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Causal Relationships between Inflation and Inflation Uncertainty  
 

Abstract 

Since the publication of Friedman’s (1977) Nobel lecture, the relationships between the mean function 

of the inflation stochastic process and its uncertainty, and between inflation uncertainty (IU) and real 

output growth have been the subject of much research, with some studies justifying this causality and 

some reaching the opposite conclusion or finding an inverse correlation between mean inflation and 

inflation volatility with causation in either direction. We conduct a systematic econometric study of the 

relationships between the first two moments of the inflation stochastic process and between IU and 

output growth using state-of-the-art approaches and propose a time-varying inflation uncertainty 

measure based on stochastic volatility to consider unpredictable shocks. Further, we extend the literature 

by providing a new econometric specification of this relationship using two semi-parametric 

approaches: the frequency evolutionary co-spectral approach and continuous wavelet methodology. We 

theoretically justify their use through an extension of Ballʼs (1992) model. These frequency approaches 

have two advantages: they provide the analyses for different frequency horizons and do not impose 

restriction on the data. While the literature focused on the US data, our study explores these relationships 

for five major developed and emerging countries/regions (the US, the UK, the euro area, South Africa, 

and China) over the past five decades to investigate the robustness of our inferences and sources of 

inconsistencies among prior studies. This selection of countries permits investigation of the inflation 

versus inflation uncertainty relationship under different hypotheses, including explicit versus implicit 

inflation targets, conventional versus unconventional monetary policy, independent versus dependent 

central banks, and calm versus crisis periods. Our findings show a significant relationship between 

inflation and inflation uncertainty, which varies over time and frequency, and offer an improved 

comprehension of this ambiguous relationship. The relationship is positive in the short and medium 

terms during stable periods, confirming the Friedman–Ball theory, and negative during crisis periods. 

Additionally, our analysis identifies the phases of leading and lagging inflation uncertainty. Our general 

approach nests within it the earlier approaches, permitting explanation of the prior appearances of 

ambiguity in the relationship and identifies the conditions associated with the various outcomes. 

 

Keywords: Inflation, Inflation uncertainty, Output growth, Frequency approach, Wavelet, Semi-

parametric approach, Stochastic volatility. 
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1. Introduction 

 
Uncertainty, which often refers to unpredictable volatility (Grier and Perry, 1998), is an 

important economic theory concept, as it could affect consumers’ saving, investors’ and 

policymakers’ decisions, economic well-being, and the entire economy (Rossi et al., 2016).  

Particularly, uncertainty about future inflation, which is considered among the most important 

inflation costs, is a main concern to monetary policymakers. According to Cukierman and 

Meltzer (1986) and Evans and Wachtel (1993), inflation uncertainty (IU) can occur through at 

least two main sources. First, significant differences among international monetary policy 

regimes could lead to IU, similar to conventional versus unconventional monetary policies. 

Second, IU could also be induced by policy regime uncertainty.1 Furthermore, as economic 

agents often use new information to update their perceptions regarding the actions of central 

banks, IU would be time varying and potentially complex to measure. 

Therefore, the relationship between inflation and IU has been the focus of several 

theoretical and empirical studies to investigate the latter’s effect. For instance, Friedman (1977) 

found a positive relationship between inflation and IU, suggesting that inflation causes IU. 

Using a game with asymmetric information and two policymakers, consisting of a liberal 

policymaker prepared to disinflate and bear the economic cost of reducing inflation and a 

conservative policymaker not prepared to do so, Ball (1992) developed a formal justification 

for Friedman’s theory. This relationship is known as the Friedman–Ball relationship or theory.2 

This positive relationship between inflation and IU can also be found in Logue and Willet 

(1976) and Fischer and Modigliani (1978). However, recent related empirical studies focused 

 
1 Policymakers could use information unavailable to the public or create an inflation surprise, but the public might 

not know the weight assigned to this surprise creation. Furthermore, policymakers can sometimes find ambiguous 

procedures useful.  
2 The principle is that when inflation is low (as it was in the US in the 1960s), there is the consensus that 

policymakers will strive to keep it low. However, if inflation is high (as in the late 1970s), there will be a dilemma 

for policymakers. Either they disinflate, which can produce a recession risk, or they do not. The public will then 

be unclear about the intentions of policymakers. Even if disinflation occurs, its timing would be uncertain, 

increasing IU anyway. 
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on US inflation and indicated some ambiguity in the relationship between inflation and IU (see, 

e.g. Golub, 1994). 

Therefore, the objectives of our research are analogous to those of Barnett et al. (1997), 

who investigated the source of nonrobustness in time series inferences about nonlinearity, and 

of Barnett and Chen (2015), who investigated the nonrobustness of policy inferences from 

structural macroeconometric models. However, the approaches to resolving the nonrobustness 

problems differ as follows. Barnett et al. (1997) ran a controlled competition among competing 

time series tests, while Barnett and Chen (2015) investigated the bifurcation stratification of the 

structural parameter spaces. In this paper, we the extend inflation–IU testing to time-frequency 

analysis to include prior approaches into our more general econometric analysis. 

This study revisits the Friedman hypothesis. First, we revisit the relationship between 

inflation and IU to investigate its ambiguity for some developed and emerging countries. 

Second, we complete the previous studies through analyzing the IU-real output growth 

relationship. We conduct these investigations in a systematic econometric manner using state-

of-the-art methodology. To date, the importance of the relationship has been motivated in 

macroeconomics in various ways. First, the co-existence of targeted and non-targeted monetary 

policies yields heterogeneous effects on price stability, inflation policy, and subsequently, on 

IU, which impact the economic activity. This can be illustrated by the variety in the levels and 

volatility of inflation among countries. Second, the fact that some central banks are more 

independent and have larger mandates than others has several implications for inflation and the 

relationship between inflation and IU. The more independent the central bank is, the more we 

expect an increase in uncertainty to imply an inflation fall, and vice versa. Third, the recent 

global financial crisis has directly affected liquidity and prompted some monetary authorities 

to switch from conventional to unconventional monetary policies, which could increase 
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uncertainty and influence how IU impacts inflation, and economic in general.3 Finally, the 

differences in monetary policy mandates produce diverse time horizons for countries to achieve 

the monetary policy goals. 

Those horizons can be characterized as short term (less than one year), medium term (from 

one to three years), and long term (more than three years). Consequently, we suggest a priori 

that the relationship between inflation and IU as well as IU-output growth could vary across 

horizons. We address this concern by using evolutionary econometric analysis to assess the 

time-varying effect of IU. This is a central focus of our analysis.  

Our study makes three fundamental contributions to this field as follows. We propose a 

time-varying estimate of IU using the stochastic volatility model of Berument et al. (2009) and 

Ferreira and Palma (2016) to consider unexpected shocks. Unlike previous studies that often 

apply parametric econometric models, our study uses two non-parametric approaches, the 

evolutionary co-spectral approach and wavelet methodology, to reproduce the time-varying 

relationship between inflation and IU. This new specification of the inflation and IU 

relationship with non-parametric models can be theoretically justified by our extension of Ballʼs 

(1992) model. Finally, we complete the previous studies through examining the IU-output 

growth relationship across different time-horizons.  

Our methodological choice has many advantages.4 First, nonparametric approaches do not 

require data restrictions or pre-treatment,  unlike time-series models. Second, these approaches 

enable us to investigate the relationship over continuous time to yield a time-varying analysis 

of the inflation–IU relationship and IU-output growth and a decomposition of these 

relationships across different horizons. Third, the wavelet approach transforms these time series 

into different frequency components, thus providing an alternative representation of variable 

 
3 Mallick and Mohsin (2016) show that this switching induces inflation shocks that might affect the real economy and 

particularly the consumption of durable rather over non-durable ones. 
4 To the best of our knowledge, this is the first study that assesses the relationship between inflation and a time-

varying measure of IU using multivariate frequency approaches. 
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variability on a scale-by-scale basis. The result presents a more informative analysis of the 

inflation–IU and IU-output growth relationships, while identifying, for example, the periods of 

lead and lag uncertainty. Our results are particularly useful in resolving the ambiguity 

associated with this relationship.  

We focus on a heterogeneous sample of five major developed and emerging 

countries/regions: the US, the UK, the euro area, China, and South Africa. As our objective is 

to produce conclusions that are robust across difference circumstances, these choices include 

countries/regions with explicit and implicit inflation targets. Further, central bank commitment 

varies across countries, enabling us to test the effects of central bank independence on how 

uncertainty affects inflation and vice versa as well as the IU-output growth. Some of these 

countries still rely on conventional monetary policies (e.g., China), while others use 

unconventional monetary policies. This study is the first to focus on the effects of the latter on 

the inflation–IU and IU-output growth relationships. The extension of the sample period to the 

aftermath of the global financial crisis enables us to verify this relationship during both calm 

and crisis periods. The sample period varies by country, according to data availability, but we 

include data both before and after the recent global financial crisis for all countries.  

Overall, our sample enables us to test the effects of different hypotheses on inflation and 

uncertainty. In the aftermath of the recent global financial crisis, there has been a tendency 

towards deflation in several countries, while uncertainty remains relevant. This sample should 

help us determine whether the inflation–IU and IU-output growth relationships has changed 

over the past few years.  

Our analysis yields three main results. First, we note a significant relationship between 

inflation and IU, which varies with time and frequency. Specifically, this relationship alternates 

between being positive in the short and medium terms during stable periods, confirming the 

Friedman–Ball theory, while becoming negative during crisis periods. Second, our results 
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distinguish between the periods where IU is leading from those where it is lagging. This 

relationship also varies per country, suggesting significant effects of the monetary policy 

regime, target objective, and degree of central bank independence on uncertainty. Finally, the 

double specification of this relationship of time and frequency and our theoretical justification 

provide new findings that could be helpful to predict the uncertainty effects and drivers more 

reliably. Further, our results cast light on the ambiguity associated with this relationship in 

previous studies (e.g., Golub, 1993).  

The remainder of this paper is organized as follows. Section 2 briefly discusses the 

theoretical framework and literature on the inflation–IU relationship. Section 3 presents the 

econometric methodology. The main empirical results are discussed in Section 4. Section 5 

concludes the paper. 

2. Theory and Related Literature 

2.1 Theoretical Background  

The relationship between inflation and IU has been investigated in the literature from both 

directions, each drawing upon different economic backgrounds. Table 1 shows each 

background is divided into two strands, based on the sign of the relationship between inflation 

and IU. 

The first economic background stipulates that inflation causes IU and is disaggregated into 

two strands based on the sign of this causality direction relationship. Friedman (1977) argued 

that the relationship between inflation and IU is positive. Indeed, in his Nobel Prize lecture 

entitled “Inflation and Unemployment,” he stated that the monetary policy objective of boosting 

employment would increase inflation. Theoretically, the central bank aims to confront 

inflationary pressure but, in practice, Friedman explained that monetary authorities could 

behave differently. Consequently, the public would be uncertain about the future policy, leading 

to more IU.  
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Under the same background, Ball (1992) provided a more formal justification of 

Friedman’s hypothesis. He used an asymmetric information game between the Federal Reserve 

and the public. The game postulates two types of policymakers: liberal and conservative. The 

public knows that a conservative policymaker is willing to bear the economic costs of reducing 

inflation, while the liberal policymaker is not. However, the public is not certain about who will 

be the future policymaker. If inflation is low, uncertainty will be low as well, since either 

policymaker will maintain inflation low. However, during high inflation periods, only the 

conservative policymaker will disinflate. Therefore, when inflation is high, doubt about the 

identity of the future policymaker will cause IU also to be high. Based on Ball’s (1992) model, 

Friedman’s hypothesis is correct: increased inflation would raise IU.  

Pourgerami and Maskus (1987) also agreed with Friedman’s on the direction of the 

relationship between inflation and IU, but argued that the sign of the relationship is negative. 

Under a high inflation rate, agents tend to forecast the inflation rate more accurately, since they 

invest more resources to avoid forecasting errors, thus having significant related costs. 

Accordingly, a high inflation rate will decrease IU. 

Table 1: Inflation–IU Relationship Theories 

                                 Sign of 

relationship 

 

 

Causality of relationship 

(+) (-) 

Inflation causes IU Friedman (1977) 

Ball (1992) 

Pourgerami and Maskus (1987) 

Ungar and Zilberfarb (1993) 

 

IU causes inflation Cukierman and Meltzer (1986) 

 

Holland (1995) 

 

 

The second economic background claims that the causality relationship is the inverse, with 

IU causing inflation. Under this tradition, there also are two contradictory analyses, differing 

regarding the sign of the causality relationship between uncertainty and inflation. For instance, 

Cukierman and Meltzer (1986) applied a game theoretic model to central banks. Their 
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framework is based on the Barro–Gordon model of Federal Reserve behavior, emphasizing 

money supply uncertainty and the objective function of policymakers. The model concludes 

that an increase in uncertainty implies a corresponding increase in inflation, as policymakers 

seek to create an inflation surprise to stimulate output growth. Then, uncertainty positively 

causes inflation. Conversely, Holland (1995) found that uncertainty can have a negative impact 

on inflation. The independent central bank decreases inflation following an IU increase, to 

reduce the real cost of IU. 

Overall, this relationship between inflation and IU has been the subject of complexity and 

ambiguity in either background.5 To resolve this ambiguity and understand the specificities of 

the relationship, we reconsider the first background above, that is, the hypothesis that inflation 

causes IU. Particularly, we extend Ballʼs (1992) model to better characterize the shock 

properties in his model. The proposed extended model allows our time-frequency analysis of 

this relationship to explain and resolve its ambiguous character.  

More formally, Ballʼs (1992) model identifies two types of policymakers: conservative 

policymakers (C), who focus only on inflation, and liberal policymakers (L), who focus on 

unemployment as well as inflation. Their loss functions over period 𝑡𝑡 are:  

�   𝐿𝐿𝑡𝑡𝐶𝐶 = 𝑎𝑎 𝜋𝜋𝑡𝑡2𝐿𝐿𝑡𝑡𝐿𝐿 = 𝑎𝑎 𝜋𝜋𝑡𝑡2 + (𝑈𝑈𝑡𝑡 − 𝑈𝑈𝑡𝑡∗),
                                                                                                    (1) 

where 𝐿𝐿𝑡𝑡𝐶𝐶  and 𝐿𝐿𝑡𝑡𝐿𝐿  are the loss functions of the conservative and liberal policymakers, 

respectively; 𝑈𝑈𝑡𝑡 and 𝑈𝑈𝑡𝑡∗ represent actual and optimal social unemployment, respectively; and 𝜋𝜋𝑡𝑡 represents the inflation rate at period 𝑡𝑡. The optimal social unemployment is assumed to be 

time-invariant.  

According to the short-run Phillips curve, unemployment is determined as follows: 𝑈𝑈𝑡𝑡 = 𝑈𝑈𝑁𝑁 − (𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡𝑒𝑒),                                                                                                        (2) 

 
5 On the subject of complex dynamics, see Barnett et al. (2015). 
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where 𝜋𝜋𝑡𝑡𝑒𝑒  is the expected inflation rate at time t, given the available information at period t - 1.  

The natural rate of unemployment is 𝑈𝑈𝑁𝑁. 

To avoid the time inconsistency problem, the natural unemployment rate is defined as 𝑈𝑈𝑁𝑁 =𝑈𝑈∗ + 1.6 Therefore, by combining (1) and (2), the liberal policymaker’s loss function is written 

as follows:  𝐿𝐿𝑡𝑡𝐿𝐿 = 𝑎𝑎 𝜋𝜋𝑡𝑡2 + (𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡𝑒𝑒 − 1).                                                                                              (3) 

In this model, policymakers are assumed to alternate their power stochastically, based on a 

Markov process. Specifically, Ball (1992) assumed that, in period 𝑡𝑡, L are in power. They are 

characterized by a probability 𝑝𝑝, at which they would lose power and would be replaced by C 

in the following period, 𝑡𝑡 + 1, and vice versa.  

Further, as per Canzoneri (1985) and Ball (1992), we assume that the policymakers in power 

define their objective through the following inflation target (𝜋𝜋𝑡𝑡∗):  𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡∗ + 𝛿𝛿𝑡𝑡,                                                                                                                     (4) 

where 𝛿𝛿𝑡𝑡 presents a stochastic shock.  

Equation (4) stipulates that the two policymakers separately define an expected inflation 

rate (𝜋𝜋𝑡𝑡𝑒𝑒), which is assumed to be rational. Then, the policymakers would individually define 

their inflation targets (𝜋𝜋𝑡𝑡∗), which depend on the inflation level in the previous period, t – 1.  

In practice, the equilibrium of the policymakers is defined after fixing the inflation target 

by minimizing the expected present value of their respective loss functions. That is, based on 

this game, we have several cases that differ on the policymaker in power and the function of 

the inflation level at t – 1. These cases are summarized in Table 2. 

 

 

 
6 In line with previous studies (Barro and Gordon, 1983), time inconsistency is defined to occur when the natural 

rate of unemployment is higher than optimal social unemployment, leading to an inflation bias.  
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Table 2: Conservative versus Liberal Policymakers 

Case 1: C are in power 

at t - 1  

Case 2: L are in power at t - 1 

If C are in power at  

t - 1, their inflation 

expectation for period t 

will be zero, as their 

monetary objective is to 

only reduce inflation. In 

addition, L expect zero 

inflation for period 𝑡𝑡 
since, at t – 1, C are in 

power. 

If L are in power at t - 1, their inflation expectation for period 𝑡𝑡 depends 

on the previous inflation level. They are tempted to increase employment 

by a positive inflation. However, their temptation is deterred by their 

adverse attitude to inflation bias, resulting from temporal inconstancy. 

Therefore, to avoid such problems, Ball (1992) assumed they would be 

tempted toward a positive inflation, but below a threshold level (𝜋𝜋�). 

Case 2.1: If 𝝅𝝅𝒕𝒕−𝟏𝟏 < 𝜋𝜋� (low inflation): 

L target an inflation rate equal to zero. This behavior is explained by the 

fact that L are tempted to increase their target but fear to exceed threshold 𝜋𝜋�. In case of C, they continue to target zero inflation. 

Case 2.2: If 𝝅𝝅𝒕𝒕−𝟏𝟏 > 𝜋𝜋� (high inflation): 

L target an inflation rate 𝜋𝜋𝑡𝑡∗+ > 𝜋𝜋�. Behind their preference, L avoid an 

aggressive reaction to reduce inflation, as they fear recession. However, C 

target an inflation rate equal to zero, as their main objective is to reduce 

inflation.  

As the probability of L still being in power is 1 - p, the expected inflation 

will be (1 − p) π𝑡𝑡∗+. 

  

Based on the above model, economic shocks will define the level of inflation at period 𝑡𝑡 
(Equation (4)). According to the above cases, the expected inflation rate could take two possible 

values: zero or (1 − p) π𝑡𝑡∗+. When 𝜋𝜋𝑡𝑡𝑒𝑒 = 𝐸𝐸[𝜋𝜋𝑡𝑡|𝜔𝜔𝑡𝑡−1] = 0, there is no uncertainty. However, 

when 𝜋𝜋𝑡𝑡𝑒𝑒 = 𝐸𝐸[𝜋𝜋𝑡𝑡|𝜔𝜔𝑡𝑡−1] = (1 − p) π𝑡𝑡∗+, based on Equation (4), the inflation level during period 

t will have the following variance:  𝑉𝑉𝑎𝑎𝑉𝑉[ 𝜋𝜋𝑡𝑡] = 𝑉𝑉𝑎𝑎𝑉𝑉 [𝜋𝜋𝑡𝑡∗ + 𝛿𝛿𝑡𝑡] = 𝑉𝑉𝑎𝑎𝑉𝑉[𝛿𝛿𝑡𝑡].                                                                        (5) 

Equations (1)–(5) summarize Ball’s (1992) model. To motivate our use of time-scale 

approaches, which can explore the relationship between inflation both over time and over 

frequency, we extend Ball’s model. Specifically, we relax the assumption of homogenous 

inflation shocks (𝛿𝛿𝑡𝑡)  in Ball’s model in favor to two shock types: short-memory shocks 
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(𝑒𝑒𝑆𝑆) might be presented through an ARMA (AutoRegressive Moving Average) process and 

long-memory shocks (𝑒𝑒𝐿𝐿) on an ARFIMA (Fractional ARMA) process. Therefore, the inflation 

shock is assumed to be the sum of short and long terms shocks. The inflation shock is as follows:  𝛿𝛿𝑡𝑡 = 𝑒𝑒𝑡𝑡𝐿𝐿 + 𝑒𝑒𝑡𝑡𝑠𝑠,                                                                                                                      (6) 

where 𝑒𝑒𝑡𝑡𝐿𝐿 represents a long-memory shock, associated with a further change in monetary policy, 

which might affect inflation in the long term (Evans, 1991), while 𝑒𝑒𝑡𝑡𝑠𝑠 is a short-memory shock 

in the money demand, affecting inflation in the short term (Ball, 1992).7  

Let us now reconsider Equation (5) on the inflation variance, while considering our shock 

decomposition in Equation (6). Accordingly, the IU, 𝑉𝑉𝑎𝑎𝑉𝑉[ 𝜋𝜋𝑡𝑡], will depend on the nature of the 

shocks: short-term versus long-term. If there is only a short-term shock and the monetary policy 

is unchanged, the IU could be specified as  𝑉𝑉𝑎𝑎𝑉𝑉[ 𝜋𝜋𝑡𝑡] = 𝑉𝑉𝑎𝑎𝑉𝑉 [𝜋𝜋𝑡𝑡∗ + 𝛿𝛿𝑡𝑡] = 𝑉𝑉𝑎𝑎𝑉𝑉[𝛿𝛿𝑡𝑡] = 𝑣𝑣𝑎𝑎𝑉𝑉 [𝑒𝑒𝑡𝑡𝑠𝑠]   =  𝜎𝜎𝑠𝑠2 + 𝑝𝑝(1 − 𝑝𝑝)𝜋𝜋𝑡𝑡∗+.                 (7) 

However, if there is a long-term shock, which affects the economy, the IU could be 

expressed as follows: 𝑉𝑉𝑎𝑎𝑉𝑉[ 𝜋𝜋𝑡𝑡] = 𝑉𝑉𝑎𝑎𝑉𝑉 [𝜋𝜋𝑡𝑡∗ + 𝛿𝛿𝑡𝑡] = 𝑉𝑉𝑎𝑎𝑉𝑉[𝛿𝛿𝑡𝑡] = 𝑣𝑣𝑎𝑎𝑉𝑉 [𝑒𝑒𝑡𝑡𝐿𝐿]=𝜎𝜎𝐿𝐿2 + 𝑝𝑝(1 − 𝑝𝑝)𝜋𝜋𝑡𝑡∗+.                     (8) 

The above reconsideration of IU dynamics in Ballʼs (1992) model through the hypothesis on 

shock nature suggests that IU dynamics might differ and exhibits further asymmetry and 

complexity, according to the type and horizon of the shock affecting the economy. Additionally, 

IU’s interaction with inflation might differ with the horizon and the type of inflation shock. 

Interestingly, breaking the IU (Equation (6)) into short- and long-memory shocks motivates the 

choice of the time-frequency approach to investigate the relationship between inflation and IU. 

Specifically, econometric literature (e.g., Jensen, 1999, 2004) highlighted the robustness of the 

wavelet approach in identifying long-memory behaviors in economic time series. Therefore, 

 
7 Hereafter, we can empirically show that the interest of using the wavelet and frequency approaches to understand 

the inflation–IU relationship for different time-scales and frequencies can be justified by the presence of different 

short- and long-term shocks. 



13 

 

for a better characterization of this inflation–IU relationship, we investigate it for different time 

horizons and scales by using a time-frequency approach. This empirical approach will be 

further discussed after reviewing the related literature.  

2.2 Related Literature 

Most of previous studies analyzing the Friedman hypothesis have focused on the inflation-

IU relationship. These studies have focused on the inflation–IU relationship, but there is still 

no consensus about either the direction or sign of this relationship.8 For instance, using the 

autoregressive conditional heteroscedasticity (ARCH) and generalized ARCH (GARCH) 

models, Ben Nasr et al. (2015) concluded that the average US inflation is not related to 

uncertainty. Baillie et al. (1996) applied a fractionally integrated GARCH model and also found 

no relationship between inflation and uncertainty in the US. However, they found significant 

relationships in the UK, Brazil, Argentina, and Israel. Grier and Perry (1998) investigated the 

inflation–IU relationship for G7 countries during 1948–1993. While their causality analysis 

supports the Friedman–Ball hypothesis that inflation Granger causes uncertainty, they obtain 

mixed results on the causality effect from uncertainty to inflation. Further, their results vary 

among countries and the authors have mentioned that the response to IU might be correlated 

with central bank independence. Indeed, for Japan and France, the relationship is consistent 

with Cukierman and Meltzer (1986), in which increased uncertainty is related to higher 

inflation, while for the US, Germany, and the UK, the result is the opposite. 

Kontonikas (2005) studied the relationship between IU and inflation in the UK during 

1972–2002, and found a positive correlation between past inflation and current uncertainty. 

Additionally, the author showed that adopting an explicit inflation target by the Bank of 

England reduces inflation persistence and uncertainty. Moreover, by applying parametric 

models of long memory to the US, the UK, and Japan during 1962–2001, Conrad and Karanasos 

 
8 We intentionally mention only recent, important, and related studies; see Ben Nasr et al. (2015) for a more 

complete literature review. Golub (1993) also provides a concise analysis and survey of this complex relationship. 
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(2005) validated the Friedman hypothesis that inflation increases IU. They also found that IU 

affects inflation in Japan and the UK differently. Using a stochastic volatility in mean model, 

Berument et al. (2009) studied the effects of IU on inflation in the US during 1976–2006. The 

authors found an increase in inflation followed a positive shock affecting inflation volatility. 

That result is in line with Cukierman and Meltzer (1986) and Cukierman (1992). 

Neanidis and Savva (2011) investigated the relationship between nominal uncertainty and 

inflation in the European Union (EU), and found that uncertainty positively affects inflation in 

the pre-EU access period. Further, they indicated the absence of any effect during EU access 

and entry. Using a Markov-regime switching asymmetric GARCH-in-mean model, Chang 

(2012) investigated the inflation–IU relationship under the hypotheses of regime switching and 

non-normality in the US during 1960–2011. The author showed that IU does not affect inflation, 

while inflation affects IU negatively during periods of high-inflation volatility, but not periods 

of low-inflation volatility. The main advantage of Chang’s (2012) study is relaxing the 

restrictions on the distribution of random errors and the use of a switching-regime framework. 

Zapodeanu et al. (2014) focused on Romania to show a significant bilateral-causality 

relationship between inflation and IU. Mallick and Sousa (2013) focused on the BRICS and 

found that important commodity price shocks might lead to an increase in inflation, requiring 

aggressive action from central banks towards inflation stabilization, thus yielding IU. 

Finally, Ben Nasr et al. (2015) also applied a Markov-switching vector autoregressive 

model to investigate the relationship between inflation and IU in South Africa during 1921–

2012. Their findings did not reject Friedman’s hypothesis, but the causality relationship was 

found to be valid only when unidirectional. Creal and Wu (2014) developed a new macro-

financial model to study the effects of interest rate uncertainty on business cycles. They showed 

that a shock onto the short interest rate negatively affects inflation, while a higher, long-term 

uncertainty shock has a positive effect. A related literature strand investigates the relationship 
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between money supply growth uncertainty and the economy. See, for example, Serletis and 

Rahman (2009a, b), Serletis and Shahmoradi (2006), and Serletis and Xu (2017). 

Overall, previous studies do not provide unanimous conclusions about the inflation–IU 

relationship, and their findings vary with the methodologies, countries, and samples under 

consideration. However, all previous studies, except Albulescu et al. (2019) as shown in Table 

3, tested this relationship using parametric models, which imply restrictions on specifying the 

relationship between inflation and uncertainty. Additionally, the sign and size of the IU effect 

on inflation depends on the a priori level of the central bank’s commitment to inflation. Indeed, 

with weak commitment, a positive effect can be expected, while a negative effect is anticipated 

if the central bank has a strong commitment. Moreover, the effect of inflation on uncertainty 

might differ depending on the conduct of explicit or implicit inflation targets. For instance, 

Johnson (2002) showed that, while a formal target has a negative effect on inflation, it 

significantly impacts uncertainty. Finally, most of previous studies investigated the Friedman 

hypothesis from one side regarding the relationship between inflation and uncertainty.  

All these different empirical findings confirm Golub’s (1993) findings, who showed that 

both survey strategy, based on surveys of economists and consumers, and forecasting model 

strategy, based on restricted-uncertainty (GARCH) models of IU across exchange rate regimes, 

yield mixed findings and ambiguity regarding the inflation–IU relationship.9 To reconcile this 

disagreement, he considered a downtrend in uncertainty and showed that the non-consideration 

of such effects in previous studies may have biased their results. 

We propose to resolve this ambiguity and the inconsistent results on the inflation–IU 

relationship in previous research by proposing an alternative, more general strategy. 

Interestingly, we aim to complete the gap of previous studies, as they analyzed the Friedman 

 
9  Particularly for Golub (1993), survey analyses confirm the Friedman–Ball hypothesis, while forecasting 

approaches are less conclusive, as restricted-uncertainty models provide mixed results, and the exchange rate 

model identified no relationship between inflation and IU.  
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hypothesis through one side related to Inflation-IU relationship as shown in Table 3. This study 

fills this gap through investigating both inflation-IU and IU-real output growth relationships. 

Contrary to the dominant literature strand using variants of the GARCH model in modeling IU, 

we present a time-varying, latent measure of IU based on stochastic volatility, in line with 

Berument et al. (2009), Chan and Grant (2016), and Ftiti and Jawadi (2018). Moreover, we 

adopt a time-frequency approach that includes prior approaches within our more general 

approach.  

Insert Table 3. 

3. Econometric Methodology 

3.1 Inflation Uncertainty Measure 

Before analyzing the relationship between inflation and IU, we need to provide a measure for 

IU. The earlier literature employed the standard deviation or the variance of inflation as proxies 

for inflation uncertainty. However, these measures only capture inflation variability and 

not inflation uncertainty (which depends on the variations of that nonconstant variance). Evans 

(1991) emphasizes that uncertainty should not be treated as variability. For example, observing low 

volatility does not imply low uncertainty as economic agents might still have little information 

about inflation and, therefore, consider the future as highly uncertain. Following this, ARCH and 

GARCH models (e.g., Emery, 1993; Holland, 1993) and their variants (Kontonikas, 2005; Ben 

Nasr 2015; among others) were employed to estimate conditional variance of inflation as a proxy 

for inflation uncertainty. These have recently been criticized. Therefore, other studies (Berument 

et al., 2009; Ferreira and Palma, 2016) modeled conditional variance as an unobserved 

component based on a Markov process, also known as stochastic volatility (SV) models. In 

addition to the time-varying behavior of SV models, they are considered more flexible than 

previous classical measures by embodying two separate disturbance terms (Carnero et al., 

2004). Furthermore, the latent specification in these models rejects any ad-hoc assumptions on 
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the specification of conditional volatility. Additionally, the SV proxy is more appropriate to 

capture the unpredictable characteristics of uncertainty. 

In practice, Chan and Grant (2016) recently compared different variants of GARCH and 

SV models and confirmed the superiority of the latter. Although this type of measure is mostly 

adopted for financial time series analysis (Gourieroux and Sufana, 2010; Koopman et al., 2010), 

some recent studies developed stochastic volatility measures for economic time series, such as 

inflation (Chan, 2015) and exchange rate (Chan and Hsiao, 2014). Interestingly, in the literature 

on inflation and IU, the SV model has been used as a measure of IU by Berument et al. (2009), 

Chan (2015), Ferreira et Palma (2016), and Ftiti and Jawadi (2018), but with heterogeneous 

results.  

 We retain stochastic volatility as a proxy of IU. Specifically, we apply a stochastic 

volatility model based on moving average student-t errors developed by Chan (2013).10 To 

estimate the stochastic IU, we adopt the efficient sampler method proposed by Chan (2013) and 

specified as follows.  

The inflation series is represented as:  𝜋𝜋𝑡𝑡 =  𝜇𝜇𝑡𝑡 + 𝜏𝜏𝑡𝑡,                          (9) 

𝜏𝜏𝑡𝑡 =  𝜖𝜖𝑡𝑡 + 𝜓𝜓 𝜖𝜖𝑡𝑡−1,              (10) 

where 𝜖𝜖𝑡𝑡  ∼ 𝑁𝑁(0, exp (ℎ𝑡𝑡)) 𝑓𝑓𝑓𝑓𝑉𝑉 𝑡𝑡 = 1, … ,𝑇𝑇. However, the state is assumed to evolve into a 

stationary condition based on the following equation:   

ℎ𝑡𝑡 = 𝜇𝜇ℎ + 𝜙𝜙ℎ(ℎ𝑡𝑡−1 − 𝜇𝜇ℎ) + 𝜁𝜁𝑡𝑡,                                                                                     (11) 

where 𝜁𝜁𝑡𝑡 ∼ 𝑁𝑁(0,𝜎𝜎ℎ2) 𝑓𝑓𝑓𝑓𝑉𝑉 𝑡𝑡 = 1, … ,𝑇𝑇, with 𝜁𝜁𝑡𝑡 and 𝜖𝜖𝑡𝑡 being independent for all leads and lags. 

The stationarity condition of (ℎ𝑡𝑡)  is |𝜙𝜙ℎ| < 1.  The states are initialized with ℎ1 ∼
 

10 There are also other methods of modeling of stochastic volatility that are less interesting, such as Gaussian errors models or 

heavy tails and serial dependence.  
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𝑁𝑁 �𝜇𝜇ℎ,
𝜎𝜎ℎ21−𝜙𝜙ℎ2�. 

This specification is completed by independent prior distributions for 𝜇𝜇ℎ, 𝜙𝜙ℎ, and 𝜎𝜎ℎ2, so 

that  

𝜇𝜇ℎ ∼ 𝑁𝑁(𝜇𝜇ℎ0,𝑉𝑉𝜇𝜇ℎ) ;   𝜙𝜙ℎ ∼ 𝑁𝑁�𝜙𝜙ℎ0,𝑉𝑉𝜙𝜙ℎ� 𝐼𝐼(|𝜙𝜙ℎ| < 1) ; and 𝜎𝜎ℎ2 ∼ 𝐼𝐼𝐼𝐼(𝑣𝑣ℎ, 𝑆𝑆ℎ), 

where 𝐼𝐼[∗] is an indicator function and IG the inverse-gamma distribution.  

 The conditional variance of the inflation series (𝜋𝜋𝑡𝑡)  is time-varying based on two 

channels. First, the moving average component based on previous variance (𝜖𝜖𝑡𝑡−1,) in Equation 

(10) and from the log-volatility (ℎ𝑡𝑡) evolves according a stationary AR(1) process (Equation 

(11)). Our stochastic volatility model is appropriate for modeling inflation dynamics for 

developed economies. Indeed, it is characterized by a high level of persistence, fractionally 

integrated, and long-memory dynamics (Jensen, 2009). Therefore, our approach considers all 

these potential characteristics of inflation series. 

3.2 Time-Scale Approaches 

Unlike previous studies, we use two time-scale approaches to investigate the 

relationship between inflation and IU: the evolutionary co-spectral approach and the wavelet 

method. These approaches have at least two advantages over time-series models. First, they 

provide analysis at multiple frequencies. Consequently, the analysis of this relationship is 

explored over the short, medium, and long terms. Second, these approaches are non-parametric, 

thus requiring no hypotheses on the distributions and no parameter estimation.  

In this study, we used both frequency approaches, at least for two reasons. First, both 

approaches are complementary. Indeed, the spectral approach is used for discrete time and 

therefore it gives us the coherence (relationship) between inflation-IU for specific time-scale. 

The wavelet approach is based on continuous transform, gives the relationship between 

inflation and IU in continuous times, which offers us a continuous measure of the causality 
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between the studied series. Second, employing both approaches aims to check the robustness 

of the frequency framework in analyzing the relationship between IU-inflation.  

3.2.1 Evolutionary Co-Spectral Density Function 

Priestley (1965) extended the spectral approach of stationary processes to the non-

stationary case by proposing the evolutionary spectral approach. Here, the word “evolutionary” 

refers to a time-dependent time series 𝑋𝑋(𝑡𝑡). This approach has been recently used by several 

authors, such as Allégret and Essaadi (2011), Ftiti (2010), Van Bellegem (2013), and Van 

Bellegem and Von Sachs (2008). Priestley and Tong (1973) extended the analysis to the 

bivariate case to study the relationship between two processes associated with an inflation series 

based on coherence measure 𝐶𝐶𝑡𝑡,𝑋𝑋𝑌𝑌2 (𝑤𝑤). We denote those two series by X(t), which is inflation, 

and Y(t), which represents IU. The coherence function is interpreted as a linear relationship 

between the corresponding components of time series 𝑋𝑋(𝑡𝑡) and 𝑌𝑌(𝑡𝑡). We note that this measure 

is equivalent to correlation in the time-domain approach, except that the signal is squared for 

our coherence measure. Therefore, the coherence measure ranges from 0 to 1, while the 

classical correlation ranges from -1 to 1.  

 Coherence is defined as: 𝐶𝐶𝑡𝑡,𝑋𝑋𝑌𝑌2 (𝑤𝑤) =
ℎ2𝑡𝑡,𝑋𝑋𝑋𝑋ℎ𝑡𝑡,𝑋𝑋𝑋𝑋ℎ𝑡𝑡,𝑋𝑋𝑋𝑋,                                                                                                    (12) 

where ℎ𝑡𝑡,𝑋𝑋𝑋𝑋 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑡𝑡,𝑌𝑌𝑌𝑌 are the estimated auto-spectral density functions for inflation, X(t), and 

IU, Y(t), respectively. The cross-spectral density function between the two processes is ℎ𝑡𝑡,𝑋𝑋𝑌𝑌.11  

Priestley (1965, 1966) defined the suitable windows for estimations of the spectral and co-

spectral density functions as: 

 
11 For more details on the estimation of auto- and cross-spectral density functions, see Ftiti (2010). 
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𝑔𝑔(𝑢𝑢) = � 12√ℎ 𝜋𝜋      𝑖𝑖𝑓𝑓  |𝑢𝑢| ≼ ℎ
0                 𝑖𝑖𝑓𝑓   |𝑢𝑢| > ℎ       𝑊𝑊𝑣𝑣 = � 1𝑇𝑇′      𝑖𝑖𝑓𝑓  |𝑣𝑣| ≼ 𝑇𝑇′2

0         𝑖𝑖𝑓𝑓 |𝑣𝑣| >
𝑇𝑇′2 ,                                    (13) 

where ≼ means less than or equal to but close to, and with small probability possibly greater 

than. We adopt the same window parameters used by Artis et al. (1992), ℎ = 7 and 𝑇𝑇′ = 20. 

This choice of values is consistent with conditions (i) and (ii) below and provides robust 

estimators. With ĥ𝑘𝑘(𝑡𝑡,𝑤𝑤) being the estimate of the spectral density, ℎ𝑘𝑘(𝑡𝑡,𝑤𝑤), Priestley (1988) 

concluded that ĥ𝑘𝑘(𝑡𝑡,𝑤𝑤)  ≈ ℎ𝑘𝑘(𝑡𝑡,𝑤𝑤) , while var ĥ𝑘𝑘(𝑡𝑡,𝑤𝑤)  decreases when 𝑇𝑇′  increases, and 𝑐𝑐𝑓𝑓𝑣𝑣 �ℎ�  (𝑡𝑡1, w1),ℎ�  (𝑡𝑡2, w2)� = 0,  ∀(𝑡𝑡1, 𝑡𝑡2),∀(𝑤𝑤1,𝑤𝑤2) , if at least one of the following 

conditions is satisfied: (𝑖𝑖) |𝑡𝑡1 − 𝑡𝑡2|  ≥ 𝑇𝑇′ and (𝑖𝑖𝑖𝑖) |𝑤𝑤1 ± 𝑤𝑤2| ≥ 𝜋𝜋ℎ . To respect conditions (𝑖𝑖) 

and (𝑖𝑖𝑖𝑖), we choose {𝑡𝑡𝑖𝑖} and �𝑤𝑤𝑗𝑗� so that: 𝑡𝑡𝑖𝑖 = {18 + 20𝑖𝑖}𝑖𝑖=1𝐼𝐼 ,                                                                                                                         (14) 

 where 𝐼𝐼 = � 𝑇𝑇20� with 𝑇𝑇 being the sample size, and 

 𝑤𝑤𝑗𝑗 = � 𝜋𝜋20 (1 + 3(𝑗𝑗 − 1)�𝑗𝑗=17
.                                                                                                      (15) 

To consider condition (ii), the following frequencies can be retained: 𝜋𝜋20 ,
4𝜋𝜋20 ,

7𝜋𝜋20 ,
10𝜋𝜋20 ,

13𝜋𝜋20 ,
16𝜋𝜋20 ,

19𝜋𝜋20 . However, we focus on only three frequencies in carrying out 

analyses over the short, medium, and long terms. In practice, the shift from the frequency to the 

time domain is based on ratio 
2𝜋𝜋𝜆𝜆 , where 𝜆𝜆 is the frequency. The long-run coherence function 

for three years and three months is based on frequency 
𝜋𝜋20, the middle-run of approximately one 

year refers to 
4𝜋𝜋20, and the two-month short-run coherence is defined by the 

19𝜋𝜋20 .12 

 
12 The selected frequencies are also confirmed by the spectral function between inflation and IU, having the most 

energy among other frequencies. Due to space considerations, we did not report all figures of the spectral for our 

sample. However, these figures are available upon request from the authors.  



21 

 

3.2.2. Wavelet Approach: Theory and Estimation 

We choose a second frequency approach through wavelets, which useful for non-

stationary time-series analyses. The wavelet approach enables investigating the relationship 

between two non-stationary time series through its continuously resized window properties.13 

There are different wavelet groups that can be used in analyzing time series, such as 

discrete versus continuous and real versus complex. The continuous wavelet has often been 

used in previous studies (e.g. Gallegati et al., 2014; Haven et al., 2012; Madaleno and Pinho, 

2014; Rua and Nunes, 2012), as it is the most helpful with the time and scale resolution of time-

series decomposition and helps overcome the limitations of the other types of wavelets. 

Although the discrete wavelet has an orthogonal time-scale presentation, the continuous 

wavelet is more appropriate for several reasons. First, it avoids any data length constraint to 

ensure the decomposition of time series as in the case of the discrete wavelet. Second, its 

properties that may be more suitable to noise than those of other decomposition techniques 

(Aguiar-Conraria and Soares, 2011). Finally, under the continuous wavelet, it is more useful to 

identify the point of time in which a variable leads or lags, as understanding the exact 

underlying lead-lag phenomenon between variables is often difficult for policy analysts 

(Tiwari, 2013).  

We choose the Morlet wavelet to obtain a better balance between time and scale 

resolutions. The Morlet wavelet was first introduced by Goupillaud et al. (1984) and can be 

expresses as follows: ψΘ(𝜇𝜇) =  𝜋𝜋−14  𝑒𝑒𝑖𝑖𝑤𝑤𝑎𝑎𝜇𝜇 𝑒𝑒−12 𝜇𝜇2,                                                                                            (16) 

where: 𝑤𝑤0 and 𝜇𝜇 are defined as dimensionless frequency and time scales, respectively.  

For the Morlet wavelet, the central frequency (𝑤𝑤0) equals six, which is considered a 

 
13 For low frequencies, window width is high and low for high frequencies. Consequently, a signal with a large 

window suggests coarse features, while a small window suggests fine features.  
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good choice to ensure a relevant balance between time and scale resolutions (see Grinsted et 

al., 2004). For this central frequency, 𝑤𝑤0 = 6, the Fourier period 𝜆𝜆𝑤𝑤𝑡𝑡 is almost equal to the 

scale �𝜆𝜆𝑤𝑤𝑡𝑡 =
𝑤𝑤02𝜋𝜋 𝑠𝑠𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒 =

62𝜋𝜋 𝑠𝑠𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒 ≈ 1 𝑠𝑠𝑐𝑐𝑎𝑎𝑠𝑠𝑒𝑒�. Additionally, the relationship between the 

scale, 𝑠𝑠, and frequency, 𝑓𝑓, is given by 𝑓𝑓 ≈  
1𝑠𝑠. The wavelet is drawn out over time by varying 

its scale, s, normalized to have unit energy and defined as 𝑠𝑠 =
𝜇𝜇𝑡𝑡 . For a discrete time series 𝑥𝑥𝑛𝑛 {𝑎𝑎 = 1 … ,𝑁𝑁} of N observations with a uniform time step (𝛷𝛷𝑡𝑡), the continuous wavelet 

transform is given by: 

𝑊𝑊𝑛𝑛𝑥𝑥(𝑠𝑠) = �𝛷𝛷𝑡𝑡𝑠𝑠   ∑   𝑋𝑋𝑛𝑛 ψ0 �(𝑚𝑚− 𝑎𝑎)
𝛷𝛷𝑡𝑡𝑠𝑠 �𝑁𝑁𝑚𝑚=1 ,                                                                   (17) 

where 𝛷𝛷𝑡𝑡 is the time step. 

The wavelet power spectrum for a time series, 𝑥𝑥𝑛𝑛 , with N observations is defined 

as |𝑊𝑊𝑛𝑛𝑥𝑥(s)|2 and represents the local variance of time series, 𝑥𝑥𝑛𝑛. Therefore, after defining the 

continuous wavelet transforms for each time-series analysis, 𝑥𝑥𝑡𝑡  (inflation) and 𝑦𝑦𝑡𝑡 (IU), we 

define the cross-wavelet transform. The measure of this cross-wavelet spectrum that captures 

the covariance between the two time series,  𝑥𝑥(𝑡𝑡) and  𝑦𝑦(𝑡𝑡) , in the time-frequency space, 𝑊𝑊𝑥𝑥 and 𝑊𝑊𝑦𝑦, is defined as: 

𝑊𝑊𝑛𝑛𝑥𝑥𝑦𝑦(𝑠𝑠) = 𝑊𝑊𝑛𝑛𝑥𝑥(𝑠𝑠)𝑊𝑊𝑛𝑛𝑦𝑦 
(𝑠𝑠),                                                                                          (18) 

where 𝑊𝑊𝑛𝑛𝑥𝑥(𝑠𝑠) and 𝑊𝑊𝑛𝑛𝑦𝑦 
(𝑠𝑠) are the wavelet transforms for time series 𝑥𝑥𝑡𝑡  and 𝑦𝑦𝑡𝑡 , respectively. 

The cross-wavelet power is defined by �𝑊𝑊𝑛𝑛𝑥𝑥𝑦𝑦(𝑠𝑠)�2and interpreted as the local covariance 

between the two time series.14
 

In the modeling of the causality relationship over the time domain, we define the phase 

 
14 Specifically, the cross-wavelet power between inflation and its uncertainty measures the similarity of the powers 

in these series. The statistical significance level of the cross-wavelet power was defined by Torrence and Compo 

(1998), 
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difference, 𝜑𝜑𝑥𝑥,𝑦𝑦, between inflation, 𝑥𝑥𝑡𝑡, and its uncertainty,𝑦𝑦𝑡𝑡, as the tool providing information 

on the delays in the oscillation between inflation, 𝑥𝑥𝑡𝑡, and its uncertainty, 𝑦𝑦𝑡𝑡 (Bloomfield et al., 

2004). The phase difference depicts the relative position of the pseudo-cycle inflation and its 

uncertainty according to Equation (19): 

𝜑𝜑𝑥𝑥,𝑦𝑦(𝑠𝑠) = 𝑡𝑡𝑎𝑎𝑎𝑎−1  �𝒥𝒥�𝑊𝑊𝑎𝑎𝑥𝑥𝑦𝑦(𝑠𝑠)�ℛ�𝑊𝑊𝑎𝑎𝑥𝑥𝑦𝑦(𝑠𝑠)��,                                                                                         (19) 

where, 𝒥𝒥 and ℛ denote the imaginary and real parts of the cross-wavelet, respectively. 

To analyze the phase difference between inflation and its uncertainty, we note it ranges 

between [−𝜋𝜋,𝜋𝜋]. If 𝜑𝜑𝑥𝑥,𝑦𝑦(𝑠𝑠) = 0, inflation and its uncertainty move together, a phase analogous 

to positive covariance. When 𝜑𝜑𝑥𝑥,𝑦𝑦(𝑠𝑠) ∈ �− 𝜋𝜋2 , 0�, inflation and its uncertainty are in phase and 

inflation is leading. When 𝜑𝜑𝑥𝑥,𝑦𝑦(𝑠𝑠) ∈ �0,
𝜋𝜋2�, inflation and its uncertainty are in phase and IU is 

leading. For 𝜑𝜑𝑥𝑥,𝑦𝑦(𝑠𝑠) ∈ �𝜋𝜋2 ,𝜋𝜋�, inflation and its uncertainty are in anti-phase and inflation is 

leading. For 𝜑𝜑𝑥𝑥,𝑦𝑦(𝑠𝑠) ∈ �−𝜋𝜋,− 𝜋𝜋2�, inflation and its uncertainty are in anti-phase and IU is 

leading.15  

Further, to analyze the relationship between inflation and its uncertainty, we adopt wavelet 

coherence, as defined by Torrence and Webster (1999). This measure is associated with the 

coherence function in Equation (20) and the dynamic correlation in the conventional time 

series. However, the wavelet coherence function is superior to other measures, as it identifies 

both the causality effect and lead-lag phase phenomena between two time series. The wavelet 

coherence function is defined as 

 
15 We note that, in the coherence or cross-wavelet spectrum graphics, it is not easy to obtain a phase according to 

these different ranges. Therefore, the lead-lag relationship is reproduced through arrows pointing in different 

directions in the circular mean. This circular mean provides the significance of the phase lead–lag relationship. To 

determine the phase between the two series, we must estimate the mean and confidence interval of the phase 

difference in line with Grinsted et al. (2004, pp. 4–5), who used the circular mean defined by Zar (1999).  



24 

 

Rn2(s) =
�ε�s−1𝑊𝑊𝑛𝑛𝑥𝑥𝑥𝑥(s)��2ε|(s−1|𝑊𝑊𝑛𝑛𝑥𝑥(s)|2)|.ε��s−1�𝑊𝑊𝑛𝑛𝑥𝑥(s)�2��,                                                                         (20) 

where 𝜀𝜀 is a smoothing operator.16 When squared, our coherence function ranges from 0 to 1, 

unlike a classical correlation measure, which would range from -1 to 1. The statistical 

significance of the coherence function is estimated through the Monte Carlo method, in 

accordance with Torrence and Compo (1998) and Grinsted et al. (2004).  

4. Data and Empirical Analysis 

4.1 Data and Preliminary Analysis 

The data include the consumer price indexes (CPI) for three developed regions, the US, 

UK, and euro area, and two major emerging countries, China and South Africa. The CPI is 

required to compute the inflation rate from Equation (21), while the IU is computed using the 

stochastic volatility of inflation: 

𝑖𝑖𝑎𝑎𝑓𝑓𝑖𝑖,𝑡𝑡 = 100 ∗ Ln � 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖,𝑡𝑡−1�,                                                                                        (21) 

where index i represents the region and the t the month. 

Monthly data are obtained from Datastream and selected for each country, depending 

on data availability: January 1999–March 2015, January 1988–March 2015, January 1950–

March 2015, January 1960–December 2012, and January 1986–March 2015 for the euro area, 

the UK, the US, South Africa, and China, respectively. 

These countries show important changes in their monetary policy conduct over these 

periods, including explicit versus implicit inflation targets and unconventional versus 

conventional monetary policies. The US is the best-documented case, with at least four 

important phases in its conduct of monetary policy: policy oriented toward unemployment in 

 
16 For more details, see Torrence and Webster (1999). 
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the 1970s, policy focused more on money after the 1979 oil shocks, policy focused on exchange 

rate and financial stability after the 1980s, and the unconventional monetary policies since 

2008. 17  On January 25, 2012, The Fed adopted an explicit inflation target of 2%, but 

nevertheless continued to follow a monetary policy with two main objectives, price stability 

and economic growth. Furthermore, while the US monetary policy is characterized by emphasis 

on rules, it has a high degree of discretion, thus increasing uncertainty about inflation. The UK 

adopted an explicit inflation target in 1992. Further, in May 1997, the Bank of England acquired 

operational independence in setting its short-term interest rate. There are some similarities 

between the monetary histories of the US and the UK, particularly regarding their conduct of 

monetary policies and inflation targeting (see, e.g., Conrad and Karanasos, 2005). For the euro 

area, the European Central Bank (ECB) adopted an implicit inflation target policy of around 

2%, and this policy covers several EU countries that did not apply an inflation target before 

1999. However, the ECB has only one stated objective, price stability. On the other hand, South 

Africa adopted an informal inflation target in 1990 and a formal one in 2000 ranging between 

3% and 6%. Finally, China’s monetary policy aims to maintain currency stability and improve 

economic growth. China does not follow inflation targeting. 

Accordingly, unlike previous studies, the inclusion of countries with different target 

strategies, distinct degrees of independence, and heterogeneous monetary policies permit a 

comparative analysis of the inflation–IU relationship across countries. 

We began by performing unit root tests to determine whether all inflation series are I(0). 

The results are consistent with the inflation rate dynamics in the studies mentioned in Table 1. 

18 We report in Table 4 the main descriptive statistics. 

 
17 In the US, inflation increased due to the increase in defense spending in mid-1965 because of the Vietnam war, 

after the first oil price shock in 1973, after the elimination of price and wage controls in 1974, and after the second 

oil shock during 1979–1980. See Bernanke and Mishkin (1992) for details. 
18 We do not report the results of unit root tests due to space considerations but these results are available upon 

request.   
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Table 4. Descriptive Statistics of Inflation Rate and Normality Test 

 Mean (%) Min (%) Max (%) Standard 

deviation 

Kurtosis Skewness  Jarque-Bera test 

UK 0.220 -0.618 2.338 0.238 22.16 2.463  (0.00) 

US 0.290 -1.735 1.846 0.343 5.555 0.171  (0.00) 

Euro area 0.154 -0.449 0.693 0.170 4.573 -0.553  (0.00) 

China -0.012 -3.711 3.364 0.851 5.624 -0.195  (0.00) 

South Africa 0.672 -0.742 4.118 0.553 7.013 1.212  (0.00) 

 Note: Values in (.) denote the p-values of the Jarque-Bera test.  

Table 4 displays a lower level of inflation with a higher standard deviation for China 

than for the other regions. This volatility excess can be explained by the fact that, among these 

countries, only China does not pursue price stability. China has various other monetary 

objectives, including currency value stability and promotion of economic growth, with the use 

of several monetary instruments, including reserve requirement ratio, interest rate, 

rediscounting, lending, and open market operations. Kurtosis statistics are positive for all 

regions’ inflation rates, with the highest value for the UK, suggesting fat tail behavior. The 

inflation rate distributions for the UK, the US, and South Africa are right skewed, while those 

for the euro area and China are left skewed. This leptokurtic excess and asymmetry are 

inconsistent with normality, according to the Jarque-Bera test, and suggests that inflation might 

react differently to being shocked positively or negatively. 

4.2 Modeling the Dynamics of Inflation Uncertainty 

Figure 1 reports the dynamics of inflation rates and Figure 2 plots the IU based on the 

stochastic volatility measure described in subsection 3.1. We report in Table 5 the main 

descriptive statistics of the IU measure.19
 

 
19 We did not report the results of the estimations coefficients of stochastic volatility models to due to space 

considerations. However, these results are available upon request.  



27 

 

Figure 1. Inflation rates for all sample 

countries 
Figure 2. IU for all sample countries 
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The following results are evident from Table 5. China has the highest level of IU, although 

it has the lowest inflation rate on average. Additionally, China has the most volatile inflation 

and IU. This suggests that the absence of an explicit inflation target could be the source of an 

increase in uncertainty and volatility. Kurtosis statistics are positive for all IUs, providing 

further evidence of fat tails. Further, all IU series are right skewed, justifying the non-Gaussian 

distribution of the conditional inflation volatility. The Jarque-Bera test significantly rejects 

normality for all series. Overall, these preliminary, indirect tests might suggest that IU could 

appear asymmetrically and nonlinearly with inflation and, thus, exhibit a time-varying 

behavior. 

Table 5. Summary Statistics IU Measure 

 Mean Min Max Standard 

deviation 

Kurtosis Skewness  Jarque-Bera test 

UK 0.174 0.092 0.368 0.065 3.725 1.050 (0.000) 

US 0.279 0.125 0.595 0.100 3.503 0.727 (0.000) 

Euro area 0.153 0.126 0.217 0.025 3.125 1.113 (0.000) 

China 0.617 0.419 0.898 0.126 2.104 0.575 (0.000) 

South Africa 0.435 0.291 0.708 0.095 2.861 0.618 (0.000) 

Note: Values in (.) refer to the p-values of the Jarque-Bera statistic test. 

 

To investigate inflation and IU properties directly and specify their relationship, we first test 

the causality hypothesis between inflation and IU in a linear framework using the Granger linear 

causality test. Next, we model this relationship in a nonlinear context with non-parametric 

econometric tests using a double time-frequency approach. 

4.3 Modeling the Relationship between Inflation and IU with Parametric Tests 

 

The comparison of the inflation curve and IU dynamics in Figures 1 and 2 provides further 

evidence of the similarities between the two measures. For example, in the UK, when inflation 

increased at the beginning of the 1990s, the IU simultaneously experienced a peak, suggesting 

a positive relationship. However, in the aftermath of the global financial crisis, the relationship 
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seems to be the opposite, as inflation decreases but uncertainty increases, reflecting the sign 

change in the relationship.   

We also compute the non-conditional correlation matrix, apply the Granger causality test, 

and perform comparative analyses to analyze the inflation–IU relationship (see Table 6). The 

correlation is around 50% for the UK and South Africa, but does not exceed 33% for the U.S., 

which is consistent with Friedman’s theory. However, the correlation does not exist for China 

and is negative for the euro area. The equality mean test significantly rejects the null hypothesis 

for the UK and South Africa. To better investigate this relationship, we conduct Granger 

causality testing and find evidence of bilateral causality relationships. However, given the 

rejection of the normal distribution, we have to carefully analyze the results of these parametric 

tests. To better understand the relationship between inflation and IU, we next apply two non-

parametric approaches: evolutionary co-spectral analysis and the wavelet approach.  

Table 6. Relationship between Inflation and IU 
 UK US Euro area China South Africa 

Non-conditional correlation 0.492 0.335 -0.242 0.0174 0.485 

Granger causality test  

Inflation does not Granger cause IU 44.750*** 

(0.000) 

2.521* 

(0.081) 

3.653** 

(0.027) 

3.389** 

(0.035) 

 

77.497*** 

(0.000) 

IU does not Granger cause inflation 18.666*** 

(0.000) 

9.121*** 

(0.000) 

2.555* 

(0.080) 

0.619 

(0.538) 

29.858*** 

(0.000) 

Equality mean test (p-value)  0.001  0.398  0.980 0.800 0.000 

Note: Values in (.) denote the p-values for different tests. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 

respectively.   

 

4.4. Modeling the Relationship between Inflation and IU with Nonparametric Tests 

 

4.4.1. Evolutionary Co-Spectral Analysis 

 

Figures 3–5 report the dynamic interaction between inflation and IU for the long, medium, 

and short terms, respectively, where the long run is defined as more than three years, medium 

run one year, and short run three months. Overall, these figures point to several conclusions. 

The relationship between inflation and uncertainty exhibits a significant time variation, which 

confirms the dynamic relationship between inflation and IU, as noted in previous empirical 
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studies. However, our specification captures the most important stylized facts associated with 

inflation increases. Indeed, the coherence function reaches high levels during periods of crisis 

and shock, including the oil shocks, dot-com bubble, and recent global financial crisis, 

reflecting peak uncertainty during market downturns. 

While considering the different patterns, we note that the long-run coherence function is 

volatile across the study period, with a relatively smooth pattern for euro area and China. A 

lower average correlation is observed for the UK and is higher for China. Specifically, for the 

UK, we observe a breakdown of the dynamic interdependence between inflation and IU in 

1992, when the inflation targeting policy was adopted. This dramatic decrease is explained by 

the fundamentals of the inflation targeting policy, characterized by a high degree of 

commitment and transparency, and a low IU level. Since 1992, the correlation level has 

remained low and only increased at the beginning of 2000, reflecting the increasing housing 

prices and leading to a high interest rate and high taxes on house purchases. 

Regarding the US, the highest levels of the coherence function reflect the price levels during 

certain periods of the 1960s (Vietnam War), of 1973 and 1979 (oil shocks), of the end of the 

1980s, of 2000 (dot-com bubble), of 2007–2008 (subprime and financial crisis), and of 2010. 

In the euro area, the coherence function reached high levels after the subprime crisis and during 

the sovereign debt crisis. In China, the relationship reached high levels during the dot-com 

bubble, reflecting the absence of an explicit inflation target. In South Africa, the dependence 

between inflation and IU was low and stable from 1960 to the end of the 1990s. However, at 

the beginning of 2000, the dynamic interaction between the series reached high levels. 

Overall, the nonparametric analysis of the relationship between inflation and IU provides 

the following results. It identifies the linkage dynamics by sub-period, determines the 

association with monetary regime policy, captures different stylized facts, and yields an 

analysis of this relationship. It also shows that the inflation–IU relationship might significantly 
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vary across countries, reflecting the effects of central bank policies, their targeting rules, and 

degrees of interdependence. 

Figure 3. Long- and short-run coherence function between inflation and IU 
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The interdependence between inflation and IU is significantly more noisy and more 

volatile in the short and medium terms than in the long term. Finally, while the estimate of the 

short-run coherence function enables capturing the intensity of the interaction between inflation 

and uncertainty, the interaction dynamic is high during turmoil periods (around 30–50%) and 
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relatively low during stable periods (10–20%). 

In summary, the evolutionary co-spectral analysis points to a significant relationship 

between inflation and IU, more pronounced in periods of turmoil than in stable periods. This 

relationship exhibits significant time variation associated with the market state. The intensity 

of the relationship increases significantly during turmoil periods (30–50%), while it is lower 

(10–20%) during calm periods over the short run. This finding confirms the usefulness of our 

spectral approach, which demonstrates that uncertainty effects can vary across horizons. 

Investigating this relationship for different horizons can assist policymakers in limiting the 

uncertainty effects for each horizon. 
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Figure 4. Medium-run coherence function between inflation and IU 
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The evolutionary co-spectral analysis contributes to the literature by clarifying the 

analyzed relationship. Not only it does enable identifying periods with high and low 

interactions, but also permits measuring the effects of policymakers’ actions, such as explicit 

inflation targeting and degree of central bank independence. However, evolutionary co-spectral 

analysis does not provide the statistical significance of these relationships, only the estimated 

magnitude of interdependence. To conduct statistical significance tests, the wavelet approach 

is used.  
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Figure 5. Short-run coherence function between inflation and IU 
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4.4.2. Wavelet Analysis 

 

In Figure 6, we report the results of the coherence wavelet function between inflation and 

IU. The vertical and horizontal axes show the time and frequency dimensions, respectively, 

while the colors depicts the level of interdependence between 0 and 1. A lower interdependence 

is indicated in dark blue and a higher correlation is represented in dark red. The left vertical 

color axis provides more precise information about the interdependence level. The main 

contribution of the wavelet approach is to provide the causality sign between inflation and IU. 
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The arrows pointing to the right imply that variables are in a pro-cyclical phase. Specifically, 

when arrows point right and up, they imply IU is lagging, while when they point right and 

down, they imply IU is leading. When the arrows point to the left, the series are counter-

cyclical. When they point left and down, IU is lagging, and when they point left and up, IU is 

leading.  

The wavelet coherence function analysis provides two clear conclusions. First, we confirm 

the analysis results of the evolutionary co-spectral analysis in terms of the significant time-

variation of co-movements between inflation and IU. The co-movements vary by country and 

are more pronounced in the short term than the medium and long terms. Figure 6(a) displays a 

high interdependence between the UK inflation rate and its uncertainty at the beginning of the 

1990s over the short and medium horizons (0–16 scales). For the short horizon (0–4 scales), 

the interdependence between UK inflation and IU is high in 1997, during 2000–2001 (internet 

bubble), and during 2008–2009 (subprime crisis). For the medium term, the relationship 

between inflation and IU is important during two episodes: the period of the “great moderation” 

(1990s) and the subprime crisis (2008–2009). In the long term, the relationship between 

inflation and IU is observed only during the 1990s. 

For the US, dependence is observed in the short, medium, and long horizons during periods 

of turmoil, including the late 1960s, the 1970s and 1980s, and the beginning of the 1990s in the 

short and medium run. Since the latter period, interdependence is only observed over the short 

and medium horizons, such as during the subprime crisis. For the euro area, the relationship is 

observed in the short term (0–8 scales) during 2001–2002 (the internet bubble), 2007–2008 (the 

subprime crisis), and 2011–2012 (European sovereign debt problem). Furthermore, a long run 

relationship is observed in the 2004–2008 period. Finally, a similar behavior is seen for South 

Africa, where interdependence is more pronounced during periods of turmoil. Particularly, the 

relationship between inflation and IU is tighter during the 1970s over the short and medium 
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terms (0–16 scales). This behavior has been reproduced during 1985–1988 for both the short 

and medium terms. A high interdependence is also observed since the beginning of 2000 over 

the medium horizon.  

Figure 6. Coherence between inflation rate and IU 
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Wavelet analysis confirms the findings of the evolutionary co-spectral approach and shows 

a significant relationship that is more noisy and more volatile over the medium and short terms 

than the long term. The intensity of the relationship increases significantly during turmoil 

periods, while a long-term relationship is observed only during crisis periods. This finding is 

consistent with Evans’ (1991) decomposition of IU into short run and long run. He suggests 

that agents’ temporal decisions are more likely sensitive to the conditional variance of short-

run inflation movements. However, intertemporal decisions are more likely dependent to the 
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changes in the conditional variance of long-term inflation. Indeed, we have identified a strong 

relationship between inflation and IU in the short term, which can be explained by the agent’s 

temporal decisions during a stable period, such as their inflation forecasting regarding the state 

of the economy. We also identified a long-run relationship during a period of crisis that can be 

explained by intertemporal decisions, such as a change of monetary policy in response to crises 

or structural change to overcome economic instability (see, e.g., Caporale and Kontonikas, 

2009).  

Additionally, the wavelet approach produces different directions of the arrows, suggesting 

that the relationship exists, but alternates between positive and negative according to the 

economic state and monetary policy. In some cases, the arrows point to the left, implying that 

inflation and uncertainty may be counter-cyclical, such as in the euro area during 2001–2002, 

2007–2008, and 2011–2012 over the short term; the US 2008–2009 over the medium term; and 

China during 1990–1995 over the long term. In other cases, the arrows point to the right, 

implying a pro-cyclical relationship, such as in the UK during 1990–1995 over the short and 

medium runs, in 1997 over the short run and during 2009-2012 over the short run. For the US, 

the arrows point to the right during all periods of high interdependency described above, except 

the subprime crisis, where they point to the left. For South Africa, the arrows point to the right 

for all periods for scales between 0 and 32. These findings confirm the stylized facts observed 

in Figure 1, when we highlight similar movements in the same direction between series in some 

cases and in opposite directions in others. Additionally, our results show that causality varies 

across frequencies. In some cases, inflation is lagging and, in others, it is leading. 

For all studied countries, we observe that for short-term frequencies, the arrows point to 

the left and down, right and up, or right and down, implying counter-cyclical or pro-cyclical 

relationships, with IU leading or lagging. These findings support the theoretical hypotheses 

summarized in Table 1. In short, the relationship between inflation and IU might be positive or 
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negative, and the causality alternates across frequencies and countries. For example, for the UK 

over the short run, the arrow is pointing to the right and down during stable periods. At the 

beginning of the 1990, the arrow points to the right, implying a pro-cyclical positive 

relationship between inflation and IU, with IU leading over the short and medium terms. During 

the subprime crisis, the arrows point to the right and down for medium-term frequency and 

right and up for long-term frequency, implying a pro-cyclical positive relationship between 

inflation and IU. Causality alternates between horizons. These results support the Friedman–

Ball and Cukierman and Meltzer (1986) hypotheses. The change of causality in the long-term 

frequency after the subprime crisis might be explained by the nonconventional policy adopted 

with the objective to reduce uncertainty and ensure economic stability. As this period is 

characterized by a high degree of economic uncertainty, the IU could not continue to predict 

inflation.  

However, the pattern of the relationship between inflation and IU is different for the US. 

Over the short term, the arrows point to the right and up from the 1950s to the end of the 1990s. 

This result reflects a pro-cyclical relationship, with inflation causing the IU. Since the 2000s, 

the relationship is only observed during periods of turmoil (2001 and the subprime crisis). 

During these periods, the arrows point to the left and down, implying that the relationship is 

countercyclical, with IU causing inflation. For the euro area and China, the arrows usually point 

to the left, and causality alternates between IU lagging and leading. For South Africa, the arrows 

point to the right and up for all time-scales, implying a pro-cyclical relationship, with inflation 

causing IU.  

4.5.Modeling the Relationship between IU and Output growth  

In this part, we aim to complete the investigation of Friedman hypothesis through 

interesting on the IU-output growth relationship. Based on data availability, we study this 

relationship for the Euro area, UK, and USA. We computed the monthly output growth as the 
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difference of logarithm of the monthly industrial production between two successive months. 

The data are collected for Federal reserve bank database and ranged from 1999:01 to 2015:03, 

1988:01 to 2015:03, and 1950:01 to 2015:03 for Euro area, UK, and USA, respectively.  

Figure 7. The coherence function between IU-Output growth for the Euro Area 

 
Figure 7.a. The LT coherence function  Figure 7.b. The MT coherence function Figure 7.c. The LR coherence function 

   
 

Figure 8. The coherence function between IU-Output growth for the UK  
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Figure 9 The coherence function between IU-Output growth for the USA 

 
Figure 9.a. The LT coherence function  Figure 9.b. The MT coherence function Figure 9.c. The LR coherence function 

 
 

 
Note: LT, MT, and ST denote the long term, medium term and short term.  

 

Figs 7, 8, and 9 show some worthy aspects. First, we show a high time-varying interaction 

between IU and output growth in long-run horizon (Figs.7a, 8a, and 9a). For the case of Euro 

area the LT the dynamic correlation is higher than 60% in average. Interestingly, we show that 

the relationship decreases intensely during period of crisis, such in 2001, 2008, 2010 for internet 
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bubble, subprime crisis and European sovereign debt, respectively. For the medium term the 

interaction between, the relationship between IU and output growth disappear, as in average is 

around 10-20% (Figs, 7b, 8b, and 9b). More specifically, there is no relationship in short term 

dynamic (Figs 7c, 8c, and 9c). 

Figure 10. The coherence between IU-Output growth 

Figure 10.a. The coherence function for the 

Euro area  

Figure 10.b. The coherence function for the 

UK 

Figure 10.c. The coherence function for the 

USA 

 

The wavelet approach results support the evolutive spectral approach results, (Fig 10). For 

all countries, we show that there no correlation for short-term and medium term, as less than 

32 time-scales (approximate less than 3 years). For long term time scale, we observe significant 

relationship more than 70%.  

4.6. Robustness Tests 

The robustness check concerns the coherence of the wavelet approach. We rely on the 

theoretical distribution defined by Torrence and Compo (1998), as per Equation (12). However, 

this distribution has been criticized by Liu et al. (2007) and Veleda et al. (2012) in terms of 

low-frequency oscillations, leading to ambiguity in the wavelet power spectrum estimation. For 

robustness confirmation and to avoid bias, we re-estimate the cross-wavelet spectrum, as 

defined by Ng and Chan (2012). The results show significant similarities between the two 
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different estimation methods.20 This confirms the robustness of our findings and conclusions. 

We check the robustness of our results using other measures of IU. More specifically, we 

check the sensitivity of our results through using parametric approaches based GARCH family 

models. Interestingly, we employ symmetric and asymmetric version of GARCH family 

models based on GARCH(1,1) and EGARCH(1,1) models. Figs. 11, 12 and 13 present the 

coherence function between symmetric IU measure and inflation for long-run, medium-run, 

and long-run in order to take into account different stylized facts of volatility series21.  

Figure 11. Long-run Coherence Function between Inflation and Uncertainty 
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20 Due to space considerations, we have not reported the graphs for these results. However, they are available 

upon request. 
21 Hereafter, we report only the results based on GARCH(1,1) estimation. The results of E-GARCH (1,1) are not 

reported to save space, but available upon request.   
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Fig.12. The medium-run coherence function between inflation and its uncertainty 
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Figure 13. Short-run Coherence Function between Inflation and Uncertainty 
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13(e) South Africa 

 

Figs. 11, 12 and 13 exhibit similar patterns with their corresponding Figs. 3, 4 and 5 based 

on the stochastic volatility. Similar to the spectral approach, our results of the relationship 

between IU measured through GARCH model and the inflation based on the wavelet 

methodology are robust (Fig.14).  

Figure 14. The coherence between inflation rate and its uncertainty 
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The results of the relationship between inflation and IU based on EGARCH models is 
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similar to those with GARCH and with stochastic volatility model. Finally, the results regarding 

the relationship IU-output growth are robust.22       

 

5. Conclusion 
 

The measurement of IU is a crucial topic for both policymakers and economic agents. 

For policymakers, a relevant uncertainty measure leads to the adoption of appropriate monetary 

policy actions, which is more active for high uncertainty and less so otherwise. For economic 

agents, higher uncertainty leads to more frequent negotiations of nominal contracts. This study 

analyzes the relationship between inflation and IU for five major countries and regions (the US, 

the UK, the euro area, China, and South Africa). The topic is investigated during crises and 

downturn periods in economies with explicit versus implicit inflation targets, conventional 

versus unconventional monetary policies, and independent versus dependent monetary policies. 

Our paper estimates IU using the stochastic volatility model. We also propose a novel 

econometric specification for the inflation–IU relationship. Our findings are as follows. First, 

there is a significant relationship between inflation and uncertainty, which exhibits time-

variation and changes across frequencies and time. Indeed, the relationships are more 

significant in the short term than in the long term. Additionally, this relationship seems to 

increase during periods of crises and downturns. Second, this relationship alternates between 

being positive for stable periods, where IU is lagging—thereby confirming the Friedman 

theory—and negative during crises. Finally, the significant differences between countries 

highlight the effects of monetary regimes on uncertainty and could be helpful in selecting 

appropriate and timely monetary policies to limit uncertainty effects. 

Our results contribute to the literature in various ways. The results address the 

 
22 We ddo report the results of this second relationship of Friedman hypothesis in order to save place, but results 

are available upon  request.  
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contradictions in the literature, particularly by resolving the complexity and ambiguity noted in 

previous related studies on the inflation–IU relationship. Specifically, our results highlight that 

the relationship between inflation and IU can be positive (the Friedman–Ball hypothesis) or 

negative (the Holland hypothesis), depending on whether the economic environment is stable 

or turbulent. Our findings also show the trend of the relationship across frequency and time. 

We provide insights relevant to reducing or minimizing the marginal effects of inflation on IU. 

In different contexts—such as calm or turbulent periods and price stability monetary 

objectives—this relationship depends on the monetary policy under. We show that uncertainty 

is lower when a price stability objective exists. 

Previous studies have identified varying and seemingly conflicting relationships 

between inflation and IU. Our more general approach includes the prior results into a unified 

framework, clarifying the circumstances of the ambiguity in this relationship and identifying 

the causes for each case. 
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