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Abstract

I study the problem of firms that disclose verifiable information to
each other publicly, in the form of Blackwell Experiments, before engag-
ing in strategic decisions. The signals designed can be either interpreted
as statistical reports or as slices of physical quantities, i.e. market seg-
ments. Before the state of the world is realized, firms choose a signal
policy, an estimation technique, about a private individual payoff state
and then are forced to publicize the results of the investigations to all
other firms before engaging in price or quantity competition. Because
signals are made public, when a firm tries to assess the firm’s individual
payoff, it also ends up revealing the same information to her opponents.
Full Disclosure enables companies to adapt to local market fundamentals
at the expense of releasing crucial information to the competitors. On the
other hand, Partial Revelation makes companies loose optimality of the
decisions with regards to the true state of the world but enable them to
commit to an aggressive policy of preclusion that increases the frequency
of a favorable distribution of players actions. Whereas Partial Revelation
acts as a commitment device and preclude entry in otherwise competi-
tive markets, inducing insensitivity of the decisions with respect to local
fundamentals, decentralized decision making is a dominant strategy when
the profile of competitors is constant across markets or when a company
cannot influence the extensive margin entry decision of the competitor
with more or less disclosure of information. Since decentralization acts as
a way to correlate decisions with local market fundamentals, and running
one single policy in multiple states of the world acts as a commitment
device to avoid competitors, I describe a trade off between commitment
over a distribution of actions versus correlation with states of the world.

∗Vaissman Guinsburg: UW-Madison, 1180 Observatory Drive, # 7226, guins-
burg@wisc.edu. Mistakes are entirely mine. I am indebted to fruitful conversations I held
with Marek Weretka, Antonio Penta, Lorenzo Magnolfi, Dan Quint, Erwan Quintin. Mistakes
are my own.
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1 Introduction

In this paper I extend a Bayesian Persuasion environment to a model of
information exchange. Firms disclose public statistics over their own demand
and production cost features before engaging in a game of price or quantity
competition. Most models of Persuasion focus on a fixed role between senders
and receivers of information. However, in many economically relevant situations
of market competition, firms engage in exchange of information, for example
when firms choose market segmentations for prices quality or quantity policies.
If a firm decides to operate with a smaller capacity in some specific region, this
firm is actually revealing information over it’s own technological features to it’s
opponent. In this paper, I study what are the plausible information structures
that would arise in sound economic settings à la Cournot and Bertrand with
Differentiated Products when all parties are in charge of disclosing publicly
information over private individual payoffs. In particular, firms do not have the
capacity to induce the same distributions of states of the world as one another.

Assume that N firms share an aggregate market and must decide on prices
or quantities. The features of the demand and the production costs, the market
fundamentals, are denoted θ = (θi)i∈N and are jointly distributed according to
a common prior µ. States of the world are only observed by firms via Blackwell
Experiments that all firms can perform in order to make inference over individual
states, θi. All firms observe the signal quality of their opponents and, after the
signal realization s = (si)i∈N is made public, all players update their beliefs to a
common posterior ps ∈ ∆(Θ) and simultaneously choose an action, setting up an
equilibrium policy ai(p

s). Each signal realization, s, and associated distribution
over fundamentals, ps, defines a subgame, Gps

, of complete information and,
thus, a Nash Equilibrium, a(ps), results after ps ∈ ∆(Θ) is realized. Each
signal realization, s, is viewed as a market, because the realization s defines an
equilibrium profile of actions. The signal, the informational strategy that firms
perform in this paper, can be taken in two possible ways, either as statistical
estimations or as nationwide market segmentations.

For example, firms can hire more than one audit company before issuing
debt or equity (or a firm may not audit at all). Pharmaceutical companies
must release drug trials results and choose how many tests they perform before
issuing a new product. In both situations, when the firms choose to perform
investigations over a private payoff relevant state of the world they must release
information over the quality of their product to the public, and thus to their
competitors, before setting up prices (in the case of the medicine example) or
quantities (in the case of the debt/equity example). This is the statistical view
of Blackwell Experiments, i.e. that firms control the methods of investigations,
or estimation, of an uncertain and payoff relevant state of the world. Instead
of interpreting a signal as the outcome of an estimation exercise, with the in-
terpretation of outcomes of those experiments being outcomes of a report, as
in the previous example, one can also interpret Blackwell Experiments as an
automated assignment rule of physical quantities, and, with that, the model
can be used to understand market segmentation strategies, in the same way as
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in Bergemann et al. (2015).
Blackwell experiments can also be used to model market segmentations that

are designed as automated assignment rules based on socio-economic and tech-
nological factors that determine demand and supply features of a firms structure.
Since θi ∈ Θi can be taken as socio-economic and technological variables, or mar-
ket fundamentals - wealth, consumption, tax incidence, real estate value etc so
that, in the measure theoretic approach, Blackwell Experiments are assignment
rules or market segmentations. Multiple industry specific cases arise when using
this interpretation, in particular, whenever a firm designs a regional strategy,
assigning fundamentals, θi, to multiple policy segments, si. In the analogy of
market segmentations, a Full Disclosure policy is analogous to a Firm choos-
ing one segment si, for each state of the world, or market category, θi. This
is analogous to perfect discrimination and it entails that firms take decisions
on a local level. A firm might choose, however, to ignore the variation in it’s
own fundamentals, a Partial Revelation strategy that is analogous to assigning
many states θi to one single policy segment, si. In this case, the policy adopted
will be more insensitive to local market fundamentals because the management
decisions are taken on the aggregate level. Thinking from the standpoint of a
Cournot game, by running one policy for quantities (per capita), si ∈ Si, over
more than one category, θi ∈ Θi, and taking decisions that reflect averages in-
stead of states point by point, a firm might be able to induce more aggressive
decisions in regions where that quantity would not be justified by local market
fundamentals, taking the opponent out of operation in more regions with this
insensitive policy.

Industry examples range from airline routes, car dealers locations, retail and
coffeehouse stores etc. For example, Delta Airlines can forcefully choose one
policy of flights for places with different local market fundamentals. Delta’s
policies, in this case, are insensitive to local market conditions as opposed to
when Delta assigns one policy of quantities of flights per airport it operates.
The two crucial assumptions here are the publicity of the signals, portfolios
of policy segments are visible, and the experiments determining the sensitivity
of decisions with regards to local market fundamentals so that the model is a
good approximation for any automated decision making process that is based
on ex-ante and publicly known levels of information.

Let the extensive margin profile of companies to be whether the firms are in
or out of operation. In the main result of the paper, I show that Full Disclosure,
or Full Decentralization, arises when payoffs are linear in opponents actions and
states of the world and when a firm cannot alter the distribution of extensive
margin outcomes. The result should be seen as preference for correlation of
actions with realized states of the world when the extensive margin realizations
are insensitive to information policies. For example, if the model is linear in
best responses and the interior solution is valid for all primitive states of the
world, θ, then all firms have Full Disclosure of their private types, θi, as a weakly
dominant information design strategy. If firms must share a market no matter
what will be the opponents policies, then connecting decisions with states of
the world will be prioritized over a strategy that induces a better distribution
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of actions via a persuasive opaque strategy. If, on the other hand, running an
opaque and insensitive policy is effective in taking opponents out of operation, or
altering the realizations of the extensive margin, and if the resulting insensitivity
with respect to local market conditions does not affect local optimality, then a
firm may engage in a policy that is purposefully insensitive to local market
conditions in order to increase the frequency of states where the opponents are
put out of operation. This means that a firm might choose to ignore information
in order to pursue a persuasive policy of deterrence. In the language of market
segmentations, the firm engages in policies that are insensitive to local market
fundamentals for deterrence reasons.

I also contribute to the technical part of the Persuasion literature by intro-
ducing a method for solving Persuasion models with continuous actions under
the presence of multiple senders and receivers. Piece-wise affine equilibrium
actions yields piece wise convex functions of the senders with respect to the
posterior distribution sent publicly. I categorize equilibria associated to pos-
teriors according to classes of equilibrium actions - I categorize an equilibrium
profile of actions into the index profile of those who are playing interior or corner
solutions - and I show that, in the piece-wise linear equilibrium actions case, the
categorization exercise I make fall into the U-Cover method of Lipnowski and
Mathevet (2018) - i.e. I cover the domain of posteriors with a finite collection
of compact and convex regions where a senders payoff is convex. The U-Cover
is obtained by keeping fixed the classes of equilibria, where players are labelled
according to the type of action they perform after posterior p, i.e. whether
players are in the interior solution or corner solution level. Since actions are
affine in those regions, senders utilities are (locally) convex in the posterior, p,
because of local linearity in opponents actions. Piece-wise convex value func-
tions, then, yield finitely many extreme points that can be in an optimal policy
for a sender, τ⋆i , as shown in Lipnowski and Mathevet (2018) and Lipnowski and
Mathevet (2018). Not only that, these finitely many extreme points are con-
tinuously altered by opponents choice of posterior distributions and, thus, an
equilibrium exists, from the multiple senders point of view, via standard Max-
imum Theorems and Kakutani arguments applied to the optimal information
best responses τ⋆i (τ−i).

This paper endogenizes the information structure of a canonical class of
games that embeds generic cases of Cournot and Bertrand with Differentiated
products. The model is applied to market segmentations and can explain flood-
ing behavior in the implementation of stores across the nation for preclusion
motives on the Cournot side. Flooding, or high levels of quantities in places
which per-se do not justify with market conditions that decision, arises when
the losses of making decisions not connected to local markets are not pronounced
across markets. If taking an opponent out of circulation is made with no loss
to optimality of decisions with respect to local market conditions, i.e. if local
market conditions are homogeneous, firms may engage in a single policy across
markets provided that the firm engaging in an insensitive policy can force the
opponent out of operation, or that the extensive margin decision can be ex-
plored. On the other hand, if some firm cannot force any other firm out of
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operation, then I show that this firm wishes to connect decisions with states
of the world by releasing all information it has. I describe, thus, a trade-off
between coordination of actions with states of the world versus the commit-
ment to run aggressive policies and induce desired distribution of actions of the
opponents.

2 Literature Review

The Information Design literature has evolved into two somewhat differ-
ent approaches, namely the Bayes Correlated Equilibria, represented here by
Bergemann and Morris (2013), and the Sender - Receiver frameworks, from the
work of Kamenica and Gentzkow (2011). While in the Bayesian Persuasion and
Cheap Talk literatures the interest lies in the interaction between senders and
receivers of information, with a clear focus on the mechanisms, or channels,
of communication, in the B.C.E. approach the goal is to explain the effects of
information structures on the distribution of outcomes, in a reduced form men-
tality that enables more generic results. In the Bayes Correlated Equilibria, a
somewhat exogenous signal parametric structure gives rise to a distribution of
actions and states of nature. Signals are either exogenously given or recovered
from a desired ”optimal” distribution of actions and states that is attainable and
respects prior distributions assumptions. In most models of this branch, there is
no presence of competition or market interaction in the design of signals. These
papers do not ask why some optimal signals can be seen in market interactions.
The question answered in these set of papers is usually of the form: ”Given a
class of signals and objective functions, what is the optimal signal given a met-
ric of success?”. Importantly, these papers abstract from the intricacies of the
information and economic environment at hand, optimizing over a parametric
class of signals that are simple distributions of actions and states of the world
that are attainable.

Bayes Correlated Equilibria, thus, is the proper environment to compare
many information structures within a class of signals since the goal is to make
computational exercises feasible for arbitrary information structures. B.C.E. is
a good form of comparing many information structures. The B.C.E. approach,
however, does not answer the question of whether those information structures
are plausible or would be observed in natural economic environments. In many
situations information design outcomes obey market rules or are transmitted
within and across economic institutions in a very specific, industry dependent,
way. The presence of private or public signals, for example, is not arbitrary and
depends on economic modelling.

The Bayes Persuasion literature, started with Aumann and Maschler (1995)
but revived by Kamenica and Gentzkow (2011), is concerned with making pre-
dictions of the provision of information performed by economically relevant
senders trying to Persuade a receiver to perform a sender optimal action. Models
of Persuasion are trying to generate market outcomes in the sense of plausible
information structures given a timing and a profile of interactions - one or many
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senders and one or more receivers, etc. In other words, the Persuasion literature
is concerned with explaining the channels in which information is transmitted
via plausible strategic interactions between senders and receivers. The focus
here is on the economic channels of information transmission with verifiable
information.

One of the main challenges in the Bayesian Persuasion literature, neverthe-
less, has been to find reasonable applications of senders with both reasonable in-
vestigative roles and at the same time that carry commitment to disclose reports
publicly and in a verifiable manner. My claim in this paper is that it is possible
to bring Persuasion models one step further into sound economic models of, for
example, Cournot and Bertrand, where nationwide firms exchange information
in a verifiable manner. A regional strategy coming from the headquarters, for
example, is an automated decision that is based on existent, ex-ante, levels of
information and that information is visible to all parties.

In the technical aspect, this paper uses methods of covering the domain of a
continuous function of posteriors, p, with finitely many compact and convex sets
where the sender’s utility function is convex, just as in Lipnowski and Mathevet
(2019) U-Covers method. Here I am studying continuous actions models with
the presence of a benevolent receiver and piece-wise affine equilibrium actions as
a function of the posterior p. I obtain a U-Cover in the continuous actions case
because equilibrium actions are piece-wise affine in the posteriors for finitely
many classes of equilibria. Therefore, I show that the stability needed to induce
a U-cover in my paper is not in the profile of actions generated by posteriors,
but in the classes of equilibria that can arise - specifically, if a pair of posteriors
generate the same profile of receivers playing interior and corner solutions as
equilibrium actions after posterior p, p′, then p, p′ belong to the same class of
equilibria. Linear setups yields convex functions of the parameter in convex
regions that translate into the U-Cover - i.e. a finite collections of compact and
convex sets in which the sender’s utility function is convex in the posterior -
just as in Lipnowski and Mathevet (2019).

3 Informational Entry Deterrence

3.1 Cournot with Interior Solutions Lead to Full Revela-
tion

Consider a Cournot Duopoly with homogeneous goods and uncertainty over
the marginal costs. Assume that two firms, Firm 1 and Firm 2 compete in a
market with a homogeneous good and with linear demand and linear marginal
costs. In this market, the only parameter that is uncertain is the firm specific
marginal cost, θi. Firm 1 has marginal cost denoted by θ1 and Firm 2 by θ2.

Thus we can write demand as

P d(Qi, Qj) = A− b(Qj +Qi)

and profits, being revenue minus costs, can then be written as
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ui(Qi, Qj , θi) = (A− b(Qj +Qi)− θi)Qi

with best responses being equal to

BRi(Qj , θi) = max{A− bQj − θi
2b

, 0}

Instead of assuming a perfect information environment, where the vector θ is
known to both players, assume instead that both players are equally uninformed
over the true state of the world, the vector of marginal costs θ = (θ1, θ2),
distributed according to a common prior distribution µ ∈ ∆(Θ) with marginal
µi = margΘi

µ(Θ) ∈ ∆(Θi). Even though both firms are uninformed over
the true state of the world, before actions take place they can assess their
individual marginal costs, θi, through a Blackwell Experiment in a pre-stage of
the interaction.

Blackwell Experiments, or signals, are defined by a pair Xi = (Si, πi) formed
by the support of messages Si and the function, πi that take from the relevant
state of the world to a distribution over messages, or the realizations of a signal,

πi : Θi → ∆(Si)

Each Firm chooses its Blackwell Experiments based only on its own parameter
of uncertainty, namely the marginal costs. Experiments chosen can be either
fully informative, by making Si = Θi and πi(θi|θi) = 1, ∀θi ∈ Θi, or completely
non-informative, in which case a Firm would only emit one single message. In
fact, Blackwell Experiments allow the firm to choose between all information
structures of a signal. In this sense firms can now choose how much to know
about their own cost structure before choosing a quantity strategy. However,
I assume that both firms can observe the outcomes of the experiment, making
S = (Si)i=1,2 be publicly revealed to both firms and, thus, if a firm decides to
know more about their marginal costs at the stage of interaction, they must
reveal crucial information to the opponents as well.

Given the profile of experiments (πi)i=1,2 made in the first period, the joint
signal realization of signals, S, follows a distribution given by

τ(s) =
∑

Θ

π1(s1|Θ1)π1(s2|Θ2), s ∈ S

and for each realization s ∈ S, a posterior distribution results

ps(Θ) =
µ(Θ)π1(s1|Θ1)π2(s1|Θ1)

∑

Θ µ(Θ)π1(s1|Θ1)π1(s2|Θ2)
, s ∈ S

.
After observing the realization of both experiments, i.e. after observing the

signal realization s ∈ S, each Firm must then choose a quantity level Qi, i = 1, 2.
The public observation of the realization of the random variable S = (Si)i=1,2

effectively gives rise to a Symmetric Information game where payoffs for each
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player are defined by the random vector θS = (θSi )i=1,2 ≡ ❊[θ|S] distributed
according to τ . As a result, for each realization s ∈ S, we can then define a
game of symmetric information given by {(ui(., ., θ

s), Qi)i=1,2} with resulting
Nash Equilibrium given by Qi(θ

s), s ∈ S.
As a result, given the distributions over signals τ with realizations S, a re-

sulting distribution of equilibrium actions as a function of the resulting posterior
pS , Q(pS), is obtained. Note, however, that because best responses are linear
in the marginal costs, θi, best responses and consequently equilibrium actions
will be dependent only on the posterior first moment. We can then simply write
Q̃(θS) for the equilibrium actions that result from posterior pS . In other words,
the equilibrium actions depend solely on the first moments.

Given a realization of a signal S, with resulting posterior pS and posterior
first moment θS , take the equilibrium actions Q(θS). Assume that the inte-
rior solution condition is weakly valid. I.E., assume that, given the posterior
first moment, θS , both players are playing positive amounts as reactions to the
opponents actions so that

BRi(Qj(θ
S), θS) ≥ 0 ⇔ A− bQj(θ

S)− θSi
2b

≥ 0, i = 1, 2

Plugging in the best response of Firm j in the best response of Firm i we
reach to the condition

Qi(θ
S) =

A+ θSj − 2θSi
3b

≥ 0 ⇔
A+ θSj

2
≥ θSi , i = 1, 2

.
which is the condition on the sufficient statistic, the first moment, θS , that

guarantee that best responses are weakly positive. If the interior solution con-

dition is weakly valid, i.e. if θSi ≥
A+ θSj

2
, i = 1, 2, then the value function

obtained by both players evaluated in equilibrium is

vi(θ
S) = ui(Q(θS), θSi ) =

(A+ θSj − 2θSi )
2

9b

Note that vi is convex in the posterior statistic, θs for a given realization in
the support of signals s ∈ S. Moreover, if vi is convex in the first moment θs, it
is also convex in the posterior distribution ps because the map from posteriors
to the firm moment associated with it, ❊psΘ, is affine ps. Assume ps is split

into multiple posteriors pS
′

distributed according to a distribution τ such that
❊τp

S′

= ps. I.E. treat the posterior ps as a degenerate random variable and
consider a mean preserving spread of the distribution ps into a distribution of
posteriors τ ′ with support pS

′

such that ❊τ ′pS
′

= ps. Then, by the law of
iterated expectations, ❊τ ′❊pS′Θ = ❊psΘ ≡ θs and, since the value function is

strictly convex in the statistic, θS
′

, all players would weakly prefer the mean
preserving spread τ ′ over having a single signal realization s with posterior ps.
Thus if the interior solution condition holds, for any possible pS

′ ∈ ∆(Θ), both
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Firms would weakly prefer more information in the form of mean preserving
spreads of ps.

Remark 1. Let L′ ∈ ∆(∆(Θ)) be a mean preserving spread of the posterior dis-
tribution ps. In words L′ is a distribution of distributions with the property that
the average under L′ is ps, or ❊L′pL

′

= ps. Then L �MPS L′ ⇔ ❊L′vi(θ
l′) >

❊Lvi(θ
l) for vi convex in θ.

Any mean preserving spread of a profile of posterior moments, θs, when θs

is seen as a degenerate random variable - or analogously any mean preserving
spread of the posterior ps ∈ ∆(Θ) - would increase the indirect utility function
of all players. As the mean preserving spread order over posteriors distributions
is essentially a measure of informativeness, we can say that agents prefer more
information over less information if we assume that Firms will play interior
solutions.

The condition on the primitives that guarantee that the interior solution

holds for any potential posterior is that θi ≤
A+ θj

2
, ∀θ ∈ Θ, ∀i = 1, 2, i.e. that

for any potential realization in the support of µ, both players would be playing
interior solutions, in the weak sense, if both players knew with certainty that
the realized state of the world was θ ∈ Θ and for any θ ∈ Θ, where Θ is the
support of states of the world.
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1 is Monopolist

2 is Monopolist
Duopoly Region

A

2

A

2

θ1

θ2
θ3

θ4
Co(Θ)

Marginal Cost Firm 1: Θ1

Θ2

Marginal Cost Firm 2:

Figure 1: Duopoly with uncertainty over the marginal cost

(a) The shaded region represents the attainable posterior moments resulting from
Blackwell Experiments so that θp

s

∈ Co(Θ). The presence of the Interior Solution
Condition guarantees Full Disclosure by each firm in equilibrium.

I will show more formally, and on a broader class of utility functions, - the
linear-in-best-responses quadratic utility function also used in Bergemann and
Morris (2013) - that convexity in fundamentals is driven by: i) the presence of
a linear demand and cost functions that yield a linear best response and ii) the
assumption that all players are playing interior solutions. Under the presence
of a linear best response, more informative, decentralized, posteriors are weakly
preferred by all firms and would be chosen in an Information Design market
equilibrium.

Blackwell Experiments can assume two interpretations: On one hand Black-
well Experiments may be an estimation procedure that gives a signal Si and
posterior psii . In this sense, experiments are the quality of statistical estimation
procedures. On another potential interpretation, on the other hand, Blackwell
Experiments can be taken as automated assignment rules. For example, cre-
ate categories of customers θi ∈ Θi. Assign customers to market segments si
according to πi : θi → ∆(Si). Then a realization si, carries psii ∈ ∆(Θi) in
proportions of each type θi. This is very similar to the ? only that, here I ask
that each joint realization s = (si)i∈N determines a market ps ∈ ∆(Θ).

In the market segmentation interpretation of Blackwell Experiments, firms
would like to decentralize operations and make strategic decisions locally, opting
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for more informative signals even if this decentralized and informative outcome
results in the provision of more information to the other firms as well1. Unequiv-
ocal preference for more information can be read as preference for coordination
of actions with states of the world, θ, in the absence of the capacity of deterrence
by Firms. As a result the endogenous information structure that would arise
entails high levels of sensitivity of Firms decisions with respect to local mar-
ket conditions. I.E. Market Segmentations are made thin in order to connect
decisions with realized states of the world.

Indeed the Cournot example shown above clarifies the main force of this
paper. If firms have to share the market no matter what is the aggregate poste-
rior, ps ∈ ∆(Θ), for any possible profile of experiments chosen in the pre-stage,
πi, then these firms have a clear incentive to disclose all information and the
symmetric information environment becomes effectively a complete information
setup as the resulting posteriors are degenerate distributions with Full Reve-
lation side. In other words, firms choose to coordinate actions with states of
the world rather than use mixtures of fundamentals to induce desired actions -
preclusion for example.

3.2 The General Model

Assume N firms interact in a market and each firm has profits that depend on
it’s actions, the actions of the opponents and states of the world, θ = (θi)i∈N ∈
(Θi)i∈N that are jointly distributed according to a common prior distribution
µ. I let Θ ≡ {θ = (θi)i∈N ∈ ×i∈NΘi : µ(θ) > 0} to denote the support of
µ. I assume that the support Θi ⊂ ❘ is finite for every firm i ∈ N2. Firms
simultaneously choose an action a ∈ Ai ≡ [0, a] ⊂ ❘, ∀i ∈ N . Given a profile of
states of the world θ = (θ1, ..., θN ) ∈ Θ, payoff functions are such that, for every
player i, for every individual state of the world θi and action profile a ≡ (ai, a−i),

ui(ai, a−i, θi) = − a2i
2ci

+ ai
∑

j 6=i

cijaj + θiai (1)

where ci > 0.
Strategic complements happen when cij > 0 ∀i, j ≤ N and the reverse for

strategic substitutes. This functional form (particularly the linearity and sepa-
rability in actions states of the world) is the standard in the networks literature.
In terms of Oligopolistic Competition, the strategic substitutes case leads to a
Cournot game whereas the strategic complements case result in a Bertrand with
differentiated products case3. Note that ui depends on the state of the world θ
only through it’s i’th component, the individual state θi. Throughout the pa-
per I will use a specific, benchmark, model, namely the classical Cournot with
Homogeneous Goods.

1Since the experiments are publicly revealed.
2States that are unidimensional are not limiting the results as it will be clear in the market

segmentation exercise.
3See Bergemann and Morris (2013) for more applications including Global Games.
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Example 1. (Cournot Duopoly with Homogeneous Goods) Assume the inverse
demand is given by P d = A − b(Qi + Qj) and marginal costs are given by θi.
Profits can be written as ui(Qi, Qj , θi) = (A− b(Qi +Qj)− θi)Qi

Instead of a typical private values setting that leads to a Bayesian Game,
here the information structure is endogenously chosen.

In the first stage, when firms are equally uninformed over the state of the
world, θ, that is jointly distributed according to a common knowledge prior
distribution, µ ∈ ∆(Θ), firms choose a Blackwell Experiment over their own
payoff component, θi. I let Θ ≡ supp(µ) to be the support of the distribution µ.
Blackwell Experiments, xi can be defined as a pair xi = (Si, πi) s.t. Si is a finite
signal space and as usual πi : Θi → ∆(Si). I denote the universe of experiments
for firm i as Xi = {xi = (Si, πi) : |Si| < ∞} which is also a standard notation.
Analogously, we can define the space of information policies

Ti(µi) ∈ ∆(∆(Θi)) = {τi : Si → ❘+, si ∈ ∆(Θi)∀si ∈ Si, |Si| < ∞,

∑

si

τi(si) = 1,❊τip
Si

i (θi) = µi(θi), ∀θi ∈ Θi}

and I note here that the two spaces are connected through a Homeomorphism
and so can be treated as identical objects.4 The choices of experiments x =
(xi)i∈N are made public at the end of period 1.

In period 2, signals are drawn from the corresponding experiments (xi)i∈N ,
chosen in the previous period, and the profile s = (si)i∈N is publicly observed.
After observing s and x, firms simultaneously choose actions, a = (ai)i∈N . Note
that information is complete and symmetric here since all players must take an
action upon observing the same amount of information s and X. At this point
all players share a common posterior given by ps ∈ ∆(Θ)5.

Players update their common posterior to ps ∈ ∆(Θ) and are then asked to
run one single strategy, i.e. choose a strategy yi ∈ ∆(Ai)∀i ∈ N . Note that
in this case a complete information game with payoff uncertainty given by the
random variable θ that is now distributed according to ps ∈ ∆(Θ) unfolds. The
realization of a signal s ∈ S = (Si)i∈N then determines a subgame. Formally,
let

Ups

i (a) ≡
∑

θ∈Θ

ps(θi, θ−i)ui(a, θi)

We can then define the Nash Equilibria associated to each ps. Let N(ps)
denote the set of Nash equilibria of the simultaneous move game with complete
information Gps

= ((Ai, U
ps

i )i∈N ).

4Note that πi(si|θi) = τi(si)p(θi|si)/µ0(θi), ∀θi ∈ Θi so that for each τi there exists a
unique xi) that represents it and vice-versa. I use both Xi and Ti in the analysis - πi is used
to compute transition probabilities, τi is a more familiar object when analyzing choices, since
πi is a function and τi is a probability distribution measure.

5Specifically the frequencies of the signals are τ(s) =
∑

θ µ(θ)Πiπi(si|θi) and the posterior

associated is obtained by ps(θ) =
µ(θ)Πiπi(si|θi)

τ(s)
, both numbers between 0 and 1.
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The objective of the paper is to analyze the information structures, x =
(xi)i∈N , that would arise in equilibrium if each company could perform Black-
well Experiments over their own payoff relevant component of the state of the
world, i.e. in the first stage each firm chooses a signal xi = (Si, πi) such that
πi : θi → ∆(Si). In the first stage the strategies are summarized by x = (Xi)i∈N

and in the second stage, players anticipate that for any resulting signal s and for
any resulting ps ∈ ∆(Θ) actions a = (ai(p

s))i∈N are a Nash equilibrium of the
game Gps

. Then I want to understand how the information structures, τ⋆(µ, c),
that arise in equilibrium are affected by (µ, c), i.e. how equilibrium information
provision is affected by the assumptions on the prior distribution and the utility
function.

When signal s is realized players best respond according to game Gps

and be-
liefs ηi ∈ ×j 6=i∆(Aj). Then the best response of player i at subgame determined
by posterior ps, Gps

is

BRi(η
i, ps) = argmax

ai∈[0,a]

❊ηiUps

(a−i, ai) =

min{max{ci[❊ηi

∑

j 6=i

cijaj + θp
s

i ], 0}, a} = min{max{wi(η
i, θp

s

i ), 0}, a}

with θp
s

i ≡ ❊θi|psθi and wi(q
−i, θp

s

i ) = ci[❊ηi

∑

j 6=i cijaj + θp
s

i ] linear and
separable in actions and types. The function wi is the best response policy of
firm i in the case where this firm would play an interior solution, in the weak
sense, i.e. when w ∈ [0, a]. As this setup yields single valued best responses then
only Pure Strategies Nash Equilibria are present and thus only Pure Strategies
Nash Equilibria are considered.

In order to describe behavior with this posterior, ps, we only need to pay
attention to the posterior first moments defined to be the first moments after
signal realization s is obtained, θp ≡ ❊pθ ∈ Co(Θ). 6 I now make several abuses
of notations in order to spare the reader - and the author - from burdensome
notation : i) First I may write θs to be the resulting statistic θp

s

after signal
realization s, ii) I write wi(θ

P ) to be the resulting function evaluated at the
”correct” beliefs where players choose their corresponding equilibrium actions,
i.e. wi(θ

p) ≡ wi(a−i(θ
p), θpi ). In the same manner I write vi(θ

p) = ui(a(θ
p), θpi )

to be the value function evaluated at the equilibrium actions when the posterior
is p. iii) Because equilibrium actions are equivalently defined by it’s posterior,
p, or it’s first moment, θp, I may use a(p) or a(θp), and analogously wi(p) and
vi(p) interchangeably with wi(θ

p) and vi(θ
p) respectively.

Definition 1. The Overall Interior Solution condition is satisfied if for every

6Also, for the problem to be clearly specified, I make a small strategic interaction as-
sumption that guarantee that N(ps) is unique and, thus, indeed a function of ps and not a
correspondence, namely that |cicij | < 1/

√
N − 1, ∀i, j ≤ N which guarantees that the Nash

Equilibrium is unique. For example, the condition holds for a standard homogeneous goods
Cournot example.
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θ ∈ Θ : µ(θ) > 0, wi(a−i(θ), θi) ∈ [0, a], ∀i ≤ N , where a−i(θ) is the prescribed
action in a Nash Equilibrium with common knowledge of the state θ.

2 is Monopolist

1 is Monopolist

Duopoly Region

θ1

θ2
θ3

θ4
Co(Θ)

Demand Intercept Firm 1: Θ1

Θ2

Demand Intercept Firm 2:

Figure 3: Duopoly with uncertainty over the Demand Intercept and the presence of
the Overall Interior Solution condition - The shaded region represents the space of
attainable posterior moments after signal realization s, θp

s

∈ Co(Θ). The presence of
the Interior Solution Condition guarantees Full Disclosure by each firm in equilibrium.

Lemma 1. Assume that the interior solution condition is satisfied. Then vi(θ
p)

is convex in θp ∈ Co(Θ). Also, ∀i ≤ N , ∀p ∈ ∆(Θ) and resulting θp ∈ Co(Θ)
such that θp = ❊pθ, the equilibrium actions are linear in the posterior statistic
or the posterior distribution, i.e. ai(θ

p) = ❊p[ai(θ)]. We can, then, write
ai(θ

p) = βiθ
p ∈ [0, a] , ∀i ∈ N, ∀θp ∈ Co(Θ) .

The proof follows by a guess and verify assumption on linearity applied to
a−i and is left to the appendix.

It turns out that the interior solution condition, together with linearity of
equilibrium actions, guarantee Full Disclosure by each player as a weakly dom-
inant strategy and, in fact, except for a lower dimensional ”slice” of the space
of distributions, Full Revelation is a Strictly Dominant Strategy.

Definition 2. The Non Orthogonality Condition is met for player i and vector
βi ∈ ❘N if ∀θi, θ′i ∈ Θi, βi❊[θ|θi] 6= βi❊[θ|θ′i].

Theorem 1. Assume that the overall interior solution condition is guaranteed
and let ai(θ

p) = βiθ
p be the equilibrium actions for player i after posterior

14



statistic θp ∈ Co(Θ) as in Lemma (1). Then Full Disclosure by each player is
a Weakly Dominant Information Strategy, i.e. x⋆

i = {Θi, θ → 1s=θ} is a best
response for any x−i ∈ X−i = (Xj)j 6=i. As a result, Full Revelation is always
an equilibrium in t = 0. If the Non-Orthogonality condition is met for player
i, then Full Disclosure is a strictly dominant action for player i and her unique
best response.

Note that vi(θ
ps

) = ui(ai(θ
ps

), a−i(θ
ps

), θp
s

i ) is linear in a−i and a−i, on the
other hand, is linear in θp

s

. Thus if player i itself were to not make any change in
her actions we would have vi(θ

ps

) = ui(ai, a−i(θ
ps

), θp
s

i ) = ❊θ|sui(ai, a−i(θ), θi)
- i.e. player i is indifferent between providing more or less information to the
other players if just the distribution of opponents actions is taken into account.
More revelation, however can only help i make a more informed decision, ai()
and must then be weakly preferred.

Full Revelation thus can be seen as a result of preference for coordination of
actions with states of the world in detriment of a persuasion attempt to force a
desired action by the opponents. Theorem 1 shows that Full Disclosure by each
firm is intimately connected to correlation of policies with market fundamentals,
as the main objective of the firms under the Overall Interior Solution Condition
is to reveal information. In the market segmentation analogy, firms choose one
policy for each market category θi.

The result of Full Revelation is robust to any prior distribution provided that
the Interior Solution condition is met. Thus, in order to check if Full Disclosure
is weakly dominant for all players and so that Full Revelation is an equilibrium
outcome one must only check for the validity of the Interior Solution Condition
at the support Θ, ignoring the weights given by probabilities, µ.

If the model is linear and the Interior Solution Condition is met then Full
Revelation, or Full Decentralization in the market segmentation analogy, is a
weakly dominant strategy. In the next sections I explore the reverse statement,
i.e. whether lack of one of the two conditions can generate lack of Full Revela-
tion.

Remark 2. If there exists Opacity, then either the model is not linear or the
interior solution is failing - i.e. ∃θ and i ∈ N such that ai(θ) = {0} ∨ {A}.

Before proceeding to Partial Revelation, I introduce another instance in
which Full Revelation is an informational equilibrium, when there is perfect
correlation between types among firms.

Proposition 1. Assume that types are perfectly correlated. I.E. assume that
∀i, j ∈ N , µj(θj |θi) = ✶θj for some θj ∈ Θj, ∀θi ∈ Θi, ∀i. Then Full Revelation
is an equilibrium outcome.

pf: If player i is Fully disclosing, for every other player, j 6= i, the value of
any experiment is Vj(τj , τi, τ−i−j) = ❊svj(θ

s) = ❊θivj(θ) is independent of the
experiments of the opponents. In particular Full Disclosure is a best response
for player j. �
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Correlation translates into the power of agents to force an equilibrium distri-
bution of actions and states of the world. A firm can always react to disclosing
more information in case of a non degenerate posterior in the support. In the
case of one player performing a fully revealing experiment, the other players
cannot react by adding more information, since information at this point is al-
ready complete, so that these players are indifferent between providing more
or less information. Correlation is not the same as homogeneity and thus it is
not related to the Interior Solution condition per-se. As a matter of fact, The-
orem (1) holds independently of the prior distribution µ, as long as the Interior
Solution Condition is valid.

In this section I have shown that either when the Interior Solution Condition
holds or when types are perfectly correlated, Full Revelation is an equilibrium
and thus an equilibrium is guaranteed to exist. It turns out that an Information
Design Equilibrium τ⋆ is always guaranteed to exist. In the appendix I show that
standard concavification methods apply and the application of Caratheodory
Theorem guarantee that an optimal policy is obtained with at most |Θi| extreme
points. The extreme points will be defined by regions where the extensive margin
decision of corner solutions is explored to it’s maximum and some player is made
indifferent between playing interior or one of the corner solutions.

The posteriors in the support of an information policy of player i, psii , are
classified into the classes of equilibrium actions that psii generates, when message
si is composed with the other signal realizations of the opponents, s−i, yielding
joint posterior ps. For each resulting joint posterior in the support of posterior
distributions, ps, I separate players into bins, each according to the class of
equilibrium actions, a(ps), in which they fall into - whether interior or either of
the corner solutions. The Categories for any player i can be threefold; whether
i is in the (weak) interior solution region, when wi(p

s) ∈ [0, a], or i is playing
either of the corner solutions, when wi(p

s) ∈ (−∞, 0], the weak lower corner
solution regions, or when wi(p

s) ∈ [a,∞) the weak upper corner solution region,
∀i ∈ N, ∀s ∈ S. For each resulting posterior, p, three classes of index profile
results and, thus, I let I(p) = {i ∈ N : wi(p) ∈ [0, a]}, H(p) = {i ∈ N :
wi(p) ∈ [a,∞)} and L(p) = {i ∈ N : wi(p) ∈ (−∞, 0]} to be the resulting
three categories of index profiles. For a given posterior p, an equilibrium index
profile is thus {L, I,H}, for L, I,H ⊂ N and I denote its universe to be Y =
{{L, I,H} : L, I,H ⊂ N}.

Consider now the set of posteriors that induce a certain index profile y−1(L, I,H) =
p ∈ ∆(Θ) : y(p) = {L, I,H}. In the appendix, I show that equilibrium actions
are piece-wise affine with respect to the posterior first moment θp, or its pos-
terior distribution p, for p ∈ y−1(L, I,H). To see the reason why actions are
piece wise affine in p, or θp, assume that wi(p) is interior in y for all players
i ∈ N . Then, for all players i ∈ N , their actions are far from changing category,
i.e. wi(p) ∈ (−∞, 0) ∪ (0, a) ∪ (a,∞). Because wi is linear and separabale in
actions of the opponents, a−i, and the first moment, θpi , if we guess that equi-
librium actions of the opponents a−i are affine in p for p ∈ y−1(L, I,H) then
for a small enough mean preserving spread of posteriors, t ∈ ∆(∆(Θ)) with
support {pL} ∈ ∆(Θ) that still preserves the index (L, I,H), i.e. such that
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pL ∈ y−1(L, I,H), wi(p
L) = wi(a−i(p

L), θp
L

i ) will be linearly affected by the
mean preserving spread of pL and so the guess of affinity is verified. Thus, for
a small enough mean preserving spread, if wi ∈ (−∞, 0) ∪ (0, a) ∪ (a,∞) then
wi(❊tp

L) = ❊twi(p
L) and indeed actions are affine7.

In this case, ai(p), the equilibrium actions are piece-wise affine in p, or θp,
a(αp + (1 − α)p′) = αa(p) + (1 − α)a(p′) for p, p′ close enough. But then,

if player i is sending a non-degenerate posterior p
s⋆i
i , then a ”small” enough

mean preserving spread of p
s⋆i
i would still keep all players in the same index

profile so that the same conclusions of Theorem 1 apply. In other words, in
the interior regions of wi, there is preference for more information by all play-

ers since then vi(θ
p) = ui(ai(θ

p), a−i(θ
p), θpi ) = ❊tui(ai(θ

p), a−i(θ
pL

), θp
L

i ) ≤
❊tui(ai(θ

pL

), a−i(θ
pL

), θp
L

i ) for a small enough mean preserving spread t ∈
∆(∆(Θ)). If this interior levels of wj(p

s⋆i ,s−i) are true for every s−i ∈ S−i,
i.e. if wj(ps

⋆
i , s−i) ∈ (−∞, 0) ∪ (0, a) ∪ (a,∞), ∀s−i ∈ S−i, then player i with

a non degenerate posterior p
s⋆i ,s−i

i would then prefer to increase the levels of

information generating a small enough mean preserving spread of p
s⋆i ,s−i

i . Thus

in any optimal non degenerate posterior p
s⋆i ,s−i

i of player i, it must be that
wj(p

s⋆i ,s−i) = 0 ∨ a for some j ∈ N and s−i ∈ S−i.
Since actions are piece-wise linear, each index profile generated by a pol-

icy is the result of finitely many intersections of half spaces and thus there
exists finitely many extreme points for each s−i, that define the candidates

of posteriors p
s⋆i
i that can be in the support of an optimal policy. Moreover,

as equilibrium actions, ai(p), are continuous functions, the extreme points are
continuously altered by a change in the opponents information policy τ−i in
the Wasserstein Metric (also known as the Optimal Transport Metric or the
Kantorovich Distance). 8 The continuity and piece wise affine features of ac-
tions, thus, guarantee the application of Maxmimum Theorems and ultimately
of a Kakutani Fixed Point in order to establish the existence of an Information
Design Equilibrium, τ⋆ in the first stage.

3.3 Cournot Duopoly Continued: Partial Revelation Dom-
inates Full Revelation

In the previous section, I showed that linearity and Interior Solutions lead
to Full Revelation. Now I reverse the statement and provide a simple example
where the possibility of expelling the opponent out of operation leads to Partial
Revelation as an optimal strategy. The intuition for the result is that Partial
Revelation increases the frequency of states in which a monopoly happens even

7In the appendix I also show that the pre-image of index profiles y−1(L, I,H) form compact
and convex subsets of posteriors that are the result of finitely many half spaces, thus, forming
the conditions for the search of faces and extreme points.

8The Wasserstein metric metrizes the notion of weak convergence and is a distance function
specially designed to compute distances of distributions with distinct supports but same metric
space.
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though it makes firms know less about the realized state of the world, and thus
necessarily leads to a loss of optimality. By running a single policy across many
θi, firm i loses local optimality but engages in a preclusion policy that increases
the frequency of a desired state when j is out of operation.

Continuing with the Cournot duopoly case, i.e. N = 1, 2. Assume there
exists two probable states of the world for each player, i.e., Θi = {li, hi} and
assume hi > li > 0.

Payoff functions are

ui(Q1, Q2, θi) = (A− b(Qi +Qj)− θi)Qi

I parameterize the prior as µi(li) = λi; µ(lj |li) = λij ; µ(hj |hi) = ρij .
A private posterior distribution in this binary state environment is fully

characterized by a real number psii = p(li|si) ∈ (0, 1).
After some computation and assuming that j 6= i and that Firm 2 is put out

of operation θ
s⋆i ,sj
j =

A+ θ
s⋆i ,sj
i

2
. We have

θ
s⋆i ,sj
j =

A+ θ
s⋆i ,sj
i

2
⇔

p
s⋆i
i

1− p
s⋆
i

i

=
ρijπ

hj

j (A+ hi − 2hj) + (1− ρij)π
lj
j (A+ hi − 2lj)

λijπ
lj
j (2lj − (A+ li)) + (1− λij)π

hj

j (2hj − (A+ li))
(2)

A sufficient condition for the RHS to be strictly positive is that lj >
A+ li

2
,

hj >
A+ li

2
, lj <

A+ hi

2
and hj <

A+ hi

2
. In words, these parametric regions

dictate that Firm i is a monopolist whenever state li is realized, no matter what
is the realization of Firm j , θj = {lj , hj} and that firm j is playing strictly
positive quantities if hi is realized.

Definition 3. Agent i is pivotal if
A+ li

2
< lj and

A+ hi

2
> hj. In words,

in case hi is realized, player j produces positive quantities in equilibrium, either
sharing the market or being a monopolist, and when li is realized player i is a
monopolist and j is out of operation.

If i is pivotal, inspection of (2) shows that all terms are positive and the
ratio is finite and strictly positive for any policy of Firm j, πj

9. From now on I
assume that Firm 1 is pivotal.

9The pivotal assumption can be graphed in the line below.

l2 h2A+ li
2

A+ hi

2
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Remark 3. Assume that Firm 1 is pivotal. Then there exists a non-degenerate
posterior that can be in the support of an optimal information policy for Firm
1.

I now analyze a case where Firm 1 is pivotal and, by running an opaque
informational policy, Firm 1 will have a payoff function that dominates the Full
Disclosure strategy for any potential policy of Firm 2, x2. Let

H1 = ρ12π
h2

2 (A+ h1 − 2h2) + (1− ρ12)π
l2
2 (A+ h1 − 2l2)

denote the gain from the non pivotal player, 2, in the form of the expected
quantity produced in equilibrium when the pivotal player, 1, is a high marginal
cost type h1 and cannot deter entry10. In the same manner, let

L1 = λ12π
l2
2 (2l2 − (A+ l1)) + (1− λ12)π

h2

2 (2h2 − (A+ l1))

denote the regret from non pivotal player, Firm 2, from stopping operations
when the pivotal 1 is of a strong type, or low marginal cost of operation li, and
is able to put 2 out of operation. In this case, the non-pivotal Firm 2 would
want to be on the consumer side, setting negative quantities, Q2 < 0, but then
needs to stop at 0 and thus L1 denotes its regret.

Observe that H1 is proportional to the average quantity provided by player
2 when there is high cost, h1, is realized by firm 1 (see the rule in the figure
below.). On the other hand, L1 measures the average consumption firm 2 would
have if it could consume player 1’s product, i.e. play negative quantities, in case
l1 is realized and thus I call it the regret quantity of firm 2 of being a producer.

Then (2) can be written as

p
s⋆
1

1

1− p
s⋆
1

1

=
H1((π2(s2|h2), π2(s2|l2))
L1((π2(s2|h2), π2(s2|l2))

Thus H1/L1 measures a gain-regret ratio for Firm 2 of being a competitor

of Firm 1 and completely defines the ratio
p
s⋆
1

1

1− p
s⋆
1

1

. As a result, the gain-regret

ratio of Firm 2 also completely defines the posterior probability p
s⋆
1

1 . The higher
is the gain-regret ratio of Firm 2 form being a competitor of Firm 1, the more
revealing of the strong state, low marginal cost, Firm 1 must make its signal

realization, s⋆1, to be, therefore increasing p
s⋆
1

1 .

The closer to the Interior solution level of entry h2 gets, i.e. as h2 ց A+ l1
2

,

the lower is the regret from being out of operation, L1, and the higher the gain
H1 of firm 2 in being a producer independently of Firm 1’s type. In this case
Firm 1 must make her experiments more revealing towards the pivotal state of
deterrence, l1.

10In fact a proportional quantity, H1/p(s2|h1), actually measures the expected quantity
provided.
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Assume now that Firm 2 is becoming more efficient on both states of the
world and this improved efficiency approaches levels of Interior Solution when

Firm 1’s marginal cost is low, i.e. when θ2 =
A+ l1

2
. This is achieved by making

the higher marginal cost approach interior solution levels, i.e. h2 ց A+ l1
2

. As

the marginal costs of Firm 2 decrease and approach interior solution levels, the
signal from Firm 1 must then be more and more revealing of a high state, low

cost, i.e. p
s⋆
1

1 ր 1. Thus, the model presents some form of continuity of the
paramaters (l, h), since approximating fundamentals to the Interior Solution
leads to more revelation even when Firm 1 emits the opaque signal realization
s⋆1.

11.

Remark 4. (2 Gets Good Too.) If h2 ց A+ l1
2

⇒ p
s⋆
1

1 ր 1, ∀s2 ∈ S2,

∀x2 = (S2, π2). In words, if the fundamentals of firm 2 approximate interior
solution levels, then any partially revealing strategy from firm 1 approximates
full disclosure.

11The gain-regret quantities H1, L1 can be visualized in the rule, since a convex combination

between (
A+ h1

2
− θ2) yields

H1

p(s2|h1)
for θ2 = h2, l2 and a convex combination of (θ2 −

A+ l1

2
) on θ2 = h2, l2 determine

L1

p(s2|l1)
.

l2

H1/p(s2|g1)L1/p(s2|d1)

h2A+ l1
2

A+ h1

2

20



1 is Monopolist

2 is Monopolist

Duopoly Region

A

2

A

2

�(l1, h2)

�(l1, l2)

�(h1, h2)

�(h1, l2)

Marginal Cost Firm 1 Θ1

Marginal Cost Firm 2

Θ2

Figure 4: Duopoly with the Presence of a Pivotal Player (Player 1)

Consider now a binary signal strategy by player 1. Indeed, by Caratheodory,
an optimal strategy is attained with at most 2 extreme points so an optimal
strategy is either a binary set of posteriors or a singleton. If player 1 has only
one non degenerate posterior, p⋆1, in the support of an optimal best response,

supp(τ⋆1 (τ2)), and if this posterior is given by p
s⋆
1

1 > λ1 then, by Bayes Plausi-

bility given by the restriction of τ1 ∈ T1(λ1), we have p′1 =
λ1 − τ1(s

⋆
i )p

s⋆
1

1

1− τ1(s1)
. If

only s⋆1 is non degenerate, then p′1 = 0 so that τ1(p
s⋆
1

1 ) =
λ1

p
s⋆
1

1

∈ (λ1, 1) and in

case p
s⋆
1

1 < λ1, then p′1 = 1 and so τ1(p
s⋆
1

1 ) =
1− λi

1− p
s⋆
1

1

∈ (1 − λ1, 1). I write the

respective value functions in both cases as

V1(τ1, τ2) = τν1(p
s⋆
1

1 ) + (1− τ)ν1(0)

if p
s⋆
1

1 > λ1 and

V1(τ1, τ2) = τν1(p
s⋆
1

1 ) + (1− τ)ν1(1)

if p
s⋆
1

1 < λ1.
Where ν1(p1) is the expected value of providing p1 ∈ ∆(Θ1) by Firm 1

integrated over the opponents signal. To compute the expected value function I
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label the posteriors ps1,s2 that are dependent on the opponents signal realization
s2. Let v

m
1 and vd1 to denote equilibrium payoffs with posterior ps for the cases

of monopoly and duopoly for Firm 1 respectively. Integrating over s2 posterior
p1 will then generate ps2p1 as final posterior after signal realization s2, where I
abuse notation and write the label of the signal form Firm 1 as it’s own posterior,
i.e. I set s1 = p1

12. I categorize the equilibrium actions after posterior ps2p1 into
index regions. In this case it suffices to label which players are playing interior
solution levels of quantities and thus I let I(p) = {i ∈ {1, 2} : wi ∈ [0, a])} the
value of having posterior p1 in the support will be

ν1(p1) =
∑

s2

p(s2|p1)[✶I(ps2p1 )={1,2}v
d
1(θ

s)+✶I(ps2p1 )={1}v
m
1 (θs1)+✶I(ps2p1 )={2}0]

=
∑

s2

p(s2 ∩ {1, 2}|p1)(
(A+ θs2,p1

2 − 2θ1)
2

9b
) + p(s2 ∩ {1}|p1)(

(θs1)
2

4b
)

Consider then the strategy of player 1 that uses one single non-degenerate

posterior, p
s⋆
1

1 , in which ∀s2 : w2(a(θ
s2,s

⋆
1 ), θs2,⋆1

2 ) ≤ 0 with indifference condition

at s2 such that w2(a( θ
s2,s

⋆
1 ), θ

s2,s
⋆
1

2 ) = 0. Note that this strategy entails making
player 2 out of operation no matter what is the state of Firm 2. With these
assumptions, three types of posteriors can be part of an optimal informational

best response and so supp(τ⋆1 (τ2)) = {0, ps
⋆
1

1 , 1} where p
s⋆
1

1 performs the distri-
bution of actions described in the beginning of the paragraph. I compute the
value functions associated.

In the appendix I show that ν1(p
s⋆
1

1 ) > ν1(0) and that ν1(1) > ν1(p
s⋆
1

1 ). If
h1 ց l1 then market fundamentals across individual states for Firm 1 do not
vary much and, by running an opaque strategy, Firm 1 is able to increase the
frequency of a more favorable distribution of actions without sacrificing local
optimality.

The profit for an unequivocal monopoly is ❊s2|p1
vm(θs2,p1

1 ). As convergence
in fundamentals h1 ց l1 imply that monopoly profits become less uncertain so

that θs2,p1 → l1, then as h1 ց l1 it must be that ν1(p
s⋆
1

1 ) → ν1(1), an Opaque
strategy will be preferred by Firm 1. In words, making a signal realization
be more opaque entails some loss of optimality that comes from Firm 1 not
making quantity decisions that are compatible with local market conditions but
rather based in average fundamentals. However, as fundamentals converge this
loss in adherence to local market fundamentals is less pronounced whereas the
benefits of increasing the frequency of monopoly states become more important
for Firm 1. The convergence in fundamentals, create then the proper conditions
for opacity to arise. We then have

Lemma 2. (1 is Homogeneous and 2 Does Not Get Too Good) Opacity Arises:
Assume player 1 is pivotal. Take a sequence of fundamentals (ht

1, h
t
2, l

t
2)t∈◆

12ps2p1 (Θ) =
p1(Θ1)µ(θ2|θ1)π2(s2|Θ2)

∑
Θ
p1(Θ1)µ(θ2|θ1)π2(s2|Θ2)
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such that ht
1 ց l1 and ht

2 → h2, l
t
2 → l2 so that lim p

s⋆
1

1t = p
s⋆
1

1 and lim
p
s⋆
1

1t

1− p
s⋆
1

1t

=

lim
Ht

1

Lt
1

< ∞. Then for t large enough, Full Disclosure by Firm 1 is strictly

dominated by a binary signal strategy with a non-degenerate posterior p
s⋆
1

1 .

In case p
s⋆
1

1 > λ1,

V (τF.R., τ2) = λ1ν1(1) + (1− λ1)ν1(0) < τ1ν1(p
s⋆
1

1 ) + (1− τ1)ν1(0)

∀τ2 ∈ T2(l2)

for l1 sufficiently close to h1.

In case p
s⋆
1

1 < λ1,

V (τF.R., τ2) = λ1ν1(1) + (1− λ1)ν1(0) < τ1ν1(p
s⋆
1

1 ) + (1− τ1)ν1(1)

∀τ2 ∈ T2(g2)

for l1 sufficiently close to h1.

The proof is in the appendix. As market fundamentals for Firm 1 converge,
i.e. h1 ց l1, expected profits from the opaque strategy also converge to the

profit when firm 1 has complete information over state l1, i.e. ν1(p
s⋆
1
t

1 ) con-

verges to ν1(1). In case p
s⋆
1

1 > λ1, firm has a benefit from the opaque strategy
that converges to a convex combination of ν1(0) and ν1(1) but that puts more
probability on ν1(1) than the Fully Disclosing experiment because, in the limit,

τ1 = λ1/p
s⋆
1

1 > λ1. In case p
s⋆
1

1 < λ1 then profits are simply converging to
ν1(1) > λ1ν1(1) + (1 − λ1)ν1(0). Thus we see that the loss of coordination of
policies with market conditions becomes irrelevant and the benefit of running
an opaque strategy, or a more uniform approach in the market segmentation
analogy of Blackwell Experiments, can become an important tool to take an
opponent out of operation. By running one single policy across both states,
l1, h1, Firm 1 can take Firm 2 in more states, states other than only the ones
induced by l1 but also for those states h1 bundled into the opaque policy. Thus
insensitivity to market fundamentals arise as a policy of deterrence.

I explain more carefully the intuition behind limHt
1/L

t
1 < ∞. As h1 ց l1 all

market fundamentals are converging including player 2’s. Moreover, Firm 2 fun-
damentals are unequivocally getting closer to interior solution level in absolute
terms - see the rule graphed below. The condition limHt

1/L
t
1 < ∞ guarantees

that, as fundamentals for Firm 1 converge, there is not enough approximation
of the fundamentals of Firm 2 towards the Interior Solution levels. Thus, this
condition is making sure that Firm 2 ”does not get good enough”, as market
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fundamentals converge, so as to force Firm 1 into more and more revealing

posteriors, p
s⋆
1

1 .

l2 ... lt2 h2 ......... ht
2A+ l1

2

A+ ht
1

2

L1/p(s2|l1) H1/p(s2|h1)

Figure 5: The interval (
A+ l1

2
,
A+ h1

2
) as t → ∞ and ht

1 ց l1

(a) I keep the proportions Hi/Li relatively fixed as the interval collapses. This yields

lim p
ts⋆

1

1
∈ (0, 1). limHt/Lt < ∞ should be read as ”2 does not get too good” .

Proposition 2. Assume player 1 is pivotal. Then, if ht
1 ց h1 and lim

Ht
1

Lt
1

∈
(0,∞), Full disclosure is strictly dominated by a Partial Revelation strategy τ⋆1 ,

where supp(τ⋆1 ) = {ps
⋆
1

1 , 0} ∪ {ps
⋆
1

1 , 1} ∪ {ps
⋆
1

1 , p
s⋆
2

2 }.

If types for each firm were perfectly correlated, Partial Revelation by the
pivotal firm would be broken or become irrelevant since Firm 2, the non piv-
otal Firm, would always have the option to reveal more information in order to
understand when the low state of 1, h1, is realized and thus whether it could
benefit from operation. This would destroy any Obfuscation attempt by Firm
1. Here perfect correlation not only induces Full Revelation as a possible equi-
librium but it makes all type of Partial Revelation be challenged against a Fully
Revealing outcome. Therefore a Full Disclosure strategy serves as a threat point
with strong correlation levels. In other words, it is only with the presence of
non perfect correlation that Obfuscation can arise.

3.3.1 Application: Market Segmentation in the Rural Areas

I now apply the interpretation of Blackwell Experiments as market seg-
mentations to the competition between two large retailers. Assume that two
firms, WM and T are competing and the only source of uncertainty in payoffs
is whether there is or not the presence of a tax incentive affecting marginal costs

of operation. I assume that demand is given by P d
i = A − κiQj −

1

2ci
Qi and

that marginal costs are given by θi.
As I assume a binary state of the world for each firm, I let θi = {hi, li} so that

in case Firm i received an incentive the state of the world for i is li and in case
Firm i did not receive a tax incentive, the state is hi. With this specification we
fall back into the setup of the previous section, where the presence of a pivotal
firm and the condition of homogeneous market fundamentals made Obfuscation
be present in the form of thick market segmentations. In particular, if we assume
WM is pivotal, then WM has an incentive to run one single policy across all
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neighborhoods that are sufficiently close to each other, i.e. the policy should be
uniform for sufficiently homogeneous fundamentals, lWM , hWM that have small
enough distances d(lWM , hWM ) = ||lWM−hWM || is sufficiently small. If a small
enough change in taxes is able to makeWM take T out of operation , an Opaque
strategy from WM dominates Full Disclosure and thus a decentralized, and
sensitive to fundamentals, approach, is deferred by a strategy that is the same
for multiple states θWM = {lWM , hWM} in which d(lWM , hWM ) is sufficiently
small. A potential empirical question that emerges then is to whether Walmart’s
operation is sensitive to tax changes in rural towns or whether a more uniform
tax system can induce less competition. 13.

Figure 7: The distribution of Walmart’s and Targets northwest of Indianapolis.

(a) Note that store policies differ between chains Target, T , and Walmart, WM .
Target has a clear presence in the Urban areas of Indianapolis and it’s suburbs. As we
move away from the urban areas and approach the rural portions, Walmart dominates
the map with a uniform strategy. This paper shows that WM policies on the northern
portions of this map, the rural areas, may be insensitive to local market conditions
such as local taxes because many stores in those regions are there for a preclusion
effect and not a market driven motive. Source: Google Maps

13In the figure for the surroundings of Indianapolis, look at the northwest region of Indi-
anapolis and the dominance of Walmart over Target. Note that this dominance is true for a
small population rural area - I have scanned pretty much the Midwest and South; the google
maps images seems to exhibit the same pattern, with Target competing, and, more rarely,
dominating, small and large urban areas, whereas Walmart completely dominates the rural
and deep suburban areas. In the appendix I provide a satellite image to show that the region
depicted is indeed rural.
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Figure 9: The distribution of Walmarts and Targets in the Chicago region.

(a) Note that here both players are playing interior solutions and policies are homo-
geneous. Source: Google Maps

I see this contrast between rural and subsurban areas and the differences
in the large retail chains policies as indication that the model can explain in-
teresting retail market segmentations phenomena, as in Walmarts vs. Targets
distributions policies.

4 Conclusion

I have shown that Persuasion models are important tools to endogenize in-
formation structures in standard economic models like Cournot or Bertrand.
If firms can disclose Blackwell Experiments Publicly, a trade-off between more
or less revealing experiments arise. On one hand, Fully Revealing Experiments
enable firms to adapt to local market conditions in a nationwide industry, or
to adapt to the true state of the world under uncertainty. The cost of more
revelation by firms is that, by revealing information publicly, competitors know
more about the overall state of the world. In being more informative to them-
selves, firms end up also revealing information to their opponents. Opaque
Signal Structures, on the other hand, hide information from the opponents and
from the own firm in the action stage. Firms that know less about their own
types can commit better to aggressive policies, increasing the frequency in which
the opponent is out of operation - i.e. a deterrence strategy. The cost of being
less informative is that companies loose the capacity to coordinate their actions
with the realized states of the world.

Therefore, I describe a trade-off between coordination of actions with states
of the world and the commitment to run aggressive policies and induce desired
distribution of actions by the opponents. Here information in the action stage is
symmetric and the setup studied is of continuous static games. Similar models
can be used to study models with asymmetric information in the action stage
or that have a dynamic setup of negotiation - a bargaining model of information
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exchange, for example.
In this paper I endogenize the Information Structure of canonical economic

setup. In market economic setups it may not be reasonable to assume an exoge-
nous signal structure when firms, or economic agents, themselves can engage in
informative policies. Therefore a more detailed, industry-based, modelling of the
information setups can be of help in understanding the Information Structures
that could arise in a market outcome.

In the Cournot case, I show that firms might engage in store implementa-
tion policies that insensitive to local market arose as a commitment device to
pursuing an aggressive store quantities policy, a ”Flooding” behavior, that can
be optimal when the flooding firm is indifferent in terms of fundamentals across
different markets. In this case controlling the distribution of opponents via
insensitivity of the number of stores across markets will be desired because fun-
damentals are similar across markets. Thus even though the firm policies ignore
local market conditions, the sub-optimal assignment of policies is obfuscated by
the effect of increasing the frequency in which the firm drives the opponent out
of operation.
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5 Appendix 1: U-Cover Analogues for Affine
Actions

5.1 Local Preference for Information

I start with a reduced form approach that puts in evidence the main technical
contribution of this paper. The economic models that are behind the equilibrium
assumptions will be made clearer in the next section and should be a motivation
for the techniques developed here. Assume N senders are disclosing public
signals over a finite set of states of the world, (θi)i∈N , that are jointly distributed
according to a common prior, µ ∈ ∆(Θ), with support Θ = {θ = (θi)i∈N :
µ(θ) > 0}. Importantly, senders can only make Blackwell Experiments over
the i’th dimension of the state θ = (θi)i∈, i.e. the Blackwell experiments take
the form (Si, πi : Θi → ∆(Si)) for |Si < ∞|, or a Bayes Plausible distribution
(τi, Si) ∈ ∆(∆(Θi)).

14 Note that this environment is not Blackwell Connected,
as in Gentzkow and Kamenica (2017), as senders can only make experiments
over θi but the (payoff relevant) state of the world is the joint random variable
θ = (θi)i∈N . Both, Sender i and receiver i, derive utility over (θi, a) given by
ui(ai, a−i,θi), assumed linear and separable in a−i and θi and I assume that ui

depend on the uncertain variable only through it’s ith component, θi.

Assumption 1. ui(ai, a−i, θi) is linear and separable in a−i, θi.

After the senders design experiments in period 1, all is made common knowl-
edge, i.e. (τi)i is observed, and, in period 2, a joint signal s, distributed
according to τ and yielding posterior ps 15, is realized and a set of N re-
ceivers with preferences given by Ups

i = ❊psui(ai, a−i, θi), ∀i ∈ N play a si-
multaneous move complete information game with action space ai ∈ [0, a] - i.e.

Gps

= {(Ups

i , [0, a])i∈N}. As utility is linear in θi, preferences for player i, after

posterior ps, are given by the utility function Ups

(ai, a−i) = ui(ai, a−i, θ
ps

i ),

for θp
s

i ≡ ❊psθi such that ai(θ
ps

) = argmaxai∈[0,a]{Ups

(ai, a−i(θ
ps

i ))} is the
equilibrium action for player i after posterior ps. It is a natural consequence of
linearity and the environment of public signals then to assume that equilibrium
actions depend on p through it’s first moment, θp, so that ai : Co(Θ) → A,
∀i ∈ N . I.E. given a pair p, p′ ∈ ∆(Θ) such that θp = θp

′ ⇒ a(θp) = a(θp
′

).
We can then write the sender’s the value from a realized posterior p in period

2 for sender i is vi(θ
p) = ui(ai(θ

p), a−i(θ
p), θpi ) and the value from Blackwell

Experiment τi is Vi(τi, τ−i) = ❊svi(θ
ps

). I am interested in the S.P.E. of the
senders of information in the first period, τ⋆, where τ⋆i (τ−i) is a signal best
response for sender i after belief τ−i of the opponents, when player i anticipates
that, when ps ∈ ∆(Θ) is realized, (ai(θ

ps

))i∈N will be played by all players .

14Letting mui = margθiµ make (τi, Si) be such that τi ∈ ∆(∆(Θi)) and ❊τps = µi we
have an Homeomorphism between τ and π. For more see Gentzkow and Kamenica (2011).

15Specifically the frequencies of the signals are τ(s) =
∑

θ µ(θ)Πiπi(si|θi) and the posterior

associated is obtained by ps(θ) =
µ(θ)Πiπi(si|θi)

τ(s)
, both numbers between 0 and 1.
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Now, assume that there exists a finite cover Y such that Co(Θ) = ∪
y∈Y

y for

y a compact and convex set of Co(Θ) and Y finite. Thus the map f : ∆(Θ) ⇒ y
defines a compact cover for ∆(Θ) because g : ∆(Θ) → Co(Θ) is continuous.

Assumption 2. For each player, ai : Co(Θ) → [0, a] is continuous, and ai(θ
p)

is piece-wise affine in y ∈ Y , ∀i ∈ N , ∀θp ∈ f−1(y) ⊂ Co(Θ). Thus, ∀θp ∈ y,
ai(θ

p) = βy
i θ

p +Hy
i , if ai(θ

p) ∈ [0, a].

It turns out that under linearity of the actions with respect to posterior
moments and under linearity of the payoff function over opponents actions,
player i has information revelation as a weakly dominant strategy.

Theorem 2. vi(θ
p) is weakly convex in θp in y, ∀y ∈ Y . In other words, given

τ, τ ′ ∈ ∆(∆(Θ)), distributions over posterior distributions s.t. τ �M.P.S. τ
′ and

such that ∀p ∈ supp(τ) ∪ supp(τ ′), f(p) ∈ y, we have ❊τvi(θ
p) ≥ ❊τ ′vi(θ

p′

).

pf: Given θp make τ ∈ ∆(Co(Θ)) be such that ❊τθ
s = θp and that ps ∈

f1(y), ∀s ∈ S = (Si)i∈N . Then, just taking into consideration the opponents
reactions a−i() to the m.p.s. of θp, we get vi(θ

p) = ui(ai(θ
p), a−i(θ

p), θpi )❊p) =

❊τui(ai(θ
p), a−i(θ

ps

), θp
s

i ) ≤ ❊τvi(θ
ps

) since vi(θ
ps

) = ui(ai(θ
ps

), a−i(θ
ps

), θp
s

i ) =

argmaxai
ui(ai, a−i(θ

ps

), θp
s

i ). �
The second equality says that player i is indifferent after revealing more

information to the opponents because the opponents reaction is linear, but then
a more local point optimization given by ai(θ

ps

i ) is a weak improvement to player
i. The theorem should be read as local preference for revelation for designers of
information. Thus, as long as the categories of equilibrium actions, y, are fixed,
all players have weak preference for more information on the Blackwell order for
distributions over posterior distributions, p ∈ ∆(Θ), τ . In particular, we will see
that senders will have local preference for more revelation. The importance of
this theorem is not only on it’s effect on the the strategic forces but on existence
of best responses τ⋆i (τ−i) with a finite set of candidates pi ∈ supp(τ⋆i (τ−i)).

Note that for each player i, actions, ai(), is a continuous in θp ∈ Co(Θ) and
so vi() is continuous in θp ∈ Co(Θ). By Caratheodory, the optimal solution lies
in the set of extreme points of the graph of νi(p

si
i , τ−i) where

νi(p
si
i , τ−i) ≡ ❊s−i|sivi(θ

ps

)

as a function of psii - the problem of sender i can be written as Vi(τ
⋆
τ−i,τ−i

) =
max(z : ((z, µi) ∈ co(pi, νi(pi)))) for µi = margθiµ ∈ ∆(Θi) and pi ∈ ∆(Θi)
. Note that νi() is a continuous function of pi ∈ ∆(Θi) and thus it’s convex
hull is a compact space. However Graph(νi) might have an infinite amount of
extreme points so that characterization of optimal best responses τ⋆i () might be
troublesome. I show now that in the problem I work with there are a finite set of
extreme points if actions are affine and value functions are linear and separable
in states and actions of the opponents, a−i, θ

p
i .

Suppose that ai(θ
p) = min{max{wi(a−i(θ

p), θpi ), 0}, a}, for wi(., .) linear and
separable in a−i and θpi . Note that wi being linear in a−i, and a−i being affine
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in θp ∈ Co(Θ) makes wi(a−i(θ
p), θpi ) be affine in θp 16. For shortness, I abuse

notation and write wi(θ
p) = wi(a−i(θ

p), θpi ). I let H(p) = {i ∈ N : wi(θ
p) ≥ a}

and, analogously, I(p) = {i ∈ N : wi(θ
p) ∈ [0, a]}, L() = {i ∈ N : wi(θ

p) ≤ 0}
to be the categories , the classes of the equilibrium actions of the receivers after
observing posterior, p. Note that ai(θ

p) = a ⇔ i ∈ H(p) and analogously for I
and L so that, using the fact that wi(θ

p) is affine, these regions define half spaces
in θp ∈ Co(Θ) and being a finite set of half spaces, we have finitely many extreme
points. Now to navigate to p ∈ ∆(Θ), I define f : ∆(Θ) → (L(), I(), H()) 17.
Letting Y ≡ {y = (L, I,H) : y ∈ range(f()} note that Y is finite. Moreover,
the set f−1(y) is convex because y is convex and f is affine in θp inside a
specific y by assumption, so that if we complete the index profile y with it’s
closure, y = {y′ : y′ ⊃ y}, we get a compact and convex finite dimensional set
y. Moreover, since wi is affine in θp because a−i is affine in θp given θp ∈ y,
then the sets y are finite intersections of half spaces and thus have finitely many
extreme points.

Now let di(p
si
i ) = (f(ps))s−i

with range Zi = {zi ∈ range(di(p
si
i ))} and not

that |Zi| < ∞ it’s pre-image d−1(zi) is a compact convex finite dimensional set
that is a finite intersection of closed half spaces because the intensive margin
decision, wi(θ

ps

) = ui(a−i(θ
ps

), θp
s

i ) is a composition of a linear function of
opponents actions, a − i, with a linear (or affine) function in θp

s

given by a−i()
by assumption. Thus I conclude that d−1

i (zi) has finitely many faces and thus
extreme points. Intuitively, di gives the distribution of index profiles obtained
by i with policy psii when opponents play τ−i. Following closely Lipnowski and
Mathevet (2019), we get

Proposition 3. νi() is piece-wise convex in d−1(zi).

pf: Given pi ∈ d−1
i (zi), pick any mean preserving spread of pi, (τi, Si)

such that psii ∈ supp(τi) : psii ∈ d−1
i (zi), ∀si ∈ Si. By the Law of Iterated

Expectations, we have
νi(pi) = ❊s−i|pi

vi(θ
pis−i)

= ❊S−i|pi
vi(❊Si|s−i

θsi,s−i) ≤ ❊S−i|pi
❊Si|s−ipi

vi(θ
sis−i)

= ❊Si|pi
❊S−i|piSi

vi(θ
pisis−i) = ❊Si|pi

νi(p
si
i )

�

A mean preserving spread of pi induces a mean preserving spread of the
resulting posterior ps and the resulting market fundamental θp

s

for every signal
realization of the opponents, s−i. Now we have d−1(Zi) forms a νi-cover to use
the term coined in Lipnowski and Mathevet (2019). Now I can apply a similar
approach as theirs to prove

Proposition 4. Given 1 and 2, the following holds:

16Later we will see that wi is the intensive margin decision of player i, i.e. receiver i’s
decision after observing a−i and ignoring the constraints given by ai ∈ [0, a].

17After performing the continuous map ∆(Θ) → Co(Θ) such that p →< p,Θ >
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1. The problem max{z : (µi, z) ∈ Co((psii , νi(p
si
i )))} is well defined and ob-

tained with at most |Θi| extreme points of (psii νi(pi)).

2. τ⋆i (τ−i) ∈ ∆(Ext(d−1(Zi))). There are finitely many candidates |Ext(d−1(Zi))| <
∞.

pf: Existence of an information best response is a consequence of continuity
of νi(). That any non degenerate point p⋆i must be extremal in whichever zi it
generates is a consequence of convexity of νi() in d−1

i (zi) given in proposition
(3). Finiteness of Ext(d−1(Zi)) comes from |Zi| < ∞ and that ∀zi ∈ Zi, d

−1
i (zi)

is a finite intersection of half spaces and thus have finitely many extreme points.
�

Proposition 5. Ext(d−1
i )(zi) ⊂ {psii ∈ d−1

i (zi) : wj = 0 ∨ a, j ∈ N}, ∀zi ∈ Zi

To see the reason that this proposition is true and in particular the reason
that wj = 0 ∨ A for some player j contains the extreme points of the graph
of νi() for player i, I show that an analogous rationality to that of Theorem 2
applies in a compact and convex subset of the posterior distributions, ∆(Θi).
Suppose that player i held a non-degenerate posterior ps

⋆i

i under τi and assume
that aj(p

s⋆is−i) ∈ (−∞, 0)∨ (0, a)∨ (a,∞), ∀s−i, ∀j ∈ N . Note that a m.p.s. of
ps

⋆i

i reflects into a m.p.s. of ps, for each s−i ∈ S−i. There exists, thus, a new
strategy that makes a m.p.s. of ps

⋆i

i but makes the action profile ys the same
for each s−i because actions are continuous and m.p.s.’s posteriors can be made
arbitrarily close to the average distribution psii . Since actions are piece-wise
affine inside a region that yields the same index y = (H,L, I), for each s−i,
the index ys−i is kept constant and so Theorem (2) applies. A mean preserving
spread of psii induces a mean preserving spread of ps, ∀s−i ∈ S−i, that is an
improvement for Firm i, at least weakly. As in Theorem 1, Linear reactions and
the stability of the index of players in each action category, y, translates into
preference for more information locally.

The indifference condition, wj(a(θ
s⋆i ,s−i), θ

s⋆i ,s−i

j ) = 0 ∨ a, means that some
Firm j is made on the verge of entering the Interior Solution Condition, given
by region I. The extreme points of these sets y, then, are points where the
corner solution regions H,L are explored at it’s maximum level in the mean
preserving spread order.

In terms of existence of an information equilibrium, τ⋆, I apply a stan-
dard Maximum Theorem leading to a Kakutani’s Fixed Point theorem after
I introduce a metric for policies τj , namely the Wasserstein Metric for dis-
crete probability measures that is widely used in categorization exercises and
k−nearest neighbours methods in computer science18. The Wasserstein met-
ric metrizes the weak convergence notion19. Given τ−i, the optimal policy of
sender i, τ⋆i (τ−i), is obtained as a convex combination of a finite set of candi-
dates τ⋆i ∈ Co(ext(d−1(Zi))) and thus can be summarized in a finite dimensional

18In Computer the Wasserstein is known as the Earth Moving Distance.
19I provide a formal treatment of the Wasserstein Metric in the appendix.
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fixed vector - by assigning zero probabilities to some extreme point candidates
perhaps - and by Caratheodory the optimal τ⋆i is obtained with at most |Θi|
elements. Now, if we start with the assumption that the opponents strategies
τ−i have at most |Θj | for each j 6= i then, without loss, we can pay strict
attention to strategies that are |Θi| vectors. Then I can apply the maximum
theorem, using the notion of Wasserstein convergence that is analogous to weak
convergence, to say that τ⋆i (τ−i) is an Upper Hemicontinuous correspondence
as a function of τ−i and, with τ⋆i (τ−i) being an Upper Hemicontinuous object
for each i, existence of an equilibrium, τ⋆, is guaranteed.

Proposition 6. There exists a best response τ⋆i (τ−i). Moreover, the best re-
sponse is Upper Hemicontinuous w.r.t. τ−i ∈ T−i = (Tj)j 6=i in the topology
generated by the Wasserstein-1st order Product Metric for τ−i.

5.2 U-covers and Characterization of Generic Best Re-
sponses

In this convex geometry section I develop techniques that allow me to prove
proposition (4 ).

Create categories for the types of linear portion of the best response, the wi

functions, let the index of active players be

Ĩ(θp) = {i ∈ N : A ≥ wi(ã−i(θ
p), θpi ) ≥ 0} ⊂ N

where wi(a−i, θ
p
i ) = ci[

∑

j 6=i cijaj + θpi ]. This class of sets depict the agents
that have some sensitivity of best responses after small perturbations in the
equilibrium actions from the opponents. Similarly we can define Ĩ = I ◦❊

I(p) = {Ĩ(θp) : ❊p[θ] = θp}

Define similar objects for the players that are playing corner solutions, either
high or low actions, forming the set of inactive players

L̃(θp) = {i ∈ N : wi(ã−i(θ
p), θpi ) ≤ 0} = L(p)

letting the range attained by some posterior statistic θp ∈ Co(Θ) be

L = ∪θp∈Co(Θ)L̃(θ
p) = ∪p∈∆(Θ)L(p) ⊂ N

and same for the players that are producing a fixed upper bound quantity

H̃(θp) = {i ∈ N : wi(ã−i(θ
p), θpi ) ≥ A} = H(p) ⊂ N

and
H = ∪θp∈Co(Θ)H̃(θp) = ∪p∈∆(Θ)H(p)

I define, then, the function that takes from market fundamentals to an equi-
librium profile of actions
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f̃ : Co(Θ) → I ×H× L
The function f̃ indicate the action profile resulting from market fundamental

θp ∈ Co(Θ) associated to posterior p ∈ ∆(Θ). I let f(p) = f̃ ◦ ❊p where the
operator ❊p takes from p ∈ ∆(Θ) → Ep(θ) and defines

f : ∆(Θ) → L× I ×H

for H(ps) = {j : wj(a(θ
ps

), θp
s

j ) ≥ a}, L(ps) = {j : wj(a(θ
ps

), θp
s

j ) ≤ 0} and

I(ps) = {j : wj(a(θ
ps

), θp
s

j ) ∈ [0, a]} and I let

f(∆(Θ)) = f̃(Co(Θ)) ≡ Y

Proposition 7. ã(θp) is piece-wise affine in θp ∈ Co(Θ)∩ f̃−1(y) and, thus, on
∆(Θ) ∩ f̃−1(y), for every p ∈ f−1(y), ∀y = (I, L,H) ∈ Y . Thus for all i ∈ I,
ã(θp) = βi

Iθ
p + Ci

H , ∀θp ∈ Co(Θ) ∩ f̃−1(y), ∀p ∈ ∆(Θ) ∩ f−1(y).

pf: Assume I(θp) = I. Assume that ai(θ
p) = βiIθ

p ,∀i ∈ I and βjI = 0, ∀j ∈
L. Then

BRi = ci[θ
p
i +

∑

j∈I

cij [
∑

j′

βj′

jIθ
p
j′ ] +A

∑

j∈H

cij ]

= θpi (1 +
∑

j∈I/i

cijβ
i
jI)

︸ ︷︷ ︸

βi
iI

+
∑

j∈I/i

θpj (cijβ
j
jI

︸ ︷︷ ︸

D.E.

+
∑

j′ 6=j

βj
j′Icij′

︸ ︷︷ ︸

I.E.
︸ ︷︷ ︸

βj

iI

) +A
∑

j∈H

cij

I let CiH = A
∑

j∈H cij . It remains to solve for βj
iI , j ∈ I which counts to

|(βj
iJ)j∈I | = I2. Now for each i ∈ I we have |I| equations and this solves for

βiI = ((βj
iI)j∈I)i∈I . to get the result. �.

Proposition 8. f−1(y) is a convex set.

pf: Note that actions are affine, for each i ∈ N , and for each p ∈ f−1(y).
Let y = (L, I,H). Affine actions, as functions of the fundamentals, θp, show
that the regions H−1(H), I−1(I) and L−1(L) are all half spaces in terms of
fundamentals, θp. Now note that f−1(y) = L−1(L) ∩ I−1(I) ∩H−1(H) which
is a finite intersection of half spaces and, as so, it is a convex region. �

However since the function f may not be continuous in y, f−1 is not closed
and thus not compact. In order to compactify the object f−1(), I will cover a
specific y with it’s closure. The goal is to compactify y with it’s closure and
from there, obtain faces of compact convex finite dimensional sets that lead the
search for extreme, optimal, points. To this end, and given a specific y ∈ Y ,
define the collection

y = ∪{y′ ∈ Y : y′ ⊇ y}
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to be the closure of y with universe defined as

Y = ∪yy

Remark 5. For every y ∈ Y , f−1(y) is a compact convex finite dimensional
set. Moreover, since f−1(y) is a finite intersection of half spaces, and thus it
has finitely many extreme points.

The closure of y, y, takes the action profile y and includes in the collection
y all other action profiles that includes the action profile y but, in addition, the
operator adds action profiles to the collection y, y′ ⊃ y, in which additional
players are made indifferent between corner and interior solutions. If we take
y = (Ly, Iy, Hy), then i ∈ Ky implies i ∈ Ky′

for y′ ∈ y, for k = Ly, Iy, Hy ⊂ N .
And of course, any market p lives in some y = f(p) and so, for y = {y′ :

y′ ⊇ y},

∆(Θ) = ∪y∈Y f
−1(y)

As we have ∆(Θ) = ∪y∈Y f
−1(y), Lemma 5.29 from Aliprantis and Bor-

der(1999) together with compactness and the cover properties pointed out in
the previous two remarks yield

Remark 6.

Co(∆(Θ)) = Co{∪y∈Y Co(f−1(y))}

Co(∆(Θ)) = {
∑

y∈Y

λy ∗ py : λ ∈ ∆(Y ), py ∈ f−1(y)}

Now the goal is to study the effects of a policy from player i on the distri-
bution of outcomes so I consider the chain of continuous maps that result from
fixing τ−i and s−i

∆(Θi)× T−i × S−i → ∆(Θ) → Co(Θ) → a(Co(Θ)) → Y

Therefore, let y(psii , τ−i, s−i) = f(ps). Then

di(p
si
i , τ−i) = (y(psii , τ−i, s−i))s−i∈S−i

with range

Zi(τ−i) = {di(pi, τ−i) : pi ∈ ∆(Θi)}
and element zi ∈ Zi.

Let

f |i : ∆(Θi)× (sj , τj)j 6=i → Y

Note that

∆(Θi) ≡ d−1
i (Zi) = ∪zi∈Zi

d−1
i (zi) =

∪zi∈Zi
∩s−i

f |−1
i (ys−i

zi )
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Proposition 9. d−1
i (zi) is a compact convex set. Moreover, d−1

i (zi) has finitely
many extreme points.

pf: Compactness and convexity come from the fact that for each y, f−1(y) is
a compact and convex set and d−1

i (zi) = ∩s−i
f |−1

i (ys−i) which is an intersection

of closed and compact spaces. Note that (aj(θ
p))j∈N is affine in ∀pi ∈ d−1

i (zi).
The inequalities defined in zi define a set of half spaces in Co(Θ) ∩ zi. As
ai = min{max{wi(a−i(θ

p), θpi ), 0}, a} determines a closed half space of θp ∈ y,
it also defines a half space in pi because, by the law of iterated expectations,
θs−ipi = ❊θi∼pi

❊θ−i|θiθ is affine in pi. I.E. f |−1
i (ys−i) is a finite intersection of

closed half spaces. This means that d−1
i (zi) has finitely many extreme points.

�

Compactness and Convexity generate the proper conditions for the search
over faces and extreme points in those sets using Caratheodory’s Theorem. The
argument for using zi as a cover in order to organize the problem comes also
from the fact that the policies τi can be depicted into distributions over zi ∈ Zi

Co((∆(Θi), νi(∆(Θi))) = Co(∪zi∈Zi
Co(∆(Θi) ∩ zi, νi(∆(Θi) ∩ zi))

or
Co((∆(Θi), νi(∆(Θi))) = {(

∑

zi∈Zi

λzip
zi
i ,

∑

zi∈Zi

λziρi(p
zi
i ∩ zi)

: pzii ∈ ∆(Θi) ∩ zi, ∀zi ∈ Zi}

Theorem 3. Fix τ−i and the resulting di(∆(Θi)). Then

V (µi) = maxτi∈Ti(µi){vi : vi ∈ Co((∆(Θi), νi(∆(Θi)))} = (3)

max
τi∈Ti(µi)

{vi : vi ∈ Co(∪zi∈Zi
max

t
zi
i

∈Ti(p
zi
i

∩zi)
{ṽi : ṽi ∈ Co((∆(Θi)∩zi, νi(∆(Θi)∩zi))}

(4)

pf: From Co((∆(Θi), νi(∆(Θi))) = Co(∪zi∈Zi
Co((∆(Θi) ∩ zi, νi(∆(Θi) ∩

zi))} and using Lemma 5.29 of Aliprantis and Border, we write vi ∈ ρ(µ0i) as
vi =

∑

zi
τi(zi)ṽ

zi
i for ṽzii ∈ ρ(pzii )|zi . But ṽzii ≤ V (pzii )|zi = maxtzi

i
∈Ti(p

zi
i

∩zi)
{ṽi :

ṽi ∈ Co((∆(Θi) ∩ zi, νi(∆(Θi) ∩ zi))} and because Ti(p
zi
i ∩ zi) is compact the

maximum belongs to the set. Thus ∀zi ∈ Zi, ∃tzii ∈ Ti(p
zi
i ∩ zi) ⊂ ∆(∆(Θi)) :

❊t
zi
i
pszi = pzii and ❊t

zi
i
νi(p

szi ) ≥ ṽzii , i.e. (3) ≤ (4) .

As for the reverse direction, note again that the domain, Ti(p
zi
i ∩ zi), is a

compact set and thus the compact image of the graph of a continuous function is
a compact set and thus reaches it’s maximum in the set. I.E., ∃tzii ∈ ∆(∆(Θi))
such that pi ∈ supp(tzii ) ⇒ pi ∈ zi and thus V (pzii )|zi is well defined for any pzi ∈
zi, ∀zi ∈ Zi and I let tzii ∈ Ti(p

zi
i ∩ zi) be the resulting policy ∈ ∆(∆(Θi)). As

vi ∈ Co(∪ziV (pzii )|zi) then vi =
∑

zi
τi(zi)V (pzii )|zi for τi ∈ Ti(µ0i). Therefore,
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letting ri(s
zi
i ) = τi(zi) ∗ tzii (szii ) then

∑

zi

∑

s
zi
i
ri(s

zi
i )p

s
zi
i

i = µ0i and thus I

conclude that ri ∈ Ti(µ0i). Finally vi =
∑

s
zi
i
ri(s

zi
i )νi(p

s
zi
i

i ) and thus vi ∈
Co((∆(Θi), νi(∆(Θi))). I.E. (4) ≤ (3) �

The above theorem states that the information design of player i can be
separated into two steps. First, agent i assigns a distribution of posterior dis-
tributions, τi ∈ ∆(∆(Θi)) with support given by pzii ∈ supp(τi) whence each
pzii ∈ supp(τi) belongs to a specific zi, i.e. pzii ∈ d−1(zi). From there, player
i takes pzii ∈ supp(τzii ) as the new prior and optimally reallocates, generating

signals q
s
zi
i

i ∈ ∆(Θi) ∩ d−1(zi) under distribution tzii ∈ ∆(∆(Θi)), i.e. for all

q
s
zi
i

i ∈ supp(tzii ), q
s
zi
i

i ∈ d−1(zi) and, at the same time ❊t
zi
i
qzii = p

s
zi
i

i . This con-

strained reoptimization is only possible because d−1
i (zi) is a compact, convex,

set.
The designers must choose first an allocation of resources to attainable zi’s.

Then, managers in charge of local segmentations will shift resources constrained
to pi ∈ zi to optimally allocate resources on their own. The headquarters takes
this step as given in the value function V (pzii )|zi = maxti∈Ti(p

zi
i

)∩zi
ρ(pi) that

is the concavification constrained to zi. So the objective of the headquarters
becomes simple, after we solve the locally concavified problem

V (pzii )|zi = max
ti∈Ti(p

zi
i

)∩zi

ρ(pi), ∀pzii ∈ zi

As Caratheodory Theorem indicates, the maximum is attained using (at
most |Θi|) extreme points and, thus, finding the extreme points of the convex
hull of the graph at zi, Co((∆(Θi ∩ zi), νi(∆(Θi ∩ zi))) is important. Let me
consider the interior of d−1

i (zi), first.
Linearity of actions restricted to zi is given by Proposition (7), and thus

convexity of the value function, is still present, provided that we restrict the
domain of posteriors over θ, p, to the set zi = ∩s−i

d−1
i (ys−i

). Once again mean
preserving spreads will be weakly preferred.

Proposition 10. νi(pi) = ❊s−i|pi
vi(θ

pi,s−i) is convex in pi, for pi ∈ d−1(zi) =
∩s−i

f−1|i(ys−i
).

Linearity once again will guarantee that optimal information policies in
Ti(p

zi
i ∩ zi) must be maximal in the mean preserving spread order. An op-

timal strategy must be such that any mean preserving spread of a posterior
p′, p′′ : ps = αp′ + (1− α)p′′ has either p′ or p′′ falling out of zi = ∩ys−i

. Imag-

ine, on the contrary, that there exists p′ 6= p′′ ∈ d−1(zi) : αp
′ + (1 − α)p′′ = p.

Since player i would have a weak preference for more decentralization, restricted
to zi, αp

′′ + (1 − α)p′′ would be weakly preferred to p. In fact, we can depict
this in terms of convex geometry terms

ext(d−1(zi)) = ∪s−i
ext(f−1|i(ys−i

) ∩ zi)

ext(f−1|i(ys−i
) ∩ zi) = {pi ∈ ∆(Θi) ∩ zi : Ti(pi ∩ ys−i

) = {pi}}
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Proposition 11. There exists an optimal ti ∈ argmax[V (pzii )|zi ] such that
supp(tzii ) ⊂ ext(d−1(zi)). I.E. ti is maximal in the mean preserving spread
order for distributions over ptii ∈ zi.

pf: The result follows from Corolary 2.
�

The non-degenerate extreme points in the space of private posteriors are
dictated by regions where some player is indifferent between either playing a
strictly positive amount and zero, i ∈ I ∩ L, or in which players are indifferent
between playing a strictly lower than A quantity or A, i.e. i ∈ I ∩H.

Fixing τ−i and a realization s−i, such that y = y(pi, s−i) and y = {y′ : y′ ⊇
y}, let

F (zi, H) = ∪
y′:Hy′∩Iy′ 6=∅

{pi ∈ ∆(Θi) ∩ zi ∩ y′}

and similarly

F (zi, L) = ∪
y′:Ly′∩Iy′ 6=∅

{pi ∈ ∆(Θi) ∩ zi ∩ y′}

Proposition 12.

Bound(f |−1
i (y) ∩ zi) = F (zi, L) ∪ F (zi, H)

pf: Note that {pi ∈ ∆(Θi) ∩ zi ∩ y′} is a proper face of f |−1
i (y) ∩ zi for

y′ ∈ q ∩ I, with q = {0, a}, and thus it belongs to the Bound(f |−1
i (y) ∩ zi) -

since the boundary of any space is the union of it’s proper faces.
Now assume p /∈ F (zi, L) ∪ F (zi, H) with the purpose to show that p ∈

zi/Bound(f |−1
i (y) ∩ zi). Then, L(p) ∩ I(p) ∪H(p) ∩ I(p) = ∅. Thus by picking

any other element p′ ∈ f−1(y)∩zi, we have [αp, p
′] ⊂ f−1(y)∩zi for some α > 1

and since p′ is arbitrary, p ∈ Int(f−1(y) ∩ zi). �
As extreme points are faces that are points any extreme posterior distribu-

tion for zi, pi ∈ ext(d−1(zi)) must be an extreme element for some y′ ∈ y and
for some q = {0, a}.

Proposition 13. There exists an optimal policy, τ⋆(τ−i), such that for all

non degenerate p
s
zi
i

i ∈ ∆(Θi) ∩ zi, p
s
zi
i

i ∈ ext(F (zi, q)) some y′ ∈ y, for some
q = {0, a}. In other words, for some s = (s⋆i , s−i), for some player j ∈
N , wj(a(θ

ps

), θp
s

j ) = 0 ∨ A, if p
s⋆i
i ∈ supp(τ⋆i ) is non degenerate and for all

Ti(p
s⋆i
i )|zi = {ps

⋆
i

i }

Alternative proof of Proof of Proposition 4:
pf: By Theorem 3 (above), there exists an optimal policy τ⋆ s.t. ∀psii ∈

supp(τ⋆i ), p
si
i ∈ Ext(d−1

i (zi)) so there exists an optimal policy τ⋆ ∈ ∆(ext(d−1
i (Zi))).

By Proposition 9 there are finitely many candidates |ext(d−1
i (Zi))| < ∞. �
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5.3 Uniqueness of Equilibrium Actions w.r.t. Posterior p

In this section I show that, given ui(ai, a−i, θi) =
−a2i
2ci

+ ai
∑

j 6=i cijaj + θiai

uniqueness of equilibrium actions for a given posterior distribution p is guaran-

teed if |cicij | <
1√

N − 1
.

Proposition 14. Assume that |cicij | <
1√

N − 1
. Then there exists a unique

Nash Equilibrium of the game Gp = {(up
i , Ai)i≤N} for up

i =
−a2i
2ci

+ai
∑

j 6=i cijaj+

θpi ai.

Given two profiles of actions, a = (ai)i, a
′ = (a′i)i, we want to show that

d(BR(a), BR(a′)) < δd(a, a′) where d(x, y) = [
∑

i(xi − yi)
2]1/2 and δ < 1

(d(BR(a), BR(a′)))2 =

∑

i

(min{max{wi(a−i, θ
p
i ), 0}, a} −min{max{wi(a

′
−i, θ

p
i ), 0}, a})2

=
∑

i

|min{max{wi(a−i, θ
p
i ), 0}, a} −min{max{wi(a

′
−i, θ

p
i ), 0}, a}|2

≤
∑

i

(wi(a−i, θ
p
i ), 0} − wi(a

′
−i, θ

p
i ))

2

=
∑

i

∑

j 6=i

[cicij(aj − a′j)])
2

≤
∑

i

∑

j 6=i

[max
i,j

|cicij |(aj − a′j)]
2

≤
∑

i

c2(
∑

j 6=i

(aj − a′j)
2) = (n− 1)c2

∑

i

(ai − a′i)
2

= (n− 1)c2d(a, a′)2

For c = maxi,j |cicij |. Thus by making c ∗
√
N − 1 < 1 ⇔ c <

1√
N − 1

we

are done. �

5.4 Proof of Lemma 1

pf: Assume that ∀j 6= i aj(θ
p) = ❊paj(θ). Then

BRi(ã−i(θ
p), θpi ) = min{max{ci(

∑

j 6=i

cijaj(θ
p) + θpi ), 0}, a} =
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min{max{ci(
∑

j 6=i

cij❊paj(θ) + θpi ), 0}, a}

But then

BRi(ã−i(θ
p), θpi ) = min{max{❊p[ci(

∑

j 6=i

cijaj(θ) + θi)], 0}, a}

As we have assumed the Overall Interior Solution conditions is valid, or that
A ≥ ai(θ) ≥ 0 for every θ, ai(θ) = ci(

∑

j 6=i cijaj(θ) + θi) ∈ [0, a], ∀θ ∈ Θ. This

means that BRi(ã−i(θ
p), θpi ) = min{max{❊p[ai(θ)], 0}, a} = ❊pai(θ) = ã(θp)

which is linear in θ. Thus ai() ∈ [0, a] and is linear in θ. �

5.5 Proof of Theorem 1

pf: By linearity in ai given by Lemma (1),

Vi(xi, x−i) ≡ ❊sui(ã−i(θ
s), ai(θ

s), θsi ) = ❊sui(ai(θ
s),❊θi|sã−i(❊[θ−i|s, θi], θi),❊[θi|s])

= ❊s❊θi|sui(ai(θ
s), ã−i(❊[θ−i|s, θi], θi), θi) ≤

❊s❊θi|sui(ã−i(❊[θ−i|θi, s], ai(❊[θ−i|θi, s], θi), θi), θi)
Note that this result is true for any x−i and thus Full Disclosure is a weakly

dominant strategy. As for strict dominance, the result follows iff for any θi, θ
′
i,

and for any τ−i and realization s, ai(❊[θ−i|θi, s], θi) 6= ai(❊[θ−i|θ′i, s], θ′i). As
ai(❊[θ|θi, s], θi) = βi❊[θ|θi, s]. Integrating over s we get❊s[ai(❊[θ−i|θi, s], θi)] =
βi❊[θ|θi] and by assumption βi❊[θ|θi] 6= βi❊[θ|θ′i], for any θi, θ

′
i so there must

be some s such that βi❊[θ|θi, s] 6= βi❊[θ|θ′i, s] ⇔ ai(❊[θ|θi, s]) 6= ai(❊[θ|θ′i, s]).
This means that player is strictly better off by applying a Full Disclosure policy.
�

5.6 Proof of Lemma 2

We need to prove that given p
s⋆
1

1 : w2(θ
s2p

s⋆
1

1 ) = 0, ∀s2 ∈ S2, the binary signal

strategy τ1(p
s⋆
1

1 )ν1(p
s⋆
1

1 )+(1−τ1(p
s⋆
1

1 ))ν1(p
′) > λ1(1)+(1−λ1)ν1(0), for p

′ = 0 if

p
s⋆
1

1 > λ or p′ = 1 for p
s⋆
1

1 < λ. I.E. that a binary signal strategy that is Partially
Revealing dominates a Full Disclosure strategy.

pf: Firs note that

ν1(1) =
(A− l1)

2

4b

ν1(p
s⋆
1

1 ) = ❊
s2|p

s⋆
1

1

[
(A− θs1)

2

4b
]

Since by the Pivotal assumption when Firm 1 is h1, Firm 2 is operating
with positive quantities - w2(θ

s) > 0. In case w1(θ
s) < 0 then A+ θs2 − 2θs1 < 0

39



and, in this case, Firm 1 is producing Q1 = 0 when h1 is realized. Thus

v1(θ
s2d1) = 0 <

(A+ θs2 − 2θs1)
2

9b
.

However, note that since conditional on the realization h1, Firm 2 would
be playing strictly positive quantities - by the Pivotal assumption. But note

that Firm 2 is in operation iff w2(a(θ
s2,h1), θs2,h1

2 ) > 0 iff
A+ h1 − 2θs2

3b
> 0

iff
A− h1

2
>

A+ θs2 − 2h1

3
iff

(A− h1)
2

4b
= vm(h1) >

(A+ θs2 − 2h1)
2

9b
=

vd(θs2, h1). That means that conditional on being h1, Firm 1 would prefer to be
in a monopoly state.

As vm(h1) =
(A− h1)

2

4b
<

(A− θs1)
2

4b
= vm(θs1) we then have ν1(p1) > ν1(0).

Finally, ν1(p1) =
(A− θs1)

2

4b
<

(A− l1)
2

4b
= ν1(1). This establishes that ν1(0) <

ν1(p1) < ν1(1).

If 1 > p⋆1 > λ1 then τ1(p
s⋆
1

1 ) = lim τ1(p
⋆t
1 ) =

λ1

p⋆1
> λ. As ν1(1)λ + (1 −

λ)ν1(0) < (1 − τ t)ν1(0) + τ tν1(p
ts⋆

1

1 ) ⇔ ν1(0) <
τ tν1(p

ts⋆
1

1 )− λν1(1)

τ t − λ
and, as

lim ν1(p
ts⋆

1

1 ) = ν1(1) is finite and lim τ t − λ > 0, then lim
τ tν1(p

ts⋆
1

1 )− λν1(1)

τ t − λ
=

lim
τ t

τ t − λ
lim ν1(p

ts⋆
1

1 )− lim
λν1(1)

τ t − λ
= ν1(1) > ν1(0).

If p⋆1 < λ1 then ν1(1)λ+(1−λ)ν1(0) < lim(1− τ t)ν1(1)+ τ tν1(p
ts⋆

1

1 ) = ν1(1)

since lim ν1(p
ts⋆

1

1 ) = ν1(1). �

5.7 A Generalization of Lemma (2)

In fact, Partial Revelation dominates Full Revelation not only in a Cournot
Duopoly with Homogeneous goods, but in a more generic Cournot Duopoly with

heterogeneous goods. Let ui(ai, a−i, θi) =
a2i
2
−κiaia

2
j+θiai where θi here should

be read as the net marginal benefit of operation given by the intercept of the
demand for firm i minus the marginal cost of firm i, or θi = Aθi − cθi . Then the
same result holds when there exists a binary state for each player Θi = {di, gi}.
Equilibrium quantities of Duopoly as a function of market fundamentals can be

written as
θsi − κiθ

s
j

1− κiκj
and Monopoly quantities are simply θsi . Value functions of

a Duopoly and Monopoly, respectively, can be written as (1/2)(
θsi − κiθ

s
j

1− κiκj
)2 and

(1/2)(θsi )
2. In the same manner as before, Firm 2 is in operation iff w2(θ

s) =

θs2−κ1θ
s
1θ

s
2−κ2θ

s
1 > 0 iff θs1 >

θs1 − κ1θ
s
2

1− κ1κ2
iff (1/2)(θs1)

2 > (1/2)(
θs1 − κ1θ

s
2

1− κ1κ2
)2 and

so Firm 1 would prefer to be in a monopoly state whenever Firm 2 is in operation
in equilibrium. I.E. vm1 (θs1) > vd1(θ

s) whenever w2(θ
s) = θs2 − κ1θ

s
1 > 0. As a
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result, once more we will have ν1(p
s) > ν1(0).

6 Appendix 2:

6.1 Private Information and Public Reports

In the previous setting, a common knowledge game, analogous to a complete
information with symmetric information unfolded, since players did not have
access to any private information.

I study, now, cases where players receive a perfectly revealing information
over her private state θi in t = 1 according to the market distribution, i.e.
that θ ∼ ps, ∀s ∈ S. Here we will see that, once again, linear models entail
Decentralization as a weakly dominant strategy in the case where the Overall
Interior Solution Condition is assumed binding.

Here goes the timing in more detail:

Timing:

t=0:
(xi)i≤I is engineered.

t=1:
s is made public after all agents can access the technologies chosen in t = 0,

i.e. (xi, si) is known for all i.
In addition, agents receive a perfectly revealing message that tell them what

is their private state of nature θi, according to the posterior distribution p(.|s) ∈
∆(Θi).
t=2:

The individual information piece is Ii = {ii = (s = (si)i≤N , θi)}. A strategy
in this stage is a contingency plan ai : S×Θi → ∆(Ai). A strategy is consistent
with beliefs Yi : S × Θi → ∆(A−i) if it is optimal given ps ∈ ∆(Θ) and Y
,∀θi ∈ Θi, ∀s.

I analyze Bayes Nash Equilibrium on this stage of actions.

Results:

We then have the presence of an incomplete information environment under
a common posterior distribution ps, after realization of signal s. I will denote the
Bayes Nash Solution by BN(ps) to be the profile (for now assumed unique) of

best responses analyzed in equilibrium. Specifically, let ps,θi−i = p(θ−i|s, θi), ∀θ−i

to be the probability of the other-than-i types after realization of signal s and
type realization θi. Note that ps,θi−i can be computed by making ps,θi−i (θ−i) =
p(s−i|θ−i)p(θ−i|θi)p(si|θi)p(θi)/p(s)p(θi|s).

By letting the beliefs be

Y ps

i = {yp
s

i ∈ ∆(θ−i, a−i) :

∫

a−i

y(da−i, dθ−i) = ps(θ−i)}
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We then have

BRi(y
ps,θi

i , θi) = argmax
ai≥0

[❊
yps,θi

i

ui(ai, y
ps,θi

i (a−i), θ−i), θi)]

ai(p
s, θi) = argmax

ai≥0
[❊

p
s,θi
−i

ui(ai, a−i(p
s, θ−i), θi)]

= max{ki[❊p
s
−i,θi

−i

[
∑

j 6=i cijaj(p
s, θj)] + θi], 0}.

I will show that, if the Interior Solution Condition is satisfied and the model
is linear, equilibrium best responses are unique and linear in the distribution p.

Lemma 3. If the interior solution condition is satisfied BRi(p, θi) is linear in
p, ∀i ≤ I.

pf: BRi(p
s, θi) = max{ki[❊p

s,θi
−i

∑

j 6=i cijaj(p
s, θj)] + θi], 0}. Then, assume

that aj(p
s, θj) = ❊psaj(θ) is linear and strictly positive for every j, θj . Then

BRi(p
s, θi) = max{❊θ−i|s,θi [ki

∑

j 6=i cij❊θ−j |s,θi,θjaj(θ, θj) + θi], 0} =
❊ps,θi [ki

∑

j 6=i cijaj(θ, θj)+θi] where the last equality follow from the interior
solution condition �

Proposition 15. In the case of private values and interior solution, the Bayes
Nash Equilibrium strategies generated are linear in ps. I.E.,

ai(p
s, θi) = ❊psθiai(θ, θi)

Thus Full Disclosure for every i, and Full Revelation as whole, is the unique
equilibrium.

In the appendix I provide the computation of the Cournot example with
private values which results in a strictly convex function in the posterior psii ,
thus making the case for full revelation.

V (τi, τ−i) = ❊si❊θi|si❊s−i|θi❊θ−i
[ui(a−i(θ−i, s), a(θi, s), θi)]

The result is again due to the relationship between linearity and maximiza-
tion. Intuitively, firms react only linearly to more information coming from
you, whereas a better knowledge between firms generate a better coordination
in equilibrium.

I have thus concluded that if the interior solution is satisfied there is little
room for obfuscation in the case of markets with a linear demand function. It
is, thus, a simple consequence of this result that if some degree of obfuscation is
present then either the interior solution condition is not satisfied or the linearity
and separability assumptions are being challenged.

Corollary 1. If there is presence of Incomplete Information, then either the
interior solution condition is being violated or the model is not linear as defined
here.
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