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Abstract 

This study investigates the existence of regional convergence of per capita outputs in 

China from 1952–2004, particularly focusing on considering the presence of multiple 

structural breaks in the provincial-level panel data. First, the panel-based unit root test 

that allows for occurrence of multiple breaks at various break dates across provinces is 

developed; this test is based on the p-value combination approach suggested by Fisher 

(1932). Next, the test is applied to China’s provincial real per capita outputs to examine 

the regional convergence in China. To obtain the p-values of unit root tests for each 

province, which are combined to construct the panel unit root test, this study assumes 

three data generating processes: a driftless random walk process, an ARMA process, 

and an AR process with cross-sectionally dependent errors in Monte Carlo simulation. 

The results obtained from this study reveal that the convergence of the provincial per 

capita outputs exists in each of the three geographically classified regions—the Eastern, 

Central, and Western regions—of China.
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1. Introduction 

One of the important issues in China, which has achieved high economic growth rates 

since the end of 1978, is the existence of large differentials in output per capita between 

provinces. Reducing these gaps is one of the main objectives set in the Eleventh 

Five-Year-Plan (2006–2010). Therefore, from the perspective of policy making by the 

Chinese government, it is extremely important to understand the behaviour of provincial 

per capita outputs, particularly observing whether these per capita outputs can converge. 

Lots of studies, including Mankiw, Romer and Weil (1992), Bernard and Durlauf 

(1995, 1996), and Quah (1993a, b, 1996), have been conducted on the convergence of 

per capita outputs since Barro (1991) and Barro and Sala-i-Martin (1992). Among these, 

some empirical studies have utilized nonstationary time series techniques such as unit 

root tests and cointegration tests.
1
 On the other hand, Evans and Karras (1996), Lee, 

Pesaran and Smith (1997), Evans (1998), Flessig and Strauss (2001), and McCoskey 

(2002) have used unit root tests extended for panel data sets to investigate convergence 

across countries and the states of US; some of these tests have been proposed by Im, 

Pesaran and Shin (2003) (hereafter, IPS) and Maddala and Wu (1999) (hereafter, MW).  

With regard to the convergence hypothesis of provincial per capita outputs in 

China, there are several contributions to the literature, such as Zhang, Liu and Yao 

(2001) and Pedroni and Yao (2006), that use unit root testing methods for a single time 

                                                 

1
 Bernard and Durlauf (1995), Oxley and Greasley (1995), Hobijn and Franses (2000), 

Pesaran (2004), Lim and McAleer (2004), etc. 
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series and panel data sets.
2
 Zhang et al. (2001) aggregated the real per capita GDP of 

30 Chinese provinces from 1952–1997 into three regions (the Eastern, Central, and 

Western regions) in accordance with the official classification and then applied the 

Augmented Dickey–Fuller t-test and the unit root test with a break suggested by Perron 

(1994) to the relative regional and national per capita GDPs of each of the three regions. 

Then, they concluded that two of the three regions (the Eastern and Western regions) 

are converging to their own specific steady states. Pedroni and Yao (2006) utilized the 

panel-based unit root tests, the IPS and MW tests, to investigate convergence of the 

annual real per capita GDP across all the provinces of China. They split each provincial 

series into the pre-reform sample (1952–1977) and the post-reform sample (1978–1997) 

to consider the impacts of the economic reforms since 1978. The results revealed 

convergence in the pre-reform sample, but not in the post-reform sample. 

While testing unit roots or cointegrating relationships using a single time series, the 

sample size used in the analysis needs to be sufficiently large to obtain higher power of 

the test. Similarly, the time series dimension of panel sets for each cross-sectional unit 

should be large in panel unit root tests, especially in the tests based on combinations of 

separate unit root tests such as the IPS and MW tests. However, panels with longer time 

spans have a higher possibility of including structural changes caused by wars, supply 

shocks, significant policy changes, and so on. Perron (1989), Leybourne, Mills and 

                                                 

2
 The studies on regional growth in China which have not adopted the nonstationary 

time series or panel techniques are Chen and Fleisher (1996), Jian, Sachs and Warner 

(1996), Gundlach (1997), Raiser (1998), and Weeks and Yao (2003). 
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Newbold (1998), and Im, Lee and Tieslau (2005) have shown that ignoring the existing 

structural breaks in time series or panel data sets may lead to a substantial loss of power 

or serious size distortions in commonly used unit root tests such as the Dickey–Fuller 

test and the IPS test. Taking such evidence into account, it is desirable to employ tests 

that allow for structural changes in data.
3
 

Smyth and Inder (2004) ascribe the logic behind the inclusion of multiple 

structural breaks in the official output of China to the occurrence of significant political 

and economic events: the Great Leap Forward from 1958–1960; the sudden suspension 

of the economic assistance from the Soviet Union in 1960; the crop failures from 

1959–1961; the Cultural Revolution from 1966–1976; economic reforms from 

1978–1979; and Deng Xiaoping’s southern tour in 1992. Figures 1 to 3 show the 

fluctuations of log of real per capita outputs of the provinces, wherein each series is 

subtracted from the mean value of each of three regions, with twenty-nine provinces.
4
 

5
 

In all the figures, we observe apparent shifts in the level of the series corresponding to 

                                                 

3
 Carlino and Mills (1993), Greasley and Oxley (1997), and Li and Papell (1999) have 

examined convergence using unit root tests which can deal with a breaking time series. 

4
 This classification of provinces is nearly identical to that of Zhang et al. (2001), but 

the aggregation of provincial series is not conducted in this paper. The details will be 

described in Section 4.1. 

5
 Studies on multi-country convergence often use the deviation from the cross-sectional 

mean and look into its nonstationarity (Evans and Karras, 1996; Lee et al., 1997; and 

Evans, 1998), which will be described in the later sections. 
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each province for the following time periods: 1959–61, 1967–71, and the early 1990s 

(shown as grey areas in the figures). These shifts coincide with the occurrences of the 

events mentioned above. Based on these findings, some studies have focused on the 

presence of structural changes in the annual series in China (Li, 2000; Zhang et al., 

2001; and Smyth and Inder, 2004); these studies have adopted unit root testing methods 

permitting one or two breaks in a single time series for the analysis of the 

nonstationarity of the macroeconomic or provincial time series. 

However, with regard to the convergence hypothesis in regional panel data in 

China, published papers which explicitly deal with the existence of multiple structural 

breaks occurring at different break dates in the panels have been few in number.
6
 

                                                 

6
 In general, existing panel-based unit root tests which allow for breaks may be too 

restrictive for empirical applications based on the convergence hypothesis. Specifically, 

these tests are based on two major assumptions: the presence of a linear time trend in a 

series and the absence of cross-sectional dependence between error terms in the data 

generating process (DGP). In the case of the former assumption, the tests defined under 

the DGP with a time trend are not directly applicable to investigations on convergence. 

In these investigations, the difference between two series or the deviation from the 

mean value of all cross-sectional units is usually used, and the difference or the mean 

deviation is often assumed to be zero mean stationary when absolute convergence exists, 

or level stationary when conditional convergence exists (Bernard and Durlauf, 1995; 

Evans and Karras, 1996). Thus, these analyses require tests which are defined under 

DGPs without a time trend, instead of DGPs with a time trend. In the case of the latter 
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Therefore, while examining convergence across provinces in China, this study focuses 

on the presence of multiple structural breaks in the panels. Based on the combining 

p-values method of Fisher (1932), we first develop a unit root test which allows for 

multiple breaks in the panels. We then investigate the existence of regional convergence 

in China by applying the test to China’s provincial per capita outputs. The p-values of 

the t-type unit root tests for each province, which are combined by the panel unit root 

tests based on Fisher’s p-values combination approach, are calculated by Monte Carlo 

simulation under three data generating models—the driftless random walk model, the 

ARMA model, and the AR model with cross-sectionally dependent errors. In particular, 

in the case of cross-sectional dependence between error terms, the bootstrap method 

proposed by Maddala and Wu (1999) and Wu and Wu (2001) is employed in order to 

correct the biases of the panel-based unit root tests.
7
 

The remaining sections of this paper are organized as follows: Section 2 defines 

convergence; Section 3 describes the econometric methodology; Section 4 briefly 

mentions the data and discusses the empirical results; and Section 5 presents the 

conclusions. 

 

                                                                                                                                               

assumption, cross-sectional correlation between error terms is a major issue in dynamic 

panel estimation because neglecting this correlation may lead to a bias of an estimated 

parameter and increase its variance (O’connell, 1998; Phillips and Sul, 2003). 

7
 Banerjee and Carrion-i-Silvestre (2006) have dealt with several issues on structural 

breaks and cross-sectional dependence in a nonstationary panel framework. 
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2. Definition of Convergence 

At first, we consider convergence as proposed by Evans (1998). Suppose that ity  is a 

log per capita output for province (cross-sectional unit) i  at time t  ( Ni ,,1K= , 

Tt ,,1K= ). Next, consider the difference between ity  and the mean value of ity  

over Ni ,,1K= , which is denoted as itit t
yy y≡ −% , where 1

1

N

itt i
N yy

−
=

≡ ∑ . As proved 

by Evans (1998), since 1

1
( )

N

it it jtt j
y N y yy

−
=

− = −∑ , if it jty y−  is stationary for all 

pairs of i  and j , it t
y y−  is stationary for all i . A converse proof is also available: 

since ( ) ( )it jt it jtt t
y y y yy y− = − − − , if it t

y y−  is stationary for all i , it jty y−  is 

stationary for all pairs ( i , j ). These results equate bivariate convergence within all 

pairs of provinces, reflected by the stationarity of it jty y−  for all pairs of i  and j , to 

the stationarity of it t
y y−  for all i . This equivalence enables us to focus on 

investigating the stochastic properties of itit t
yy y= −%  for all i  instead of it jty y−  

for all pairs of i  and j . 

In the next section, we will specify structural changes at some time periods in a 

series as multiple shifts in the level of the series. Accordingly, convergence is defined 

as follows:  

For all i , if 
ity%  is stationary with shifts in its level at some t , then convergence exists 

across all the provinces.
8
 

                                                 

8
 Evans and Karras (1996) have postulated that convergence is absolute if 

ity%  has a 

zero mean for all i , or conditional if 
ity%  has a non-zero mean for some i . According 

to Evans and Karras, when all the series of 
ity%  are stationary and have some structural 

breaks, convergence can be considered as being absolute if 
ity%  has a zero mean for all 
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This study does not allow the trend stationarity of 
ity%  for each i  because the 

presence of a linear time trend implies that some of the differences between ity  and 

jty  for fixed i  and all j  will diverge as time approaches infinity unless the time 

trends are the same for all the pairs (Bernard and Durlauf, 1995). Further, with the 

exceptions of Liaoning in Figure 1 and Heilongjiang and Hubei in Figure 2, none of the 

figures show a distinct upward or downward tendency for any series during the entire 

sample period. Therefore, we consider 
ity%  as a series without a time trend in the later 

sections. 

 

3. Econometric Methodology 

 

3.1. Models and Test Statistics for a Single Time Series 

We assume 
ity%  for each province to be nonstationary without breaks under the null 

hypothesis, and stationary with breaks under the alternative hypothesis. As discussed in 

Section 2, although each series exhibits no linear time trend, it contains some shifts in 

the level. Therefore, this study assumes that 
ity%  is generated by the following data 

generating process (DGP). 

    Under Null                     ititit yy ε+= −1
~~                       (1) 

    Under Alternative     ititiitiitiit DUDUyy εδδρ +++= − 22111
~~ , 1<iρ       (2) 

Ni ,,1K= , Tt ,,1K=  

                                                                                                                                               

i  after the last break date, or conditional if 
ity%  has a non-zero mean for some i  after 

the last break date. 
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where itε  is independently and identically distributed across i  and t  with a zero 

mean and a finite variance; hiδ  denotes the size of the h th break ( 2,1=h ); hitDU  

denotes the h th break in the level of a series ( 2,1=h ), where 1=hitDU  for Tt hiτ> , 

and zero otherwise; and hiτ  is the fraction of the h th break ( 2,1=h ) in 

10 21 <<< ii ττ , which is defined as TTBhi /  for all T , where hiTB  is the date of the 

h th break ( 2,1=h ). In this DGP, the series is a driftless random walk process under 

the null hypothesis, whereas it is a stationary process and has up to two-time level shifts 

under the alternative hypothesis. Next, the regression model nests Models (1) and (2). 

errorDUDUydy itiitiitimmiit ++++=∆ − 22111
ˆˆ~ˆˆ~ δδφα   2,1=m           (3) 

where 1
~~~

−−=∆ ititit yyy , 1ˆˆ −= ii ρφ , and md  denotes the deterministic term, where 

{ }md = ∅  for 1=m  and }1{  for 2=m . Let m

it  be the t-statistic testing the null 

hypothesis 0ˆ =iφ  and 0ˆˆ
21 == ii δδ  against the alternative hypothesis 0ˆ ≠iφ  and 

0ˆ
1 ≠iδ , 0ˆ

2 ≠iδ  in each regression model m  ( 2,1=m ) for each i . As carried out in 

Zivot and Andrews (1992) and Lumsdane and Papell (1997), the break dates 

},{ 21 ii TBTB  are endogenously determined to be where the one-sided m

it -statistic is 

minimized in sequential estimations over all possible break dates within the range of 

10 21 <<< ii ττ . For fixed i , when Model (1) has a constant and Model (3) has both a 

constant and linear time trend, the m

it -statistic is the counterpart of the one proposed by 

Zivot and Andrews (1992) for a single break ( 02 =iδ  and 0ˆ
2 =iδ ) and of that 

proposed by Lumsdane and Papell (1997) for double breaks, where the asymptotic 

behaviour of the statistic as ∞→T  can be found. On the other hand, no literature 

provides the exact asymptotic behaviour of the test considered here. Therefore, as 

∞→T  for fixed i , we derive the limiting distribution of the statistic for each case of 
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breaks in the following theorems in which the subscript i  is omitted for simplicity. 

 

Theorem 1. For Models (1) and (3), with 02 =δ  and 0ˆ
2 =δ , as ∞→T , the limiting 

distribution of the minimum mt -statistic is given as follows: 

( ){ } 



 +⇒ ∫∫

− 1

0
1

2/11

0

2

1

2

1 ),(),(1inf)(
1

mmmm

m dWrWdrrWbt τττ
τ

  2,1=m         (4) 

where ⇒  denotes weak convergence in distribution; ),( 1τrWm  denotes the residuals 

from the projection of a standard Wiener process )(rW  onto the subspace generated 

by the functions { }),( 11 τrdu  for 1=m  and { }),(,1 11 τrdu  for 2=m , where 

1),( 11 =τrdu  for 1τ>r , and zero otherwise. mb  is given by 

{ }drrWb ∫−−=
1

1

11
1

)()1(
τ

τ  

{ }drrWb ∫−− −=
1

1

1

1

12
1

)()1(
τ

µττ  

where )(rW µ  is a demeaned standard Wiener process defined as 

)()( rWrW ≡µ drrW∫−
1

0
)( . 

The proof of Theorem 1 is analogous to the following theorem and is, therefore, 

omitted.
9
 

 

Theorem 2. For Models (1) and (3), as ∞→T , the limiting distribution of the 

minimum m

it -statistic is given as follows: 

( ){ } 



 ++⇒ ∫∫

−

mmmmm

m dWrWdrrWcbt
1

0
21

2/11

0

2

21

22

,
21 ),,(),,(1inf),(

21

ττττττ
ττ

 2,1=m  (5) 

                                                 

9
 This proof is available on request. 
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where ),,( 21 ττrWm  denotes the residuals from the projection of )(rW  onto the 

subspace generated by the functions { }),(),,( 2211 ττ rdurdu  for 1=m  and 

{ }),(),,(,1 2211 ττ rdurdu  for 2=m , where 1),( =hh rdu τ  for hr τ> , and zero 

otherwise ( 2,1=h ). mb  and mc  are given by 

{ }drrWdrrWb ∫∫ −−= − 11
1

121
21

)()()(
ττ

ττ  

{ }drrWdrrWc ∫∫ −− −−+−−=
1

1

21

1
1

121
21

)()1)(1()()(
ττ

ττττ  

{ }drrWdrrWb ∫∫ +−−= −− 21

00
2

1

1

1

122 )()()(
τ µτ µττττ  

{ }drrWdrrWc ∫∫ −− −−−−= 21

0

1

21
0

1

122 )()1)(1()()(
τ µτ µ ττττ . 

The proof of Theorem 2 is given in Appendix. 

 

3.2. Construction of Panel Unit Root Test with Breaks 

In this subsection, we construct a panel unit root test with breaks by combining the 

individual minimum m

it -test; this test is based on Fisher’s (1932) sum of log p-value 

approach, which has been introduced and used by Maddala and Wu (1999). 

Suppose that ip  is the p-value from the i th test statistic among N  continuous 

test statistics. Therefore, since each ip  is an independent uniform ( 1,0 ) variable, 

iplog2−  has the chi-square distribution with two degrees of freedom. Further, the 

summation of iplog2−  from 1=i  to N  also has the chi-square distribution with 

N2  degrees of freedom. Fisher (1932) utilized this fact to develop the test (hereafter, 

Fisher test). By applying Fisher’s p-value combination method to N  augmented 

Dickey–Fuller t-tests, Maddala and Wu (1999) has built a panel-based unit root test 

which does not allow breaks. In this study, we use Fisher’s approach to construct panel 

unit root tests that allow multiple breaks. Let m

ip  denote the p-value from the 
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individual minimum m

it -test. Therefore, the sum of m

iplog  is defined as follows: 

∑
=

−=
N

i

m

ipBFisher
1

log2_   2,1=m                  (6)           

The Fisher_B test (the Fisher test with breaks) also has the chi-square distribution with 

N2  degrees of freedom. In the present case, however, the degree of freedom of the 

chi-square distribution is )1(2 −N  due to the restriction of 0~
1

=∑ =

N

i ity . The null and 

alternative hypotheses of the test are specified as 0H : 0=iφ  and 021 == ii δδ  for 

all i  and 1H : 0<iφ  and 01 ≠iδ , 02 ≠iδ  for some i  respectively. 

There are two noteworthy features of the tests based on Fisher’s p-value 

combination approach: (1) Since the tests have an exact (chi-square) distribution, they 

do not require a large cross-sectional dimension of panel data. Hence, they are expected 

to perform well in the analyses using panels with a relatively large time dimension and a 

small cross-sectional dimension such as country-level, state-level, or provincial-level 

panels.
10

 (2) Even if some of the N  unit root tests give larger p-values than 

conventional significance levels, e.g. 5 or 10 per cent, which implies the non-rejection 

of the unit root null in each test, if these p-values indicate a slight tendency to reject the 

unit root null (e.g. 0.15 or 0.2), the tests based on Fisher’s p-value combination 

approach can capture it. 

To calculate the Fisher_B test statistic, we need to compute the p-value of the 

                                                 

10
 Although Becker (1997) compared the performance of 16 p-value combination tests, 

including the Fisher test, he concluded that there was no test that was the most accurate 

or effective. 
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minimum m

it -test for all ( i , m ) by Monte Carlo simulation because the minimum 

m

it -test has non-standard limiting distributions for each m  shown in Theorems 1 and 2. 

Under the unit root null hypothesis, this study considers the following three DGPs: 

               Model (I)      ititit yy ε+= −1
~~  

               Model (II)      itiiiti LyL εσψθ ˆ)(ˆ~)(ˆ =∆  

               Model (III)     *

1

** ~ˆ~
it

k

k

kitikit

i

yy εγ +∆=∆ ∑
=

−  

where itε  is an i.i.d. )1,0(N  error across i  and t ; 

=)(ˆ Liθ −−− 2

21
ˆˆ1 LL ii θθ i

i

p

ip Lθ̂−L  and =)(ˆ Liψ −−− 2

21
ˆˆ1 LL ii ψψ i

i

q

iq Lψ̂−L , where 

pθθ ˆ,,ˆ
1 L  and qψψ ˆ,,ˆ

1 L  are estimated parameters; and L  is the lag operator such as 

1−= tt yLy . For Model (I), ity~  is generated for each i  by a driftless random walk 

model. For Model (II), for each i , ity~∆  is generated by the optimal autoregressive 

moving average (ARMA) ( ip , iq ) model with estimated parameters and )ˆ,0( 2

iN σ  

innovations, where 2ˆ
iσ  is the estimated innovation variance of the ARMA model. The 

selection of the optimal ARMA model follows the Zivot and Andrews (1992) procedure, 

which fits ARMA ( p , q ) model to ty~∆  over the possible combinations of p  and q  

with 5, ≤qp , then finds the best fitted model according to the Akaike information 

criterion and the Schwartz information criterion. When the two criteria choose different 

models, the most parsimonious model is selected. 

For Model (III), *~
ity∆  is the bootstrap sample for ity~∆ , which is obtained by the 

bootstrap method employed by Maddala and Wu (1999) and Wu and Wu (2001). The 

procedure followed herein is elaborated below. Firstly, we estimate the equation 

0

1

~ˆ~
it

k

k kitikit

i

yy εγ +∆=∆ ∑ = −  for each i  by using the OLS method, and then we obtain the 



 13

residuals =0

tε [ 00

2

0

1 ,,, Nttt εεε L ] ( Tt ,,1K= ). Next, we resample 0

itε  from the obtained 

residuals by preserving their cross-sectional correlation structure based on the bootstrap 

method of Maddala and Wu (1999), wherein the vector =0

tε [ 00

1 ,, Ntt εε L ] is resampled 

instead of individual 0

itε . In addition, we generate a random number g  which takes 

integer values on [1, T ] with probability T/1 , by using a uniform random number. 

We then draw a row of residuals =0

gε [ 00

1 ,, Ngg εε L ] according to the realizations of g . 

The bootstrap sample *

tε  ( Tt ,,1K= ) is obtained by T -time withdrawals from the 

residuals. The bootstrap sample *~
ity  is generated by Model (III) with estimated 

parameters ikγ̂  ( ikk ,,1K= ) in the previous OLS estimation. However, *

1

*

1
~,,~

+ikii yy L  

are replaced by the sample obtained by the block resampling method of Berkowitz and 

Kilian (1996). Their method divides the actual sample ity~  into ikT −  overlapping 

subsampling blocks with size 1+ik  and randomly draws a block from ikT −  blocks. 

Then, *

1

*

1
~,,~

+ikii yy L  are replaced with this block. 

In fact, in the case where the cross-sectionally dependent errors are present in the 

data generating model, the Fisher_B test does not belong to the chi-square distribution 

under the null hypothesis because the minimum m

it -tests are correlated across i . 

Accordingly, the test may be biased towards over- or under-rejections of the null.  

In order to correct these biases of the test, we first capture the cross-sectional 

correlation structure in the panels according to the above resampling scheme.
11

 Then, 

with the generated bootstrap sample *~
ity  ( Tt ,,1K= ), we obtain the empirical 

                                                 

11
 To remove cross-sectional dependence in the panels with structural breaks, the 

common factor model is also applicable. See Banerjee and Carrion-i-Silvestre (2006). 
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distribution function of the Fisher_B test through simulation, which provides the 

appropriate small-sample critical values for the test. These values are listed in Table 2. 

Based on these simulated critical values, we can conduct unit root testing in an 

appropriate manner. 

A Monte Carlo simulation is performed using 5,000 replications under each DGP. 

The summary of the simulation is as follows: 

(1) For each i , the empirical distribution function of the minimum m

it -statistic is 

obtained through replications. In particular, in Model (III), 5,000 bootstrap samples 

are generated and used in the simulation. 

(2) For each i , the p-value ( m

ip ) of the actual minimum m

it -test, obtained from the 

original data set, is evaluated based on the empirical distribution function obtained 

in (1). Then, the Fisher_B statistic is calculated. 

(3) In each replication in Model (III), m

ip  of the simulated minimum m

it -test, which 

is computed from each bootstrap sample, is evaluated for each i  based on the 

empirical distribution function obtained in (1). Then, using m

N

m pp ,,1 K , the value 

of ∑ =
−

N

i

m

ip
1
log2  is calculated. The empirical distribution function of the 

Fisher_B test can be obtained from the calculated values of ∑− m

iplog2 . 

 

4. Empirical Analysis 

 

4.1. Data 

Provincial data have been sourced from China Compendium of Statistics 1949–2004. 

We have used the annual real per capita outputs of 29 provinces from 1952 to 2004; 
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these outputs have been generated by the chain index of the per capita gross regional 

product (GRP) with 1952 as the reference year.
12

 Hainan and Sichuan provinces have 

been excluded due to the lack of data. All the series used in this paper have been taken 

in natural logarithms.
13

 

As in Zhang et al. (2001), we divide the 29 provinces according to their 

geographical locations into the following three regions: the Eastern, Central and 

Western regions.
14

 However, we have included the Guangxi Zhuang autonomous 

                                                 

12
 The chain index of the per capita GRP is computed as 

)100/()100/()100/(100 5352

*

tt YYYY L⋅⋅= , where *

tY  is the chain index of the per 

capita GRP. Further, tY  is the index of the per capita GRP (preceding year = 100), and 

52Y  is set to 100. 

13
 The quality of official Chinese statistics has been argued by many researchers (e.g. 

Chow, 1986; Rawski, 2001; and Holz, 2006). Currently, it is widely recognized that 

official Chinese data at the national and provincial levels have certain inconsistencies 

and miscalculations due to factors such as the lack of technical personnel for the 

collection of statistics and political pressure to exaggerate statistics at the lower levels. 

However, our results, which will be presented in Section 4.3, remain valid as long as the 

stochastic properties of the series used in this paper do not change even if there are 

certain inaccuracies in them. 

14
 The Eastern region has the following ten provinces: Beijing, Tianjin, Hebei, 

Liaoning, Shanghai, Jiangsu, Zhejiang, Shandong, Fujian, and Guangdong. The Central 

region includes the following nine provinces: Shanxi, Inner Mongolia, Jilin, 
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region in the Western region, instead of the Eastern region, because since 1978, its log 

of real per capita output has shown considerable deviation from those of the other 

Eastern provinces. In fact, the differences between the recent data of Guangxi and other 

Western provinces are considerably less compared to the differences between Guangxi 

and other Eastern provinces. Therefore, it is reasonable to include Guangxi in the 

Western region.
15

 

The panel for each region used in this study is composed of the deviations of a log 

of real per capita output from the mean value across all the provinces in the 

corresponding region, which is denoted by tit

N

i ititit yyyyy −=−= ∑ =

'

1

~ , where 'N  is 

the number of provinces in the region. 

 

4.2. Test Procedure 

Model (3) shown in Section 3.1 is regressed for each m , including lagged 

augmentation terms of the first difference of ity~ , in order to eliminate the 

                                                                                                                                               

Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan. The Western region consists 

of the following ten provinces: Guangxi, Chongqing, Guizhou, Yunnan, Tibet, Shaanxi, 

Gansu, Qinghai, Ningxia, and Xinjiang. 

15
 For example, for the series (in logarithms) in 2004, the difference between the series 

of Guangxi and Hebei (the closest series among other Eastern provinces) is 0.87. In 

contrast, the difference between the series of Guangxi and Yunnan (the closest among 

the Western provinces) is 0.09. In addition, the series of some other provinces in the 

Western region (Guizhou, Qinghai, and Xinjiang) are also close to that of Guangxi. 
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autocorrelation of the error term. 

it

l

l

litilitiitiitimmiit uyaDUDUydy
i

+∆++++=∆ ∑
=

−−
1

22111
~ˆˆˆ~ˆˆ~ δδφα            (7) 

where il  is a lag order parameter and itu  is a serially uncorrelated error. We 

determine the number of lagged augmentation terms by following the 

‘general-to-specific’ procedure described in Perron (1989) and suggested in Ng and 

Perron (1995). The maximum lag order is set at 8. Next, the procedure first estimates 

the regression model with 8=il . If the last lag is significant at 10 per cent, where the 

critical value is an asymptotic normal value of 1.645 on the t-statistic, the procedure 

selects 8 as the optimal lag order; otherwise, it is eliminated from the regression model. 

The steps mentioned above are repeated until the last lag becomes significant. In the 

event of a single insignificant lag, the optimal lag order is set at 0. 

For each i , the minimum m

it -test statistic is obtained by sequentially regressing 

Model m  ( 2,1=m ) over the possible break dates },{ 21 ii TBTB  within 

531 21 <<<+ iii TBTBl  for two-time breaks and }{ 1iTB  within 531 1 <<+ ii TBl  for 

a one-time break. Then, for each of the three regions, the Fisher_B test is constructed 

for each m  ( 2,1=m ) by combining the p-value of the individual test ( m

ip ), which is 

obtained via simulation. 

 

4.3. Test Results and Discussion 

We first employ the commonly used panel unit root tests without a break—the Levin, 

Lin and Chu (2002) test and the Im et al. (2003) test. The results are shown in Table 1. 

For each region, both the tests can reject the unit root null hypothesis in at least one 
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regression model at the 10 per cent or better significance level. From this test result, the 

convergence hypothesis of the provincial outputs appears to be supported for each 

region. However, the IPS and LLC tests may possibly suffer from biases towards under- 

or over-rejections of the unit root null because they do not treat the presence of both 

structural breaks and cross-sectional dependence among error terms in the panels.
16

 

Next, we apply the tests based on Fisher’s p-value combination approach—the 

MW test and the Fisher_B test—on series with breaks (The estimation results for each 

province in the presence of breaks are presented in Tables 1A–4A in Appendix.).
17

 

Table 2 provides the small-sample critical values at the 10, 5, and 1 per cent levels of 

the MW and Fisher_B tests under Model (III), which are obtained by using the 

procedure described in Section 3.2. 

Table 3 reports the test results obtained under the three DGPs. In the case of tests 

on series without a break (the MW test), there are ten significant tests of regional 

                                                 

16
 With regard to these issues, Perron (1989), Leybourne et al. (1998), and Im et al. 

(2005) have revealed that ignoring breaks in a single time series or panel data can lead 

to an erroneous inference in a test, while O’connell (1998) and Phillips and Sul (2003) 

have argued that estimated parameters tend to be biased by the presence of 

cross-sectionally correlated errors. 

17
 We have also obtained test results for cases in which the mean deviations of log per 

capita outputs display a linear time trend for Liaoning in the Eastern region and 

Heilongjiang and Hubei in the Central region. Since these results are quite similar to 

those tabulated in Table 3, they have not been reported but are available on request. 
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convergence of real per capita outputs. In these tests, however, due to the omission of 

breaks, the test results might be inaccurate and, therefore, misleading. 

We then consider the possibility of structural breaks occurring at various break 

dates across provinces. The fourth column of Table 3 shows the results of the Fisher_B 

test in the case of a one-time break. When Models (I) and (II) are used as DGPs, for the 

Western region, the Fisher_B test rejects the unit root null hypothesis for both the 

regression models ( 2,1=m ) at the 1 per cent significance level. In addition, under both 

the DGPs, significant rejections of the null are observed at the 10 per cent level for the 

Eastern region ( 1=m ) and at the 10 or 5 per cent level for the Central region ( 2=m ). 

In the case of Model (III), wherein there is the cross-sectional correlation between error 

terms, the test statistics for both the regression models for the Western region are still 

higher than the corresponding critical values at the 1 per cent significance level. Further, 

the statistic of the regression model for the Eastern region where 1=m  is also 

significant at the 10 per cent level. In the case of Central provinces, the Fisher_B test 

cannot support the stationarity alternative. In Model (III), the finding that convergence 

occurs within all provinces in the Eastern and Western regions appears to be consistent 

with that of Zhang et al. (2001). 

The last column of Table 3 presents the results for cases with two-time breaks. In 

Models (I) and (II), with one exception in the Central region, all the test results for all 

the regions exhibit significant rejections of the unit root null hypothesis at the 5 per cent 

or better levels. Moreover, when the correlation of error terms among provinces in each 

region is considered in Model (III), the Fisher_B test also strongly supports the 

stationarity alternative with two-time shifts for all of the regions (for either or both of 
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the regression models). As compared to the case of a series that includes a single 

structural break, under any DGP, this case indicates the existence of regional 

convergence within all the three regions. Therefore, it should be concluded that dealing 

with multiple structural breaks occurring at different break dates for each province 

provides stronger evidence of the existence of convergence within regions in China. 

This fact may also account for the discrepancies in the results compared with those of 

Zhang et al. (2001), where one endogenous break point is assumed in their estimation. 

The comparison of the three tests results shown in Table 3 reveals that they greatly 

depend on the number of breaks allowed in the tests. As discussed in Section 1, due to 

the impact of certain significant political and economic events, the provincial real per 

capita outputs in China are suspected to have some structural breaks; therefore, in the 

analysis on regional convergence in China, we consider it appropriate to examine the 

possibility of multiple structural changes in the studied time periods. Consequently, 

when the provincial log per capita outputs are allowed to have two-time level shifts at 

various break dates across the provinces, we observe convergence of the series in all the 

three regions. 

 

4.4. Test Results Based on Other Regional Classifications 
18

 

As illustrated in Figure 1, the mean deviation of the real per capita output for 

Shanghai is much larger than those for other Eastern provinces. Since this may be 

indicative of the heterogeneity of Shanghai, the series for nine Eastern provinces, 

                                                 

18
 All the test results discussed in this subsection have been omitted but are available on 

request. 
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excluding Shanghai, have been tested. Consequently, convergence is also observed in 

the Eastern region. 

Further investigations have been conducted based on other data classifications 

where the Eastern region (with or without Shanghai) includes the neighboring provinces, 

which are Guangxi, Jilin, and Heilongjiang. The cases where one, two, or all of the 

provinces are classified as belonging to the Eastern region are analyzed. As a result, in 

the case of two structural breaks, the evidence of convergence has been found in all the 

classifications. This fact seems to imply that the neighboring provinces are on the same 

path of convergence as that of other Eastern provinces; however, this is not 

conclusive.
19

 

To make the discussion more concrete, in classifying provinces into certain regions, 

the use of classification methods such as cluster analysis would be desirable. The work 

of Hobijn and Franses (2000) is one such application. However, this is beyond the scope 

of this paper. Meanwhile, as discussed in Section 4.1, there appear to be substantial 

grounds for our classification of Chinese provinces. Therefore, our findings obtained 

from Table 3 are meaningful. 

 

 

                                                 

19
 In addition, the sample consisting of whole provinces has been tested; moreover, a 

significant rejection of the unit root null hypothesis has been obtained. However, we 

believe that further information (e.g. the homogeneity of provinces classified into 

different regions) is needed to arrive at a conclusion. 
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5. Conclusion 

In this study, we investigated the regional convergence hypothesis of the provincial per 

capita outputs in China while considering up to two-time structural breaks in the panels. 

According to the p-value combination approach of Fisher (1932), the panel-based unit 

root test has been developed by combining the p-value of the individual unit root test 

which allows for breaks in a single time series. This approach allowed us to consider 

multiple breaks at various break dates across the provinces. We used three data 

generating models in the Monte Carlo simulation—the driftless random walk model, the 

ARMA model, and the AR model with cross-sectionally dependent errors—to calculate 

the p-value of the individual minimum t-type unit root test from its empirical 

distribution. In particular, in the case of the AR model with cross-sectionally dependent 

errors, the empirical distribution of the test for each province was generated on the 

bootstrap samples, which were obtained by the resampling procedure proposed by 

Maddala and Wu (1999) and Wu and Wu (2001). On the basis of their geographical 

locations, the provinces were grouped into the following three regions: the Eastern, 

Central, and Western regions. Subsequently, the existence of convergence within each 

region was tested by the panel unit root test with breaks, which was developed in this 

paper. As a result, when the presence of two-time breaks was considered in the test, we 

found significant evidence to suggest that the convergence of the provincial per capita 

outputs exists within each region. 
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Figure 1. Mean deviations of log of provincial real per capita outputs for the Eastern provinces

28

-1

-0.5

0

0.5

1

1.5

2

1
9

5
2

1
9

5
4

1
9

5
6

1
9

5
8

1
9

6
0

1
9

6
2

1
9

6
4

1
9

6
6

1
9

6
8

1
9

7
0

1
9

7
2

1
9

7
4

1
9

7
6

1
9

7
8

1
9

8
0

1
9

8
2

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

Year

Beijing Tianjin Hebei Liaoning Shanghai Jiangsu

Zhejiang Fujian Shandong Guangdong



Figure 2. Mean deviations of log of provincial real per capita outputs for the Central provinces
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Figure 3. Mean deviations of log of provincial real per capita outputs for the Western provinces
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Table 1. The results for the Levin et al. (2002) (LLC) test and the

Im et al. (2003) (IPS) test

Region Regression Model LLC test IPS testa

East no constant & no trend –2.133** –2.046**

constant 2.564 0.816

Central no constant & no trend –1.669** –0.569

constant –0.840 –1.366*

West no constant & no trend –1.947** –1.648**

constant –1.486* –1.893**

***, **, and * denote statistical significance at the 1%, 5%, and 10% levels,

respectively.
aFor both regression models, the means and the variances of the individual

augmented Dickey–Fuller t-test for T = 53−pi−1 were computed with 500,000

replications, where pi is the number of lagged augmentation terms of the first

difference of a series added in the individual ADF equation.
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Table 2. The critical values of the Maddala and Wu (1999) test and the

Fisher B test in the case of cross-sectionally dependent errors

Test Region Regression Modela 10% 5% 1%b

MW test East m = 1 29.520 32.913 40.346

= 2 29.428 32.926 38.824

Central m = 1 25.955 28.588 34.427

= 2 26.242 28.986 35.202

West m = 1 28.205 31.419 37.292

= 2 28.480 31.332 36.758

Fisher B test

one break East m = 1 30.102 33.585 41.364

= 2 28.948 32.214 38.420

Central m = 1 25.972 28.672 35.302

= 2 25.990 29.111 34.058

West m = 1 28.692 31.502 37.736

= 2 28.575 31.364 36.900

two breaks East m = 1 29.950 33.425 40.936

= 2 29.044 32.473 38.401

Central m = 1 26.181 29.165 35.346

= 2 26.117 29.173 34.593

West m = 1 28.394 31.736 38.117

= 2 28.709 31.942 38.513

aThe regression model is ∆ỹit = α̂midm+ φ̂iỹit−1+ δ̂1iDU1it+ δ̂2iDU2it+
∑l̄i

l=1
âil∆ỹit−l+uit,

i = 1, . . . ,N′, t = 2, . . . , 53, where N′ = 10 for the Eastern and Western regions and

N′ = 9 for the Central region, and dm = {∅} for m = 1 and dm = {1} for m = 2; in addition,

δ̂1i = δ̂2i = 0 for all i for the MW test and δ̂2i = 0 for all i for the Fisher B test for the one

break case.
bThe values are 10, 5, and 1 per cent points on the right tail of the empirical distributions

of the MW and Fisher B tests. These distributions are obtained as follows. For each i and

m, under Model (III), the empirical distribution of the minimum tm
i

-statistic is obtained

by a Monte Carlo simulation with 5,000 replications. Next, the percentage point (pm
i

)

of the minimum tm
i

-statistic computed for each replication is evaluated on the empirical

distribution obtained in the first step. After this, the value of −2
∑N

i=1 log pm
i

is calculated

for each replication. The empirical distributions of the tests can thus be obtained from the

calculated values of −2
∑

log pm
i

.
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Table 3. The results for the Maddala and Wu (1999) test and the Fisher B test in

the cases of one-time and two-time breaks

Region Regression Modela MW testb Fisher B testb

(no break) one break two breaks

DGP Model (I): ỹit = ỹit−1 + ǫit

East m = 1 37.511*** 27.251#c* 39.156#***

= 2 12.125 16.436 33.962**

Central m = 1 19.276 13.907 28.053**

= 2 25.340* 28.723** 41.961***

West m = 1 26.270* 37.805*** 52.676#***

= 2 26.751* 50.076#*** 58.674#***

DGP Model (II): θ̂i(L)∆ỹit = ψ̂i(L)σ̂iǫit

East m = 1 35.940*** 26.638#* 37.975***

= 2 12.250 16.024 31.379**

Central m = 1 17.185 9.875 19.740

= 2 23.236 23.881* 36.547***

West m = 1 26.214* 38.109#*** 49.923***

= 2 27.492* 49.960#*** 58.591#***

DGP Model (III): ∆ỹ∗
it
=
∑k̄i

k=1
γ̂ik∆ỹ∗

it−k
+ ǫ∗

it

East m = 1 19.601 31.744#* 53.414***

= 2 15.104 18.074 22.887

Central m = 1 17.042 23.211 36.035***

= 2 27.109* 24.817 29.930**

West m = 1 28.991* 41.450*** 45.013***

= 2 28.882* 37.688*** 34.546**

***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
aThe regression model is ∆ỹit = α̂midm + φ̂iỹit−1 + δ̂1iDU1it + δ̂2iDU2it +

∑l̄i
l=1

âil∆ỹit−l + uit, i =

1, . . . ,N′, t = 2, . . . , 53, where N′ = 10 for the Eastern and Western regions and N′ = 9 for the

Central region, and dm = {∅} for m = 1 and dm = {1} for m = 2; in addition, δ̂1i = δ̂2i = 0 for all i for

the MW test and δ̂2i = 0 for all i for the Fisher B test for the one break case.
bUnder Models (I) and (II), because of the restriction of

∑N
i=1 ỹit = 0, the degree of freedom of the

chi-square distribution of the test is 2(N − 1).
cThe sign # indicates that the p-values for some provinces were estimated to be zero due to the

fact that for each of these provinces, the realization of the minimum tm
i

-statistic lay far left from its

empirical distribution which was generated by a Monte Carlo simulation with 5,000 replications.

Therefore, in order to calculate the Fisher B statistic, the obtained p-values for these provinces were

assigned a value of 0.0002 (1/5000). This implies that we assume that the minimum tm
i

-statistic for

each of these provinces took a value within the estimated empirical distribution only once in the

5,000 replications.
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Appendix 

 

Proof of Theorem 

For simplicity, we omit the subscript i  of a variable and denote a time series as merely 

ty  instead of ty
~  used in the main text. Therefore, ty  is assumed to be subject to 

Models (1) and (2) with an ... dii  innovation tε  with a zero mean and a finite variance 

2σ . In this proof, we show the derivation only for the case of 2=m  because that for 

the case of 1=m  is obtained along the same lines. 

    Let te  be the OLS residual obtained by regressing ty  on an intercept and two 

dummy variables ( tDU1  and tDU 2 ) for Tt ,,1K= . Then, the residual is expressed as 

( ) ( )222111
ˆˆ DUDUDUDUSe tttt −−−−= δδµ              (1A) 

where µ
tS  is the demeaned random walk process such as ∑ =

−−≡
T

t ttt STSS
1

1µ , 

where ∑ =
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s stS 1
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where ⇒  denotes weak convergence in distribution. Therefore, 

( ) ( )222

2/1

111

2/12/12/1 ˆˆ DUDUTDUDUTSTeT tttt −−−−= −−−− δδµ  

               ),,( 212 ττσ rW⇒                     (2A) 
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               { } { }[ ])1(),()1(),()( 222111 ττττσ µ −−−−−−= rduBrduArW  

where ),,( 212 ττrW  denotes the residual from the projection of )(rW  onto the 

subspace generated by the function { }),(),,(,1 2211 ττ rdurdu , where 1),( =hh rdu τ  for 

hr τ> , and zero otherwise ( 2,1=h ). 

    From the regression of te  on 1−te , we can obtain the t-test statistic as  
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t tt eeTs
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12 )ˆ( ρ , where ρ̂  is the estimated coefficient of 1−te  in the 

regression of te  on 1−te . Now, we show the probability limits of ∑ = −
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t tt eeT
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Hence, we have the following limiting distribution. 
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    Based on the limiting behaviour of teT 2/1−  shown in Equation (2A) and the 

continuous mapping theorem, it is straightforward to show that 
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− 1
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2

1

2 ),,( drrWeT
T

t

t ττσ . 
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2 2

212
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12

p

T

t

T

t ttt oeTeeTs +∆=−= ∑ ∑= =
−

−
− ρ , we show the 

probability limit of the first term in the last equation. 
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 denotes convergence in probability.                            ■ 
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Estimation Results for Each Province 

The estimation results, obtained from individual regression conducted for each province, 

are shown in the following tables. Now, we briefly discuss the estimation accuracy of 

the dates of breaks and signs of break size parameters in the results. Herein, the time 

periods of influential events in China, as described in Section 1, are considered as 

1958–62, 1966–72, and 1989–95 (i.e. the time periods shown as grey areas in Figures 

1–3 with a one-year lead and lag for each period). In the case of a one-time break 

(shown in Tables 1A and 2A), approximately one-third to half of the estimated break 

dates are consistent with the expected time periods, for each region. For the size 

parameters of the break variables that have the expected break dates, some have the 

right sign while others do not. In the case of two-time breaks (shown in Tables 3A and 

4A), approximately half of the detected break dates (of the total number of the first and 

second breaks) match the expected periods, for each region. For the sign of break size 

parameters, there is some improvement in terms of accuracy. 



Table 1A. The estimation results for each province in the case of a one-time break (m = 1)

Region Province φ̂ δ̂1 Min t l̄ Break Date P-value

Model (I) Model (II) Model (III)

East Beijing –0.094 0.087 –2.893 6 1963 0.356 0.372 0.092

Tianjin –0.050 0.031 –2.110 6 1962 0.678 0.724 0.500

Hebei –0.002 –0.006 –0.025 0 1954 0.994 0.994 0.932

Liaoning –0.081 –0.047 –2.650 8 1994 0.459 0.464 0.494

Shanghai –0.149 0.227 –7.582 8 1962 0.000#a 0.000# 0.000#

Jiangsu –0.042 0.012 –2.838 8 2003 0.379 0.386 0.451

Zhejiang –0.046 –0.017 –1.122 1 1955 0.937 0.939 0.892

Fujian –0.050 –0.034 –1.716 5 1962 0.813 0.804 0.513

Shandong –0.036 0.008 –3.161 8 2003 0.261 0.303 0.378

Guangdong –0.092 –0.060 –1.986 1 1955 0.728 0.748 0.386

Central Shanxi –0.235 0.055 –3.839 8 1968 0.078 0.118 0.048

Inner Mongolia –0.071 0.033 –2.516 8 1980 0.516 0.580 0.218

Jilin –0.053 0.033 –0.592 6 1960 0.981 0.986 0.704

Heilongjiang –0.036 0.004 –2.377 3 1998 0.577 0.642 0.527

Anhui –0.121 –0.067 –1.522 0 1954 0.865 0.874 0.650

Jiangxi –0.287 –0.095 –3.491 8 1969 0.149 0.554 0.025

Henan –0.016 –0.003 –0.991 4 1996 0.950 0.951 0.945

Hubei –0.049 0.012 –1.248 4 1991 0.915 0.912 0.876

Hunan –0.090 –0.034 –2.844 8 1981 0.376 0.395 0.176

West Guangxi –0.057 –0.017 –1.528 0 1961 0.859 0.866 0.739

Chongqing –0.064 0.020 –1.556 2 1991 0.854 0.856 0.815

Guizhou –0.006 –0.014 –0.274 7 1983 0.989 0.991 0.898

Yunnan –0.270 –0.091 –2.832 8 1962 0.384 0.425 0.104

Tibet –0.253 0.072 –3.449 2 1959 0.170 0.183 0.148

Shaanxi –0.379 0.101 –4.550 0 1968 0.021 0.015 0.047

Gansu –1.229 0.175 –7.206 7 1972 0.000# 0.000# 0.0002

Qinghai –0.045 0.019 –1.863 8 1999 0.773 0.780 0.670

Ningxia –0.196 0.101 –3.891 0 1957 0.079 0.076 0.036

Xinjiang –0.089 0.020 –2.496 8 1982 0.518 0.518 0.540

aThe sign # indicates that the p-value for the province was estimated to be zero due to the fact that the realization of the minimum tm
i

-

statistic lay far left from its empirical distribution which was generated by a Monte Carlo simulation with 5,000 replications. Therefore,

in order to calculate the Fisher B statistic, the obtained p-value was assigned a value of 0.0002 (1/5000). This implies that we assume

that the minimum tm
i

-statistic took a value within the estimated empirical distribution only once in the 5,000 replications.
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Table 2A. The estimation results for each province in the case of a one-time break (m = 2)

Region Province φ̂ δ̂1 Min t l̄ Break Date P-value

Model (I) Model (II) Model (III)

East Beijing –0.275 0.064 –3.628 6 1967 0.385 0.410 0.555

Tianjin –0.256 –0.066 –3.429 6 1986 0.479 0.527 0.439

Hebei –0.481 –0.045 –3.814 5 1983 0.295 0.297 0.433

Liaoning –0.349 –0.112 –2.786 6 1990 0.779 0.765 0.466

Shanghai –0.295 –0.084 –4.700 6 1983 0.061 0.058 0.126

Jiangsu –0.294 0.079 –2.312 8 1985 0.908 0.896 0.567

Zhejiang –0.153 0.060 –2.722 0 1979 0.802 0.791 0.734

Fujian –0.144 –0.029 –2.768 5 1964 0.788 0.779 0.785

Shandong –0.452 0.070 –4.007 0 1976 0.228 0.264 0.071

Guangdong –0.158 0.026 –2.744 1 1986 0.795 0.799 0.830

Central Shanxi –0.582 –0.065 –4.340 5 1993 0.131 0.187 0.183

Inner Mongolia –0.314 0.048 –3.999 7 2000 0.230 0.276 0.324

Jilin –0.611 0.057 –5.479 6 1986 0.010 0.011 0.028

Heilongjiang –0.214 –0.066 –2.830 3 1980 0.743 0.817 0.640

Anhui –0.553 –0.025 –4.036 3 1976 0.216 0.217 0.220

Jiangxi –0.574 –0.079 –4.460 0 1974 0.104 0.450 0.133

Henan –0.286 0.065 –3.965 3 1979 0.239 0.284 0.279

Hubei –0.216 0.051 –2.921 4 1976 0.710 0.719 0.630

Hunan –0.273 0.018 –2.959 0 1965 0.692 0.719 0.744

West Guangxi –0.340 0.022 –3.179 4 1966 0.604 0.589 0.603

Chongqing –0.199 0.059 –3.282 2 1990 0.556 0.550 0.493

Guizhou –0.475 –0.064 –4.346 7 1971 0.124 0.126 0.116

Yunnan –0.339 –0.016 –3.156 0 1969 0.618 0.640 0.632

Tibet –0.595 –0.119 –7.793 7 1985 0.000#a 0.000# 0.002

Shaanxi –0.380 0.097 –4.518 0 1968 0.089 0.089 0.224

Gansu –1.196 0.188 –6.392 7 1973 0.001 0.001 0.018

Qinghai –0.272 –0.071 –2.805 8 1987 0.766 0.773 0.548

Ningxia –0.213 0.095 –3.628 0 1957 0.379 0.382 0.425

Xinjiang –0.351 –0.122 –4.566 7 1966 0.084 0.086 0.160

aThe sign # indicates that the p-value for the province was estimated to be zero due to the fact that the realization of the minimum tm
i

-

statistic lay far left from its empirical distribution which was generated by a Monte Carlo simulation with 5,000 replications. Therefore,

in order to calculate the Fisher B statistic, the obtained p-value was assigned a value of 0.0002 (1/5000). This implies that we assume

that the minimum tm
i

-statistic took a value within the estimated empirical distribution only once in the 5,000 replications.
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Table 3A. The estimation results for each province in the case of two-time breaks (m = 1)

Region Province φ̂ δ̂1 δ̂2 Min t l̄ Break Date P-value

1st break 2nd break Model (I) Model (II) Model (III)

East Beijing –0.066 0.159 –0.109 –3.394 6 1966 1971 0.710 0.743 0.140

Tianjin –0.114 0.090 –0.044 –3.916 8 1963 1982 0.485 0.558 0.206

Hebei –0.176 –0.093 –0.018 –3.258 1 1955 1979 0.757 0.775 0.117

Liaoning –0.180 0.133 –0.155 –4.771 8 1969 1978 0.158 0.163 0.175

Shanghai –0.155 0.243 –0.014 –7.869 8 1962 1990 0.000#a 0.0002 0.0002

Jiangsu –0.106 –0.100 0.102 –5.425 8 1968 1977 0.048 0.046 0.028

Zhejiang –0.151 –0.143 0.145 –4.405 8 1965 1979 0.273 0.270 0.151

Fujian –0.075 –0.060 0.025 –2.439 6 1962 1987 0.945 0.940 0.527

Shandong –0.057 –0.206 0.194 –4.504 8 1973 1974 0.238 0.308 0.234

Guangdong –0.139 –0.233 0.144 –4.894 8 1967 1970 0.129 0.150 0.042

Central Shanxi –0.278 0.163 –0.101 –5.415 8 1968 1970 0.042 0.090 0.025

Inner Mongolia –0.289 0.174 –0.085 –5.937 7 1961 1964 0.013 0.022 0.008

Jilin –0.078 0.042 0.006 –0.710 6 1960 1985 0.999 1.000 0.807

Heilongjiang –0.267 0.129 –0.099 –5.766 8 1962 1983 0.020 0.076 0.022

Anhui –0.137 –0.276 0.201 –2.204 0 1955 1956 0.967 0.970 0.691

Jiangxi –0.472 –0.052 –0.088 –4.849 8 1962 1969 0.122 0.517 0.026

Henan –0.107 –0.127 0.106 –2.667 1 1956 1963 0.914 0.914 0.700

Hubei –0.171 –0.037 0.050 –3.045 6 1962 1974 0.825 0.830 0.722

Hunan –0.099 –0.022 –0.015 –2.929 8 1980 1983 0.854 0.884 0.468

West Guangxi –0.091 –0.115 0.092 –2.133 4 1964 1966 0.974 0.979 0.863

Chongqing –0.213 –0.032 0.060 –3.319 3 1964 1989 0.727 0.743 0.667

Guizhou –0.109 –0.105 0.018 –2.381 0 1958 1970 0.954 0.958 0.389

Yunnan –0.217 –0.103 0.033 –3.110 0 1956 1960 0.801 0.850 0.186

Tibet –0.518 0.186 –0.112 –7.848 1 1959 1985 0.000# 0.0002 0.002

Shaanxi –0.781 0.147 0.094 –6.575 2 1968 1987 0.003 0.003 0.034

Gansu –1.360 –0.042 0.235 –7.621 7 1965 1972 0.000# 0.0006 0.006

Qinghai –0.276 0.087 –0.064 –3.911 8 1964 1987 0.473 0.522 0.351

Ningxia –0.227 0.127 –0.038 –4.662 0 1957 1990 0.180 0.191 0.058

Xinjiang –0.129 0.117 –0.102 –3.582 3 1957 1961 0.617 0.636 0.627

aThe sign # indicates that the p-value for the province was estimated to be zero due to the fact that the realization of the minimum tm
i

-statistic lay far

left from its empirical distribution which was generated by a Monte Carlo simulation with 5,000 replications. Therefore, in order to calculate the Fisher B

statistic, the obtained p-value was assigned a value of 0.0002 (1/5000). This implies that we assume that the minimum tm
i

-statistic took a value within the

estimated empirical distribution only once in the 5,000 replications.
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Table 4A. The estimation results for each province in the case of two-time breaks (m = 2)

Region Province φ̂ δ̂1 δ̂2 Min t l̄ Break Date P-value

1st break 2nd break Model (I) Model (II) Model (III)

East Beijing –0.473 0.115 –0.083 –6.668 6 1967 1991 0.012 0.017 0.106

Tianjin –0.285 0.025 –0.081 –3.875 6 1967 1986 0.833 0.854 0.770

Hebei –1.301 0.079 –0.139 –6.271 8 1969 1985 0.026 0.038 0.221

Liaoning –0.289 –0.097 –0.087 –3.615 0 1960 1988 0.898 0.894 0.684

Shanghai –0.401 0.119 –0.085 –5.721 8 1967 1983 0.087 0.095 0.205

Jiangsu –0.288 –0.050 0.093 –2.749 8 1968 1984 0.986 0.988 0.862

Zhejiang –0.238 –0.136 0.195 –4.517 8 1967 1979 0.542 0.552 0.530

Fujian –0.280 –0.073 0.056 –4.723 5 1966 1987 0.436 0.454 0.462

Shandong –0.640 0.084 0.072 –5.327 0 1965 1992 0.180 0.231 0.106

Guangdong –0.527 –0.154 0.099 –6.045 8 1967 1990 0.047 0.058 0.189

Central Shanxi –0.501 0.087 –0.062 –4.728 1 1955 1993 0.432 0.539 0.492

Inner Mongolia –0.765 –0.150 0.049 –4.876 8 1966 1983 0.366 0.462 0.532

Jilin –1.044 0.129 0.091 –7.276 6 1960 1986 0.002 0.004 0.023

Heilongjiang –0.382 –0.074 –0.059 –3.704 4 1980 1991 0.865 0.932 0.792

Anhui –0.860 –0.080 0.099 –6.422 3 1976 1993 0.023 0.020 0.025

Jiangxi –0.657 –0.089 –0.027 –5.493 0 1972 1994 0.145 0.480 0.272

Henan –0.312 0.107 0.045 –5.694 3 1963 1986 0.099 0.138 0.262

Hubei –0.489 0.065 0.088 –4.278 0 1955 1977 0.650 0.666 0.617

Hunan –1.231 0.112 –0.119 –6.698 8 1971 1986 0.012 0.015 0.060

West Guangxi –0.563 0.054 –0.029 –3.966 7 1968 1982 0.777 0.780 0.804

Chongqing –0.232 0.028 0.054 –3.691 2 1977 1991 0.866 0.877 0.807

Guizhou –0.655 –0.207 0.188 –6.036 8 1973 1976 0.053 0.048 0.057

Yunnan –0.623 –0.066 0.058 –4.957 0 1967 1986 0.326 0.372 0.519

Tibet –0.665 0.053 –0.171 –8.212 7 1980 1985 0.000#a 0.0002 0.016

Shaanxi –0.784 0.144 0.095 –6.513 2 1968 1987 0.020 0.017 0.199

Gansu –1.423 0.173 0.079 –8.841 7 1971 1974 0.000# 0.000# 0.012

Qinghai –0.357 –0.066 –0.067 –3.976 8 1978 1987 0.773 0.805 0.571

Ningxia –0.457 0.084 –0.062 –5.470 5 1965 1989 0.143 0.152 0.260

Xinjiang –0.349 –0.131 –0.083 –5.352 7 1961 1966 0.178 0.187 0.291

aThe sign # indicates that the p-value for the province was estimated to be zero due to the fact that the realization of the minimum tm
i

-statistic lay far

left from its empirical distribution which was generated by a Monte Carlo simulation with 5,000 replications. Therefore, in order to calculate the Fisher B

statistic, the obtained p-value was assigned a value of 0.0002 (1/5000). This implies that we assume that the minimum tm
i

-statistic took a value within the

estimated empirical distribution only once in the 5,000 replications.
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