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Abstract

The grid search method has often been used to solve models with default risk because the

complexity of the problem prevents the use of more efficient but less general tools. In this pa-

per, we propose an extension of the endogenous grid method for default risk models in which

price schedules are dependent on individuals’ state variables and endogenously determined in

equilibrium. Our method combines Fella’s (2014) identification for non-concave regions and

our algorithm that numerically searches for the risky borrowing limit, a limit that is a theoret-

ical lower bound of the feasible set of asset holdings. The demarcation of this combination

enables us to exploit the endogenous grid method by identifying the region of solution sets.

The method here is as stable as the grid search method; not only is our method faster and more

accurate than the grid search method, but these computational gains are amplified in richer

models. With higher accuracy, our method is approximately eight to nine times faster with a

simple canonical model of Arellano (2008); approximately 19 to 27 times faster with the richer

model of Nakajima and Rı́os-Rull (2014). Finally, we show that this method is applicable to

a broad class of default risk models by characterizing sufficient conditions for the application.

The method may contribute to facilitating the use of model environments with default choices,

thereby allowing us to explore further questions of credit and financial frictions.
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1 Introduction

In any financial market, defaults have widely been observed. World capital markets often have

experienced sovereign defaults on a large scale, and consumer bankruptcy is one of the important

social insurances in many countries. Researchers have employed default risk models to better

understand the sources of defaults and the implications of default-related policies.1 As financial

markets and default-related policies become increasingly complex, default risk models have tended

to become quite intricate over time.

Despite the increased computational burden, we have relied on the stability of the grid search

method to solve default risk models at the cost of efficiency because there are few robust and

efficient solution methods for them. Arellano, Maliar, Maliar and Tsyrennikov (2016) developed

an envelope condition method (ECM) for default risk models, but this method is not applicable to

life-cycle models as it solves problems in a forward manner. Moreover, this ECM, as mentioned by

the authors, does not guarantee the convergence of value functions in default risk models, if their

default rule is endogenous. Another efficient algorithm is the endogenous grid method (EGM),

which was originally developed by Carroll (2006). This EGM has progressed to solve a broader

class of dynamics problems. For example, the EGM has been extended to solve models with

endogenous labor supply (Barillas and Fernández-Villaverde, 2007), discrete choices (Fella, 2014;

Iskhakov, Jørgensen, Rust and Schjerning, 2017), and multiple dimensional choices (Hintermaier

and Koeniger, 2010; Druedahl and Jørgensen, 2017). Unfortunately, these extended EGMs cannot

be applied to default risk models.

These EGMs do not work with default risk models because they have not addressed the follow-

ing features of default risk models in a comprehensive manner. First, the value functions are non-

concave and not everywhere-differentiable because defaulting is a discrete choice variable which

causes kinks in value functions. Several extended EGMs have addressed this problem (Fella, 2014;

Iskhakov et al., 2017; Druedahl and Jørgensen, 2017), but none of them have accurately handled

another issue in default risk models: the feasible set of asset holdings is indeterminate and het-

erogeneous across individual states.2 This set must be established before solving the models to

implement these solution methods. Villemot (2012) is an exception using the EGM to solve a

default risk model in Arellano (2008) by introducing a heuristic algorithm that updates the lower

bound of the feasible set. This algorithm, however, is not guaranteed to find the correct feasible set.

1For example, there have been studies for the episodes of sovereign default (Aguiar and Gopinath, 2006; Arellano,

2008; Yue, 2010), the implications of consumer bankruptcy reforms (Chatterjee et al., 2007; Livshits et al., 2007;

Athreya, 2008; Athreya et al., 2009; Livshits et al., 2010; Chatterjee and Gordon, 2012; Nakajima, 2017), and the

interactions between household default and business cycles (Nakajima and Rı́os-Rull, 2014; Gordon, 2015).
2In contrast, when an option to default is unavailable, this issue does not appear because the feasible set of the

solution is irrelevant to its equilibrium. It is predetermined through an exogenous borrowing constraint or a collateral

constraint.
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Further, it is uncertain how generally this algorithm works with other default risk models because

Villemot (2012) did not consider the formalization of the class of models for the application.

In this paper, we propose an extension of the EGM that is faster, more accurate, and applica-

ble to a broader class of default risk models than previous methods in the literature. Our method

comprehensively handles the computational issues above. First, we address issues from the non-

concavity and non-differentiability by employing Fella’s (2014) algorithm. But, as mentioned

previously, Fella’s (2014) EGM cannot directly be applied to endogenous default risk models be-

cause it works only when the feasible set for the solution is predetermined through an exogenous

borrowing constraint or a collateral constraint. To overcome this issue, we introduce a numeri-

cal procedure to identify the feasible set for the solution. Arellano (2008) and Clausen and Strub

(2020) show that in every optimal debt contract, the size of debt, which is the product of the price

and the quantity of debt, increases with the quantity of debt. This condition will only be satisfied

on a closed interval of debt holdings, which we can find numerically for each state. We can then

take the minimum of this interval as the risky borrowing limit, which serves as the lower bound of

the feasible set of debt holdings. This combination enables us to exploit the computational benefits

of the EGM in solving default risk models.

We illustrate the detailed procedures of our method with a canonical model of Arellano (2008).3

Our EGM has noticeable computational benefits in accuracy and efficiency. Our method converges

approximately eight to nine times faster and yields more accurate results than the grid search

method according to Bellman equation errors. These computational benefits are amplified when

we apply our method to solve the richer model of Nakajima and Rı́os-Rull (2014). We show that

our method is approximately 19 to 27 times faster than the grid search method.

Finally, as in White (2015), we characterize sufficient conditions for our method to be appli-

cable to a model. The sufficient conditions imply that our EGM can be applied to a broad class

of default risk models: both finite- and infinite-horizon models, along with other discrete choices

(e.g., housing, durable goods, health insurance, and retirement) and multiple types of defaults (e.g.,

Chapter 7 vs. Chapter 13 in consumer bankruptcy).

The organization of this paper is as follows. Section 2 describes the model of Arellano (2008),

to which we apply our method. In Section 3, the detailed procedures of our algorithm are demon-

strated, and Section 4 reports the results. In Section 5, we provide and discuss sufficient conditions

for the application of our method. Finally, Section 6 concludes this paper.

3This model is well suited as a pedagogical example because it contains all the necessary components in a relatively

simple model.
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2 Model

In this section, we lay out Arellano’s (2008) model.4 In the model, the government starts each

period with assets a and endowment S. Endowment S follows an AR(1) process with a persistence

of ρS:

S
′

= ρSS + ǫ
′

, ǫ
′

∼ N(0, σS). (1)

The AR(1) process is approximated in a Markov chain πS,S
′ . The government has an option to

default on its debt a < 0. Given the option to default, the government solves the following problem:

V (S, a) = max {V c(S, a), V d(S)} (2)

where V (S, a) is the value of the government, V c(S, a) is the value associated with not defaulting

and V d(S) is the value associated with defaulting.

The value associated with not defaulting is as follows:

V c(S, a) = max
{a′≥−Z}







u(S − q(S, a
′

)a
′

+ a) + β
∑

S
′

πS,S
′V (S

′

, a
′

)







(3)

where Z is a lower bound on debt to prevent Ponzi schemes but is otherwise not binding in the

equilibrium. u(·) is the utility function that is differentiable, and q(·, ·) is the loan price schedule

over the current endowment S and the next period asset a
′

.

The value associated with defaulting is as follows:

V d(S) = u(h(S)) + β
∑

S
′

πS,S
′

[

θV (S
′

, 0) + (1− θ)V d(S
′

)
]

(4)

h(S) =







λ if S > λ

S if S ≤ λ,
(5)

where θ is the probability that the economy will regain access to the international credit markets.

The above value function implies that default causes two kinds of penalties. The first type of

penalty is exclusion costs. This is the opportunity cost of not having access to the credit mar-

ket in the following period with probability 1-θ. The other type of penalty is output costs. The

government must pay S − λ when S is greater than λ under a bad credit history.

The financial market is competitive with risk neutral lenders whose expected profit is zero.

4We focus on describing the government problem here. For detailed explanations of the model environment and

other features, please see Arellano (2008).
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With these lenders, the loan price schedule, q(S, a
′

), satisfies

q(S, a
′

) =
1− δ(S, a

′

)

1 + r
(6)

where δ(S, a
′

) is the probability of default associated with S and a
′

and r is the risk-free interest

rate.

To set the loan price, we need to characterize the default probability δ(S, a
′

). To do so, let us

define D(a) as

D(a) = {S : V c(S, a) < V d(S)}. (7)

The probability of default with endowment S and assets in the next period a
′

is

δ(S, a
′

) =
∑

{S′∈D(a′ )}

πS,S
′ =

∑

{S′ :V c(S′
,a

′ )<V d(S′ )}

πS,S
′ (8)

If D(a
′

) = ∅, the equilibrium default probability becomes zero, and the bond price is equal to that

of risk-free bond.

3 Algorithm

Let us begin with notations to explain the algorithm. Let n be the number of iterations for

the value function and loan price schedule. Let EV n(S, a
′

) be the expected value function,

β
∑

S
′ πS,S

′V n(S
′

, a
′

). We will denote Ga
′ = {a

′

1, . . . , a
′

N
a
′
} as the grid for assets, a

′

, in the

next period. In addition, we define Da
′EV n(S, a

′

) as the derivative of the expected value function

with respect to the next period asset holdings, a
′

. We compute the numerical derivative of the

expected value function in the following way:

Da
′EV n(S, a

′

k) =















EV n(S,a
′

k+1
)−EV n(S,a

′

k
)

a
′

k+1
−a

′

k

, for k < Na
′

EV n(S,a
′

N
a
′
)−EV n(S,a

′

N
a
′ −1

)

a
′

N
a
′
−a

′

N
a
′ −1

, for k = Na
′

(9)

where Na′ is the number of grid for a. The numerical derivative of the discount loan rate with

respect to a
′

, Da
′qn(S, a

′

), is computed in the same way.
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a
′

0anrbl(S)

qn(S, a
′

) · a
′

Slope= 1
1+r

Figure 1: Risky Borrowing Limit

3.1 Calculating Risky Borrowing Limit

We set up the feasible sets of the solution through the risky borrowing limit (credit limit), which

is studied in Arellano (2008) and Clausen and Strub (2020). They show that, for each state S,

the size of loan q(S, a
′

)a
′

increases with a
′

in every optimal debt contract. If the size of loan

q(S, a
′

)a
′

decreases in a
′

, households can increase their consumption by reducing debts (increasing

a
′

), which implies that it cannot be an optimal debt contract. Arellano (2008) defines the risky

borrowing limit to be the lower bound of the set for optimal contract. Figure 1 illustrates the risky

borrowing limit, anrbl(S).

Using this theoretical finding, we numerically compute the risky borrowing limit for each state

S using the following definition:

Definition 3.1.1. For each n and S, anrbl(S) is the risky borrowing limit if

∀a
′

> anrbl(S), Da
′

(

qn(S, a
′

) · a
′

)

= Da
′qn(S, a

′

) · a
′

+ qn(S, a
′

) > 0. (10)

Going forward, when we compute the endogenous grid, we will only use grid points that lie above

the risky borrowing limit.5

5We argue that the risky borrowing limit might be a general feature of default risk models. More details will be
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Da′EV (S, a′), u′(M − q(S, a′)a′))

a
′

a
′

0 a
′

1 a
′

2 a
′

3 a
′

4 a
′

5 a
′

6 a
′

7 a
′

8 a
′

9 a
′

10a
′

11a
′

12a
′

13a
′

14a
′

15a
′

16a
′

17a
′

18a
′

19a
′

20a
′

21a
′

22a
′

23
‖

anrbl(S)

Da
′EV n(S, a

′

)

u
′

(M
′′′

− q(S, a
′

)a
′

)

u
′

(M
′′

− q(S, a
′

)a
′

)

u
′

(M
′

− q(S, a
′

)a
′

)

vmax(S)

vmin(S)

‖

amin(S)

‖

amax(S)

Figure 2: Illustrating the Algorithm
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3.2 Identifying the (Non-) Concave Region

Fella (2014) presented an algorithm that divides the space of assets in the next period a
′

into

concave and non-concave regions. In the concave region, the FOC is sufficient and necessary for

the global solutions, whereas in the non-concave region, the FOC is only a necessary condition.

This algorithm uses information on the curvature of the expected value function. The details are as

follows.

As in Fella (2014), we use Figure 2 to understand how his algorithm works. The vertical axis

represents, for a given S, the values for the derivative of the expected value function, Da
′EV n(S, ·),

and the marginal utility of consumption, u
′

(·). The horizontal axis is the value of asset holdings

in the next period, a
′

. Given a level of cash on hand M(= a + S), the marginal utility of present

consumption increases with asset holdings in the next period, a
′

. Let M
′′′

< M
′′

< M
′

be three

arbitrary levels of cash on hand. Given a′, the larger cash in hand, the more consumption.6 Since

the utility function is concave, marginal utility of present consumption is decreasing in cash on

hand. The non-monotonic and discontinuous line is the derivative of the expected value function,

Da
′EV n(S, ·). The curve is discontinuous at those values of a

′

for which the default probability

jumps discretely as a
′

changes.7 The risky borrowing limit, anrbl(S), is represented at a
′

2. Let us

define Gan
rbl

(S) as the set of all grid points for assets above the risky borrowing limit anrbl(S). Here,

Gan
rbl

(S) = {a
′

2, . . . , a
′

23}.

This algorithm identifies the concave region by using information related to the First Order

Condition (FOC).8 In Figure 2, the intersection points between u
′

(·) and Da
′EV n(S, ·) are where

the FOC holds. A non-concavity causes a jump in Da
′EV (S, ·), which can lead to multiple cross-

ing points. (e.g. u
′

(M
′′

− q(S, a
′

)a
′

) intersects Da
′EV (S, ·) twice; between a

′

9 and a
′

10, between

a
′

12 and a
′

13). The multiple crossing points means that the FOC is not a sufficient condition but

a necessary condition. In contrast, if there is only one crossing point then necessity of the FOC

combined with uniqueness means that it is also sufficient for a global solution.9 As in Fella (2014),

we identify the concave region where the two curves are single-crossed by using the following

criterion.

a
′

i ∈ Gan
rbl

(S) is on the concave region either if

∀ a
′

j ∈ Gan
rbl

(S) with a
′

j < a
′

i, Da
′EV n(S, a

′

i) < Da
′EV n(S, a

′

j) or (11)

∀ a
′

j ∈ Gan
rbl

(S) with a
′

j > a
′

i, Da
′EV n(S, a

′

i) > Da
′EV n(S, a

′

j).

addressed in Section 5.4.
6From the budget constraint, c+ q(S, a′)a′ = M
7Although the decision on default is the only discrete choice in the model, other types of discrete choices can be

addressed along with default options. More details will be discussed in Section 5.
8We compute the first order condition with respect to a′ in Equation 3 to get u′(M − q(S, a′)a′) = Da′EV (S, a′).
9In Figure 2 this happens at the point where u

′

(M
′′′

− q(S, a
′

)a
′

) intersects Da
′EV (S, ·); between a

′

4 and a
′

5.
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This condition implies that the derivative of the expected value function, Da
′EV n(S, a

′

), is strictly

decreasing on the concave region. In Figure 2, a
′

5 and a
′

15 are the two thresholds of this condition;

we denote them as amin(S) and amax(S), respectively. As a result, in Figure 2, the concave region

is {a
′

2, a
′

3, a
′

4}∪{a
′

16, · · · a
′

23}. The remaining region becomes the non-concave region, {amin(S) =

a
′

5, a
′

6, · · · , a
′

14, a
′

15 = amax(S)}. vmax(S) and vmin(S) are the corresponding values of Da
′EV (·)

at amax(S) and amin(S), respectively.

Note that identifying the concave region is equivalent to finding amin(S) and amax(S). To find

the thresholds, we take the following steps. First, we check the discontinuous points of the deriva-

tive of the expected value function, Da
′EV n(S, a

′

i) with respect to a
′

i. In Figure 2, the discontinu-

ous points arise at a
′

11 and a
′

12. Second, over the discontinuous points, we find the minimum value

of Da
′EV n(S, ·) and denote it as vmax(S). In Figure 2, vmax = Da

′EV n(S, a
′

11). Next, we search

for a set of a
′

i that satisfies Da
′EV n(S, a

′

i) ≤ vmax(S), which is {a
′

15, a
′

16, · · · , a
′

23} in Figure 2.

We choose the minimum among this set and define it as amax(S). In Figure 2, amax(S) = a
′

15.

vmin and amin are computed analogously.

3.3 Computing the Endogenous Grid for the Cash on Hand

For each S and a
′

i ∈ Gan
rbl

(S), we compute the endogenously-determined cash on hand,

M(S, a
′

i). To retrieve this endogenously-determined cash on hand, M(S, a
′

i), we need to obtain

the endogenously-determined consumption by using the following FOC:

For each n, S and a
′

i ∈ Gan
rbl

(S), u
′

(c(S, a
′

i)) =
Da

′EV n(S, a
′

i)

Da
′qn(S, a

′

i) · a
′

i + qn(S, a
′

i)
(12)

where c(S, a
′

i) is the endogenously-determined consumption. The FOC (12) is locally well-defined

and easy to compute.10, 11 Recall that the derivative of the expected value function, Da
′EV n(S, a

′

i),

and the loan price schedules, Da
′qn(S, a

′

i), are computed using equation (9). Given Da
′EV n(S, a

′

i)

and Da
′qn(S, a

′

i), c(S, a
′

i) = u
′−1

(

D
a
′EV n(S,a

′

i)

D
a
′ qn(S,a

′

i)·a
′

i+qn(S,a
′

i)

)

.

Given c(S, a
′

i), we retrieve the endogenously-determined cash on hand M(S, a
′

i) as follows:

M(S, a
′

i) = c(S, a
′

i) + qn(S, a
′

i)a
′

i. (13)

10Clausen and Strub (2020) proved the local differentiability of the expected value function and the loan price

schedules and showed the existence of the FOC (12). The proof in Clausen and Strub (2020) was for the case of iid

shocks on earnings; yet as they mentioned, the inclusion of AR-1 shocks does not make a huge difference in the proof.
11For each a

′

i ∈ Ga
′ with a

′

i > arbl(S), the derivative of the size of the loan, Da
′ qn(S, a

′

i)a
′

i + qn(S, a
′

i), is always

positive by the definition of the risky borrowing limit, anrbl(S). We assume that the utility function u(·) is differentiable

with respect to c. The derivative of the expected value function and price function can be obtained numerically using

equation (9).
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For each S and a
′

i ∈ Gan
rbl

(S), we save the pairs of (M(S, a
′

i), a
′

).

3.4 Storing the No-Default Value Function on the Endogenous Grid for

Cash on Hand

Given n, for each S and a
′

i ∈ Gan
rbl

(S), we compute the value function over the endogenous grid for

cash on hand, M(S, a
′

i) as follows:

V c,n+1(S,M(S, a
′

i)) = u(M(S, a
′

i)− qn(S, a
′

i) · a
′

i) + EV n(S, a
′

i) (14)

It is worth noting two things in this step. First, the value function is computed without any max-

operator, which contributes to efficiency. Second, the value functions are defined on the endoge-

nous grid of M(S, a
′

i), not on its exogenous grid.

3.5 Identifying the Global Solution over the Endogenous Grid for Cash on

Hand

Given a level of cash on hand, the corresponding a
′

may not be a global solution as illustrated in

Figure 2. In this step, we identify a set of the global solutions and save the corresponding pairs of

(M(S, a
′

i), a
′

i). Given n and S, a
′

i ∈ Gan
rbl

(S) is either on the concave region or on the non-concave

region. When a
′

i is on the concave region, as a
′

3 in Figure 2, the pair of (M(S, a
′

i), a
′

i) implies a

global solution because the FOC (12) is a sufficient and necessary condition. We save all of the

pairs (M(S, a
′

i), a
′

i) on the concave region.

When a
′

i is on the non-concave region (e.g., a
′

i = a
′

9) in Figure 2, the pair of (M(S, a
′

i), a
′

i)

does not guarantee a global maximum because the FOC (12), while necessary, is not sufficient.

As in Fella (2014), for each S and a
′

i on the non-concave region, we verify whether this a
′

i is the

global solution by solving the following problem:

a
′

g = argmax
{a

′

k
∈{amin(S),··· ,amax(S)}}

[

u(M(S, a
′

i)− qn(S, a
′

k) · a
′

k) + EV n(S, a
′

k)
]

(15)

where {amin(S), · · · , amax(S)} is the non-concave region. If a
′

i = a
′

g, this implies that the pair

of (M(S, a
′

i), a
′

i) corresponds to a global solution, thus we save this pair. If a
′

i 6= a
′

g, we discard

this pair. This step does not add the computational intensity much since it only searches over the

non-concave region.
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3.6 Computing the Endogenous Grid for the Current Assets Related to the

Global Solutions

For the saved pairs of (M(S, a
′

i), a
′

i) for the global solutions, we store the corresponding pairs of

(a(S, a
′

i), a
′

i). For each saved a
′

i, we compute the endogenous grid for the current assets, a(S, a
′

i),

as follows:

a(S, a
′

i) = M(S, a
′

i)− S. (16)

Note that when a set of a
′

i corresponds to the global solutions, a(S, a
′

i) monotonically increases

with a
′

i, thereby allowing for a one-to-one mapping from a to a
′

. This mapping enables us to use

splines to evaluate the policy function over the exogenous grid in the following step.

3.7 Evaluating the Policy Function and the No-Default Value Function on

the Exogenous Grid for the Current Assets

Using the one-to-one mapping between a(S, ·) and a
′

, we compute the policy function over the

exogenous grid of the current assets Ga as follows.

First, for each state S, we find the value of the endogenous grid for the current assets cor-

responding to a
′

= 0, a(S, a
′

= 0). Then, for each S and for each ai ∈ Ga, we compare the

value of ai to that of a(S, a
′

= 0). If ai ≥ a(S, a
′

= 0), we use a linear interpolation to eval-

uate the policy function of asset holdings, a
′

= ga(S, ai) and evaluate the corresponding value

V c,n+1(S, ai) = u(ai +S − qn(S, ga(S, ai)) · ga(S, ai)) +EV n(S, ga(S, ai)). If ai < a(S, a
′

= 0),

we compute V c,n+1(S, ai) and ga(S, ai) by solving the following problem:

V c,n+1(S, ai) = max
{an

rbl
(S)<a

′

j<0}
u(ai + S − qn(S, a

′

j) · a
′

j) + EV n(S, a
′

j). (17)

Note that this inclusion of the grid search does not cause a huge loss in efficiency because this

problem searches the grid just between the risky borrowing limit, anrbl(S), and zero assets, a
′

= 0.

We restrict the usage of interpolation to non-negative asset holdings, a
′

≥ 0, due to computa-

tional issues. As Hatchondo et al. (2010) pointed out, the computational accuracy is sensitive to

the numerical method of computing the derivative of the loan rate schedule, Da
′qn(S, a

′

). We also

find that the convergence of the value function, V (S, ·), and loan rate schedules, q(S, ·), is sensitive

to how to compute their derivative on the borrowing region, a
′

< 0. For these reasons, we employ

the grid search method for the borrowing region, a
′

< 0.

10



3.8 Computing the Value of Defaulting

We solve the value function with a bad credit history:

V d,n+1(S) = u(y(S)) + β
∑

S
′

πS,S
′

[

θV c,n+1(S
′

, 0) + (1− θ)V d,n(S
′

),
]

. (18)

Since the value function of defaulting is not related to any continuous endogenous state, it is not

costly to compute it.

3.9 Updating the Value Function and Loan Price Schedules

We update the value function, V n+1(S, a) and the price function, qn+1(S, a
′

) in the following way:

V n+1(S, a) = max {V c,n+1(S, a), V d,n+1(S)} (19)

qn+1(S, a
′

) =
1− δ(S, a

′

)

1 + r

where

δ(S, a
′

) =
∑

{S′ :V c,n+1(S′
,a

′ )<V d,n+1(S′ )}

πS,S
′ .

We compute EV n+1(S, a). If ||EV n+1(S, a)−EV n(S, a)||∞ > 10−5 where || · ||∞ is the sup norm

over SXA, start a new iteration with n = n+ 1.

3.10 Summary of the Algorithm

To sum up, given an iteration number, n, and the expected value function EV n(S, a), the algorithm

is as follows:

1. For each S, calculate the risky borrowing limit, anrbl(S), and save it.

2. Identify the (non-) concave region of asset holdings a
′

by using the algorithm of Fella (2014).

3. Given (S, anrbl(S)), compute the endogenously-determined cash on hand, M(S, a
′

i), by solv-

ing the FOC (12). Save these pairs of (M(S, a
′

i), a
′

i).

4. Compute the value function for non-defaulting over the endogenous grid for cash on hand,

(V c,n+1(S,M(S, a
′

i)).

5. Identify the global solution over the endogenous grid for cash on hand.

• If a
′

i is on the concave region, save the pair of (M(S, a
′

i), a
′

i)

11



• If a
′

i is on the non-concave region, verify whether the candidate (M(S, a
′

i), a
′

i) implies

the global solution by solving the value function. If this is the global solution, save the

pair of (M(S, a
′

i), a
′

i). Otherwise, discard it.

6. For the saved pairs of (M(S, a
′

i), a
′

i), compute the corresponding endogenous grid for the

current assets, a(S, a
′

i). Save the pairs of (a(S, a
′

i), a
′

i).

7. Using the monotonicity between a(S, a
′

i) and a
′

i, compute the policy function of asset hold-

ings and the value function for non-defaulting over the exogenous grid for the current assets.

• Compute the value of the endogenous grid for the current assets a(S, a
′

= 0) corre-

sponding to a
′

= 0

– If ai ≥ a(S, a
′

= 0), use a linear interpolation to compute the policy function of

asset holdings in the next period, ga(S, ai). With ga(S, ai), compute V c,n+1(S, ai).

– If ai < a(S, a
′

= 0), solve the value function V c,n+1(S, ai) by searching for the

grid between the risky borrowing limit, anrbl(S) and zero assets, a
′

= 0.

8. Compute the value function for defaulting, V d,n+1(S).

9. Update the value function, V n+1(S, a) = max{V c,n+1(S, a), V d,n+1(S)}, and loan price

schedules, qn+1(S, a
′

).

10. Compute EV n+1(S, a).

11. Start a new iteration with n = n + 1 if ||EV n+1(S, a)− EV n(S, a)||∞ > 10−5. Otherwise,

stop.

4 Results

4.1 Parameterization

Table 1: Parameters

r 1.7% Risk-free interest rate

σ 2.0 Risk aversion

ρS 0.945 Endowment process

σS 0.025 Endowment process

β 0.953 Discount factor

θ 0.282 Probability of reentry

λ 0.969E(S) Output cost

12



We follow Arellano’s (2008) choice of parameter values. The utility function is

u(c) =
c1−σ

1− σ

The Markov chain approximation to the process follows Tauchen (1986). The number of grid

points for S is 21. We set lower and upper bound of a to -2.5 and 3.5. The grid points for a are

log-spaced around zero, as default decisions are made and measures are located near zero. The

model is solved a grid of 200, 500, 1000 and 2000 for the continuous state variable a. Table 1

shows the values of the chosen parameters.

Figure 3 shows the results of our computations. Our solutions resemble the solution of Arellano

(2008), and the results from our EGM and those from grid search method are very close.

4.2 Computing Time and Accuracy

As mentioned above, we vary the size of the grid for a across computational exercises. In all

computational exercises, we keep the number of the grid points for the other variables. We compute

Bellman equation errors instead of computing Euler equation errors to measure the accuracy. To

compute the Euler error, we must calculate the derivative of the loan price schedule, the value

of which depends on types of numerical derivatives. As Hatchondo et al. (2010) point out, Euler

equation errors are sensitive to how to calculate the derivative of the loan rate schedule, Da
′q(S, a

′

).

Recall the following notation: S is the state vector other than assets a. Then, the Bellman equation

V (S, a) = u(c(S, a)) + ES
′

[

V (S
′

, a
′

(S, a))
]

(20)

should hold exactly for the true decision rules. Because the decision rules are numerically com-

puted in our exercises, the Bellman equation (20) does not hold exactly with the numerically cal-

culated decision rules. We define c∗ as the solution for

u(c∗(S, a)) = V (S, a)− ES
′

[

V (S
′

, ā
′

(S, a))
]

(21)

where bars indicate the numerically calculated decision rules. We define the Bellman equation

error as

BE(S, a) =

∣

∣

∣

∣

1−
c∗(S, a)

c̄(S, a)

∣

∣

∣

∣

. (22)

Following the literature, we report both the maximum and the average of Bellman equation errors.

We compute the average errors as the weighted average of the Bellman equation errors over the sta-
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tionary distribution and the maximum error as the maximum of the Bellman equation errors lying

only on the stationary distribution.12 The programs were written in Fortran 95 and all computations

were carried out on on a single core of an Intel i7-4770 processor.

Table 2: Computing Time (second)

# of Grid Points 200 500 1000 2000

Computational Method EGM GS EGM GS EGM GS EGM GS

AVG CPU Time 0.438 3.375 2.219 20.375 8.234 80.125 35.016 320.984

AVG CPU Time per iteration 0.002 0.018 0.012 0.107 0.043 0.420 0.183 1.681

Table 4 shows that the EGM is approximately eight to nine times faster than the grid search

method across all grid settings. Since the model we solve is simple, one might think that the effi-

ciency gain is small. Further, considering the additional time to implement the EGM algorithm, it

might not be worth using the EGM to a simple model. However, if a model entails more compli-

cated features and hence takes longer to solve, the EGM can reduce computing time significantly.

For example, Nakajima and Rı́os-Rull (2014) use a more complex income process and aggregate

uncertainty. They use a method in Krusell and Smith (1998) to approximate the aggregate states of

the model, thus solving it requires a long simulation (outer loop) after computing value functions

and decision rules (inner loop). Also, finding equilibrium requires several iterations of inner loops

and outer loops. We use our method to solve Nakajima and Rı́os-Rull (2014) and find the EGM is

from 18.5 to 27.3 times faster than the grid search method in the inner loops. In the outer loops,

the EGM is approximately 7.5 times faster than the grid search method. The details about our

implementation and numerical results can be found in Appendix.

Table 3: Computational Accuracy

# of Grid Points 200 500 1000 2000

Computational Method EGM GS EGM GS EGM GS EGM GS

AVG Bellman EQ Error (%) 0.025 0.028 0.020 0.027 0.017 0.029 0.015 0.029

MAX Bellman EQ Error (%) 12.052 12.052 12.048 12.056 9.617 12.056 9.614 12.057

Figure 5 shows the Bellman equation errors and stationary distributions. In both figures, there

are low mass where errors are large. The differences are not noticeable in the figure, but Table 5

shows that the EGM produces more accurate outcomes than the grid search method. Both average

and maximum Bellman equation errors in the EGM is same or lower than those in the grid search

methods across all grid settings.

12Although we vary the number of grid points for a when solve the value functions, we fix the number of grid points

for a to 2,000 when computing the stationary distributions.
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Figure 4: Bellman error and stationary distribution for the EGM

Figure 5: Bellman error and stationary distribution for the Grid Search Method

5 Generalization of the EGM

In Section 2 and 3, we chose Arellano’s (2008) model to demonstrate our EGM because it is

applicable to this model. However, the EGM does not work in all models. For example, the

EGM may not be useful when asymmetric information exists between lenders and borrowers, nor

when the risky borrowing limit does not exist. This section formalizes the method in a theoretical

framework and provides its sufficient conditions in order to understand the class of models to

which our EGM is applicable. We modify theorems in White (2015), in accordance with the

circumstances of default risk models.
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5.1 Formalization of the EGM

Consider a set of agents facing a dynamic maximization problem with a number of decision vari-

ables each of which can be either continuous or discrete.13 Time t begins at period 0 and ends

after period T ∈ N.14 We denote st ∈ St ⊂ R
p as the exogenous state where p ∈ N. Let

at ∈ At ⊂ R be the continuous state. Let us denote dt ∈ Dt = {1, · · · , Nd} as the endoge-

nous default state. State variables (st, at, dt) correspond to (S, a, d) in Section 3. We define

bt ∈ Bt = {1, · · · , Nb} as the endogenous discrete state other than the default state, which does

not exist in Arellano’s (2008) model. Note that changes in the current endogenous state variables

(at, dt, bt) affect (at+1, dt+1, bt+1), but not st+1.

Agents make a choice of yt from the closed and convex feasible set Γt(st, at, bt, dt), where the

constraint correspondence, Γt(·), represents the budget set for the current state: Γt : St×At×Bt×

Dt −→ Yt ⊂ R. We denote the feasible set Yt = ∪{st,at,bt,dt}∈St×At×Dt×Bt
Γt(st, at, bt, dt) ⊂ R.

In Section 3, the choice yt corresponds to consumption c, and the constraint correspondence Γt(·)

corresponds to the budget constraints, Γ(S, d = 0, a) = {c : 0 < c ≤ S + a − q(S,−Z)(−Z)}

and Γ(S, d = 1, a) = {c : 0 < c ≤ h(S)}. Agents obtain a flow of utility from their choices

and states through the utility function Ut : St × Bt × Dt × Yt −→ R. Ut is continuous, strictly

monotonic, strictly concave, and twice differentiable to yt on its interior domain. In addition, the

discount factor βt is between 0 and 1.

Once agents determine yt, their state changes from (st, at, bt, dt) to the interim period state,

(st+1, at+1, bt+1, dt) ∈ St+1 × At+1 × Bt+1 ×Dt according to the transition function ∆t(·). Note

that this interim timing indicates the time before making decision on default in period t+1 but after

deciding yt, and thereby st, at, and bt change to st+1, at+1, and bt+1. The transition ∆t(·) depends

on random shock ǫt+1 ∈ Et+1 ⊂ R
l, drawn from the CDF of Ft+1(ǫt+1). ǫt+1 corresponds to ǫ

′

in

Arellano’s (2008) model. Agents do not know the exact value of ǫt+1 when making the decision

on yt, but know the distribution of Ft+1(ǫt+1). The transition function ∆t is formally defined as

∆t : St × At × Bt ×Dt × Yt × Et+1 −→ St+1 × At+1 × Bt+1 ×Dt (23)

(st, at, bt, dt, yt, ǫt+1) 7−→ (st+1, at+1, bt+1, dt).

Since dt does not change in the interim period, we can express the transition function ∆t con-

ditional on dt. Further, we regard the future endogenous state bt+1 as given state b̄t+1 to

use the algorithm of Fella (2014) afterward. We define the transition function conditional on

13For the sake of easy exposition, we describe the problem in terms analagous to Section 3. However, while we refer

to the discrete decision as ’defaulting’, our algorithm can be applied in the context of other problems with discrete

choices such as housing.
14As in White (2015), it can be applied to infinite horizon models, with the time subscripts skipped.
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(dt × b̄t+1) ∈ Dt × Bt+1, ∆dt,b̄t+1
, as follows:

∆dt,b̄t+1
: St × At × Bt × Yt × Et+1 −→ St+1 × At+1 (24)

(st, at, bt, yt, ǫt+1) 7−→ (st+1, at+1).

Recall that yt affects the transition from at to at+1, but not that from st to st+1. Thus, we can

decompose the conditional transition function ∆dt,b̄t+1
into the portion ∆S

dt,b̄t+1
independent of

yt and the portion ∆A
dt,b̄t+1

dependent on yt. This decomposition implies that ∂∆S
dt,b̄t+1

/∂yt =

0|p×1, ∂∆S
dt,b̄t+1

/∂at = 0|p×1, ∂∆S
dt,b̄t+1

/∂bt = 0|p×Nb
, and ∂∆A

dt,b̄t+1
/∂yt 6= 0. Since ∆S

dt,b̄t+1
is

irrelevant to (at, bt, yt), we represent ∆S
dt,b̄t+1

as a function of (st, ǫt+1). For example, in Section 2,

∆S
dt,b̄t+1

corresponds to the first-order Markov chain πS,S
′ which was independent of consumption

c. ∆A
dt,b̄t+1

corresponds to the transition of the current assets a to the next period assets a
′

that

depends not only on πS,S
′ but also on consumption c.

We recursively represent the agent’s problem. At the beginning of each period, agents solve

Vt(st, at, bt) = max
dt∈{0,1,···Nd}

{vt(st, at, bt, dt))} (25)

where Vt(st, at, bt) is the value after default decision and vt(st, at, bt, dt) is the value before default

decision. Before agents decide whether to default or not, for each (dt × b̄t+1) ∈ Dt × Bt+1, they

solve

vt(st, at, bt, dt; b̄t+1) = max
yt∈Γt(st,at,bt,dt;b̄t+1)

Ut(st, bt, dt, yt) + βtE
[

{Vt+1(st+1, at+1, b̄t+1)}
]

= max
yt∈Γt(st,at,bt,dt;b̄t+1)

Ut(st, bt, dt, yt)

+ βt

∫

Vt+1(∆dt,b̄t+1
(st, at, bt, yt, ǫt+1))dFt+1(ǫt+1). (26)

= max
yt∈Γt(st,at,bt,dt;b̄t+1)

Ut(st, bt, dt, yt)

+ βt

∫

Vt+1(∆
S
dt,b̄t+1

(st, ǫt+1),∆
A
dt,b̄t+1

(st, at, bt, yt, ǫt+1))dFt+1(ǫt+1).

The terminal value is defined as:

vt(sT , aT , bT , dT ) = max
yT∈ΓT (sT ,aT ,bT ,dT )

Ut(sT , bT , dT , yT ). (27)
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We define the policy function Ψt(st, at, bt, dt; b̄t+1) as follows:

Ψt(st, at, bt, dt; b̄t+1) (28)

= argmax
yt∈Γt(st,at,bt,dt;b̄t+1)

Ut(st, bt, dt, yt)

+βt

∫

Vt+1(∆
S
dt,b̄t+1

(st, ǫt+1),∆
A
dt,b̄t+1

(st, at, bt, yt, ǫt+1))dFt+1(ǫt+1).

If a model is included in a subset of the general class of problems described above, then the

EGM is applicable when the model satisfies the conditions described in the next subsection.

5.2 Conditions for the EGM

The EGM works only when the FOC exists and is well-defined as a necessary condition for the

global solutions. This holds when condition C1 is satisfied.

• C1 : E[Vt+1(st+1, at+1, b̄t+1)] is locally differentiable with respect to the optimal choice of

at+1. In addition, at+1 = ∆A
dt,b̄t+1

(st, at, bt, yt, ǫt+1) is locally differentiable with respect to

the optimal choice of yt.

Researchers can check whether this condition holds in a specific problem by using the “Reverse

Calculus” method from Clausen and Strub (2020). They provide useful instruments for checking

the local differentiability applicable to models with discrete choices and default options.

Assuming C1 is satisfied, the following FOC will then be a necessary but not sufficient condi-

tion for optimal consumption.

∂Ut(st, bt, dt, yt)

∂yt
= (29)

−βt

∫

[

∂Vt+1(∆
S
dt,b̄t+1

(st, ǫt+1),∆
A
dt,b̄t+1

(st, at, bt, yt, ǫt+1))

∂at+1

·
∂∆A

dt,b̄t+1
(st, at, bt, yt, ǫt+1))

∂yt

]

dFt+1(ǫt+1).

Since Ut is differentiable,
∂Ut(st,bt,dt,yt)

∂yt
is well-defined. Note that the FOC (29) is not sufficient but

necessary for the global solution of at+1 because EVt+1 might not be strictly concave due to the

default options and other discrete choices.

Let us define Zt ⊂ R as the set of post-decision endogenous state. zt ∈ Zt is the interme-

diate state after agents have chosen and executed their choices yt but before the transition shock

ǫt+1 arises. For example, in Section 3, the post-decision endogenous state zt is the size of debt

q(S, a
′

) · a
′

because it is determined after consumption c is chosen, but before the transition shock

ǫ
′

is realized. This post-decision endogenous state enables us to decompose the endogenous state
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transition function ∆A
dt,b̄t+1

(·) into intra- and inter-period components. This decomposition is im-

portant in employing the EGM because it requires to use the FOC (29) represented by the post-

decision endogenous state zt. Formally, we decompose the the endogenous state transition function

∆A
dt,b̄t+1

(·) as follows:

• C2 : For each dt and for each b̄t+1, there exist functions Ξdt,b̄t+1
: St × At × Bt × Yt −→ R

and χdt,b̄t+1
: St × Zt × Bt × Et+1 −→ At+1 such that ∆A

dt,b̄t+1
(st, at, bt, yt, ǫt+1) =

χdt,b̄t+1
(st,Ξdt,b̄t+1

(st, at, bt, yt), bt, ǫt+1) for all (st, at, bt, yt) ∈ Wt × At × Bt × Yt when

yt ∈ Γt(st, at, bt, dt; b̄t+1).

This condition implies that for each dt and b̄t+1, through the intra-period transition function Ξdt,b̄t+1
,

the states (st, at, bt) and choice yt generate a post-decision state zt. In Section 3, recall that zt =

q(S, a
′

)a
′

and at+1 = a
′

. Our EGM requires zt to act as a sufficient statistic for the endogenous

state at+1. This implies that there must exist a unique one-to-one mapping between zt = q(S, a
′

)a
′

and at+1 = a
′

.

To ensure that this mapping exists, we first need to ensure that q(S, a
′

)a
′

should increase with

a
′

(so that the mapping is one-to-one). Second, zt = q(S, a
′

) · a
′

needs to be independent of the

value of ǫ
′

, so that the decomposition of a
′

out of zt = q(S, a
′

) ·a
′

is unique.15 We generalize these

conditions as follows:

• C3 : For each st, dt and b̄t+1, at+1 is independent of ǫt+1, but dependent on the conditional

expectation of the default decision Et(D(ǫt+1)) that is formed in the current period t. i.e,

at+1 = χdt,b̄t+1
(st, zt, bt, Et(D(ǫt+1))).

• C4 : For each st, dt and b̄t+1, at+1 = χdt,b̄t+1
(st, zt, bt, Et(D(ǫt+1))) monotoni-

cally increases with zt; therefore, there exists a function χ−1
dt,b̄t+1

(·) where zt =

χ−1
dt,b̄t+1

(st, at+1, bt, Et(D(ǫt+1))) and χ−1
dt,b̄t+1

(·) is increasing in in at+1.

C3 implies that χdt,b̄t+1
(st, zt, bt, Et(D(ǫt+1))) is affected not by a future value of ǫt+1 but by

Et(D(ǫt+1)) that is formed in the current period t. C4 is a generalized version of the risky borrow-

ing limit. In Section 3, on the region of assets greater than the risky borrowing limit, zt = q(S, a
′

)a
′

is monotonic increasing in at+1 = a
′

. Note that zt = χ−1
dt,b̄t+1

(st, at+1, bt, Et(D(ǫt+1))) is indepen-

dent of the current continuous state at. This feature allows us to predetermine the lower bound of

the feasible set for the solution of at+1 at the initial step, thereby insulating the interactions between

15In Section 3, q(S, a
′

) is not a function of shocks ǫ
′

(or S
′

) but a function of the conditional mean of defaulting,

δ(S, a
′

) =
∑

{S′ :V c(S′
,a

′ )<V d(S′ )} πS,S
′ . Note that the default set {S

′

: V c(S
′

, a
′

) < V d(S
′

)} can be different

across default risk models because it depends on their default rules. What matters is that q(S, a
′

) is affected not by a

specific value of S
′

but by a function of its conditional expectation
∑

{S′ :V c(S′
,a

′ )<V d(S′ )} πS,S
′ that is formed in the

current period.
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the step of searching for the lower bound and that of computing the endogenously-determined cur-

rent state at in our EGM.

C2,C3 and C4 do not guarantee that the solution to the problem will be contained in the

feasibility set implied by Γt. To make the post-decision consistent with the feasible set such as

budget constraint, we need the following condition:

• C5 : Let dt and b̄t+1 be given. For all yt ∈ Yt and (st, at, bt) ∈ St × At ×

Bt, yt ∈ Γt(st, at, bt, dt; b̄t+1) if and only if Ξdt,b̄t+1
(st, at, bt, yt) ∈ Zt where Zt =

∪(st,at,bt)∈St×At×Bt
Ξdt,b̄t+1

(st, at, bt,Γt(st, at, bt, dt; b̄t+1)).

C5 means that the post-decision endogenous state zt is a sufficient statistic for evaluating the fea-

sibility of choice yt. Additionally, this condition implies that Zt spans the entire space of possible

outcome. In Section 3, this condition implies that given S and a, knowing z = q(S, a
′

)a
′

is equiv-

alent to knowing c because they satisfy the budget constraint, c+ z = c+ q(S, a
′

)a
′

= S + a.

Unlike the transitional functions in White (2015), the transitional functions might not be dif-

ferentiable because of the inclusion of discrete decision variables. We need a condition to ensure

the local differentiability of these functions.

• C6 : For each dt and b̄t+1, (1) zt = Ξdt,b̄t+1
(st, at, bt, yt) is locally differentiable with re-

spect to the optimal choices of yt, and (2) at+1 = χdt,b̄t+1
(st, zt, bt, Et[D(ǫt+1)]) is locally

differentiable with respect to the optimal post-decision state of zt.

In Arellano’s (2008) model, (1) of C6 implies that zt = q(S, a
′

) · a
′

is differentiable with respect

to c. This condition is satisfied for any S and a
′

as
∂q(S,a

′

)·a
′

∂c
= −1. (2) of C6 implies that

a
′

is differentiable with respect to z = q(S, a
′

)a
′

. The differentiability of optimal next-period

asset holdings a
′

with regard to z implies that q(S, a
′

) is differentiable with regard to a
′

because
∂a

′

∂z
= [ ∂z

∂a
′ ]−1 = 1/(Da

′q(S, a
′

)a
′

+ q(S, a
′

)). As with C1, a researcher can check whether their

setting has this property using Clausen and Strub’s (2020) reverse calculus technique.

With C1,C2,C3,C4,C5 and C6, for each (dt, b̄t+1) ∈ Dt × Bt+1, the FOC (29) can be

rewritten as follows:
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∂Ut(st, bt, dt, yt)

∂yt

= −βt

∫

[

∂Vt+1(∆
S
dt,b̄t+1

(st, ǫt+1), χdt,b̄t+1
(st,Ξdt,b̄t+1

(st, at, bt, yt), bt, Et[D(ǫt+1)]))

∂at+1

(30)

·
∂χdt,b̄t+1

(st,Ξdt,b̄t+1
(st, at, bt, yt), bt, Et[D(ǫt+1)]))

∂zt
·
∂Ξdt,b̄t+1

(st, at, bt, yt)

∂yt

]

dFt+1(ǫt+1)

= −βt

∫

[

∂Vt+1(∆
S
dt,b̄t+1

(st, ǫt+1), at+1)

∂at+1

]

dFt+1(ǫt+1) ·
∂χdt,b̄t+1

(st, zt, bt, Et[D(ǫt+1)]))

∂zt

·
∂Ξdt,b̄t+1

(st, at, bt, yt)

∂yt
.

where χdt,b̄t+1
(st,Ξdt,b̄t+1

(st, at, bt, yt), bt, Et[D(ǫt+1)]) = at+1 and Ξdt,b̄t+1
(st, at, bt, yt) = zt.

Note that
∂at+1

∂zt
=

∂χdt,b̄t+1
(st,zt,bt,Et[D(ǫt+1)])

∂zt
and ∂zt

∂yt
=

∂Ξdt,b̄t+1
(st,at,bt,yt)

∂yt
can be pulled out of the in-

tegral because they are independent of ǫt+1. Recall that C4 and C6 imply
∂at+1

∂zt
> 0. Furthermore,

we assume the following condition:

• C7 : For each (dt, b̄t+1) ∈ Dt × Bt+1, ∂zt
∂yt

=
∂Ξdt,b̄t+1

(st,at,bt,yt)

∂yt
= K ∈ R \ {0}, and

sgn(
∂Ξdt,b̄t+1

(st,at,bt,yt)

∂yt
) = −sgn(∂Ut(st,at,bt,dt,yt)

∂yt
).

C7 implies that given a budget set, a change in yt must be accompanied by a change in zt of

the opposite sign. Furthermore, this change is a constant proportion such that the tradeoff be-

tween yt and zt is linear. This condition is a general feature of dynamic problems in economics.

For example, in the model of Arellano (2008), C7 implies that
∂q(S,a

′

)·a
′

∂c
= −1 < 0; and thus,

sgn(∂q(S,a
′

)·a
′

∂c
) = −sgn(u′(c)) < 0. In the neoclassical growth model, this condition means

∂kt+1

∂ct
= −1 in the budget constraint ct + kt+1 = (1 + rt)kt + wtlt.

With C1−C7, we can rearrange the previous FOC as follows:

∂Ut(st, bt, dt, yt)

∂yt
·
1

K
(31)

= −

[

∂χ−1
dt,b̄t+1

(st, at+1, bt, Et[D(ǫt+1)]))

∂at+1

]−1

· βt

∫

[

∂Vt+1(∆
S
dt,b̄t+1

(st, ǫt+1), at+1)

∂at+1

]

dFt+1(ǫt+1).

where χ−1
dt,b̄t+1

(st, at+1, bt, Et[D(ǫt+1)])) = zt. Note that

[

∂χ−1

dt,b̄t+1
(st,at+1,bt,Et[D(ǫt+1)]))

∂at+1

]−1

is well-

defined because of C4 and (2) of C6. Now, at and zt disappear in the state vector.
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We need a monotonicity of at+1 with respect to at to use a spline to approximate the decision

rule of at+1 over the exogenous grid. Condition C8 guarantees this monotonicity.

• C8 : For each (dt, b̄t+1) ∈ Dt × Bt+1, at the policy function Ψt(st, at, bt, dt; b̄t+1), zt =

Ξdt,b̄t+1
(st, at, bt,Ψt(st, at, bt, dt; b̄t+1)) is non-decreasing in at.

In Arellano’s (2008) model, C8 implies that zt = q(s, a
′

)a
′

= q(s, ga(S, a)) · ga(S, a) is non-

decreasing in a. Since C4 implies that q(s, a
′

)a
′

is non-decreasing in a
′

, these two conditions

indicate that a
′

= ga(S, a) is weakly monotonic increasing in a. This monotonicity must be

required to use splines.

Let us denote ĝdt,b̄t+1
(st, bt, yt) and V̂dt,b̄t+1

(st, bt, at+1) as follows:

ĝdt,b̄t+1
(st, bt, yt) =

∂Ut(st, bt, dt, yt)

∂yt
·
1

K
(32)

V̂dt,b̄t+1
(st, bt, at+1)

= −

[

∂χ−1
dt,b̄t+1

(st, at+1, bt, Et[D(ǫt+1)]))

∂at+1

]−1

· βt

∫

[

∂Vt+1(∆
S
dt,b̄t+1

(st, ǫt+1), at+1)

∂at+1

]

dFt+1(ǫt+1).

(33)

In Arellano’s (2008) model, K =
[

∂Ξdt,b̄t+1
(st,at,bt,yt)

∂yt

]−1

= −1 and [ ∂zt
∂at+1

]−1 = 1
D

a
′ q(S,a

′
)a

′
+q(S,a

′
)
.

Therefore, ĝdt,b̄t+1
(st, bt, yt) = V̂dt,b̄t+1

(st, bt, at+1) is consistent with the FOC (12) in Arellano’s

(2008) model.

Note that for each (dt, b̄t+1) ∈ Dt × Bt+1, the EGM retrieves the endogenously-driven choice

variable yt from the given decision states (st, bt, at+1). Next, the EGM finds the endogenously-

driven current state at by using the retrieved yt(st, bt, at+1) with information on the budget set

Γt(·). As a result, for each (dt, b̄t+1) ∈ Dt × Bt+1 and given (st, bt, at+1), the EGM solves the
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following system:

ĝdt,b̄t+1
(st, bt, yt(st, bt, at+1)) = V̂dt,b̄t+1

(st, bt, at+1) (34)

where

ĝdt,b̄t+1
(st, bt, yt(st, bt, at+1)) =

∂Ut(st, bt, dt, yt)

∂yt

∣

∣

∣

∣

∣

yt=yt(st,bt,at+1)

·
1

K

V̂dt,b̄t+1
(st, bt, at+1)

= −

[

∂χ−1
dt,b̄t+1

(st, at+1, bt, Et[D(ǫt+1)]))

∂at+1

]−1

·

∫

[

∂Vt+1(∆
S
dt,b̄t+1

(st, ǫt+1), at+1)

∂at+1

]

dFt+1(ǫt+1).

It is worth noting that there is no max operator, thereby leading to sufficient improvements in

computational efficiency.

Let us explain notations for the procedure of the implementation. Gat is the exogenous grid of

at and Gat+1
is the exogenous grid of at+1.

5.3 Implementation

The EGM is applicable if a problem satisfies C1−C8. The method follows a seven-step proce-

dure. Initially, let us begin with t = T and E[VT+1] = 0.

1. In each period t, let the expected value function Et[Vt+1(st+1, at+1, b̄t+1)] and the conditional

mean of defaulting Et[D(ǫt+1)] be given. For each st, bt, dt, and b̄t+1, characterize an interval

of at+1 ∈ Gat+1
satisfying C4; find the minimum; and save it as arbl

dt,b̄t+1
(st, bt, Et[D(ǫt+1)])

(generalized risky borrowing limit). Going forward, take the states (dt, b̄t+1) ∈ Dt × Bt+1

and (st, bt) ∈ St × Bt as given to make the notations simple.

2. For each at+1 ∈ Gat+1
with at+1 > arbl

dt,b̄t+1
(st, bt, Et[D(ǫt+1)]), compute the endogenously-

driven yt(st, bt, at+1) by solving ĝdt,b̄t+1
(st, bt, yt(st, bt, at+1)) = V̂dt,b̄t+1

(st, bt, at+1) (Equa-

tion (34)). Then, save the pairs of (yt(st, bt, at+1), bt, at+1).

3. For each at+1 ∈ Gat+1
with at+1 > arbl

dt,b̄t+1
(st, bt, Et[D(ǫt+1)]), use the algorithm of Fella

(2014) to refine the global solution out of the candidates from the previous step. Save the

refined pairs of (yt(st, bt, at+1), bt, at+1) for the global solutions.

4. For the refined pairs of (yt(st, bt, at+1), bt, at+1), retrieve the corresponding

endogenously-driven current state at(st, bt, at+1). To do so, first, compute

zt = χ−1
dt,b̄t+1

(st, at+1, bt, Et[D(ǫt+1)])). Then, use zt, yt(st, bt, at+1), and the budget
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set Γt to find at(st, bt, at+1) that satisfies Γt(st, at(st, bt, at+1), bt, dt; bt+1). This search is

possible due to C5. Now, at(st, bt, at+1) lies in the endogenously-determined grid points of

at. Save the pairs of (at(st, bt, at+1), bt, at+1). Note that these pairs correspond to the global

solutions.

5. For the saved pairs of (at(st, bt, at+1), bt, at+1), approximate the decision rule at+1 =

ga(st, ·, bt, dt, bt+1) over the exogenous grid of at, Gat . We can do this using a spline due to

the one-to-one mapping between at+1 and at (C8). Then, using the approximated decision

rule at+1 = ga(st, at, bt, dt, bt+1), compute the value function vt(st, at, bt, dt; b̄t+1) over Gat .

6. Solve max{(dt,b̄t+1)∈Dt×Bt+1} vt(st, at, bt, dt; b̄t+1) and update Vt(st, at, bt).

7. Compute Et−1[Vt(st, at, bt)] and Et−1[D(ǫt)]. Take t = t− 1; go back to Step 1 until t = 0.

5.4 Discussion

It is worth discussing how restrictive the sufficient conditions are. If these conditions were too

restrictive to address many types of default risk models, our method might not be more useful

than the conventional approach. Since C5−C8 are widely shared features in general dynamic

problems in macroeconomics, we focus on C1−C4.

C1 is about the local differentiability of the expected value function Et[Vt+1] with respect to

the optimal decision of at+1 and that of the decision rule at+1 with respect to the optimal choice

of yt. It might be hard to claim that all default risk models satisfy C1; however, Clausen and

Strub (2020) have shown that this feature is prevalent in many types of dynamic problems. More

importantly, we can, at least, certainly check whether this condition holds to a specific problem

with default risks by using the “Reverse Calculus” in Clausen and Strub (2020).

C2,C3 and C4 imply that there exists a post-decision state zt that is a sufficient statistic for the

future endogenous state at+1. According to White (2015), this property of sufficient statistics must

be required to use EGMs. To do so, in addition to C2, our EGM requires more conditions than

the EGM of White (2015) because in default risk models, the post-decision state zt is non-linearly

related to the future endogenous state at+1 (i.e., z = q(s, a
′

)a
′

). This additional feature brings C3

and C4. C3 implies that the EGM might not work in default risk models with shocks on assets

or investment, in which zt may not uniquely identify at+1 because the realization of shocks ǫt+1

may affect assets at+1 (i.e., Glover et al. (2010)). Shocks on defaultable assets, however, are not a

commonly used assumption in the literature.

C4 implies that the EGM might not be applicable to default risk models where the gen-

eralized risky borrowing limit is not well-defined or depends on endogenous states other than

(st, zt, bt, Et(D(ǫt+1))). We argue that the first issue might not be problematic, but the second is-

sue does impose some limitations on our method. The first issue implies that either the borrowing
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constraint is unbounded, or utility is decreasing in the amount of debt any time at+1 is negative. An

unbounded borrowing limit allows for Ponzi schemes which most researchers prefer to rule out.

For the case of utility decreasing in debt for the whole borrowing region, the generalized borrowing

limit is well-defined at zero-assets, at+1 = 0, if the return on savings (at+1 > 0) is independent of

the individual choice of at+1. For example, in Arellano (2008), a
′

= 0 is the upper bound of the

feasible set for the risk-borrowing limit because ∂[q(S, a
′

) · a
′

]/∂a
′

= q(S, a
′

) = 1/(1 + rf ) > 0

if a
′

≥ 0. This assumption is quite common in the literature.

Note that, however, when the generalized risky borrowing limit is a function of endogenous

states other than (st, zt, bt, Et(D(ǫt+1))), it is uncertain whether our method works. For example,

when there exists asymmetric information between lenders and borrowers, the price function might

depend on the distribution over agents (i.e., Athreya et al. (2012)). In this type of models, we

cannot make sure whether the generalized risky borrowing limit can be predetermined with the

states, (st, zt, bt, Et(D(ǫt+1))). In this case, the EGM might not be applicable. To address issue,

one might need to include the additional endogenous states into the generalized risky borrowing

limit. This inclusion, however, might dampen the efficiency gain of our method.

Nonetheless, the sufficient conditions clearly imply that our EGM can cover a broad class of

default risk models. Since the EGM solves the problem in a backward direction, this method can

be used for life-cycle consumer bankruptcy models (i.e., Athreya (2008); Athreya et al. (2009);

Livshits et al. (2007, 2010); Gordon (2015)). These life-cycle models cannot be solved with the

envelope condition method of Arellano et al. (2016) because it is a forward-solving algorithm.

Additionally, the EGM can address multiple options to default (i.e., Chapter 7 and Chapter 13 in

Consumer bankruptcy) with other discrete choices (i.e., housing, durable goods, health insurance,

and retirement). This versatility might be useful in investigating the interaction between default

and other types of policies related to these discrete choices. Jang (2020), for example, used the

EGM to solve a life-cycle model that examines the role of consumer bankruptcy in designing

optimal health insurance policies.

6 Conclusion

We presented an extension of the endogenous grid method for default risk models. This method

combines Fella’s (2014) endogenous grid method by introducing a numerical step to search for the

risky borrowing limit, which is the lower bound of the feasible set for the solution of asset holdings.

By using the algorithm of Fella (2014) and our step for the risky borrowing limit, we identified the

region of solution sets to which Carroll’s (2006) endogenous grid method is applicable. Compared

to the conventional grid search method, the method brings substantial improvements in compu-
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tational efficiency and accuracy. We further showed that our EGM is applicable to a broad class

of default risk models by providing sufficient conditions for the application. We hope that this

method opens up possibilities for researchers to investigate topics with default options that have

previously been left unexplored due to computational complexity.
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A Additional Results

We apply our algorithm to solve Nakajima and Rı́os-Rull (2014), which is computationally heavier

than Arellano (2008). We compare the computing time and accuracy of our EGM with those of

the grid search method as well. For details of the model and parameterization, see Nakajima

and Rı́os-Rull (2014). As in Nakajima and Rı́os-Rull (2014), we use Krusell and Smith’s (1998)

method to handle the aggregate uncertainty. Note that this method approximates aggregate states

using a few moments and agents expect next period states using parameterized functional forms

of those moments. The method achieves high accuracy, but it requires a long simulation to update

forecasting rules and may take many trials to find a proper functional form.

A.1 Specification of Krusell and Smith’s (1998) Method

Nakajima and Rı́os-Rull (2014) approximated (z,K;m) with (z,K,O), where z is total factor

productivity, K is aggregate capital, m is household distribution, and O is average individual labor

productivity. They use forecasting rules for K ′, L, r, and O
′

where L is aggregate labor and r is

risk-free rate. Here, we abstract from the counter-cyclical earnings risk and approximate aggregate

states (z,K;m) to (z,K). Additionally, instead of forecasting L, which is necessary to calculate

the wage w, we forecast the wage directly. We specify the forecasting functions for K ′, r, and w

as the following log-linear forms:

log K ′ = φk1(z,K) + φk2(z,K) · log K

log r = φr1(z,K) + φr2(z,K) · log K

log w = φw1(z,K) + φw2(z,K) · log K

A.2 Computing Time and Accuracy

We vary the size of the grid for assets across computational exercises. In all computational exer-

cises, we keep the number of the grid points for the other variables as follows. The size of the grid

for the permanent labor productivity shock is 2, that for the persistent shock is 15, and that for the

transitory shock is 3. The number of the grid for the TFP shock is 3, and that for K is 5. Because

we use Krusell and Smith’s (1998) method, we must go through the inner and outer loops several

times until the forecasting rules converge. We compute the average CPU time per iteration in the

inner loop and outer loop, respectively. We simulated the model for 2,000 periods with Krusell
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and Smith’s (1998) method, and all computations were carried out on on a single core of an Intel

i7-4770 processor. The programs were written in Fortran 95.

Table 4: Computing Time

# of GRD. PTS. for INR. - OTR. 200-500 300-500 400-500 500-600

Computational Method EGM GS EGM GS EGM GS EGM GS

AVG CPU Time in INR. per ITER.* 0.68 12.54 1.25 29.27 1.99 54.39 2.99 79.65

AVG CPU Time in OTR. per ITER.* 29.49 173.49 27.05 185.62 24.48 182.79 38.66 286.97

.∗: Unit = minute.

‘# of GRD. PTS. for INR. - OTR.’ refers to the number of grid points for assets in the inner loops and in the outer

loops, respectively.

Table 4 indicates that the EGM is faster than the grid search method both in the inner loop and

in the other loop. In the inner loops, the EGM is from 18.5 to 27.3 times faster than the grid search

method. In the outer loop, the EGM is approximately 7.5 times faster than the grid search method.

The gap differs across the size of the asset grid, but the EGM is much more efficient than the grid

search method across all grid settings.

To measure accuracy, we use three criteria in the literature. First, we compute Bellman equa-

tion errors (BE error) which is defined the same way in Section 4. Second, we take Den Hann’s

forecasting test (DH error) described in Algan et al. (2014). It is the difference between expected

capital K ′
e by the forecasting rules and realized capital K ′

r from the simulations: |logK ′
r − logK ′

e|.

Finally, we reports the R2 of the forecasting rules in the simulation step.

Figure 6 shows that with the EGM, the price dynamics in the simulation are very close to those

generated by the forecasting rules. Since they are very close to one another, it is hard to observe

blue lines in the dynamics of the risk-free interest rate and wage. Figure 7 shows that, with the grid

search method, there are differences between the simulated-dynamics of these prices and those

generated by the forecasting rules. Den Hann error measures those differences. Overall, Den Han

errors from the EGM are smaller than those from the grid search method.

Table 5: Computational Accuracy

# of GRD. PTS. for INR. - OTR. 200-500 300-500 400-500 500-600

Computational Method EGM GS EGM GS EGM GS EGM GS

Average of BE Error∗ 0.11% 0.36% 0.06% 0.16% 0.03% 0.09% 0.02% 0.06%

Max of BE Error∗ 10.77% 15.53% 11.34% 11.76% 11.57% 17.49% 11.71% 15.46%

R2 of K
′

function 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

R2 of r function 0.9987 0.9911 0.9971 0.9882 0.9975 0.9963 0.9977 0.9940

R2 of w function 0.9999 0.9997 0.9999 0.9997 0.9997 0.9997 0.9997 0.9996

Mean of DH error 0.004% 0.01% 0.005% 0.012% 0.009% 0.01% 0.007% 0.01%

Max of DH error 0.029% 0.06% 0.038% 0.081% 0.047% 0.073% 0.04% 0.05%

.∗: The Bellman equation errors are computed in stationary equilibrium. The number of grid points refers to the number

of points for asset grid
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Figure 6: Simulation Results for the EGM with the 500-600 grid
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Figure 7: Simulation Results for the Grid Search Method with the 500-600 grid

Table 5 shows that the EGM produces more accurate outcomes than the grid search method.

Regarding the Bellman equation errors, the average Bellman equation errors in the EGM are ap-

proximately three times lower than that in the grid search methods. Although the gaps in the

maximum Bellman errors are smaller than that in the average Bellman error, the EGM generates

smaller values of the maximum Bellman errors than the grid search method. These smaller gap

appear because our EGM also uses the grid search method for the borrowing region. Additionally,

the EGM produces higher R2s of the forecasting functions than the grid search method. Lastly, the

average of Den Hann errors and maximum of Den Hann errors from the EGM are lower than that

from the grid search method across all grid settings.
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