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Abstract

As COVID-19 spreads worldwide, governments have been implementing a wide

range of measures to contain it, from movement restrictions to economy-wide

shutdowns. Understanding their impacts is essential to support better poli-

cies for countries still experiencing outbreaks or in case of emergence of second

pandemic waves. Here we show that the cumulative decline in electricity con-

sumption within the four months following the stay-home orders ranges between

4-13% in the most affected EU countries and USA states, except Florida that

shows no significant impact. Whereas the studied USA states have recovered

baseline levels, electricity consumption remains lower in the European countries.

These results illustrate the severity of the crisis across countries and can sup-

port further research on the effect of specific measures, evolution of economic

activity or relationship with other high-frequency indicators.



Introduction

From social distancing guidelines to strict lockdowns and paralysation of non-

essential economic activity, governments worldwide have taken a wide range of

measures to halt the spread of the COVID-19 pandemic1. Global CO2 emissions

decreased by 17% during forced confinements2 and global GDP is expected to

decline by 3% in 2020 as a result of the pandemic3. The economic contraction in

advanced countries will double the world average, and it could be as high as 9%

in the most affected countries, such as Italy. As an illustration, the strongest

impact of the 2003 SARS coronavirus epidemic was in China and Hong Kong

with GDP losses of 1.1% and 2.6%, respectively, and a global GDP decline of

less than 0.1%4. Given the unprecedented nature of this crisis, governments

are uncertain about the economic impacts of the implemented measures5. The

unfolding outbreaks in other countries6 beyond the ones studied here and the

potential emergence of second pandemic waves7 reveal the urgency to improve

our knowledge about the potential impacts of the containment measures.

Given the relationship between electricity consumption and GDP8 and the real-

time availability of electricity consumption data, analysing the evolution of elec-

tricity consumption may serve as an early warning indicator to assess the impact

of containment measures on overall economic activity. Early attempts to track

the evolution of electricity consumption during the pandemic have been made

by the Bruegel institute9, that provides information on temperature-adjusted

peak-hour electricity consumption in European countries compared to last year.

The International Energy Agency provides a broader analysis of the impact of

COVID-19 on the energy sector10. Several media outlets have also provided in-

formation on the fall of electricity consumption in different countries compared

to previous years’ weekly or monthly averages11,12.

However, given that electricity consumption is determined by many factors such

as temperature, trends, seasonal cycles, calendar effects and short-term dynam-

ics13, ignoring such factors will likely bias the results. Additionally, the resulting

data and a reproducible method should be publicly available to support further

research. For these reasons, we forecast baseline daily electricity consumption

in a counterfactual “business as usual” scenario in which COVID-19 did not

take place and then compare the forecast with actual electricity consumption

in the nine most impacted European countries and USA states. We estimate

daily electricity consumption with country-specific dynamic harmonic regres-

sions with Fourier terms for complex seasonality, quadratic temperature and

calendar effects14. This allows us to build a reliable counterfactual baseline

scenario with test accuracy ranging between 2.7–4.3% mean average percentage
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error. We have evaluated the most widely used time series forecast methods

and opted for the dynamic harmonic regression as it provides the best accuracy

results and lowest spread across countries (see Methods section and Supplemen-

tary Information for more details).

Results

Electricity consumption decline

Figure 1 shows the cumulative change in electricity consumption since the

lockdown/stay-home order in each country/state until the end of June. The

severity of both the outbreaks and the lockdown and complementary measures

taken by governments to halt the COVID-19 spread differ widely across coun-

tries, and therefore the electricity consumption evolution also varies. Most of

the studied countries have experienced a negative cumulative impact of between

~4–13% within the four months following the start of the crisis, except Florida

that has not suffered a significant negative impact with respect to the baseline

scenario.

Figure 1. Impact curve flattens in most countries in about a month

after the start of the lockdown/stay-home orders. Lines represent the

cumulative change in electricity consumption compared to the forecast

baseline levels.

Figure 2 provides greater detail for each particular country/state, presenting the

daily percentage change in electricity consumption compared to the expected
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counterfactual baseline (see Supplementary Figure 4 for the actual and forecast

electricity consumption in absolute terms). Countries are sorted and coloured

(darker to lighter) according to the cumulative impact during the study period

as shown in Fig. 1. The dates of the national/state-wide lockdowns/stay-home

orders are indicated on each of the panels by vertical dotted lines. Additionally,

for Italy and Spain where there was a shutdown of non-essential economic ac-

tivity, subsequent vertical dotted lines indicate the date of the beginning of the

shutdown and the progressive reopening of economic activity.

The stringency and scope of these measures differ widely across countries. For

instance, Italy issued the first lockdown affecting 50.000 people already on

February 21. It was extended to Lombardy and other 14 northern provinces

on March 8 and finally to the whole country from March 10. Likewise, mea-

sures were implemented at different times and scales in the different German

federal states. Other countries, such as France and Spain, implemented the

lockdown homogeneously across the country.

Italy and Spain are particularly interesting as three phases are clearly identifi-

able: (i) a first lockdown phase, (ii) a second phase of non-essential economic

activity shutdown, and (iii) a subsequent progressive opening of economic ac-

tivities. During the non-essential economic activity shutdown, daily electricity

consumption declined ~30% in Italy and ~20% in Spain compared to the base-

line. Electricity consumption started recovering in Italy and Spain with the

progressive opening of economic activities, and is now the closest to baseline

levels amongst the studied European countries.

After Italy, Great Britain and France experienced the strongest cumulative de-

cline in electricity consumption of 11.4% and 10.5%, respectively. Whereas

France experienced a sudden drop of about 20% the first week of the lockdown

that has been recovering slowly since then, Great Britain experienced a lower

initial drop but shows no signs of recovery. Both Germany and Austria experi-

enced a cumulative decline of about 8% and show a similar consumption pattern

with stable lower consumption during the studied period. The countries that

experienced a stronger decline in the first weeks (Italy, France and Spain) have

recovered faster than those with lower initial declines (Germany, Austria and

Great Britain). These results could suggest that stronger initial action reduces

the duration of the shock.

In contrast to the European countries, New York and California seem to have

recovered baseline levels. The effect of COVID-19 measures is confounded with

the effect of the Black Lives Matter protests in the USA, which could explain

the high variability observed in New York during June. We cannot observe any
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significant negative impact in Florida. Overall, electricity consumption decline

has been stronger in Europe than in the USA. Electricity consumption remains

between -5% and -10% below the baseline levels in all of the studied European

countries.

Figure 2. Different containment measures across countries led to

different impacts on electricity consumption. Solid lines show the daily

percentage change in electricity consumption. Dark and light shades indicate

80% and 95% prediction intervals, respectively. Sundays are coloured grey.

Vertical dotted lines indicate the start of (1) lockdown/stay-home orders, (2)

non-essential economic activity shutdown, and (3) progressively resuming

economic activity. Note that vertical axis ranges are different for each row.

See Methods for details and Supplementary Fig. 4 for absolute values.

Measures stringency

The depth of the consumption decline is directly related to the stringency of

the containment measures. The stringency index1 is calculated across nine di-

mensions (schools closures, events cancellations, movement restrictions, etc.–see

Supplementary Information Section 1.3 for details) and weighted by stringency

(e.g. whether a measure is only a recommendation or an obligation) and scope

(i.e. whether the measure is regional or national). Figure 3 shows the rela-

tionship between the daily drop in electricity consumption (Fig. 2) and the

stringency of the COVID-19 measures as estimated by the coronavirus response
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tracker1. The dots represent the drop of electricity consumption and the strin-

gency index for each day and country (state-level stringency index data are

not available) during the study period, and the solid grey line represents the

relationship between both variables. The country codes represent the median

value for each of the countries during this period, revealing that the stronger

stringency, the higher electricity consumption decline. Whereas this is only a

high-level illustration, as more data is generated on both the evolution of the

stringency across countries and the evolution of electricity demand, these two

measures will reveal the impact of the different COVID-19 measures on electric-

ity consumption and therefore on economic activity.

Figure 3. The stronger the government response, the greater the

consumption decline. Each dot represents the daily electricity consumption

change and stringency index for each country. The country codes indicate the

median values for each country. The grey line represents the relationship

between electricity consumption and stringency.

Discussion

We estimate the impact of COVID-19 containment measures on electricity con-

sumption by comparing the counterfactual baseline “business as usual” con-
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sumption forecast with actual data. We have identified large differences across

countries/states, from cumulative contraction beyond -13% in Italy to no net

negative effect in Florida. Whereas USA states have recovered baseline con-

sumption levels, European countries remain between -5% and -10% of that level.

If this situation persists after all containment measures are lifted, this could re-

veal either a structural impact on economic activity, or a structural change in

the relationship between GDP and electricity consumption.

There are multiple mechanisms through which this short-term shock could have

structural economic effects. From the demand side, the immediate effects of

the social distancing measures may disrupt businesses that rely on personal

interaction15. From the supply side, halting non-essential activities may have

propagation effects across the supply chain to other regions and sectors16. An

increase in uncertainty, such as the one caused by this pandemic17 affects both

demand by lower consumer spending and supply by lower investment and cap-

ital formation. The labour market could also be a transmission mechanism as

the crisis affects mostly workers that need a long time to be employable again18.

Finally, a financial mechanism through which higher private and public indebt-

edness slows down potential long-term growth could also come into play19,20.

If the economic contraction caused by the COVID-19 measures turns out to

be L-shaped, this would contrast with all previous epidemics that have gener-

ally caused transient V-shaped shocks21, revealing the unprecedented nature of

this crisis and the urgent need for further research to understand the implica-

tions of the pandemic and the measures taken by governments to contain its

spread. The counterfactual baseline electricity consumption data provided here

are publicly available (see below repository link) and can thus help in that di-

rection by providing an estimate of the drop in electricity consumption due to

the crisis. Furthermore, our results can contribute to estimating the effects of

specific policies1, to assess the relationship with other real-time indicators, such

as mobility22 or electronic payments23, or to nowcast economic activity24.

Methods

Accuracy and method selection

We have compared forecast business as usual daily electricity consumption with

actual consumption data from March to May 2020 to estimate the effect of the

COVID-19 measures on electricity consumption. Before deciding to use dynamic

harmonic regression to estimate the baseline, we tried four different methods:

(i) Seasonal and trend decomposition using loess forecasting (STLF) is a uni-
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variate method that consists in decomposing the time series into three

structural components: a trend capturing the long-term evolution of the

time series, a seasonal pattern of constant frequency and a remaining error

capturing the randomness of the data. This is a relatively simple model

that works well when there is no more information available than the time

series and there are clear seasonal and trend patterns in the data, but fails

to capture complex dynamics as those present in our long-term daily time

series.

(ii) Trigonometric seasonality with Box-Cox transformation, ARMA errors,

trend and seasonal components (TBATS). This model is more complex

than the previous, as it allows for autoregressive and moving average com-

ponents (ARMA) to capture short term dynamics, Box-Cox transforma-

tion for variance stabilisation and Fourier terms for complex seasonality,

in addition to the seasonal and trend components common to the STLF.

(iii) Neural network autoregression NNAR(p, P, k)m where p is the order of

the time series lags that are included as predictors of the network and

k is the number of nodes that form the network. P is the order of the

seasonal lags with frequency m. We run a feed-forward network with one

hidden layer where all the parameters are automatically learned from the

data. Seasonality is set to 365 (yearly) and weekly seasonality is modelled

with a weekday categorical variable. Two more predictors are included:

maximum temperature and a holiday dummy. Neural networks are very

flexible and perform well when there are many variables which relationship

with the outcome is unknown ex-ante.

(iv) ARIMA(p, d, q) dynamic harmonic regression, where p indicates the or-

der of the autoregressive terms, d is the order of integration and q denotes

the moving average component, with Fourier terms for complex seasonal-

ity. The dynamic regression performs well when the relationship between

predictors and outcomes is known. As shown in Supplementary Figure 2,

we include maximum temperature in quadratic form as the main driver

of electricity demand. We also include a holiday dummy to control for

moving calendar effects such as Easter. Complex seasonality (weekly and

annual) is captured by Fourier terms of order (j, k) respectively. Fourier

terms capture seasonality through (j, k) pairs of sines and cosines. Finally,

short term dynamics are captured by the ARMA components.

To compare the accuracy of these methods, we split the data into training set

(years 2015–2018 both included) and test set (2019) and evaluate their accu-

racy with five different metrics. TBATS perform best for Austria but shows
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high accuracy differentials across countries, which makes it unsuitable for our

purposes. NNAR performs best in countries that have the most irregular con-

sumption patterns but is outperformed by the dynamic harmonic regression in

most countries. Finally, dynamic harmonic regression performs best in most

countries and shows the lowest spread across accuracy estimates, such that the

differences with NNAR accuracy is low when the latter performs better, and

the results are comparable across countries (see Supplementary tables 1-9 for

detailed accuracy results). Finally, the selected model is trained with all the

data until February 2020, and the forecast is predicted from March using actual

temperature data.

ARIMA dynamic harmonic regression

Equation (1) indicates the regression specification

yt = α + β1Tt + β2T 2
t + β3Ht+

J∑

j=1

(γ1,jsj(t) + γ2,jcj(t)) +

K∑

k=1

(γ3,ksk(t) + γ4,kck(t)) +

P∑

p=1

φyt−p +

Q∑

q=1

θεt−q + ǫt (1)

where Electricity consumption in day t yt is modelled as a function of a constant

α, temperature in a quadratic form (β1Tt + β2T 2
t ) and a dummy variable of

state-specific holidays Ht. Complex seasonality is tacked by Fourier terms of

the form:

sj(t) = sin(
2πjt

7
) ; cj(t) = cos(

2πjt

7
)

sk(t) = sin(
2πkt

365.25
) ; ck(t) = cos(

2πkt

365.25
)

where 7 and 365.25 denote the weekly and annual seasonal levels respectively,

and (j, k) represent the number of sine/cosine elements for each seasonal levels.

The last two elements of equation (1) represent the ARMA(p, q) structure that

captures short-term dynamics, allowing the error term of the model to approach

as much as possible a normally distributed white noise. Since all time series are

integrated of order one, the model is run in first differences and the constant is

thus removed.
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The data analysis process can be summarised in the following steps:

1. The time series are transformed following Cox-Box25 to stabilise the vari-

ance.

2. The time series are tested for stationarity and differenced if necessary.

3. The optimal ARMA(p, q) structure and Fourier(j, k) order is automati-

cally determined by the Hyndman and Khandakar algorithm26 to minimise

the corrected Akaike information criteria (AICc).

4. Residuals are studied for signs of remaining signals and the ARMA and

Fourier parameters are manually fine-tuned to achieve optimal results fol-

lowing the following criteria: having the simplest possible model with the

lowest possible AICc that shows the closest possible residuals to a normally

distributed white noise.

5. Forecast the baseline electricity consumption from March to June 2020 and

compare it with the actual values. The point forecast is back-transformed,

such that it represents the median, rather than the mean of the forecast

distribution. All results are provided with 80% and 95% prediction inter-

vals.

Supplementary Table 10 summarises the model parameters of points 1-3 above.

Supplementary Tables 11-19 present the regression results and Supplementary

Figures 5-13 show the respective residual diagnostics.

Data

We use three different types of data: (i) Electricity consumption (actual

load) data acquired from the Energy Information Administration of the

USA (https://www.eia.gov/) and ENTSO-E (https://transparency.entsoe.eu/)

between January (July for the USA) 2015 and June 2020 both included;

(ii) Maximum daily temperature from ASOS provided by Iowa Uni-

versity (https://mesonet.agron.iastate.edu/ASOS/); and (iii) Stringency

index provided by the Blavatnik School of Government of Oxford Uni-

versity (https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-

government-response-tracker). See Supplementary Information for illustrations

and further details.

Data and code availability

Data and code are available on https://github.com/jlprol/covid. The document

“replication.Rmd” provides the instructions and basic code for the replication
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of the main results.
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Supplementary Information to

Impact of COVID-19 measures on electricity consumption

1 Data

1.1 Electricity consumption

Electricity consumption has been obtained from the ENTSO-E transparency platform for the European

countries since January 2015 and from the USA Energy Information Administration for the American

states since July 2015, both until June 2020 included. ENTSO-E data corresponds to the country’s

actual load defined as the sum of power generated by plants on both TSO/DSO networks minus the

balance (export-import) of exchanges on interconnections and minus the power absorbed by energy

storage resources. EIA demand data comes from the U.S. Electric System Operating Data (EIA-930).

In both cases, the data excludes self-consumed electricity. All the data have been collected in UTC and

then transformed to local times. Likewise, the original data are in sub-daily resolution and we have

aggregated to daily after transforming to their respective local time. Supplementary Figure 1 shows the

daily electricity consumption data for each country/state.
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Supplementary Figure 1. Electricity consumption data
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1.2 Temperature

We tested our models with both mean and maximum daily temperature. Since maximum temperature

shows a slightly better predictive performance, we use the maximum rather than the mean. Daily maxi-

mum temperature data from January 2015 to June 2020 have been obtained from the Automated Surface

Observing System provided by Iowa State University. We first collected daily maximum temperature

from all available stations within each country/state excluding islands. We then calculated the median

of the maximum temperature across the stations for each country/state. Temperature and electricity

consumption have a quadratic relationship, as can be seen in Supplementary Figure 2. For this reason,

we control for quadratic temperature in the dynamic harmonic ARIMA regression.
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Supplementary Figure 2. Relationship between daily load and maximum temperature
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1.3 Stringency index

The stringency index is a composite measure created by the Blavatnik School of Government of Oxford

University and publicly available on the Coronavirus government response tracking website. It is com-

posed of 9 subindices ranging between 0-100: (1) School closing, (2) Workplace closing, (3) Cancel public

events, (4) Restrictions on gatherings, (5) Close public transport, (6) Stay at home requirements, (7)

Restrictions on internal movement, (8) International travel controls, and (9) Public info campaigns. See

Halle et al. (2020) for details.

Supplementary Figure 3. Stringency index
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2 Methods

2.1 Accuracy comparison between different methods.

To test the accuracy of the different methods to forecast daily electricity demand we split the data into

training (years 2015-2018) and test (year 2019) sets and evaluate the test set forecast with the actual

load data. Supplementary tables 1-9 present the accuracy results for each country and method:

• Accuracy indicators:

– ME: mean error.

– RMSE: root mean squared error.

– MAE: mean average squared error.

– MPE: mean percentage error.

– MAPE: mean average percentage error.

• Methods

– STLF: seasonal and trend decomposition using loess forecasting.

– TBATS: trigonometric seasonality with Box-Cox transformation, ARMA errors, trend and

seasonal components.

– NNAR: neural network autocorrelation.

– ARIMA: dynamic harmonic regression with Fourier terms for seasonality and ARIMA errors.

Table 1: Austria

ARIMA NNAR TBATS STLF

ME -0.03 0.15 0.01 0.01

RMSE 0.09 0.22 0.09 0.21

MAE 0.07 0.17 0.07 0.18

MPE -1.64 8.87 0.50 -0.55

MAPE 4.34 10.64 4.21 12.01

Table 2: California

ARIMA NNAR TBATS STLF

ME -0.01 -0.04 -0.03 -0.05

RMSE 0.04 0.06 0.06 0.09

MAE 0.03 0.05 0.05 0.07

MPE -1.63 -5.92 -4.14 -7.72

MAPE 4.13 6.99 6.67 9.70
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Table 3: Germany

ARIMA NNAR TBATS STLF

ME -0.13 -0.04 -0.03 -0.09

RMSE 0.24 0.54 0.33 0.70

MAE 0.18 0.40 0.21 0.59

MPE -2.72 -1.53 -0.99 -3.12

MAPE 3.50 7.84 4.08 11.65

Table 4: Spain

ARIMA NNAR TBATS STLF

ME -0.02 -0.10 0.90 -0.01

RMSE 0.07 0.24 0.95 0.20

MAE 0.05 0.19 0.90 0.17

MPE -1.27 -5.75 44.30 -1.09

MAPE 2.65 9.80 44.49 8.39

Table 5: Florida

ARIMA NNAR TBATS STLF

ME -0.01 0.00 -0.07 -0.01

RMSE 0.03 0.04 0.10 0.06

MAE 0.03 0.03 0.08 0.05

MPE -1.35 -0.84 -10.45 -2.13

MAPE 4.33 4.09 11.94 7.86

Table 6: France

ARIMA NNAR TBATS STLF

ME -0.05 -0.03 -0.03 -0.13

RMSE 0.22 0.26 0.28 0.42

MAE 0.17 0.20 0.22 0.33

MPE -1.48 -1.36 -1.48 -4.27

MAPE 4.43 5.57 5.49 8.81

Table 7: Great Britain

ARIMA NNAR TBATS STLF

ME 0.01 -0.07 1.97 0.02

RMSE 0.16 0.20 2.07 0.27

MAE 0.11 0.14 1.98 0.21
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ARIMA NNAR TBATS STLF

MPE 0.01 -2.50 62.77 -0.24

MAPE 3.57 4.44 62.82 6.87

Table 8: Italy

ARIMA NNAR TBATS STLF

ME 0.01 0.00 0.00 -0.01

RMSE 0.07 0.11 0.12 0.25

MAE 0.05 0.08 0.08 0.21

MPE 0.21 -0.31 -0.97 -2.32

MAPE 3.57 5.24 5.38 13.63

Table 9: New York

ARIMA NNAR TBATS STLF

ME -0.01 0.00 0.08 0.00

RMSE 0.03 0.02 0.08 0.04

MAE 0.02 0.02 0.08 0.03

MPE -1.86 -1.19 17.37 0.19

MAPE 4.31 3.93 17.42 6.87

2.2 ARIMA parametrisation

Table 10 presents the parameters chosen for each of the regressions.

Table 10: Model parameters

Country Lambda Fourier.j.k. ARIMA.p.d.q.

Austria 0.15 (3,4) (5,1,1)

California 1.11 (3,3) (4,1,3)

Germany 0.81 (3,11) (4,1,1)

Spain -0.06 (3,23) (3,1,2)

Florida 1.03 (3,3) (1,1,2)

France -1.00 (3,19) (7,1,6)

Great Britain 1.20 (3,19) (2,1,3)

Italy 0.98 (3,21) (2,1,1)

New York -1.00 (3,5) (3,1,1)
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3 Additional results

3.1 Actual vs. forecast (baseline) daily electricity consumption

Supplementary Figure 4 shows the forecast (black line) produced by each of the country-specific dynamic

harmonic ARIMA regression with 80% (dark shade) and 95% (light) prediction intervals. The coloured

lines represent the actual electricity consumption.

Supplementary Figure 4. Actual and Forecast daily electricity consumption.
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3.2 Regression results

Supplementary Tables 11-20 present the regression results for the dynamic harmonic regression of each

country. Only the ARMA terms and the external regressors (quadratic temperature and holiday dummy)

are included in the tables. Fourier terms have been omitted for simplicity.

Table 11: Austria summary regression results

Variable Coefficient SE z-value p-value

AR1 0.309 0.024 13.100 0.000

AR2 0.093 0.024 3.799 0.000

AR3 0.009 0.024 0.356 0.722

AR4 0.149 0.024 6.158 0.000

AR5 0.017 0.023 0.744 0.457

MA1 -0.979 0.005 -180.179 0.000

Temperature -0.010 0.001 -18.939 0.000

Temperature2 0.000 0.000 8.080 0.000

Holiday -0.135 0.004 -36.988 0.000

Table 12: California summary regression results

Variable Coefficient SE z-value p-value

AR1 0.043 0.202 0.214 0.831

AR2 -0.119 0.262 -0.455 0.649

AR3 0.639 0.148 4.325 0.000

AR4 -0.112 0.043 -2.609 0.009

MA1 -0.059 0.199 -0.297 0.767

MA2 -0.087 0.254 -0.342 0.732

MA3 -0.824 0.119 -6.919 0.000

Temperature -0.017 0.000 -109.216 0.000

Temperature2 0.000 0.000 41.578 0.000

Holiday -0.021 0.002 -13.329 0.000

Table 13: Germany summary regression results

Variable Coefficient SE z-value p-value

AR1 0.528 0.045 11.772 0.000

AR2 -0.071 0.037 -1.891 0.059

AR3 0.085 0.032 2.634 0.008

AR4 -0.050 0.024 -2.090 0.037

MA1 -0.987 0.004 -274.733 0.000

Temperature -0.015 0.011 -1.284 0.199

Temperature2 0.000 0.000 4.217 0.000

Holiday -0.509 0.072 -7.074 0.000
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Table 14: Spain summary regression results

Variable Coefficient SE z-value p-value

AR1 0.008 0.398 0.021 0.983

AR2 0.302 0.228 1.325 0.185

AR3 -0.028 0.026 -1.091 0.275

MA1 -0.404 0.398 -1.014 0.311

MA2 -0.544 0.387 -1.405 0.160

Temperature -0.015 0.000 -57.411 0.000

Temperature2 0.000 0.000 20.472 0.000

Holiday -0.113 0.003 -36.401 0.000

Table 15: Florida summary regression results

Variable Coefficient SE z-value p-value

AR1 0.309 0.024 13.100 0.000

MA1 0.093 0.024 3.799 0.000

MA2 0.009 0.024 0.356 0.722

Temperature 0.149 0.024 6.158 0.000

Temperature2 0.017 0.023 0.744 0.457

Holiday -0.979 0.005 -180.179 0.000

Table 16: France summary regression results

Variable Coefficient SE z-value p-value

AR1 0.416 0.062 6.666 0.000

AR2 -0.531 0.080 -6.650 0.000

AR3 0.085 0.101 0.840 0.401

AR4 -0.066 0.089 -0.742 0.458

AR5 -0.403 0.076 -5.334 0.000

AR6 0.362 0.038 9.545 0.000

AR7 0.240 0.026 9.378 0.000

MA1 -0.879 0.061 -14.352 0.000

MA2 0.556 0.102 5.441 0.000

MA3 -0.342 0.121 -2.839 0.005

MA4 -0.071 0.118 -0.603 0.547

MA5 0.367 0.090 4.082 0.000

MA6 -0.622 0.053 -11.817 0.000

Temperature -0.005 0.000 -47.774 0.000

Temperature2 0.000 0.000 22.010 0.000

Holiday -0.021 0.001 -20.506 0.000
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Table 17: Great Britain summary regression results

Variable Coefficient SE z-value p-value

AR1 0.780 0.148 5.274 0.000

AR2 -0.314 0.098 -3.220 0.001

MA1 -1.245 0.151 -8.263 0.000

MA2 0.434 0.174 2.502 0.012

MA3 -0.109 0.065 -1.687 0.092

Temperature -0.067 0.004 -14.925 0.000

Temperature2 0.002 0.000 12.323 0.000

Holiday -0.298 0.021 -13.918 0.000

Table 18: Italy summary regression results

Variable Coefficient SE z-value p-value

AR1 0.512 0.025 20.688 0

AR2 -0.123 0.025 -4.937 0

MA1 -0.971 0.007 -143.581 0

Temperature -0.031 0.001 -47.987 0

Temperature2 0.001 0.000 21.697 0

Holiday -0.209 0.006 -32.589 0

Table 19: New York summary regression results

Variable Coefficient SE z-value p-value

AR1 0.893 0.029 30.999 0

AR2 -0.305 0.033 -9.172 0

AR3 0.091 0.025 3.714 0

MA1 -0.990 0.004 -225.969 0

Temperature -0.015 0.001 -13.992 0

Temperature2 0.001 0.000 14.070 0

Holiday -0.075 0.009 -8.870 0
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3.3 Residuals

Supplementary Figures 5-13 present the residuals of the dynamic harmonic ARIMA regressions. The

consumption data (Supplementary Figure 1) have some outliers that can be observed in the residuals

but do not significantly influence the accuracy of the forecast. All the residuals are close to a normally

distributed white noise.

Supplementary Figure 5. Austria
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Supplementary Figure 6. California

Supplementary Figure 7. Germany
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Supplementary Figure 8. Spain

Supplementary Figure 9. Florida

13



Supplementary Figure 10. France

Supplementary Figure 11. Great Britain
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Supplementary Figure 12. Italy

Supplementary Figure 13. New York
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