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Abstract 

Reports of the literature documenting the declining labor share of income have increased 

greatly in the past few years, which is opposed to one of the famous Kaldor (1961) 

“stylized facts” of growth. The declining labor income share has been observed since the 

1980s in a number of countries, and especially in the United States. Recent studies have 

revealed the following five major driving forces of the declining labor share: (i) 

supercycles and boom-busts, (ii) rising and faster depreciation, (iii) superstar effects and 

consolidation, (iv) capital substitution and automation, and (v) globalization and labor 

bargaining power. We set up a two-sector optimal growth model with the R&D 

intermediate sectors. By integrating driving factors (ii) through (iv) above into the model, 

we demonstrate the long-term decline of the aggregated labor income share. 
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0. Introduction 

 

Studies conducted in the past few years have increasingly augmented the literature 

documenting the declining labor share of income, which is opposed to one of the “stylized 

facts” of growth reported by Kaldor (1961). The labor income share decline has been 

observed since the 1980s in many countries, and especially in the United States. Recently, 

McKinsey Global Institute Discussion Paper (May, 2019) has surveyed studies of the 

literature examining factors driving the labor share decline, with categorization of the 

main driving factors as explained below. 

 Capital deepening, substitution, and automation (Decline in prices of investment 

goods because of improvements in technology, particularly industrial robots and AI): 

IMF World Economic Outlook (2017), Karabarbounis and Neiman (2014), Elsby, 

Hobijn and Sahin (2013), Acemoglue and Restrepo (2018), and Lawrence (2015). 

 “Superstar” effects and consolidation (Superstar firms are reaping rising shares of 

profits and value added): Autor et al. (2017) and Barkai (2017). 

 Globalization and labor bargaining power (Increased trade competition and weak 

bargaining power of workers): Elsby, Hobijn and Sahin (2013), OECD Economic 

Outlook (2018), and IMF World Economic Outlook (2017). 

 Higher depreciation attributable to a shift to more intangible capital (Greater use 

of capital in the form of intangibles and intellectual property products (IPP) capital): 

Koh et al. (2016) and Guiterrez (2017). 

 Supercycle and boom-bust (Price supercycles in the energy and mineral sectors): 

Rognline (2015). 

A noteworthy point is that, except for reports published by Koh et al. (2015), Barkai 

(2017), and Lawrence (2015), many reports have pointed out multiple factors driving the 

labor share decline. The main driving factors are not unique: they are multiple and are yet 

inconclusive. 

Furthermore, the same working paper has presented re-examination of the five 

driving factors for the US economy based on the OECD STAN database from a macro–

micro perspective. By ranking the five leading forces that have driven the recent capital 

share increase instead of those of the labor share decline, the report has indirectly 

described the main causes of the decline in labor share, as summarized in the following 

table. 

<Table 1, here > 

Although cyclical factors are the major driving forces, growth theory clarifies that leading 

driving factors (ii), (iii), and (iv) in the table are important. In fact, those factors jointly 

explain 56% of the decline in labor share. Factor (ii) was examined by Koh et al. (2016), 

who concluded that because of the transition to more intangible capital, especially in 

intellectual property and product (IPP) capital intensive economy, rising IPP depreciation 
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and net IPP income have emerged. Factor (iii) is studied by Autor et al. (2017) among 

others. Technology and market conditions have facilitated the emergence of “superstar” 

firms with very high profit and a very low labor share. Factor (iv) is particularly examined 

by Karababounis and Neiman (2014). Decreased relative prices of capital goods because 

of IT technology and automation have induced firms to shift away from labor to capital. 

Based on the discussion presented above, we set up a two-sector consumption goods 

and capital goods sectors – optimal growth model with intermediate goods sectors. Each 

sector’s intermediate goods are produced by application of labor and tangible capital 

goods by Cobb–Douglass technologies with learning-by-doing technical progress. In 

contrast to tangible capital, assuming that intermediate goods become obsolete 

instantaneously and that their depreciation rate is therefore 100%, one might regard 

intermediate goods as intangible IPP capital goods. Furthermore, each final goods sector 

produces final goods with the sector’s IPP capital and labor using Cobb–Douglass 

production technologies. Driving factor (ii) has been integrated into the model 

successfully. Driving factors (iii) and (iv) can also be integrated into the model as follows: 

By combining the intermediate sector with the final goods sector, the model can be recast 

as a standard two-sector optimal growth model with sector-specific total factor 

productivity (TFP) growth. Contrasted to the standard two-sector model with TFP growth 

studied by Takahashi (2017), the TFP growth rate is endogenously determined here. In 

Takahashi (2017), where a two-sector optimal growth model with a sector-specific TFP 

is set up and under the Cobb–Douglass technologies, it is demonstrated that each sector’s 

optimal path converges to a sector-specific steady state. This property also holds here 

under the condition that the integrated consumption goods sector is more capital intensive 

than the capital goods sector. Given these circumstances, one can also demonstrate that, 

even if each intermediate sector’s learning-by-doing technical activities were identical, 

the consumption goods sector’s TFP growth rate could be greater than that of the capital 

goods sector. We also demonstrate that each sector’s per-capita capital and output grow 

at the sector-specific growth rate determined by the sector’s TFP. 

Finally, we might conclude the following: First, the result implies that intangible 

capital input can be expected to replace labor input in both sectors in the long run because 

the price of intangible capital goods declines rapidly, not at the constant steady state wage 

rate. Secondly in the long run, the consumption goods sector with the lower labor share 

dominates the capital goods sector with the higher labor share in terms of the measure of 

efficient-unit value-added. Therefore the aggregated labor income share declines in the 

long run. Consequently, our model includes the major driving factors described above to 

explain the labor income share decline. 

The paper is organized as follows: The next section presents the model and related 

assumptions. In Section 2, each sector’s R&D process is solved explicitly. As described 

in Section 3, using the production possibility frontier, we integrate the model into a 
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standard two-sector optimal growth model and solve it. In Section 4, the existence and 

uniqueness of the steady state are proved. In Section 5, saddle-point stability is presented. 

Section 6 explains the aggregated labor share decline. Section 7 concludes the paper. 

 

1. Model and Assumptions 

 

We introduce a sector specific R&D process into the Uzawa (1964) two-sector optimal 

growth model with Cobb–Douglas technologies. Each sector has its intermediate good 

sector in which a new technology is invented through a learning-by-doing process. This 

presents a sharp contrast to the model introduced by Ghiglino, Nishimura and Venditti 

(2017), where they assume that a part of labor of the “knowledge-intensive” sector is used 

as a kind of effort for the invention of a new technology. Before considering the two-

sector case, we can consider a case with two sectors. Solving the sector’s profit 

maximization problem and the market equilibrium conditions yields the integrated final 

good production function. The exact same argument can be applied to the remaining 

sector to obtain a similar integrated production function of the other sector. Using these 

two integrated functions, we set up an optimal growth problem similar to Uzawa’s two-

sector growth model. We demonstrate the existence of optimal steady states, the saddle-

path stability around the optimal steady state. 

We begin with competitive analysis of four labor markets. Based on those results, we 

set up the endogenous two-sector growth model with a Romer-type technical progress. 

For our analyses, the following market conditions are assumed. 

 

Labor Market:      

 ( ) ( ) ,c g Yc Mc Yg Mg
L L L L L L L= + = + + +   (1.1) 

where 

: total labor supply,L : labor input for th goods production as the final goods,
Yi

L i  

: labor input for  goods production as the intermediate goods,

where :  consumption goods sector, :  capital goods sector.

th
Mi

L

i c g

i

=
 

Production Functions in the Final-goods Sector:   

 1
,c c

c Yc cY L X
α α−=   (1.2) 

and    

 
1

.g g

g Yg gY L X
α α−=   (1.3) 
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Production Functions in the Intermediate-goods Sector:  

 1
,c c

c c Mc cX A L K
β β−=   (1.4) 

 
1

.g g

g g Mg gX A L K
β β−=   (1.5) 

As we have emphasized in Section 1, each sector’s intermediate goods are produced by 

application of labor and tangible capital goods with Cobb–Douglass technologies 

embodied with newly invented technical progress. In contrast to tangible capital, 

assuming that intermediate goods become obsolete instantaneously and that their 

depreciation rate is therefore 100%, one might regard intermediate goods as intangible 

IPP capital goods. Furthermore, each final goods sector produces final goods with the 

sector’s IPP capital and labor using Cobb–Douglass production technologies. Therefore, 

we may conclude that the driving factor (ii) has been integrated into the model 

successfully.    

 

R&D Process (Learning by Doing): 

 (0 1,0 1),c c

c Mc c c cA L A
λ φ λ φ= < < < <


  (1.6) 

 (0 1,0 1).g g

g Mg g g gA L A
λ φ λ φ= < < < <


  (1.7) 

 

Remark. Our R&D process is a Romer-type technical progress that was proposed 

originally by Jones (1995), who presented detailed discussions of this R&D process2. 

According to Jones (1995), φ  represents the degree of externality across time in the 

R&D process; λ  denotes the duplication externalities. The process contrasts to that 

proposed by Ghiglino, Nishimura and Venditti (2017), who assume the R&D process such 

as
.

(1 )A z u A Aη= − − . When 0 and (1 ) Mz u Lλη = − = , their model coincides with 

ours. 

The model considered here is summarized as a schematic representation in Figure 1. 

<Figure 1, here> 

Next we consider each sector’s profit maximization problems. 

 

Final-goods Sector Problem: 

1

( , )
(*) i i

i i i
Y ii

Y i Y Y i i
L X
Max L X w L p X

α α− − −  

The first-order conditions of the expression above are the following: Note that the price 

of each final goods is normalized as one. 

                                                   
2 Especially, Section III in Jones (1995) presents detailed discussion. 
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 (1 ) ,i i

ii i Y ip L X
α αα −= −   (1.8) 

 
1 1

,i i

i iY i Y iw L X
α αα − −=   (1.9) 

where , .i c g=  

 

Intermediate-goods Sector Problem: 

1

( , )
(**) i i

i i i
M ii

i i M M M i i
L K
Max p A L K w L r K

β β− − −  

The first-order conditions of the expression above are the following: 

 (1 ) ,i i

ii i i i Mr p A L K
β ββ −= −   (1.10) 

 
1 1

,i i

i iM i i i M iw p A L K
β ββ − −=   (1.11) 

where , .i c g=  

The market equilibrium condition is
c c g gY M Y Mw w w w= = = , where 

( )
( )

1 (1 )(1 )

(1 )

1
1 1 1 (1 )

1

,

(1 ) (1 ) ,

c c cc
c c c c c c

c c

c c c c
c c c c c c

c c c c

Y c Y c Mc c c Yc c Mc c

c c Y c M c Y c M c

w L A L K L A L K

p L A L K L A L K

α α β

α β α

αα β β α β α

αα β β α α β

α α

α α

− − −

− − −

−− − − −

−− −

= =

= − = −
 

and 

1 (1 ) 1

1 (1 )(1 )

1 1

1

(1 )

(1 ) .

c c c c c
c c c c c

c c c c c

c c c
c c c c

c c

M c c c M c c Y c M c c c M c

c c Y c M c

w p A L K L A L K A L K

L A L K

β α β α β

α α β

β α α β β

α β α β

β α β

β α

− − − − −

− − −

− − −

− −

= = −

= −
 

From the equilibrium condition
c cY Mw w= , it follows that 

 (1 )
c cc M c c YL Lα β α= −   (1.12) 

1
(1 )

(1 )
and .

(1 ) (1 )

c c c

c c

c
c Y M M

c c

c c c
M c Y c

c c c c c c

L L L L

L L L L

α
β α

β α α
α β α α β α

 
⇒ = + = + − 

−
∴ = =

+ − + −

 

Similarly, from the equilibrium condition
g gY Mw w= , it follows that 

 (1 )
g gg M g g YL Lα β α= −   (1.13) 
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1
(1 )

(1 )
and .

(1 ) (1 )

g g g

g g

g

g Y M M

g g

g g g

M g Y g

g g g g g g

L L L L

L L L L

α
β α

β α α
α β α α β α

 
⇒ = + = + 

−  
−

∴ = =
+ − + −

 

 

Each sector’s labor input is a fixed proportional ratio to the total labor supply. 

Based on the results presented above, the proportional property can be extended to 

the whole economy as shown below. 

From (1.12) and (1.13), it follows 

                     1.
(1 ) (1 )

gc

g

g Mc M

c c g g Y

LL

L

αα
β α β α

= =
− −

  

Then, by exchanging the terms, we obtain the constant ratio  as follows

(1 ) (1 )
.

(1 ) (1 )

g g g

c c c

g g Y g M g Y

c c Y c M c Y

L L L

L L L

ξ

β α α α
ξ

β α α α

− −
= = =

− −

 

 

Solving the above relations yields 

 
(1 )

(1 )g c

c c
Y Y

g g

L L
β α ξ
β α

−
=

−
  (1.14) 

and 

 ( ).
g c

c
g Y c y

g

L L L L
α ξ
α

− = −   (1.15) 

 

From (1.15) and (1.13), 

( )

(1 )

g c g c

c

c c c
g Y c Y g Y c Y

g g g

g c c
g g c Y

g g g g g

L L L L L L L L

L L L L

α ξ α ξ α ξ
α α α

α α ξ α ξ
α β α α α

− = − ⇒ − − = −

 
⇒ − − = −  + − 
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( )

( ) ( )

(1 )

(1 )

(1 ) (1 )
1 ( 1) .

(1 ) (1 )

c

c

g g c c
c c Y

g g g g g

g g g g g g

Y c c

c g g g c g g g

L L L L

L L L L L

β α α ξ α ξ
α β α α α

α β α α β α
α ξ α β α α ξ α β α

 −
⇒ − − = −  + − 

 − −
 ⇒ = + − = Φ + −Φ
 + − + − 

. 

 

Then from (1.14), 

 

[ ] [ ](1 ) (1 )
( 1) ( 1) .

(1 ) (1 )g c

c c c c
Y Y c c

g g g g

L L L L L L
β α ξ β α ξ
β α β α

− −
= = Φ + −Φ = Γ Φ + −Φ

− −
 

 

Substituting this result and 
gML  into the labor equilibrium condition of the sector yields 

[ ] [ ]
(1 )

( 1) ( 1)
(1 )g g

g g

g M Y g c g c

g g g

L L L L L L L L L
β α

α β α
−

= + = +Γ Φ + −Φ = Λ +Γ Φ + −Φ
+ −

 

( 1)( ) .g gL L L L = Λ +Γ Φ + − −Φ   

Solving the above equation with respect to
gL produces the following: 

 and (1 ) .
1 ( 1)

g c gL L DL L L L D L
Γ

= = = − = −
−Λ +Γ Φ +

 

 

Consequently, we demonstrated that each sector’s labor input is also proportional to the 

total supply of labor: L . This property is important. In fact, it establishes that if the total 

labor supply grows at rate n, then each sector’s labor input also grows at rate n. 

 

2. Solving the R&D Process 

 

We make the following assumption related to the total population growth rate. 

Assumption 1. 
0 (0 1).ntL

n L L e n
L
= ⇒ = < <



 

Considering the consumption sector only, the exact same argument can be applied to the 

capital goods sector denoted by index “g”. 

From the discussion in Section 1, substituting 
cML  into Eq. (1.6) gives 
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( ) 0

(1 ) (1 )
.

(1 ) (1 )

c c

c c c c c c c

c

ntntc c c c
c M c c c c c c

c c c c c c

A L A L A L e A B e A

λ λ
λ φ φ φ λ λ φβ α β α

α β α α β α
   − −

= = = =   + − + −   


 

We can solve the above differential equation explicitly: 

By defining 1 c

c cz A
φ−≡ , the R&D process can be rewritten as the following differential 

equation: 

                        

(1 ) .cc c
c c

dz dA
A

dt dt

φφ −= −  

Rewriting it further provides 

(1 ) (1 ) (1 ) (1 ) .c c c c c c c

c c

ntc c
c c M c c c M c c

dz dA
A L A A L B e

dt dt

φ λ φ φ λ λ λφ φ φ φ− −= − = − = − = −  

Integrating both sides of the equation above yields 

 

(1 )
( :constant of integration).

c

cntc
c c c

c

B
z e d d

n

λ
λφ

λ
−

= +  

Then 

0 0

(1 ) (1 )
.

c c

c c
c c c c

c c

B B
z d d z

n n

λ λφ φ
λ λ
− −

= + ⇒ = −  

The initial conditions can be assumed as shown below. 

1

1

0 0

(1 ) (1 )
  or 

c c c
c c

c c

c c

B B
z A

n n

λ λ φφ φ
λ λ

− − −
= =  

 
Assumption 2.  

1 1

1 1
1

0

Finally, we obtain the following solution:

(1 ) (1 )
where .

1

cc cc c
c c cA

n
t

nt tc c c
c c cA

c c c

B B n
A e e A e

n n

λλ λφ φ
λ φ γφ φ λγ

λ λ φ

− −
−   − −

= = = =    −   

 

Applying the same logic to the investment sector yields 

1

1

0 0

(1 )
where  and = .

1

g g

gAt g g

g g g gA

g g

B n
A A e A

n

λ φ
γ φ λ

γ
λ φ

− −
= =  

−  
 

 

Each sector’s TFP growth rate depends on parameters , and .i i nλ φ  In other words, it 

depends on the sector-specific R&D process and the total population growth rate. Jones 
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(1995) reported the same property. 

 

3. Integrated Optimal Growth Problem 

We redefine outputs as andc gY C Y Y= = to avoid further complication of double 

indices. 

( )11 1 (1 ) (1 )(1 )

(1 )

1 (1 ) (1 )(1 )(1 )

(1 ) (1 )

c
c c c c c c c c c

c c

c c c

c c c c c c

Yc c M Yc c M

c c c
c c c

c c c c c c

C L A L K L A L K

A L K

αα β β α α β α α β

α β α
α α β α α βα β α

α β α α β α

−− − − − −

−

− + − − −

= =

   −
=    + − + −   

 

1 (1 ) (1 )(1 )

1 1
,

c c c c c c

c c c

c c c c

c c c c

D A L K

D A L K

α α β α α β

α ε ε

− + − − −

− −

=

=
 

1 1

 whereas applying the same logic to the investment sector yields

,

where (1 )for , .

g g g

g g g g

i i i i

Y D A L K

i c g

α ε ε

ε α β α

− −=

= + − =

 

Based on the arguments presented earlier, following Uzawa (1964), the following two-

sector model can be set up with the consumption-goods and capital-goods sectors. Each 

sector integrates the final-good and the intermediate-good sectors as 
1 1

1 1

(1 )

(1 )

and

,

where

(1 )
,

(1 ) (1 )

and

(1 )
.

(1 ) (1 )

c c c

g g g

c c c

g g g

c c c c

g g g g

c c c
c

c c c c c c

g g g

g

g g g g g g

C D A L K

Y D A L K

D

D

α ε ε

α ε ε

α β α

α β α

α β α
α β α α β α

α β α
α β α α β α

− −

− −

−

−

=

=

   −
=    + − + −   

   −
=       + − + −   

 

 

Rewritten in terms of per-capita units, one obtains the following.  
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( )11 1 1

(1 ) 1

c
c c c cA c c

c cA c c

t

c c c c c c c

t

c c c

C
c D A k D e k

L

D e k

αα ε ε γ ε ε

α γ ε ε

−− − −

− −

= = =

=

 


 

1 1

(1 ) 1

and

,

where , , .

g g g

g gA g g

g g g g

t

g g g

g gc c
c c g g

Y
y D A k

L

D e k

K LK L
k k and

L L L L

α ε ε

α γ ε ε

− −

− −

= =

=

= = = =





 

 

 

Normalizing the output by each sector’s rate of technical progress obtained in Section 2 

gives 

1 1

(1 )
(0 1)c c

c cA
c c c c c ct

c
c D k D k

e

ε ε β β
α γ β− −
−= = = < <    

and 

1 1

(1 )
(0 1).g g

g gA
g g g g g gt

y
y D k D k

e

ε ε α α
α γ α− −
−= = = < <    

Note that we define that 1 gα ε= −  and 1 cβ ε= −  to avoid further notational 

complications. 

Assumption 3. Utility function u(・) is defined on ++ as the following standard form: 

( )
1( )

(c( )) ( ) / ( ) for 0 and 0.
1

c t
u t u C t L t t

σ

σ
σ

−

= = ≥ >
−

 

The objective function can be rewritten in terms of efficiency units as 

[ ]

1
(1 ) 11

(1 ) (1 )

1 1 1

c cA

c cA

t nt

n t
ce ec c

e

σα γ σσ
α γ σ

σ σ σ

−− −−
− + −

      = =
 − − − 

 
, 

where we omit the time index from the variables for simplicity. 

Solving the following problem (*) yields the production possibility frontier. 
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Lemma 1. Solving the following problem (*) yields the production possibility frontier 

(PPF) of both sectors as ( , )y T c k=  . 

1 1(*) max s.t. , 1 and .g g g c c c c g c gy D k c D k k k kα α β β− −= = + = = +      

This equation can be written with parameters in the implicit function form of 

( ) ( ) [ ]
1

1 ( 1)
1

( , ) (1 ) ( )g c g cT c k D k k D k k

α
α αα β

α β
−

− −− 
= − = − ∆ − ∆ 

 , 

where    ( ) ( ) ( )1 , , ,c ck k k e c kα β α β∆ = − + − =   

 
( ) ( )

1

1 1
1

1 ,k g gT D D

α
α αα β

α α α β
−

− −− 
= = − ∆    ∆ 

  (3.1) 

 

And 

 
( )

1
1

2

1

(1 )
.

1 (1 )

k
g gc

T
T D D

β
β α

α β
α β

α α
β α β β β

−
−

−
−

 ∆ −
= − = − ∆ − − 

   (3.2) 

Remark. Note that due to the duality, kT  is the capital rental rate and *( )
c

T−  stands for 

the price of c . 

Proof. Baier, Nishimura and Yano (1998) present the argument comprehensively.■ 

 

Actually, 

( ) and (1 ) ( ) .c ck k

k kc c
α β α β α β∂ ∂∂∆ ∂∆

= − = − + −
∂ ∂∂ ∂   

That is true because function ( ),ck e c k=  can be derived from solving the following 

relation expressed by the implicit function. 

[ ] [ ]1 1
( ) (1 ) (1 )c c ck k c D k

β βα β β α α β− −− + − = −  

In that equation, 

( ) (1 )ck kα β β α∆ ≡ − + − . 

Because of this relation, we can derive following partial derivatives: 
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[ ]

[ ]

1

1

1

(1 )(1 )

(1 ) (1 )( )

                            and

(1 ) (1 )( )

c

c

c

c

k c

k D c

k

c D c

β

β β

β

β β

β β α
α β β α β

α β β α β

−

− −

−

− −

∂ − − ∆
= ∂ − − − − ∆



∂ ∆ =
 ∂ − − − − ∆




 

  (3.3) 

 

The following relations are established: 

 

[ ]
[ ]

[ ]

1

1

1

1

(1 ) (1 )
( ) (1 ) ,

(1 ) (1 )( )

( )
( ) .

(1 ) (1 )( )

cc

c

c

c

Dk

k k D c

and

k

c c D c

β

β β

β

β β

β α α β
α β β α

α β β α β

α βα β
α β β α β

−

− −

−

− −

 − −∂∂∆
= − + − =

∂ ∂ − − − − ∆


 ∂∂∆ − ∆ = − =
∂ ∂ − − − − ∆




  

  (3.4) 

 

Differentiating andk c
T T  with respect to andk c  again and substituting Eq. (3.3) 

yields 

 

[ ]

[ ]

2
1

1

2

1

( )
( )

(1 ) (1 )( )

( )
,

(1 ) (1 )( )

cc c

c c

c

T k

T c D c

D c

β

β β

β β

α βα α β
α β β α β

α β
α β β α β

−
−

− −

−

∂ − ∆ = − ∆ = ∂  − − − − ∆

−
=

− ∆ − − −




 



  (3.5) 

 

 

 

 

[ ]
[ ]

[ ]
[ ]

1 1

1

1

1

1 1

( ) (1 ) (1 )
( ) (1 ) ( )

(1 ) (1 )( )

( ) (1 ) (1 )
.

(1 ) (1 )( )

cck c

c c

c

c

T Dk

T k D c

D

D c

β

β β

β

β β

α β β α α β
α β β α α β

α β β α β

α β β α α β

α β β α β

− −
−

− −

−

− −

− − − ∆ ∂  = − ∆ − + − =  ∂  − − − − ∆ 

− − −
=

− ∆ − − − ∆



 



(3.6) 

 

In addition, the following equation is obtained: 

 [ ] [ ]
[ ]

1

1 2

1

(1 ) (1 )
( 1) (1 ) .

(1 ) (1 )( )

c

kk g

c

D
T D

D c

β
α α

β β

β α α β
α α α β

α β β α β

−
− −

− −

 − − = − − ∆  
− − − − ∆  

   (3.7) 
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Using the PPF, the representative household’s problem over time can be written as 

the simple problem shown below. 

 

0

.

( )

(**)

. . ( , )

tMax u c e dt

s t k T c k k

ρ

δ

∞
−






= −


∫ 



 

Therein, [ ](1 ) (1 ) .c cAr nρ α γ σ≡ − − − + Also note that r is the representative 

household’s subjective discount rate andδ stands for the depreciation rate plus the rate of 

population.  

Remark. A discrete version of the problem (**) was studied by Bosi et al. (2005). In 

contrast to our model with the Cobb–Douglass technologies, they assume endogenous 

labor and general neoclassical production technologies. 

Assumption 4. [ ](1 ) (1 ) 0.c cAr nρ α γ σ≡ − − − + >  

The Hamiltonian of the problem (**) can be written as 

 

( )( ) , .tu c e T c k kρ λ δ−  Η = + − 
 

 

The first-order conditions of the problem are 

 ( ), ( , ) ,k k g c k T c k kδ
λ

∂Η
= ⇒ = ≡ −

∂

      (3.8) 

 ( , ) ,kT c k
k

λ λ λ δ∂Η  − = ⇒ = − − ∂

     (3.9) 

 

 ' 0.t

c
u e T

c

ρ λ−∂Η
= + =

∂
   (3.10) 

 

Because of the Inada conditions, all variables including capital stock " "k  must be 

bounded. Therefore, the transversality conditions are expected to be satisfied 

automatically. 

Differentiating (3.10) with respect to time “t” gives 

 

( ) ( )" " 0t t

c cc cke u c e u c c T T c T kρ ρρ λ λ λ− −− + + + + =
       

or 
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 " 't t

cc c cc
e u T c e u T T kρ ρλ ρ λ λ− − + = + − 

  

  
   (3.11). 

 

From (3.8)–(3.10), we obtain the following. 

 [ ]

[ ]

) '

) '

) '

tcc

cc

c

t

kc

tcc

ck

c

T
i T u e

T

ii T u e T

T
iii T k u e T k

T

ρ

ρ

ρ

λ

λ δ

λ δ

−

−

−

  
= −     





= −


  
 = − −    











 




  (3.12) 

 

Then substitution of i) through iii) of (3.12) into (3.11) yields the following expressions. 

 

[ ] [ ]

( ) [ ]

"

'

cc ck
k

c c

ck
k

c

T Tu
c T T k

u T T

T
T T k

T

ρ δ δ

ρ δ δ

      − = − − + −               

 
= + − + −  

 


 

 







 

Rewriting the equation above provides (3.13) as the final result. 

 

 ( ) (
1

)) ,, (
"

'

ck
k

ccc

c

T
c f c k T T k

TTu

u T

c kρ δ δ

 
 

      = = + − + −             −          








    (3.13) 

 

Differential equations (3.8) and (3.13) constitute the two-dimensional nonlinear 

differential equation system in the end. 

 

4. Steady State 

 

Eq. (3.8) and Eq. (3.13) give the following two-dimensional simultaneous nonlinear 

differential equation system shown below. 
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( )

( )
( )

( , ) ,,

,

'

, )

"

(ck
k

c

cc

c

T c k k

c k

k g c k

T
T T k

T
c f c k

Tu

u T

ρ δ δ

δ =
     + − + −           = =      −          

≡



−













 




  (4.1) 

 

It is noteworthy that 
1

' and "u c u c
σ σ

σ
− − −

= = −  imply that ( )"
'

u
u c

σ= −   . 

The steady state ( )*, *c k  can be defined as the solution of the following system: 

( )

( )

* *

* *

,

,

0,

0.

k g c k

c f c k


=




 =

=

=








 

 

We demonstrate below the existence and uniqueness of the steady state. 

Proposition 1. There exists a steady state ( )*, *c k of (4.1). 

Proof. At the steady state, the following equations are expected to hold simultaneously. 

 

 ( ),T c k kδ=   (4.2) 

 ( ),kT c k ρ δ= +   (4.3) 

Combining the duality property Eq. (3.1) and Eq. (4.3) provides 

( ) 1 11 (*)gD
α αα α βρ δ
− −− ∆  + = . 

where (*) implies that it is evaluated at the steady state. 

Solving this equation with respect to (*)∆  yields 

( )
( )

1

1 1 1

1 1
1

(*) ( ) ( ) 1
1g

gD
D

α
α

α
αρ δ ρ δ α β

α α β
α

 − −   − − 
−

− −  
−  

 + ∆ = = +
  

 

 

On the other hand, * *(*) ( ) (1 )ck kα β β α∆ ≡ − + − holds. Then by combining them, the 

following equation holds: 
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( )
1 1

* * 1 1( ) (1 ) ( ) ( ) 1 .c gk k Dα αα β α αρ δ α ββ
−
− −− + −− =   +  

Solving the above equation w.r.t. *

ck , we obtain 

( )
1 1

1 1

* *
( ) ( ) (1 )

( ) ( )

1g

c

D
k k

α α αρ δ α β
α α β

β α
β

−
− − −+ −

= −
− −

   . 

Therefor it follows that 

( )

( )

1 1

1 1

* * * * *

1 1

1 1

*

( ) ( ) (1 )

( ) ( )

( ) ( ) (1 )
.

( ) (

1

)

1g

g c

g

D
k k k k k

D
k

α α

α α

ρ δ α β α
α β α β

ρ δ α α β
α β α β

α β

α β

−
− −

−
− −

 
+ − = − = − − − − 

 

+ −
=

−  

− 

− −
 − +

      (4.4) 

Since *

kT  stands for the capital rental rate, due to the constant returns to scale production 

property implies that 
*

*
* *k
g g

T
y k k

ρ δ
α α

  + = =   
  

. Substituting (4.4) into this relation yields, 

 ( )

( ) ( )

1 1

1 1
*

*

1

1 1

*

( ) ( ) (1 )

( ) ( )

( ) ( ) (1 )

1

1
.

( ) ( )

g

g

D
y k

D
k

α α

α
α α

ρ δ αρ δ α β
α α β α β

ρ δ α ρ δ β
α

α β

α
α β α β

β

−
− −

−
− −

 
++ −  = − +   − −  

 

+ +

− 

−
= − +

− −



−  

 

On the other hand, along the steady state 
*

*y kδ= also holds due to (4.2). Thus we have 

finally, 

( ) ( )
1

1 1

* *
( ) ( ) (1 )

.
( ) )

1

(

gD
k k

α
α α α βρ δ α ρ δ β

δ
α α β α β

−
− − −  + + −

− + =
− −

 

Solving this w.r.t. 
*k  yields 

( ) ( ) ( )
[ ]

1 1

1 1 1 1

* *
( ) ( ) ( ) ( )(1 )

.
( ) ( ) (1 ) (1

1

)

1g gD D
k k

α α
α α α αρ δ α ρ δ αρ δ α ββ

δ
α β α α β α α β ρ β α δ

α β
− −
− − − −+ ++ − 

− = ⇒ = − − − +

− −     
−




 

In order to obtain
*

0c > , we use the implicit function: 

[ ] [ ]1 1
( ) (1 ) (1 )c c ck k c D k

β βα β β α α β− −− + − = − . 
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Solving it w.r.t. c , 

[ ] [ ]

[ ] ( )

1 1
* * *

1 1* *

1 1
1 1 1

*

1

(1 ) (1 )

(*)( ) (1 )

( ) ( )(1 ) (1 )
.

(*) ( ( )

1

)

c c

c c

c

gc

D D
c k k

k k

DD
k

β β

β β

β α α

β

α β α β

α β β α

ρ δ αα β β α
α β

α β
α β

− −

− −

−− − −

−

− −
= =

∆ − + − 
 

+− − = − − ∆

−  
− − 

 



 

Substituting
*k into the above and simplifying yields 

( ) ( ) ( ) ( ) [ ] ( ){ }
[ ]

( )
1

1

1
* 1 1 (1 ) (1 )

(1 ) (1 (

1

) 1 )

g cD D
c

α
β

α
β

α β αα ρ δ α β ρ α δ

α β β ρ α

β

δ

β α
−

−
− − − −      + − + − −

=
− − + −

   

We complete the proof.■ 

To demonstrate the uniqueness, first Lemma 2 and Lemma 3 must be presented under 

the following two additional assumptions. 

Assumption 5. andg c g cα α β β> > . 

Remark. Assumption 5 is not the usual capital intensity condition. By that assumption, 

the labor intensities of both the final goods and the intermediate sector in the capital goods 

sector are greater than those in consumption good sector. The first condition implies that 

the consumption final goods sector not only uses more intangible IIP capital intensive 

technologies but also in the intermediate sector of the consumption goods sector uses 

tangible capital intensive technologies. Because 1 and 1c gβ ε α ε= − = − , it follows that 

(1 ) (1 ) ( ) ( ) ( ) ( ) ( )c g g c g c c c g g g c g cβ α ε ε α α β β α β α β α α β β− = − − − = − + − + − ≅ − + − . 

Assumption 4 implies that β α> . In other words, the unified consumption goods final 

sector uses more tangible capital intensive technologies than the unified capital goods 

final sector does. That result is similar to the famous stability condition derived and then 

reported by Uzawa (1964). 

 

Lemma 2. Under Assumption 4, the following five sign conditions hold: 

 

[ ]1

* * *

1) (*) 0, 2) (1 ) (1 )( ) (*) 0,

3) 0, 4) 0, and 5) 0.

c

k kkc

D c

T T T

β βα β β α β− − ∆ > − − − − ∆ > 
> < >


 

Proof.  

1) From the definition of ∆ , 

* * * *(*) ( ) (1 ) (1 ) (1 ) 0.c c gk k k kα β β α α β β α∆ = − + − = − + − >   



19 
 

2) From 1) and Assumption 4, the result follows. 

3) * 0.kT ρ δ= + >   

4) 
1

2

1

(1 )
(*) 0.

(1 )
gc

T D
β α

α β
α β

α α
β β

−
−

−

−
= − ∆ <

−  

5) From (3.7), 1) and 2), the result follows. 

 

This completes the proof. ■ 

 

5. Saddle-point Stability 

 

Linearization of the system at ( )* *,c k , one can derive the following linear system of 

 

** *

* * *

kc

kc

k g g c c

f f k kc

     −  =      −      








 


, 

where 

 

( ) ( )* ** *

* *

, ,

,
c c

c k c k

g T
g T

c c

∂ ∂
= = =
∂ ∂

 
     (5.1) 

 

( ) ( )* ** *

* *

, ,

,k k

c k c k

g T
g T

k k
δ δ∂ ∂

= = − = −
∂ ∂ 

  (5.2) 

 

( )* *

* *

*

*
,

*

,
"

'

kk ck

c

c k
cc

c

T Tf
f

c Tu

u T

− +∂
= =

 ∂    −         




 



   (5.3) 

 

 

( )* *

* *

* *

* *

*

2
*

,

*

*

* *

*

*

*

"
[ ]

'

"

'

[ ]

.
"

'

ck cc
kk k

c c

k

c k
cc

c

ck
kk k

c

cc

c

T Tu
T T

T u Tf
f

k Tu

u T

T
T T

T

Tu

u T

δ

δ

        − + − −           ∂         = =
∂     −         

 
− + −  

 =
    −         

 

 














  (5.4) 
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Based on the well-known property, under our sign patterns, the following two conditions 

are expected to be satisfied for saddle-point stability in the steady state as 

( ) ( )

* * * *

2
* * * * * *

) 0,

) 4 0.

k kc c

k k kc c c

i g f g f

ii g f g f g f

− <

+ − − >

 

  

 

 

We will show saddle-point stability below. 

Proposition 2. The steady state ( )* *,c k is saddle-point stable. 

Proof. Note that should the condition i ) hold, then the ii ) automatically holds. 

Therefore, all we need to do is to establish i ).  

Calculating * * * *

k kc c
g f g f−   yields:  

* * * *

* * * *

*

*

[ ]

"

'

kk kk kc
k kc c

cc

c

T T T T
g f g f

Tu

u T

δ− + −
− =

    −         


 

 



. 

From Lemma 2, * * 0kk c
T T− >  holds. Also from (5.2), * * implies [ ] 0.k kT Tρ δ δ ρ= + − = >  

It follows that * *[ ] 0kk kT T δ− > holds. Therefore, the numerator is positive. Due to (3.5), 

the denominator turns to be negative.  

Thus we finally have shown that 

* * * * 0.k kc c
g f g f− <   

It implies that the steady state ( )* *,c k is saddle-point stable. ■ 

Remark. As we have demonstrated in Appendix, the global saddle-point stability will 

be established for some parameter values. The hardest part of numerical analysis is that 

we need to solve the following implicit function explicitly w.r.t. ck : 

[ ] [ ]1 1
( ) (1 ) (1 )c c ck k c D k

β βα β β α α β− −− + − = − . 

It is clear that we cannot obtain an explicit formula by solving for an arbitrarily given 

value of the coefficient β . Fixing 0.5β = , the above equation becomes a quadratic 

equation. And by giving some ad-hoc values of and δ γ , we have numerically shown the 

global saddle-point stability. Although our numerical analysis is very restricted, but we 

confirm viability of the global saddle-point stability.  
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6. Labor Income Share Decline 

 

In this section, we unify all the results presented above and demonstrate that the 

aggregated labor income share declines in the long run. 

Before that, we summarize our important results as explained below. 

(P1) The optimal steady state output path ( )* *( ), ( )c t y t in terms of the original unit grows 

at its own growth rate and they are expressed as 

 

* * (1 )

(1 )* *

( ) ,

( ) .

c cA

g gA

t

t

c t c e

y t y e

α γ

α γ

−

−

 =


 =

 

. 

 

Therefore, each steady state grows at a different growth rate: (1 ) ( , )i iA i c gα γ− = . 

(P2) The optimal steady state is saddle-point stable: each sector’s optimal path locally 

converges to its own steady state. 

(P3) Both Assumption 5 ( )β α>  and the Cobb–Douglas technologies imply that, along 

the optimal steady state, the consumption goods final sector has a lower labor income 

share than that of the capital goods final sector. 

Because of (P1), even if
cA gAγ γ= , it follows that (1 ) (1 )g c g gA c cAα α α γ α γ> ⇒ − < − . 

Therefore, along the optimal steady state, the value-added of the consumption goods 

sector dominates that of the capital goods sector in the long run. (P2) implies that each 

sector’s optimal path converges to its own optimal steady state. Because β α>  holds 

along the steady state because of (P3) and that also exhibits that the consumption goods 

sector’s integrated capital income share is greater than that of the capital goods sector. 

Therefore, the value-added domination of the consumption goods final sector with the 

lower labor income share implies that the aggregated labor income share declines in the 

long run. Our result can be summarized as the following proposition. 

Proposition 3. Under our assumptions, if 
cA gAγ γ≅  or (1 ) (1 )

gA c cAgα γ α γ− < −  were to 

hold, then the aggregated labor income share could be expected to decline in the long run. 

 

Remark. Each sector’s labor share is closely related to its TFP growth rate. As shown in 

Figure 2, the sector with a higher TFP growth rate exhibits a lower labor income share. 

We observe the similar relation among other OECD countries. In terms of our variables, 
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it implies that (1 ) (1 )g gA c cAβ α α γ α γ> ⇔ − < − . Thus these empirical facts clearly 

support our claims, especially (P3).  

 

7. Conclusion 

 

We have demonstrated that setting up the endogenous TFP growth model based on the 

five major driving forces leads to an exhibition of the decline of the aggregated labor 

income share in the long run. Among other things, regarding the intermediate goods as 

intangible IIP capital goods, we successfully introduce the driving factor (ii). However, 

when it comes to the “superstar” firm factor, our model exhibits a severe defect: our two-

sector model is not based on firm-level analysis, but on industry-level analysis. The recent 

firm-level empirical study reported by Kehrig and Vincent (2017) examining the U.S. 

manufacturing sector has documented two facts: an important reallocation of production 

towards hyper-productive plants and a downward adjustment of the labor share of those 

same plants over time. To study the micro-level mechanism of the labor share decline, it 

remains an urgent task to produce a multi-firm optimal growth model. 
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Appendix 

The following parameter values are assigned in order to implement the simulation work: 

 

Parameter Explanation Value 

cα   
 0.2 

gα  
  

0.9 

cβ  (0.5 ) / (1 )
c c

α α= − −   
0.5 

gβ  
  

0.6 

cε   (1 )
c c c

α β α= + −  
0.8 

gε  
 

(1 )
g g g

α β α= + −   

 

0.88 

α  
1

g
ε= −   

0.02 

β  
1

c
ε= −   

0.5 (fixed) 

nδ +   Depreciation rate + rate of population growth (n) 0.40 

r Representative household’s discount rate 0.04 

γ   
TFP growth rate (

cA gA
γ γ γ= = )  

0.40 

σ   Coefficient of the utility function 2.5 

ρ   
(1 ) (1 )

c
r nα γ σ= − − − +   

0.58 

 

We use Mathematica ver. 10.3 to solve the problem3. 

 

Note that we fix the value of β as 0.5. By so doing, the implicit function turns out to be 

the quadratic equation of ck : 

[ ] [ ]
[ ]( ) ( )

0.5 0.5

22

( ) (1 ) (1 )

(***) (1 ) ( ) (1 ) 0

c c c

c c c

k k c D k

D k c k kc

α β β α α β

α β α β β α

− + − = −

⇒ − − − − − =



 
   

                                                   
3 The Mathematical code used here will be provided upon request. 
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Choosing the proper root, we can numerically solve the implicit function w.r.t. ck as the 

explicit function of ( ),k c . Substituting the result into ( , )T c k , Eq. (3.1), Eq. (3.5), Eq. 

(3.6) and Eq. (3.7), we obtain the numerically expressed differential equation system 

(4.1). First we draw the vector field of the dynamical system (4.1) to check the saddle-

path stability. Then we solve the numerically expressed dynamical system (4.1) and 

derive the stable and unstable manifolds. The result is shown as Figure A.1.      

 

 

Figure A.1:  Vector Fields, Stable and Unstable manifolds 
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Leading 

Forces 

i) 

Supercycles 

and 

Boom-bust 

ii) Rising 

 and 

Faster 

depreciation 

iii) Superstar 

effects 

and 

Consolidation 

iv) Capital 

substitution 

 and 

Automation 

v) Globalization 

and Labor 

bargaining 

power 

Weighted 

Contribution 

(%) 

 

33 

 

26 

 

18 

 

12 

 

11 

      

Table 1: Contribution of respective drivers to the capital share increase 

 

Figure 1: Tree diagram of the model. 

 

Figure 2: Average TFP Growth Rate and Labor Share  

   from 1999 to 2010 in US: Corr. = - 0.39 


