, we adapt the “dividend” algorithm in Algaba et al. (2007):

Algorithm 5.5. Compute A,
Input: (N,v) € VN

1: for{=1 to n do // gives the size of the coalitions
2: form=1 to ( ) // all coalitions of size ¢
3:
, S#D
4: end for S&Ttm, 57
5: end for

6: return A,(T) for all T € QF,
where Ty, is the mth coalition with |1y, | = £.
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Description: After the algorithm has computed the dividends of all singletons, the divi-
dends of the larger coalitions are computed successively using the dividends of the smaller
coalitions.

Complezity: The number of calls of line 3 by the two nested loops, line 1, line 2, is 2" — 1.
It follows

n

n (7) n (7)
t(Algorithm 5.5) = t(Fy) = Y t(Fa) = > t(Ls)=» > (2—1)

/=1 /=1 m=1 /=1 m=1
— - LLAPN _ (on _ _ - v\ oe _9n _an _ 9n
_Z(£>2 (2 1)_Z(£>2 o = 3" — "
=1 =0
where the last equal sign follows by the binomial theorem. Therefore, Algorithm 5.5 has a
time O(3"). L

By Theorem 5.12, an unreflected implementation of (5) in an executable algorithm for the
computation of the Shapley levels value Sh* requires exponential time. In the following, we
will propose an explicit expression for the Shapley levels value with a polynomial runtime
for totally strict level structures of fixed degree. Therefore, we generalize the concept of
relevant coalitions in Subsection 5.1.

Definition 5.13. For all N € N, (N,v) € V¥ R C Q, and v™ such that v*(T) := v(T)
for allT € R and Ay=(S) =0 for all S € QN\R, we call v* the (R-)relevant coalition
function on (N,v) and all T € R are called (R-)relevant coalitions.

If we know the relevant coalitions and their number is not too large, the computation of
dividends for a relevant coalition function can be done efficiently.

Theorem 5.14. For all N € N, (N,v) € V¥ and R C QY a set of relevant coalitions
on (N,v), it requires to compute all dividends Ay=(T) a time O(n**) if the number of all
T € R is bounded by a polynomial of degree k.

Proof. For the proof, we again adapt the “dividend” algorithm in Algaba et al. (2007).

Algorithm 5.6. Compute A r
Imnput: v*(T) for all T € R.

1: for{ =1 to n do // gives the size of the coalitions
2: form=1 to |R, do // all coalitions from R of size ¢
3:
A (Ty,) =0"(T,) = Y. Awe /1)
SCT,, .SER
4: end for
5: end for

6: return Ay (T) for all T € R,
where Ry is the set of all coalitions from R of size £ and Ty, is the mth coalition from R,.

Description: As in Algorithm 5.5, first the dividends of all singletons are computed and
then, successively, the dividends of larger coalitions using the dividends of the smaller ones.
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Complezity: The number of summands in line 3 is bounded by a polynomial of degree
k. Thus, we have t(L3) € O(n*). The number of all calls of line 3 by the two nested loops,
line 1, line 2, is bounded by a polynomial of degree k. We have

n n |Rel
t(Algorithm 5.6) = t(Fy) = Y _t(Fo) = » > t(Ls).
i=t (=1 m=1
Therefore, Algorithm 5.6 has a time O(n?"). O

By (11), for a totally strict level structure of degree d, the number of the Rj-relevant
coalitions is bounded by a polynomial of degree (d — 1). That implies that computing the
dividends A z;(T) for all T' € Rjg requires a time O(n?**?). In fact, if we take advantage

2d—2)

of the special structure of a level structure, the time O(n can still be improved.

Theorem 5.15. For all N € N, (N,v, B) € VLY, B such that B is a totally strict level
structure of fixed degree d and VB s the Riﬁ—relevcmt coalition function on (N,v), it requires

to compute all dividends AU% for allT € R’é a time O(n%)

Proof. For the proof, we look at a TU-game where all children of BY(7) and all siblings of all
ancestors of {i} are the players. All coalitions which these players can form have the same
worth as the corresponding previous coalitions. Thus, the dividends of these new coalitions
also match the corresponding original dividends of the Rj-relevant coalition function. Since
we have, by Proposition 5.1, at most d + (logyn — 1)(d — 1) = (d — 1) logy n + 1 players, we
need, by Theorem 5.12, a time O(3 - 3(¢-1log2n) — O(nk’%z) to compute all dividends. []

By Remark 5.2 and (5), the following alternative definition of the Shapley levels value Sh
is obvious.

Remark 5.16. For all N € N, (N,v, B) € VLY, i € N, be v"*5 the Ri-relevant coalition
functions on (N,v) and Kpr(i) the expressions from (4). Then, the Shapley levels value
ShE is given by
Shi(N,v,B)= > Kgr(i)A ,(T) for alli € N.
TeRié,Taz‘
Also for an algorithm, based on an explicit expression, we have a polynomial runtime for
the Shapley levels value.

Theorem 5.17. For all N € N, (N,v, B) € VLY such that B is a totally strict level
structure of fized degree d, it requires to compute Sh¥(N,v,B) for all players i € N a time

O(n(lgg;sg“)) if we use an algorithm based on (5).

Proof. We give a pseudocode algorithm based on Remark 5.16 and thus based on (5).

Algorithm 5.7. Compute Sh¥(N, v, B) with dividends

Input: A level structure B € LY, B = By, a player i € N, and v(T) for all T € Rj.
1: Compute A (T for all T € Ry -
2: sum =0
3: for allT € Ry, T 51 do // the relevant coalitions for player i
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4: Kpr(i):=1 // initialization
5: forr=0 to h do // the levels
b
7:

Kpr(i) == Kpgr(i)

"H{BeB:BCB*(i), BNT # 0} // (4)

end for
8 sum = sum+ Kpr(i)A r,(T) // (5)
9: end for

10: ShE(N,v, B) := sum
11: return Sh¥(N,v,B).

Complexity: Let B be a totally strict level structure of degree d. We have, according to the
proof of Theorem 5.6, h < (logyn) — 1 and |Ri| < (2n?~! —1). By Theorem 5.15, it follows

t(Linel) € O(nlodg%) We have t(Lg), t(Lg) < ¢, ¢ € N, and obtain
t(Algorithm 5.7) = t(Line 1) + 1 + t(F3) + 1
< t(Linel) +2+ (2n™ " = 1) [1 + t(Fs) + t(Ls)]

< [t(Lz’ne 1) +2+2n" " [1+1logyn-c+ c]] € O(nlodg;sg)

The claim follows by running the algorithm for n players. Ll

6 General reflections

In the previous section, an efficient payoff computation was possible because we did not
have to consider all coalitions in the LS-values examined. The same payoffs could also be
obtained if, in the related coalition functions, the relevant coalitions would receive their
original worth and the other coalitions a worth that results in a dividend of zero. Since
we can consider for any coalition function all essential coalitions as relevant, a simple
relationship emerges.

Remark 6.1. Let N € N, (N,v) € VY. If we define R as the set of all essential coalitions
R

in (N,v), we have v =v'™
For the examined LS-values, a certain perspective on the hierarchical structure was crucial
to determine which coalitions were considered being relevant. Apart from a hierarchical
structure, in practice, there are often many other restrictions on the formation of coalitions:
group size, spatial restrictions such as rooms, buildings, and locations, or specific require-
ments for certain members within a team such as military units, ship or aircraft crews, or
development and programming teams. In networks (no complete graphs), we often have a
direct or indirect connection within a fixed number of coalitions. Definition 5.13 allows the
formation of any relevant coalition that may actually or even theoretically be formed.

Relevant coalition functions have a close connection to graph and hypergraph games
in Deng and Papadimitriou (1994). A (undirected) hypergraph G = (N, E) consists of
a set N of nodes and a set E of non-empty subsets of N, called hyperedges. If the
hyperedges are only 2-element subsets of nodes, we call G a graph. Since the set of nodes
N corresponds to a player set N € N, we can also interpret each hyperedge S € F as a
coalition S € QF of players.

Deng and Papadimitriou define for a given undirected graph G = (IV, E) with an integer
weight ve(S) on each edge S € E a TU-game (N,vg) by va(T) == > gcr gep va(S) for



22

all T" C N. They show that for such games the Shapley value for a player i € N is to
compute by Sh;i(N,va) = 5> gep g5 va(S), which results in time O(n?) to compute the
Shapley value for the complete player set. In a first extension, the authors allow games
with an underlying hypergraph with weighted hyperedges of a fixed size k > 2. The
coalition function vg is still given by va(T) == Y g¢cp gepva(S) for all T C N. Since
the number of edges for a fixed k is polynomial in n, the Shapley value can be computed
by Sh;(N,vg) = %ZSEE’ ¢5: Va(S) in polynomial-time. These games coincide with the
k-games in van den Nouweland et al. (1996) (see also Section 3).

In the last extension, the size of the hyperedges can vary as long as the number of
hyperedges is polynomial in n. This extension is mentioned only rudimentarily. Therefore, a
small but for our further considerations significant lack of clarity in Deng and Papadimitriou
(1994) should be pointed out. As long as we have no proper subset relationship between
hyperedges, by (1), the worth of a hyperedge in v¢ is equal to the Harsanyi dividend of the
corresponding coalition, all other coalitions have a dividend of zero, and the worth of any
coalition is equal to the sum of the worths of all hyperedges contained in that coalition.
But, if a hyperedge T' € E contains another hyperedge S C T with a non-zero weight as a
proper subset, the worth of T" cannot be the sum of the worths of .S and T simultaneously.
Therefore, in the following, we define the weights on each hyperedge S € E as the dividend
Ay (S) and vg is given by vg(T) = > gcp A (S) for all T'C N. We believe that this is
what Deng and Papadimitriou had in mind.

We make a small generalization to hyperedges with arbitrary weights, allow that single-
tons can also be hyperedges, and the number of hyperedges no longer has to be polynomial
in n. Then, we have for each TU-game (NV,vg) with G = (N, E) a corresponding TU-
game (N,v™) and vice versa such that £ =R, A,,(S) = A,z (S) for all S C N, and thus
vg = v, where R is the set of all essential coalitions in (N, v). In particular, we have vg = v
if v = v (see Remark 6.1). While the work of Deng and Papadimitriou was, in many re-
spects, groundbreaking for the following literature, this relationship seems to be little or
not at all known in the literature so far'®. This correlation means that the representation
in our small generalization is fully expressive, i.e., it can model any TU-game!

In Deng and Papadimitriou (1994), the coalition function is given (in our generalization)
by the weights of the hyperedges and thus by the dividends of the relevant coalitions. It
follows, by the same arguments as in Deng and Papadimitriou (1994) and Remark 6.1, that
the Shapley value can be computed for all TU-games (N, v) in polynomial-time as long as
the number of all essential coalitions in v is polynomial in n and we know the essential
coalitions and their dividends. If the dividends for the essential coalitions are not explicitly
given, we can compute them in advance in polynomial-time according to Theorem 5.14
using Algorithm 5.6. It follows an alternative definition for the Shapley value.

Remark 6.2. For all N € N, (N,v) € V¥, let Ry, be the set of all essential coalitions
in (N,v). Then the Shapley value Sh is given by

A,(S ,
Shi(N,v) := Z é ) for all i € N.
SeR(N,U)v S3i | ‘
It is clear from the outset which coalitions we consider as relevant for k-games and games

on hypergraphs. For level structures, we have determined which coalitions are relevant by

OTeong and Shoham, (2005, p. 194) and Michalak et al, (2013, p. 614/615), for example, only look at
graphs, which naturally are not fully expressive.
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selecting an LS-value. We do this indirectly when we select a value for TU-games. The
equal surplus division value (Driessen and Funaki, 1991) is nothing else than the Shapley
value, computed with the relevant coalition function where only the singletons and the
grand coalition are considered as relevant. The same relationship applies between the
proportional rule (Moriarity, 1975) and the proportional Shapley value (Béal et al., 2018;
Besner, 2019a). That is, if in fact only the singletons and the grand coalition are essential,
we can still use the axiomatizations of, say, the Shapley value to select a value, but then use
the simple formula of the equal surplus division value for the calculation. A very similar
relationship exists between the Shapley levels value and the other two LS-values examined.

Theorem 6.3. For all N € N, (N, v, B) € VL, we have
(i) Sh¥(N,v,B) = ShE(N,v™5 ", B) and
(ii) Ow]M(N,v,B) = ShE(N, ngwi,ﬁ) foralli e N,

where Rg}” 1s the set of relevant nested Shapley coalitions and ngi the set of relevant
nested Owen coalitions for player i.

By Theorem 6.3 and Remark 5.16, we immediately obtain the following corollary.

Sh;

Corollary 6.4. For all N € N, (N,v, B) € VL i € N, be v™8 " the Rghi—relevant coali-

Ow; ) .. . .
tion function, v " the ngl-relevant coalition function on (N,v), and Kpr(i) the ex-

hNL

pressions from (4). Then the nested Shapley Levels value S and the nested OQwen levels

value Ow™N" are given by
NL _ :
Sh;*(N,v,B) = E Kpr(i)A RIM (T) and

v E
TeRy", Toi

Ow (N, v, B) = Z Kpr(i)A RO (T') for alli € N.
TeRy ", T3i v

Example 6.5. We give a numerical example to compare the distributions of the examined
LS-values. Let (N,v, B) € VL, N := {1,2,3,4,5,6,7,8,9}, and B = {B°, B', B% B}, with
B':= {{1,2},{3,4},{5,6},{7}.{8.9}}, B*:= {{1,2,3,4},{5,6,7},{8,9}} (sce Figure 3).

{1,2,3.4,5.6,7,8.9}

Level: 3

{8.9} 2

{89} 1

{1y v {2h A8 {4 5 W {6 T {8 {9} 0

Figure 3: Structure of the components in different levels

The coalition function v is given by
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'U({3}) =1, U({L 2}) =2, U({L 2, 3}) =9,
U({5,6, 7}) =0, U({1,2,5,7}) =35, U({1,2,3,8,9}) = 14,
U({5,6, 7,8,9}) =12, U({1,2,3,5,6, 7,8,9}) = 40,

and all other coalitions are not essential in (N, v). By (1), it follows

Av({3}> =1, Av({l’ 2}) =2, Av({l’ 2, 3}) =6,
Av({5,6, 7}) =0, Av({1,2,5,7}) =2, Av({1,2,3,8,9}) =9,
AU({E), 6,7,8, 9}) =0, Av({l, 2,3,5,6,7,8, 9}) =12,

and all other coalitions have zero dividends in v. To compute Sh"* and Ow™? with the
formulas in Corollary 6.4, we use the dividends of the corresponding relevant coalition
functions, which we give, as an example, for player 1, and which also apply to player 2
here:

A g ({12D) =2, A o ({1,2,3,4}) =6, A pen({1,2,3,4,5,6,7}) =2,
Anghl ({1,2,3,4, 8,9}) = 5, AURZLI (N) — 12’

Apgn((L2) =2, A ({L234)) =6, A en({1,25,67) =2
Angwl({1,2,3,4,8,9}) =5, AUngl (N) - 19

We obtain Table 1. Note that player 4 is a null player, and players 1 and 2 and players 8
and 9 respectively are symmetric in (N, v).

Table 1: Comparison of different values

Value Payoff to the players (rounded)
1 2 3 4 ) 6 7 8 9
Sh(N,v) 6 | 6 | 55 | 0 |52|47]|52]37]|37

Sht(N,v,B) 4.625 | 4.625 | 7.25 0 3.75 1325 | 7 | 4.75|4.75
ShNL(N v, B) | 4.375 | 4.375 | 4.375 | 3.375 | 3.5 | 3.5 | 7 | 4.75 | 4.75
OwNE(N,v,B) | 4.625 | 4.625 | 5.625 | 1.625 | 3.5 | 3.5 | 7 | 4.75 | 4.75

(End of Example 6.5)

Suppose that the number of essential coalitions is polynomially bounded and we know
them and their worths or dividends. Then Remark 6.2 can serve as a blueprint for all
TU-values from the Harsanyi set (Vasil’ev, 1978; Vasil’ev and van der Laan, 2002), also
called selectope (Hammer et al., 1977; Derks et al., 2000), or for the TU-values from the
generalized Harsanyi set (Besner, 2020), for which the coefficients of the related dividends
can then be computed in polynomial-time, such as the proportional Shapley value or the
proportional Harsanyi solution (Besner, 2020). The representation of the Banzhaf value
(Banzhaf, 1965) in van den Brink and van der Laan (1998, Theorem 2.1) is also suitable.
We know the essential coalitions especially in games where not only the grand coalition
but also other coalitions (in the same period) are actually formed. Here, the dividend
of the larger coalition that is formed is only added to the dividends of already formed
coalitions, which are part of this coalition. Not formed coalitions receive a zero dividend.
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We are thinking, for example, of a cost function in which specific costs can be assigned to
a unit or cost center (dividends), and the coalitional worth of the cost center comprises the
sum of these costs and all costs of its sub-cost centers. Such situations are likely to occur
often in totally positive games (Vasil’ev, 1975), i.e., games in which all coalitions have a
non-negative dividend (see also the example in Besner (2020)).

7 Conclusion and discussion

In this paper, we have examined three different LS-values. Based on corresponding algo-
rithms, we could obtain polynomial runtimes for each value, depending on the structure
of the level structure. Note that our algorithms are particularly efficient for models of
hierarchical structures, which in practice also require good communication between the in-
dividual members within the structure, whereby the individual groups (components) must
not become too large. We would like to point out here, e.g., the agile framework Scrum
(Takeuchi and Nonaka, 1986), which helps teams to work together. Each team has three
to nine members. To cope with the complexity of larger projects, we can scale to Scrum of
Scrums (Sutherland, 2001) or Scrum of Scrum of Scrums etc..

In principle, the results shown for the runtimes can also be transferred to weighted
variants of our LS-values such as the weighted Shapley hierarchy levels values. For the
nested Owen levels value, we have only considered coalitions of children of a parent with
the siblings of the parent as relevant coalitions. Further extensions would be if we would
allow relevant coalitions also with siblings of the ancestors on any number of levels. As
long as this number of levels is logarithmic in n, we get polynomial runtimes.

All offered algorithms for LS-values can be executed for each player independently of the
others, so that parallel computing can improve the runtime in practice by up to a factor
n. However, the degree of the level structure remains the limiting factor. Of course, the
runtimes of LS-values that coincide with a value from the Harsanyi set for a fixed level
structure or use such a value in an intermediate game can also benefit from the restriction
to a set of relevant coalitions.

Sparse matrices require significantly less storage space than dense ones in numerical
analysis and scientific computing and can help to use more efficient algorithms. Similarly,
relevant coalition functions can be regarded as advantageous for the values presented here.
On the one hand, we can solve problems caused by the huge representations'’, which are
completely useless in practice, and on the other hand, much shorter runtimes are available
for payoftf computations. Just as there are specialized computers and algorithms for sparse
matrices, used especially in the field of artificial intelligence, the use of relevant coalition
functions could open up new areas of research and application for cooperative game theory.

The values, in this case for the relevant coalition functions, still satisfy their axioms,
such as efficiency, null player, additivity, etc., depending on the value, including perhaps
the most important axiom for practice, computational ease.

Even if the number of players is not too large, the worths of the coalitions of all possible
coalitions may not be known or determinable in a reasonable time, and it may not be
possible to store them appropriately. Although we would use approximation methods for

HEven in our small Example 6.5, we were able to reduce the storage space from 22 — 1 = 511 entries for
the worths of feasible coalitions to only 8 entries for the dividends of essential coalitions!
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TU-values, we would finally have to agree on certain coalitions or subsets of the n! orderings
of the players and related worths of coalitions somehow, for example, based on Monte Carlo
simulation (see, e.g., Mann and Shapley (1960) and Stanojevic et al. (2010)), the normal
distribution function (see, e.g., Owen (1972)), or other in some way randomized algorithms
and sampling methods (see, e.g., Fatima et al. (2008), Castro et al. (2009), and van
Campen et al. (2018))

Based on Theorem 5.14, new approximation methods, which still need to be developed,
may offer some advantages when using dividends and relevant coalition functions. On the
one hand, values for which only a definition with dividends is known or practicable, such as
most values from the Harsanyi set, can then be approximated; on the other hand, we can
specifically influence which coalitions are relevant. For example, all coalitions that result
from the restrictions, listed after Remark 6.1, such as group size, spatial restrictions, and so
on, are suitable. We can also consider relevant coalition functions, which define as relevant
coalitions only those for which data already exist or for which data are available in a certain
time period. The aim should be to agree on a set of relevant coalitions whose number is
limited by a polynomial in n. We assume that the grand coalition N is actually forming.
However, other situations are not excluded in principle but may require special treatment
to receive efficient payoffs.

Even if it seems inexact to use only a certain number of coalitions for the computation,
it is often better to use the important or actually forming coalitions additionally for the
payoff computation than to do without them completely when applying the equal division
value or the proportional rule, for example. We can interpret the value that uses the
relevant coalition function as a new value that considers only the relevant coalitions as the
important ones. The worths or dividends of non-relevant coalitions have not disappeared,
they have just been included in the coalition worths or dividends of the coalitions which
are the relevant supersets of them.

Such a superset always exists when the grand coalition is among the relevant coalitions.
For example, if we compute the proportional rule, the dividends of all coalitions with at
least two players are summarized in the dividend of the grand coalition if the singletons and
the grand coalition are the relevant coalitions. If we compute the Shapley levels value for a
player ¢ € N with Algorithm 5.7, the dividend of a coalition S C N that ¢ forms with other
players outside the parent is always included in the dividend of the coalition that consists
of all children of the smallest component containing S, where each child itself contains at
least one player of S.

Altogether, the algorithms and methods presented in this study should give new impulses
for the practical application of methods of cooperative game theory, e.g., in supply chain
management, cost allocation, resource allocation to processes in operating systems, resource
allocation of virtual machines, network analysis, etc..

Acknowledgements We are grateful to Winfried Hochstéttler for pointing out to us that it
should be possible to use level structures to obtain polynomial runtimes for values for cooperative
games and his helpful comments.
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8 Appendix
8.1 Proof of Proposition 4.6

e E and LG but not N: Since Sh meets EY, it is easy to see that Sh™ satisfies E. LG
also follows directly from the top-down distribution mechanism and since Sh satisfies E°.
With the help of a small example, we can see that N is not satisfied: Let (N, ug, B) €
VLY, N ={1,2,3}, B= By such that B' := {{1, 2}, {3}} and ug be the unanimity game
with carrier S := {2,3}. Player 1 is a null player in ug but we have Sh\¥'*(N,ug, B) =
)

e NBC: Let (N,v, B) € VLY, B = B, and By, B, € B,0 < r < h, such that B, C
B TY(By,). Tt is well-known that Sh satisfies BC? and thus for each TU-game restricted
to a component of the (k + 1)th level where the components of the kth level are the
players. Therefore, by LG, NBC is satisfied for » = h. By induction on the size
m :=h —r, (8), and LG, the claim follows immediately. O

8.2 Proof of Theorem 4.7

The existence part follows by Proposition 4.6. Therefore, we only have to show uniqueness.
Let (N,v, B) € VLY, B = By, and ¢ and ¥ be two LS-values which satisfy E and NBC.
It is sufficient to show

ngi(N,v,ﬁ) = Zwi(N,v,ﬁ) forall Be B andallr, 0 <r <h+1. (13)
i€B i€B
If r =h+1, (13) is satisfied by E. We use a first induction I; on the size m, 0 < m < h,
for all levels r, 0 < r < h, where m := h —r.
Induction basis I;: Let m = 0 and thus r = h.
If |{B: B e B"}| =1, (13) is satisfied by E. We use a second induction I on the size
t:=|{B:BeB"}t>2.
Induction basis Io: Let t = 2. We have exactly two components By, B, € B". By E, it
follows
Z SOi(N\BZv U’&’N\Bl) = Z (0 (N\Be, U,&|N\Be)
i€By, 1€EBy,
and
Z SDi(N\Bk, U,@|N\Bk) = Z @/)i(N\Bk, U,&|N\Bk)-
i€By i€By

We obtain, by NBC,
D 0N v, B) = Y Wi(N,v,B) = > ¢i(N,v,B) = Y (N, v,B).

i€ By, i€ By, i€By i€B,
It follows
2| SN0, B) = 3 wi(N 0, B)| = 3 wi(N, v, B) = > ei(N, 0, B) = 0
i€ By, 1€ By, iEN iEN

and therefore, (13) is satisfied.
Induction step Iy: Assume that (13) holds for ¢’ > 2 and all t”, 1 < " < t, (IH,). Let
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t :=t' + 1. We choose two different components By, B, € B". It follows
Z Pi (N\Bf’ U?&’N\Be Z (0 N\Be, v Bh’N\BZ)
1€By ’LEBk

and

> ¢i(N\Bo, Bilws) = > 0i(N\Bi, v Bulwis,)

i€By 1632
We obtain, by NBC,
> Gi(N0,B) = Y pi(Nv,B) = oi(N,v,B) = Y ¥i(N,v,B). (14)
1€By, 1€By i€By i€By

(14) holds for all B € B" 1t follows for an arbitrary B € B",

t- [ngi(]\hvvﬁ) - Z%(Nﬂ%ﬁ)} = ZSOi(N,U7§) - Zwi<N7U7§> E 0.

i€B ieB ieN ieN
Therefore, (13) is satisfied. Note, since N and h were arbitrary, we have also shown, for all
0 <r < h and two siblings By, B, € B,

Z%‘ (B (Bu)\ B, v, Be|gr+1(50\8,) = Z¢i (B (Bu)\Bp, v, Br|gr+1gong,)- (15)
i€By, 1€By,

Induction step I;: Assume that (13) holds for m/, 0 < m’ < h, and all m”, 0 < m” < m/,
(IH ) Letm=m'+1,r=h—m'—1, B e B and t := |{Be€B": BC B} If

t = 1, we have only one B € B", B C B™*!. It follows
Zg@i(N,v,ﬁ) = Z wi(N,v,B) = Z Yi(N,v, B) Zzﬁi(N,v,ﬁ).
i€B i€Brtl zeBT+1 i€B

Let now ¢t > 2. We choose two siblings By, B, € B". We have
> #i(B B v Blprg,) = D vi( BB, Brlpees,)

1€ By, lGBk

and
Z @i(B”’l\Bk, v, &|Br+1\Bk Z 1/12 BT'H\Bk, v, B Bs+1\Bk)
1€ By ZEB[

By NBC, we obtain
> (N0, B) = > i(N,v,B)=> @i(N,v,B) = > (N, v,B). (16)

1€ By 1€By, 1€By 1€By

(16) holds for all B € B", B C B"™L It follows for an arbitrary B € B, B C B" "},

L[ YN0 B) = Y (v B) = 3 eiNw.B) = 3 h(N.wB) = 0

1€EB i€EB i€Br+1 icBrtl
Thus, we have >, 0i(N,v,B) = >, s ¥i(N,v,B) for all B € B", B C B"*!, which proves
the claim. L]

8.3 Proof of Proposition 4.12

e E and LG but not N: Since Sh meets E° and Ow meets E, it is easy to see that Ow™*
satisfies E. LG also follows directly from the top-down distribution mechanism and
since Sh meet E® and Ow meet E. The following example shows that N is not satisfied.
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Let (N,us, B) € VLY, B := By, N = {1,2,3,4}, with B' := {{1,2}, {3}, {4}},B* :=
{{1, 2,3}, {4}}, and be ug the unanimity game with carrier S := {2,3,4}. Player 1 is a
null player in ug but we have Ow{*(N,ug, B) = § # 0.

e NBOC: Let (N, v, B) € VL", B = By, By, B, € B, 0 < r < h, such that B, C B"*{(By).
If 7 = h, (10) is satisfied by LG and since Sh meets BC®. Let now r < h. By (9), we
have

OwgkL(Br, Ur, K) — OU}B,C (Br‘8r+2(3k), Ur, B:+1 ’B”’Q(Bk))

= Owg, (B0, BY) = Owg, (B'|5r+2(5,), V", Bl [5+2(5,))-
Since Ow, as a special case of the Shapley levels value, satisfies BC, it follows

Owgf([)””, ’Ur, Q) — Oka (Br‘3r+2(3k)\3£, Ur, B:+1 ’BT+2(Bk)\Bg)

= Owgsz (Br’ v g) - OwBe (BTlBT”(Bz)\Bk’ v, B;—i—l |BT+2(B£)\Bk)'
By Remark 4.11 and LG, the claim follows immediately. L]

8.4 Proof of Theorem 4.13

The existence part follows by Proposition 4.12. Therefore, we only have to show uniqueness.
Let (N,v, B) € VLY, B = B, and ¢ and 1 be two LS-values which satisfy E and NBOC.
It is sufficient to show

> @i(N,v,B) =Y ¢(N,v,B) forall B€ B and all 0 <7 < h+ 1. (17)
i€B i€B
We use a first induction /; on the levels starting with level A + 1.
Induction basis I,: Let r = h+ 1. Then (17) is satisfied by E.
Induction step I;: Assume that (17) is satisfied for all r, 0 < s <r < h+ 1, (1 Hy).
Let B! € B5T!. We use a second induction I, on the size t := |[{B € B*: B C B*"'}|.
Induction basis Ir: Let t = 1. We have only one B € B%, B C B**! and, by E, it follows

D_eilNuB) = > @iNu.B) = > wi(Nv.B) =) wiN.vB).  (18)
i€B ieBstl zeBbJrl i€B
Note that (18) holds also for all restricted cuts as in (10) with r = s.
Induction step Ir: Assume that (17) holds for ¢/ > 1 and all 1 < ¢’ < ¢/, (IHy). Let
t .=t + 1. We choose two siblings By, B, € B®, By, B, C B**L It follows

Z%‘ (B**2(i)\ B, v, Botilp+2()\, ) o Z% (B**2(i)\ By, v, Boy1

1€ By ZEBk

Bst2( )\Bi)

and

Z%‘ (B**2(i)\ Bk, v, Bss1|s+2(0\ 5, ) Z¢z (B**2(i)\Bg, v, Bos1|ps+2(i)\B, ) -
i€By
We obtain, by NBOC,
ZSO%(Na Uaﬁ) - Z¢Z(N7 Uaﬁ) = Z(;DZ(Na 075) - ZwZ(Nv Uaﬁ)' (19)
i€By i€By i€B, i€By

(19) holds for all B € B% B C B**L Tt follows for an arbitrary B € B, B C B!,

t-[Z(pi(N,v,ﬁ)—Z@Di(N,v,ﬁ)]: ZcpZNvB ZT/%NUB E)O.

; ° 1
i€B 1€EB i€Bs+1 icBst1

Thus, we have >, 5 ¢i(N,v,B) = >,z ¥i(N,v,B) for all B € B%, B C B*"!, which proves

IH)



30

the claim. L]

8.5 Proof of Theorem 6.3

Shy Ow;

Let (N,v, B) € VLY B = B, u = e w =™ " and, for 0 < k < h, be T the set
from Notation 4.1 and S5 @ the set from Notation 4.8.

(i) By Definition 4.2, we have for ShY(N,u,B) and all k,0 < k < h, u¥(B*(i)) =

Shigi iy (B¥| girsy, 4F ), where @f is given by

ka<Q) _ {ﬁ§+1(8k+1(7;))’ if Q= Ble’“*l(i)a
! u(UBEQ B) lf Q g Bk|Bk+1(i) by DO.
Therefore, the claim follows by Remark 5.3 and (6) and (7) in Definition 4.4.

(ii) We denote w? and ! in Definition 4.9 by ¢ and ¥ respectively to distinguish them
from @ and @ in Definition 4.2. By Remark 5.4, it is sufficient to show @!(B¥i)) in
Definition 4.2 equals ¥(B¥i)) in Definition 4.9 for all k, 0 < k < h.

For this, we use induction on the size k, h > k > 0, and show additionally for a c¢f € R

that
Shs(Bk |Bk+1l), ), 1fS BXi),

?Df(S) = Sh’S(SBk l)awi )) i7 if S g Bk( )7 S = UBeBk—l,BgSBa (20)
w(S) + ¢, if S C BXi), SNB*1i) £ 0, S # B*1(i),

where wf is given by wf(Q) = w(UgeoS) for all @ C S0, and @f by wf (Q) =
W (Ugeg S) for all Q C BF|gs.

Induction basis: Let k = h. By Definition 4.2 and for ¢& := 0, (20) is satisfied for
Sh¥(N,w, B) since Sh satisfies DY. Due to g = @/, the claim is satisfied for k = h.

Induction step: Assume that (20) and the claim are satisfied for &', 1 < k" < h, (IH). Let
k =k — 1. By Definition 4.2, (20), and (IH), we have @} (BNi)) = Shpi;) (B¥|ges1iy, wF),
where 1w (Q) is given by
(@) = { T BER0) = g B0) i Q= Bl
! k+1(USeQ S) + kL if o) C B |Bk+1
We define a game (Bk|3k+1(i), wkF) by

! C'Ic—"_1 lf Q g Bk|3k+1(i),
In this game, all players are symmetric. Since Sh satisfies S° and E°, each player gets a
payoff of zero in this game with Sh. We have w¥ = §¥ + «@F. By Definition 4.9 and since
Sh satisfies A it follows g¥(B*(i)) = wF(B(i)). By (IH), we have
(T = hy (T W) + L if T C B (G), T = Usesr pcr B
’ (T)+Cl,1fTCBk+1()TﬂBk()%@,T%Bk().
We define w*! by
gt (ay = {I57H0) (D) AT € B, T Uneasger B
' RELSE T C BRYG), T 0 BYG) # 0, T # BY4).

It follows, @™ = w + wkH. Therefore, by Definition 4.2 and, since Sh satisfies A’ we
have w; (S) Shs(SE" wk))+ ¢k, if S € BNi), S = Upepr-1.5csB, and, since Sh satisfies
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DY wF(S) = w(S) + ¥, if S C BYi), SN B i) # 0, S # B*(i). The claim follows by

% P

induction. L]

References

Algaba, E., Bilbao, J., Ferndndez, J., Jiménez, N., & Lépez, J. (2007). Algorithms for computing the my-
erson value by dividends. Discrete Mathematics Research Progress, 1-13.

Alvarez—Mozos, M., & Tejada, O. (2011). Parallel characterizations of a generalized Shapley value and a
generalized Banzhaf value for cooperative games with level structure of cooperation. Decision Support
Systems, 52(1), 21-27.

Alvarez-Mozos, M., van den Brink, R., van der Laan, G., & Tejada, O. (2017). From hierarchies to levels:
new solutions for games with hierarchical structure. International Journal of Game Theory, 1-25.

Aumann, R.J., Dreze, J., 1974. Cooperative games with coalition structures. International Journal of
Game Theory 3, 217-237.

Banzhaf, J.F. (1965). Weighted voting does not work: a mathematical analysis. Rutgers Law Review 19,
317-343.

Béal, S., Ferrieres, S., Rémila, E., & Solal, P. (2018) The proportional Shapley value and applications.
Games and Economic Behavior 108, 93—112.

Besner, M. (2019a). Axiomatizations of the proportional Shapley value. Theory and Decision, 86(2), 161—
183.

Besner, M. (2019b). Weighted Shapley hierarchy levels values. Operations Research Letters 47, 122-126.

Besner, M. (2020). Value dividends, the Harsanyi set and extensions, and the proportional Harsanyi solu-
tion. International Journal of Game Theory, 1-23.

Brightwell, G., & Winkler, P. (1991, January). Counting linear extensions is #P-complete. In Proceedings
of the twenty-third annual ACM symposium on Theory of computing (pp. 175-181).

Van den Brink, R., & van der Laan, G. (1998). Axiomatizations of the normalized Banzhaf value and the
Shapley value. Social Choice and Welfare, 15(4), 567-582.

Calvo, E., Lasaga, J. J., & Winter, E. (1996). The principle of balanced contributions and hierarchies of
cooperation, Mathematical Social Sciences, 31(3), 171-182.

Van Campen, T., Hamers, H., Husslage, B., & Lindelauf, R. (2018). A new approximation method for the
Shapley value applied to the WTC 9/11 terrorist attack. Social Network Analysis and Mining, 8(3).
Castro, J., Gémez, D., & Tejada, J. (2009). Polynomial calculation of the Shapley value based on sam-

pling. Computers € Operations Research, 36(5),1726-1730.

Chantreuil, F. (2001). Axiomatics of level structure values. In: Holler M.J., Owen G. (eds) Power Indices
and Coalition Formation (pp. 45—62). Springer, Boston, MA.

Deng, X., & Papadimitriou, C. H. (1994) On the Complexity of Cooperative Solution Concepts, Mathe-
matics of Operations Research, 19(2), 257-266.

Derks, J., Haller, H., & Peters, H. (2000). The selectope for cooperative games. International Journal of
Game Theory, 29(1), 23-38.

Driessen, T. S. H., & Funaki, Y. (1991). Coincidence of and collinearity between game theoretic solutions.
Operations-Research-Spektrum, 15(1), 15-30.

Faigle, U., & Kern, W. (1992). The Shapley value for cooperative games under precedence constraints. (3),
249-266. International Journal of Game Theory, 21(3), 249-266.

Fatima, S. S., Wooldridge, M., & Jennings, N. R. (2008). A linear approximation method for the Shapley
value. Artificial Intelligence, 172(14), 1673-1699.

Futia, C. (1977). The complexity of economic decision rules. Journal of Mathematical Economics, 4(3),
289-299.

Goémez-Ria, M., & Vidal-Puga, J. (2011). Balanced per capita contributions and level structure of coop-
eration. Top, 19(1), 167-176.

Hammer, P. L., Peled, U. N., & Sorensen, S. (1977). Pseudo-boolean functions and game theory. I. Core
elements and Shapley value. Cahiers du CERO, 19, 159-176.

Harsanyi, J. C. (1959). A bargaining model for cooperative n-person games. In: A. W. Tucker & R. D.
Luce (Eds.), Contributions to the theory of games IV (325-355). Princeton NJ: Princeton University
Press.



32

Teong, S., & Shoham, Y. (2005). Marginal contribution nets: a compact representation scheme for coali-
tional games. In Proceedings of the 6th ACM conference on Electronic commerce, pp. 193—202.

Kalai, E., & Stanford, W. (1988). Finite rationality and interpersonal complexity in repeated games.
Econometrica: Journal of the Econometric Society, 397-410.

Kamijo, Y. (2009). A two-step Shapley value for cooperative games with coalition structures. International
Game Theory Review, 11(02), 207-214.

Kamijo, Y. (2013). The collective value: a new solution for games with coalition structures. Top, 21(3),
572-589.

Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Doklady Akademii Nauk SSSR
244, 1093-1096 (translated in Soviet Mathematics Doklady 20, 191-194, 1979).

Knuth, D. E. (1976). Big omicron and big omega and big theta. ACM Sigact News, 8(2), 18-24.

Littlechild, S. C., & Owen, G. (1973). A simple expression for the Shapley value in a special case. Man-
agement Science, 20(3), 370-372.

Maafa, K., Nourine, L., & Radjef, M. S. (2018). Algorithms for computing the Shapley value of coopera-
tive games on lattices. Discrete Applied Mathematics, 249, 91-105.

Mann, I., & Shapley, L. S. (1960) Values of large games. IV: Evaluating the Electoral College by Monte
Carlo Techniques. The RAND Corporation, Memorandum RM-2651

Michalak, T. P., Aadithya, K. V., Szczepanski, P. L., Ravindran, B., & Jennings, N. R. (2013). Efficient
computation of the Shapley value for game-theoretic network centrality. Journal of Artificial Intelligence
Research, 46, 607-650.

Moriarity, S. (1975). Another approach to allocating joint costs. International The Accounting Review,
50(4), 791-795.

Myerson, R. B. (1980). Conference structures and fair allocation rules. International Journal of Game
Theory, 9(3), 169-182.

Van Den Nouweland, A., Borm, P., van Golstein Brouwers, W., Groot Bruinderink, R., & Tijs, S. (1996).
A game theoretic approach to problems in telecommunication. Management Science, 42(2), 294-303.

Owen, G. (1972). Multilinear extensions of games. Management Science, 18(5—part—2), 64-79.

Owen, G. (1977). Values of games with a priori unions. In Essays in Mathematical Economics and Game
Theory, Springer, Berlin Heidelberg, 76—88.

Rubinstein, A. (1986). Finite automata play the repeated prisoner’s dilemma. Journal of economic theory,
39(1), 83-96.

Sénchez-Sanchez, F., & Vargas-Valencia, M. (2018) Games with nested constraints given by a level struc-
ture. Journal of Dynamics & Games, 5(2), 95.

Sastre, M., & Trannoy, A. (2002). Shapley inequality decomposition by factor components: Some method-
ological issues. Journal of Economics, 9, 51-89.

Shapley, L. S. (1953a). Additive and non-additive set functions. Princeton University.

Shapley, L. S. (1953b). A value for n-person games. H. W. Kuhn/A. W. Tucker (eds.), Contributions to
the Theory of Games, Vol. 2, Princeton University Press, Princeton, 307-317.

Simon, H. A. (1972). Theories of bounded rationality. Decision and organization, 1(1), 161-176.

Stanojevic, R., Laoutaris, N., & Rodriguez, P. (2010) On economic heavy hitters: Shapley value analysis
of 95th-percentile pricing. In Proceedings of the 10th ACM SIGCOMM conference on Internet measure-
ment, 75-80.

Sutherland, J. (2001). Inventing and Reinventing SCRUM in five Companies. Cutter IT journal, 14, 5-11.

Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Harvard business review,
64 (1), 137-146.

Vasil’ev, V. A. (1975). The Shapley value for cooperative games of bounded polynomial variation. Opti-
mizacija Vyp, 17, 5-27.

Vasil’ev, V. A. (1978). Support function of the core of a convex game. Optimizacija Vyp, 21, 30-35.

Vasil’ev, V., & van der Laan, G. (2002). The Harsanyi set for cooperative TU-games. Siberian Advances
in Mathematics 12, 97-125.

Winter, E. (1989). A value for cooperative games with levels structure of cooperation. International Jour-
nal of Game Theory, 18(2), 227-240.

Zlotkin, G., & Rosenschein, J. S. (1994). Coalition, cryptography, and stability: Mechanisms for coalition
formation in task oriented domains. In Proceedings of the twelfth national conference on artificial in-
telligence, vol 1, AAAI 94, Menlo Park, CA, USA. American association for artificial intelligence,
(pp. 432-437)



	Values for level structures with polynomial-time algorithms and general considerations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 TU-games
	2.2 LS-games
	2.3 Notes on time complexity

	3 The Shapley value
	4 Values for level structures
	4.1 The Shapley levels value as a weighted Shapley hierarchy levels value
	4.2 The nested Shapley levels value
	4.3 The nested Owen levels value

	5 Runtime complexity for algorithms of LS-values
	5.1 Relevant coalitions
	5.2 Runtimes of LS-values defined in a top-down procedure
	5.3 Relevant coalition functions

	6 General reflections
	7 Conclusion and discussion
	Acknowledgements
	8 Appendix
	8.1 Proof of Proposition 4.6
	8.2 Proof of Theorem 4.7
	8.3 Proof of Proposition 4.12
	8.4 Proof of Theorem 4.13
	8.5 Proof of Theorem 6.3

	References


