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Abstract: We overcome a long-standing obstacle in statistics. In doing

so, we show that the distribution of the arithmetic, continuous average of log-

normal variables is log-normal. Furthermore, we offer a breakthrough result
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pricing the arithmetic Asian options. The pricing formula is as simple as the

classical Black-Scholes formula.
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1 Introduction

A long-standing obstacle in statistics is the determination of the distribution

of the sum of log-normal variables. This paper overcomes this obstacle and

shows that the distribution of the sum of log-normal variables is log-normal.

To our knowledge, there is no explicit formula for pricing Arithmetic

Asian options. Recent literature used orthogonal polynomial expansions to

approximate the distribution of the arithmetic average. Examples include

Willems (2019) and Asmussen et al (2016). Some of the literature used

Edgeworth expansions to approximate the distributions (see, for example,

Li and Chen (2016)). Gambaro et al (2020) used a tree method for dicrete

Asian options. Carsaro et al (2019) adopted a computional method. Cui et al

(2018) used approximations. Others such as Aprahmiam and Maddah (2015)

used the Gamma distribution approach. Some studies relied on Monte Carlo

simulations. Examples include Lapeyre et al (2001) and Fu et al (1999).

Others adopted a numerical approach. Examples include Linetsky (2004),

Cerny and Kyriakou (2011), and Fusai et al (2011). Curran (1994) used the

geometric mean to estimate the arithmetic mean.

The literature on pricing the arithmetic Asian options has two main fea-
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tures in common. First, it relies on approximations. Secondly, it largely

adopts (very) complex methods. Consequently, this paper overcomes these

two limitations. In this paper, we use a pioneering approach to pricing the

arithmetic Asian options in continuous time. In doing so, we present an ex-

act (yet very simple) method. Particularly, we show that the price of the

arithmetic Asian option is exactly equivalent to the price of the European

option with an earlier (known) expiry. The pricing formula is as simple as

the classical Black-Scholes formula.

2 The method

The arithmetic average of the price underlying asset S (u) over the time

interval [t, T ] is given by

At =

T�

t

S (u) du

T − t
,

where t is the current time and T is the expiry time. So that, using the

Black-Scholes assumptions, EAt = E

T�

t

S(u)du

T−t
= er(T−t)−1

r(T−t)
S (t) , where r is the

risk-free rate of return. By the mean value theorem for integrals, E

T�

t

S(u)du

T−t
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= ES
�
t̂
�
, where t̂ is a time such that t < t̂ < T, and ES

�
t̂
�
= er(t̂−t)S (t) .

This implies that er(T−t)−1
r(T−t)

= er(t̂−t). We can solve for t̂− t as follows

t̂− t =
ln
�
er(T−t)−1
r(T−t)

�

r
.

Thus t̂ is known. For example, if T − t = 1 and r = .01, t̂− t =
ln
�
e
.01

−1
.01

�

.01
=

.498. We also can show that At is log-normal and a price1; thus the Black-

Scholes formula can be directly and exactly applied. That is, the price of the

Asian option (expiring at time T ) is given by

C (t) = e−r(t̂−t)E
�
S
�
t̂
�
−K

�+
= e−r(t̂−t)E [At −K]

+ ,

where K is the strike price. Clearly, this is the price of a European option

with expiry t̂. Thus, the price of the arithmetic Asian option (with expiry

time T ) is equal to the price of the equivalent European option with expiry

time t̂. This explains why the Asian option is cheaper than its European

counterpart.

Needless to say, the pricing formula for an arithmetic Asian call with

1See the appendix for the proofs.
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expiry time T is

C (t, s) = sN (d1)− e
−r(t̂−t)KN (d2) ,

where s is the current price, d1 =
1�

σ2(t̂−t)

�
ln (s/K) + (r + σ2/2)

�
t̂− t

��
,

d2 = d1−
�
σ2
�
t̂− t

�
, and σ is the volatility of the return rate of the under-

lying asset.

Practical example:

If r = .05, T = 1, σ = .2, s = K = $100, then t̂ = .502 and thus the

option price is C (t) = $6.91.

Appendix.

Proof of At is log-normal.

Consider the stock price, S (T )−s =
T�

0

dS (t) , where s ≡ S (0) ; squaring

both sides yields

(S (T ))2 + s2 = 2sS (T ) +




T�

0

dS (t)





2

= 2sS (T ) + σ2
T�

0

(S (t))2 dt (1)

since (dS (t))2 = σ2 (S (t))2 dt. The left-hand-side of (1) is clearly log-normal

(a lognormal plus a constant), and the right-hand-side of the equation is a
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sum of lognormal variables; therefore, the sum (or average) of log-normal

variables is log-normal.

We can also present the sum without the constant s2 by differentiating

both sides of (1) with respect to r

∂ (S (T ))2

∂r
= 2s

∂S (T )

∂r
+ σ2

T�

0

∂ (S (t))2

∂r
dt

clearly the left-hand-side of the above equation is log-normal, and the right-

hand-side of the equation is a sum of log-normal variables.

We can also show that the integral alone is log-normal; dividing both

sides of the above equation by S (T ) yields

2TS (T ) = 2Ts+ σ2
T�

0

∂ (S (t))2

S (T ) ∂r
dt,

differentiating twice w.r.t. r

2T
∂2S (T )

∂r2
= σ2

T�

0

∂2X

∂r2
dt,

where X ≡
∂(S(t))2

S(T )∂r
; the left-hand-side of the above equation is log-normal,

and the right-hand-side of the equation is a sum of log-normal variables.�
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Proofs of At is a stock price.

1. Let
�
S (u) du ≡ I, then

dI

du
= S (u)

du = T/n; therefore

ndI

T
=
I

T
= At = S (u)�

2. The simplest and intuitive proof is that the time continuity implies

that the average price At is a price on the interval [S (t) , S (T )] . To be

more precise, each (random) price at a specific time is an interval-valued

(an interval of all possible outcomes of the price). Thus the elements of

[S (t) , S (T )] are (vertical) intervals, then the time continuity guarantees the

existence of a vertical interval of outcomes on [S (t) , S (T )] , but the vertical

interval is a price at a specific time. So the difference between a random

variable and a non-random variable is that the random variable is interval-

valued, and thus the mean-value theorem can be applied in the same way

to non-random variables if we view the elements of [S (t) , S (T )] as interval-
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valued.

3. The outcomes of At are the averages of paths and therefore they

are outcomes (realizations) of prices. That is, each outcome is in the form

S (t) e(r−
1
2
σ2)u+Ω1 , where Ω is an outcome of a Brownian motion; thus it can

be expressed as At = S (t) e
(r− 1

2
σ2)u+W (u); otherwise it will not be possible,

using the price probability density, to obtain EAt = S (t) e
r(t̂−t).

Conclusion:

In sum, this paper offers two ground-breaking contributions. The first

one is in mathematical statistics (the distribution of the arithmetic average

of log-normal variables). The second one is in finance (an explicit, simple

formula for the price of the arithmetic Asian options). The first contribution

will have a great impact on statistics since it will have so many applications

in the future. Furthermore, there is a big practical advantage. In practice,

the choice of the discrete times to be included in the average is arbitrary and

controversial. The industry can avoid this problem altogether by trading

continuous-average options (using our formula).
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