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Abstract

In this article, we review Granger-causality tests robust to the presence of instabilities in a Vector Au-
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1 Introduction

Vector Autoregressive (VAR) models have played an important role in macroeconomic analysis since

Sims (1980). A VAR is a multi-equation, multi-variable linear model where each variable is in turn ex-

plained by its own lagged values, as well as current and past values of the remaining variables. Com-

pared with a univariate autoregression, VARs provide both a systematic way to capture the rich dynamics

in multiple time series as well as a coherent and credible approach to forecasting.

Granger (1969) causality is a useful tool for characterizing the dependence among time series in

reduced-form VARs, and Granger-causality test statistics are widely used to examine whether lagged

values of one variable help to predict another variable – see Stock and Watson (2001).

However, VAR analyses in macroeconomic data face important practical challenges: economic time-

series data are prone to instabilities (see Stock and Watson (1996, 1999, 2003, 2006), Rossi (2013),

Clark and McCracken (2006b)) and VARs estimates may be prone to instabilities as well (see Boivin and

Giannoni (2006), Kozicki and Tinsley (2001), and Cogley and Sargent (2001, 2005)).

Thus, given the widespread use of VARs and the evidence of instabilities, it is potentially important

to allow for changes over time where doing VAR-based statistical inference. As demonstrated in Rossi

(2005), statistical tests that are based on stationarity assumptions are invalid in the presence of instabili-

ties. Since the traditional Granger-causality test assumes stationarity, it is not reliable in the presence of

instabilities and may lead to incorrect inference.

In this article, we present the gcrobustvar command, which illustrates how to test Granger-causality

in a way that is robust to the presence of instabilities. The test is based on methodologies developed

by Rossi (2005) and includes the robust versions of the mean and exponential Wald tests (Andrews

and Ploberger (1994)), the Nyblom (1989) test, and the Quandt (1960) and Andrews (1993) quasi-

likelihood-ratio test, jointly testing for both parameter instability and Granger-causality. In the presence of

instabilities, the Granger-causality robust tests are more powerful than the traditional Granger-causality

test. The tests can also be used to find the point in time in which Granger-causality either appears

or breaks down in the data. Besides, the test is valid for reduced-form VAR models as well as VAR-

based direct multistep (VAR-LP) forecasting models. The former assume homoskedastic idiosyncratic

shocks, while the latter are estimated via Local Projections (see Jordà (2005)), and, hence, assume

heteroskedastic and serially correlated idiosyncratic shocks.
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We first introduce the tests, then present the Stata commands that implement them. Then, we illus-

trate the empirical implementation of the robust Granger-causality tests using a three-variable (inflation,

unemployment and interest rate) VAR model with four lags as in Stock and Watson (2001), as well as

a direct multistep VAR-LP forecasting model. Finally, we compare the results with those based on a

traditional Granger-causality test.

The remainder of this paper is organized as follows. Section 2 describes the theoretical framework

and the Granger-causality robust tests. Section 3 introduces the gcrobustvar command, which imple-

ments the Granger-causality robust tests in Stata. Section 4 applies the Granger-causality robust tests

in the three-variable VAR and compares the results with the traditional Granger-causality test. Section 5

applies the Granger-causality robust tests in the direct multistep VAR-LP forecasting model.

2 VAR-based Granger-Causality Test in the Presence of Instabilities

2.1 Motivation

In the presence of instabilities, as is shown in Rossi (2005), traditional Granger-causality tests may

have no power. Consider one of the equations in a two-variable VAR with one lag and fixed prediction

horizon h for example: yt+h = βtxt−1 + ρyt−1 + εt+h, t = 2, 3, ..., T . For simplicity, we assume that

xt−1, εt+h
i.i.d.
∼ N(0, 1), and xt−1, yt−1, εt+h are independent of each other. Suppose the parameter βt

changes through time in the following way:

βt = 2/3 (t ≤ T/3)− 1/3(t > T/3) (1)

In this example, a traditional Granger-causality test would be a t-test applied on the full-sample Ordinary

Least Squares (OLS) parameter estimator β̂OLS :

β̂OLS =

(
T∑
t=2

x2t−1

)−1 T∑
t=2

xt−1yt+h

=

(
T−1

T∑
t=2

x2t−1

)−1

T−1

[
T/3∑
t=2

x2t−1 (2/3) +
T∑

t=T/3+1

x2t−1 (−1/3)

]

+

(
T−1

T∑
t=2

x2t−1

)−1

T−1
T∑
t=2

xt−1yt−1ρ+

(
T−1

T∑
t=2

x2t−1

)−1

T−1
T∑
t=2

xt−1εt+h →
p
0

(2)
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since T−1
T∑
t=2

x2t−1 →p
E
(
x2t

)
= 1, T−1

T∑
t=2

xt−1yt−1 →
p
0, and T−1

T∑
t=2

xt−1εt+h →
p
0.

Eq. (2) implies that we don’t reject the null hypothesis even if xt−1 does Granger-cause yt+h in

reality. This failure to reject results from the violation of the stationarity assumption underlying traditional

Granger-causality tests, as the predictive ability is unstable across time. Thus, traditional Granger-

causality tests can be inconsistent if there are instabilities in the parameters. Without losing generality,

this conclusion can be generalized to instabilities other than eq. (1) by varying the time as well as

the magnitude of the break. Note that this conclusion is empirically relevant as evidence shows that

parameter estimates change substantially in sign and magnitude across time, see for example Goyal

and Welch (2008) and Rossi (2005).

Considering the possibility of parameter instabilities, Rossi (2005) proposes tests to evaluate the

predictive ability in the situation where the parameter might be time-varying by testing jointly the sig-

nificance of the predictors and their stability over time. Consider a simple Granger-causality regres-

sion: yt+h = βtxt + εt+h, t = 1, 2, ..., T , where βt changes at some unknown point in time, τ : βt =

β1 · 1 (t ≤ τ) + β2 · 1(t > τ).1 Let β̂1τ and β̂2τ denote the OLS estimators before and after the break.2

In respect of the null hypothesis of no Granger-causality at any point in time, i.e., H0 : βt = β = 0, the

robust test builds on two components: τ
T β̂1τ +

(
1− τ

T

)
β̂2τ and β̂1τ − β̂2τ . A test on whether the first

component (the full-sample estimate of the parameter)3 is zero detects situations in which the parameter

βt is constant and different from zero. A test on whether the second component (the difference between

the parameters estimated in the two sub-samples) is zero detects situations in which the parameter

changes, which is a complement to detecting situations in which the regressor Granger-causes the de-

pendent variable in such a way that the parameter changes but the average of the estimates equals zero

as in eq. (1). Rossi (2005) proposes several test statistics, including QLR∗

T , Mean−W ∗

T and Exp−W ∗

T
4.

The corresponding critical values of the asymptotic distributions under the null are tabulated in Rossi’s

(2005) Table B1.

Note that a test for structural breaks would not necessarily be the correct approach either. In fact,

1Rossi (2005) considered various forms of instabilities, more general case of testing possibly nonlinear restrictions in models

estimated with Generalized Method of Moments (GMM), and tests on subsets of parameters.

2β̂1τ =

(
1

τ

τ∑
t=1

xtx
′

t

)
−1 (

1

τ

τ∑
t=1

xtyt+h

)
, β̂2τ =

(
1

T−τ

T∑
t=τ+1

xtx
′

t

)−1 (
1

T−τ

T∑
t=τ+1

xtyt+h

)

3The first component is the full-sample estimate of the parameter: τ

T
β̂1τ +

(
1− τ

T

)
β̂2τ =

(
1

T

T∑
t=1

xtx
′

t

)−1 (
1

T

T∑
t=1

xtyt+h

)

4Please refer to Rossi (2005) for detailed expressions of these statistics

4



while in the previous example the researcher would identify a break, a structural break test is not sufficient

nor necessary for the existence of Granger-causality. In fact, immagine that a variable has predictive

content for another variable and the predictive ability is constant over time, that is βt = β. A structural

break test is not necessary nor sufficient to detect predictive ability. The approach taken in this paper is

to jointly test βt = β = 0, which also avoids issues of multiple testing that one would incur into in case

he/she separately tests instability and Granger-causality.

Note also that the way the possible presence of instabilities is modeled here is via a one-time break;

such an approach has been proved to be more powerful than CUSUM tests – see Andrews, Lee and

Ploberger (1996). Andrews, Lee and Ploberger (1996) derived the optimal tests (the exponential av-

erages of the Wald test statistics) for one or more changepoints at unknown times in a multiple linear

regression model. They compare the power of the optimal exponential tests with that of other tests in the

literature such as the likelihood ratio or supF test, the CUSUM test in Brown, Durbin and Evans (1975),

and the midpoint F test considering a one-time break in parameter, and they find that the optimal tests

perform quite well in finite samples compared to the other tests considered and that the CUSUM test

performs very poorly.

2.2 Framework

We consider two types of VAR specifications. The first is a reduced-form VAR with time-varying param-

eters:

At(L)yt = ut

At(L) = I −A1,tL−A2,tL
2 − · · · −Ap,tL

p

ut
i.i.d
∼ (O,Σ)

(3)

where yt = [y1,t, y2,t, . . . , yn,t]
′ is an (n×1) vector, and Aj,t, j = 1, . . . , p, are (n×n) time-varying coefficient

matrices.

The second is a direct multistep VAR-LP forecasting model with time-varying parameters. By iterating

eq (3), yt+h can be projected onto the linear space generated by (yt−1, yt−2, ..., yt−p)
′, specifically

yt+h = Φ1,tyt−1 +Φ2,tyt−2 + · · ·+Φp,tyt−p + ǫt+h (4)

where Φj,t, j = 1, . . . , p are functions of Aj,t, j = 1, . . . , p in eq (3), and ǫt+h is a moving average of the
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errors u from time t to t+h in eq (3) and therefore uncorrelated with the regressors but serially correlated

itself5. Note that h = 0 is a special case where eq (4) degenerates to eq (3), thus we focus on eq (4)

from now onwards.

Let θt be an appropriate subset of vec(Φ1,t,Φ2,t, . . . ,Φp,t). The null hypothesis of the Granger-

causality robust test is:

H0 : θt = 0 ∀t = 1, 2 . . . T (5)

The statistics to test H0 in eq (5), following from Rossi (2005), are ExpW ∗ (the exponential Wald

tests), MeanW ∗ (the mean Wald tests), Nyblom∗ (the Nyblom test), and QLR∗ (the Quandt likelihood

ratio tests).6

The optimal exponential Wald test statistic (ExpW ∗) and the optimal mean Wald test statistic (MeanW ∗)

are based on the exponential test statistics proposed in Andrews and Ploberger (1994). The optimal

mean Wald test statistic is designed for alternatives that are very close to the null hypothesis; while

the optimal exponential Wald test statistic is designed for testing against more distant alternatives. The

optimal Nyblom test statistic (Nyblom∗) is based on the Nyblom (1989) test, which is the locally most

powerful invariant test for the constancy of the parameter process against the alternative that the param-

eters follow a random walk process. The optimal Quandt likelihood ratio test statistic (QLR∗) is based on

Andrews (1993) Sup-LR test (or the Quandt likelihood ratio (QLR) test), which considers the supremum

of the statistics over all possible break dates of the Chow statistic designed for the alternatives for a fixed

break date.

2.3 A special case: Granger-causality test

The traditional Granger-causality test is a special case where the parameters in eq (4) are time invariant,

i.e. for j = 1, . . . , p, we replace Φj,t with Φj , t = 1, . . . , T . Thus, eq (4) becomes:

yt+h = Φ1yt−1 +Φ2yt−2 + · · ·+Φpyt−p + ǫt+h (6)

To consider a more concrete example, Stock and Watson (2001) study a three-variable VAR with four

lags and h = 0. The variables included are inflation (πt), unemployment (ut) and interest rate (Rt). Their

5See Jorda (2005) for more details of Local Projections.
6See Rossi (2005) for more details of constructing the statistics.
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reduced-form VAR is:




πt

ut

Rt



= Φ1




πt−1

ut−1

Rt−1



+Φ2




πt−2

ut−2

Rt−2



+Φ3




πt−3

ut−3

Rt−3



+Φ4




πt−4

ut−4

Rt−4



+




ǫπt

ǫut

ǫRt




Φj =




φπ,π
j φπ,u

j φπ,R
j

φu,π
j φu,u

j φu,R
j

φR,π
j φR,u

j φR,R
j



, j = 1, . . . , 4

(7)

Thus, in Stock and Watson (2001), the reduced-form VAR involves three equations: current unem-

ployment as a function of past values of unemployment, inflation and the interest rate; current inflation

as a function of past values of inflation, unemployment and the interest rate; and current interest rate as

a function of past values of inflation, unemployment and the interest rate. Stock and Watson (2001) con-

sider traditional Granger-causality tests in each equation where the null hypothesis is: H∗

0 : θ = 0, where

θ is the appropriate subset of vec(Φ1,Φ2, . . . ,Φp). For example, unemployment doesn’t Granger-cause

inflation if:

φπ,u
1

= φπ,u
2

= φπ,u
3

= φπ,u
4

= 0 (8)

If unemployment does not Granger-cause inflation, then lagged values of unemployment are not

useful for predicting inflation.

3 The gcrobustvar command

3.1 The gcrobustvar command

Syntax

The gcrobustvar command is the Stata command that implements the VAR-based Granger-causality

robust test. The general syntax of the gcrobustvar command is

gcrobustvar depvarlist, pos(#,#) [nocons horizon(#) lags(numlist) trimming(level)]

depvarlist is a list of dependent variables, that is, all the variables in yt in the notation in eq (6).

pos(#,#) is a numeric list (i.e. ”numlist” in Stata) including two integers indicating the positions of the
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targeted dependent variable and restricted regressor respectively. For example, if we are testing

whether the second variable y2,t Granger-causes the first variable y1,t in the presence of instabil-

ities, then we assign the numeric list as pos(1,2), where the first integer 1 refers to the position

of the targeted dependent variable in the VAR (i.e. y1,t in this example) and the second integer 2

refers to the position of the targeted restricted regressor in the VAR (i.e. y2,t in this example).

Options

nocons suppresses the constant term. The default regression includes the constant term.

horizon(#) specifies the targeted horizon, i.e. h in the notation in eq (3). The default, i.e. not spec-

ifying horizon(#), refers to a reduced-form VAR assuming homoskedastic idiosyncratic shocks.

When horizon(h) (h ≥ 0) is specified, the command assumes heteroskedastic and serially corre-

lated idiosyncratic shocks, and chooses the truncation lag used in the estimation of the long run

variance. The truncation lag is automatically determined using Newey and West (1994) optimal lag-

selection algorithm. Note that horizon(0) refers to a reduced-form VAR assuming heteroskedastic

and serially correlated idiosyncratic shocks, and horizon(h) (h > 0) refers to the (h+1)-step-ahead

forecasting model, see eq (3). For example, in a one-year-ahead VAR-LP forecasting model with

quarterly data, horizon(3) should be specified.

lags(numlist) is a numeric list that specifies the lags included in the VAR. The default is lags(1 2). This

option takes a numlist and not simply an integer for the maximum lag. For example, lags(2) would

include only the second lag in the model, whereas lags(1 2) would include both the first and second

lags in the model. The shorthand to indicate the range follows ”numlist” in Stata.

trimming(level) is the trimming parameter. As is standard in the structural break literature, the possible

break dates are usually trimmed to exclude the beginning and end of the sample period. If we

specify trimming(µ), the range where we search for instabilities is set to be [µT, (1 − µ)T ], where

T is the number of total periods. The default is trimming(0.15), which is recommended in the

structural break literature and commonly used in practice.

Stored results

gcrobustvar stores the following macros and matrices in r():

Macros
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r(cmd) gcrobustvar

r(cmdline) command as typed

Matrices

r(result stat) A 4-by-1 matrix containing four statistics: ExpW ∗, MeanW ∗, Nyblom∗, SupLR∗.

r(result pv) A 4-by-1 matrix containing four p-values, corresponding respectively to ExpW ∗,

MeanW ∗, Nyblom∗, SupLR∗.

r(result wald) A column vector containing wald statistics across time, the supremum of which is

the optimal Quandt likelihood ratio test statistic (QLR∗).

3.2 Empirical Example of Practical Implementation in Stata

In what follows, we illustrate how to use the gcrobustvar command to implement the Granger-causality

robust test in Stata. The data (GCdata.xlsx, provided with the article files) include quarterly U.S. data

on the rate of price inflation (πt), the unemployment rate (ut), the interest rate (Rt, specifically, the

federal funds rate) from 1959:I - 2000:IV. These are the same variables used in Stock and Watson

(2001). Inflation is computed as πt = 400 × ln(Pt/Pt−1), where Pt is the chain-weighted GDP price

index. Quarterly data on ut and Rt are quarterly averages of their monthly values.

Consider the inflation equation in (3):

πt = cπt +Φπ,π
t (L)πt +Φπ,u

t (L)ut +Φπ,R
t (L)Rt + ǫπt

where Φ·,·
t (L) = φ·,·

1,tL+ φ·,·
2,tL

2 + φ·,·
3,tL

3 + φ·,·
4,tL

4

(9)

Suppose we are interested in testing whether unemployment (u) Granger-causes inflation (π) and we

want the test to be robust to instabilities over time. That is, we want to test whether the coefficients of

lagged values of unemployment (u) are zero across time:

H0 : φπ,u
j,t = 0 ∀j = 1, 2, 3, 4 ∀t = 1, 2 . . . T

Implementing the Granger-causality Tests in the Presence of Instabilities

The following scripts implement the Granger-causality robust test. We first import the data, claim the
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data to be time series, and import the pvalue tables needed for the tests:

Then we run the Granger-causality robust test using the gcrobustvar command. When we run the

gcrobustvar command, important information (variables, lags, etc) will be displayed:
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The results are dispayed in the following script. The gcrobustvar command provides the four optimal

test statistics (ExpW ∗, MeanW ∗, Nyblom∗, QLR∗) and their corresponding p-values.

Here is how we get all the inputs of the gcrobustvar command. depvarlist lists the variables included

in the VAR, i.e. π, u, R in this order. Since we are testing whether lags of the second variable ut Granger-

cause the first variable πt in the presence of instabilities, we assign the following positions pos(1,2). As

for the options, we include the constant term and include four lags, i.e.lags(1/4), as Stock and Watson

(2001). Besides, we assume homoskedasticity and choose the standard trimming parameter 0.15.

Here is how to interpret the results. Let’s take the exponential Wald tests statistics, denoted as

ExpW ∗, as an example. The value of the test statistic ExpW ∗ is 9.20, and the p-value is 0.07. Thus, the

test rejects the null hypothesis that unemployment (u) doesn’t Granger-cause inflation (π) for all t at the

10% significance level.

4 Comparison with the Traditional Granger-Causality Test

In this section, we compare the robust Granger-causality tests with the traditional Granger-causality test

in the three-variable VAR model in Stock and Watson (2001). The VAR includes a constant term, four

lags and assumes homoskedastic idiosyncratic shocks.
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Table 1 reports the p-values of the traditional Granger-causality Wald statistics. The results show that

π Granger-causes R, u Granger-causes both π and R, R Granger-causes u at the 5% significance level.

Table 1: Traditional Reduced-form VAR-based Granger-Causality Tests

Dependent Variable

Restricted Regressors π u R

π 0.00 0.25 0.00

u 0.01 0.00 0.00

R 0.22 0.00 0.00

Note: This table reports p-values of the Wald statistics of the traditional Granger-causality test. h = 0 (i.e. the reduced-form

VAR model), lags = (1, 2, 3, 4), assuming homoskedastic idiosyncratic shocks.

Table 2 reports the p-values of the robust Granger-causality test statistics (for ExpW ∗, MeanW ∗,

Nyblom∗ and QLR∗, respectively). We are testing whether the restricted regressor Granger-causes the

dependent variable in the presence of instabilities. For example, if we consider the dependent variable π

and the restricted regressor R, we are testing whether R Granger-causes π in a way robust to instabilities

across time, i.e. whether the coefficients of lags of R are constant and equal to zero over time. The p-

value of the ExpW ∗ statistics in Panel A in Table 2 is 0.01, so the test does reject the null at the 5%

significance level. Hence, R does Granger-cause π.
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Table 2: Robust Granger-Causality Tests in the Reduced-form VAR

Panel A ExpW*

Dependent Variable

Restricted Regressors π u R

π 0.00 0.20 0.00

u 0.07 0.00 0.00

R 0.01 0.00 0.00

Panel B MeanW*

Dependent Variable

Restricted Regressors π u R

π 0.00 0.44 0.00

u 0.06 0.00 0.00

R 0.20 0.01 0.00

Panel C Nyblom*

Dependent Variable

Restricted Regressors π u R

π 0.00 0.22 0.00

u 0.08 0.00 0.00

R 0.03 0.02 0.00

Panel D QLR*

Dependent Variable

Restricted Regressors π u R

π 0.00 0.08 0.00

u 0.07 0.00 0.00

R 0.00 0.00 0.00

Note: This table reports p-values of the statistics of the Granger-causality robust test. h = 0 (i.e. the reduced-form VAR

model), lags = (1, 2, 3, 4), pistart = 0.15, assuming homoskedastic idiosyncratic shocks.

Comparing Table 1 and Table 2, the empirical conclusions differ if a researcher uses the Granger-

causality robust test instead of the traditional Granger-causality test. In fact, R doesn’t Granger-cause π

at the 5% significance level in the traditional Granger-causality test, but R does Granger-cause π at the

5% significance level in the Granger-causality robust test according to the ExpW ∗, Nyblom∗, SupLR∗

test statistics. Hence, there is empirical evidence that lagged values of R can predict π but the predictive
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ability only shows up sporadically over time, which is the reason why the traditional Granger-causality

test doesn’t detect it.

This command also returns a graph showing the whole sequence of the Wald statistics across time7,

which gives more information on when the Granger-causality occurs. Take the test of whether unem-

ployment (u) Granger-causes inflation (π) as an example, figure 1 documents the whole sequence of

the Wald statistics testing whether unemployment (u) Granger-causes inflation (π). The sequence of the

Wald statistic over time t (depicted by a continuous line in Figure 1) is above the 10% critical value line

(depicted by the orange dashed lines) around 1970q1 and 1980q1. The figure is saved as gcrobust-

var pi u.

1
4

1
6

1
8

2
0

2
2

2
4

1965q1 1970q1 1975q1 1980q1 1985q1 1990q1 1995q1
tq

 5% Critical value  10% Critical value

 Wald statistics

Figure 1: Wald statistics, testing whether unemployment (u) Granger-causes inflation (π)

7The optimal Quandt likelihood ratio test statistic (QLR∗) is the supremum of the statistics over all possible break dates of

the Chow statistic designed for the alternatives for a fixed break date.
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5 Robust Granger-Causality Tests in Local Projections

Section 4 considers the reduced-form VAR assuming homoskedastic idiosyncratic shocks. In this sec-

tion, we extend the VAR analysis to Jorda’s (2005) Local Projections by implementing the direct multistep

VAR-LP forecasting model in eq (6) and assuming heteroskedastic and serially correlated idiosyncratic

shocks. Allowing for heteroskedasticity and serial correlation in idiosyncratic shocks is important when

the researcher extends the VAR analysis to Local Projections, where the error terms in eq (6) can be

both heteroskedastic and serially correlated.

We consider the one-year-ahead VAR-LP forecasting model with a constant term, four lags and

assuming heteroskedastic and serially correlated idiosyncratic shocks. The setting is similar to Section

4 except that we specify h = 3 and relax the homoskedasticity assumption.

The following is the command to implement the Granger-causality robust test to investigate whether

the coefficients on Rt−1, Rt−2, Rt−3, Rt−4 in the equation where the dependent variable is πt+3 are zero

across time in the one-year-ahead VAR-LP forecasting model. To test other coefficients, the command

is similarly implemented, except for adjusting the input of pos(#,#).

Table 3 reports the p-values of the robust Granger-causality test statistics (the ExpW ∗, MeanW ∗,

Nyblom∗ and QLR∗ statistics respectively). The results show that lags of inflation (π) can significantly

forecast the one-year-ahead unemployment (u) and interest rate (R), lags of unemployment can signif-

icantly forecast the one-year-ahead inflation and interest rate, and lags of interest rate can significantly

forecast the one-year-ahead inflation and unemployment.
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Table 3: Robust Granger-causality Tests in the Direct Multistep VAR-LP Forecasting Model

Panel A ExpW*

Dependent Variable

Restricted Regressors π u R

π 0.00 0.00 0.00

u 0.00 0.00 0.00

R 0.00 0.00 0.00

Panel B MeanW*

Dependent Variable

Restricted Regressors π u R

π 0.00 0.00 0.00

u 0.00 0.00 0.00

R 0.00 0.00 0.00

Panel C Nyblom*

Dependent Variable

Restricted Regressors π u R

π 0.00 0.00 0.00

u 0.00 0.00 0.00

R 0.00 0.00 0.00

Panel D QLR*

Dependent Variable

Restricted Regressors π u R

π 0.00 0.00 0.00

u 0.00 0.00 0.00

R 0.00 0.00 0.00

Note: This table reports p-values of the statistics of the Granger-causality robust test. h = 3 (i.e. the one-year-ahead VAR-LP

forecasting model), lags = (1, 2, 3, 4), pistart = 0.15, assuming heteroskedastic and serially correlated idiosyncratic shocks.
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