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Abstract

In this paper we obtain central limit theorems for quadratic forms of non-causal short memory

linear processes with independent identically distributed innovations. Nabeya and Tanaka (1988)

suggested the format, which links the asymptotic distribution to integral operators. In their ap-

proach, integral operators had to have continuous symmetric kernels. Mynbaev (2001) employed

the theory of approximations to get rid of the continuity requirement. Here we go one step further

by lifting the kernel symmetry condition. Also, we establish Lp-approximability of the special

sequences which arise in the theory of regressions with slowly varying regressors.
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1. Introduction

Convergence in distribution of sequences of random variables plays a central role in the theory

of probabilities and statistics. Sequences of linear and quadratic forms are among the most impor-

tant. Existence of a large number of different asymptotic statements is explained by the fact that

different applications require different formats and conditions. We concentrate on weak conver-

gence of linear and quadratic forms arising in regression analysis. The book by Tanaka [13] can

serve as a comprehensive introduction to this area.

Central limit theorems (CLT’s) deal with convergence in distribution of linear forms of type

n
∑

t=1

wntvt as n→ ∞, (1.1)
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where v = (v1, ..., vn)′ ∈ Rn is a random vector and wn = (wn1, ...,wnn) ∈ Rn is a deterministic

vector. One popular approach to modeling dependence of {vt} over time is to specify it as a linear

process

vt =
∑

i∈Z
ciet−i, (1.2)

where {ei}i∈Z are random variables and {ci}i∈Z are constants. If ci = 0 for i < 0, the process

(1.2) is called causal; otherwise it is called non-causal. The theory critically depends on whether

αc ≡
∑ |ci| < ∞ (short-memory process) or αc = ∞ but

∑

c2
i
< ∞ (long-memory process).

Our results hold for {ei}i∈Z martingale differences but, for simplicity, we assume that

Assumption 1. The innovations et, t ∈ Z, are independent identically distributed (i.i.d.), satisfy

Eet = 0, σ2
e ≡ Ee2

i
< ∞, Ee4

i
< ∞ for any t and the constants ci satisfy αc :=

∑

i∈Z
|ci| < ∞

(short-memory).

It follows that vt, t ∈ Z, are identically distributed. Our method is flexible in modeling {wn} but is

limited to short-memory processes. Quadratic forms are of type

Qn (kn) = v′knv, (1.3)

where kn is a deterministic n × n matrix and the random vector v is the same as above.

Quadratic forms involving linear processes were considered by many authors. For example,

Horvath and Shao [5] established approximations for quadratic forms of dependent random vari-

ables and obtained necessary and sufficient conditions for weak convergence of weighted functions

of quadratic forms, Shao and Wu [14] considered asymptotic problems in spectral analysis of sta-

tionary causal processes, Bhansali et al. [1, 2] established central limit theorems for quadratic

forms of causal linear processes with long-memory. Many authors, including Tanaka [13], Hor-

vath and Shao [5], Phillips [11] employed properties of Brownian motion in their derivations.

All our results evolve around the Lp-approximability notion introduced in Mynbaev [6]. The

general idea behind Lp-approximability is to represent converging sequences of deterministic vec-

tors with functions of a continuous argument. It is realized as follows. Let 1 ≤ p < ∞. The

interpolation operator ∆np : Rn → Lp(0, 1) is defined by

(

∆npw
)

(x) = n
1
p

n
∑

t=1

wt1[ t−1
n
, t

n )(x), w ∈ Rn. (1.4)

If wn ∈ Rn for each n and there exists a function W ∈ Lp(0, 1) such that

∥

∥

∥∆npwn −W
∥

∥

∥

Lp(0,1)
→ 0, n→ ∞,

then we say that {wn} is Lp-approximable and also that it is Lp-close to W.

Our results concerning quadratic forms (1.3) are cast in a different format and have a different

area of applicability that those from the papers cited above. The format, which links the asymptotic

distribution to integral operators, was suggested by Nabeya and Tanaka [10]. They required the

integral operators to have continuous symmetric kernels and the {vt} to be independent. Using
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the Lp-approximability notion allowed Mynbaev [6] to get rid of the kernel continuity condition

and replace independent {vt} by non-causal short-memory linear processes. Here we go one step

further by lifting the kernel symmetry condition (see Section 2).

In case of CLT’s for linear forms (1.1) the method developed in [7] has three advantages.

Firstly, all sequences arising in the theory of regressions

yt = α + βL(t) + ut (1.5)

with a slowly varying regressor L(t) turn out to be Lp-approximable. Secondly, as is shown in [7],

using Lp-approximability allows one to bypass some difficulties arising in the Brownian motion

method. Thirdly, as long as the linear process (1.2) is short-memory, to have convergence of (1.1)

in distribution, it is enough to establish that {wn} is L2-close to some W ∈ L2(0, 1).

It is this last fact that lets us concentrate on establishing Lp-approximability of certain se-

quences, which we do in Section 3. Here is an overview of the related results.

Consider a polynomial trend fn =
(

1k−1, ..., nk−1
)

or a logarithmic trend fn =
(

lnk 1, ..., lnk n
)

and normalize it to get wn = fn/
(

∑n
j=1

∣

∣

∣ fn j

∣

∣

∣

p
)1/p

. Then {wn} is Lp-approximable for 1 ≤ p < ∞ [8,

Theorem 2.7.1]. Here and below k ≥ 0 is an integer.

Using the fact that certain spatial matrices are L2-approximable, Mynbaev [9] gave the first

derivation of the asymptotic distribution of the OLS estimator for spatial models that does not rely

on high level conditions.

A real-valued, positive, measurable function L on [A,∞) is slowly varying (SV) if

lim
x→∞

L(rx)

L(x)
= 1 for any r > 0. (1.6)

Denote

ε(x) =
xL′(x)

L(x)
, G(t, n) =

L(t) − L(n)

L(n)ε(n)
, wnt = n−

1
p Gk(t, n), t = 1, ..., n. (1.7)

Phillips [11] pointed out the importance of function G(t, n) for regression (1.5) with stable errors

and established a series of its properties, among them the fact that

G(rn, n) = log r[1 + o(1)] uniformly in r ∈ [a, b] for any 0 < a < b < ∞. (1.8)

Then under some conditions {wn} is Lp-close to logk x [8, Theorem 4.4.1].

Denote

η(x) =
xε′(x)

ε(x)
, µ(x) =

1

2

[

ε(x) + η(x)
]

, H(t, n) =
G(t, n) − log t

n

µ(n)
,

wnt = n−1/pH(t, n), t = 1, ..., n. (1.9)

Then {wn} is Lp-close to log2 x [8, Theorem 4.4.8].

Sequences (1.7) and (1.9) appear in the theory of regression (1.5) with stationary errors {ut}.
In case of nonstationary errors, we need three more sequences:

F(t, n) =
1

nL(n)

n
∑

j=t

L( j), wnt = n−
1
p Fk(t, n), t = 1, ..., n, (1.10)
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I(t, n) =
1

n

n
∑

j=t

G( j, n), wnt = n−
1
p Ik(t, n), t = 1, ..., n, (1.11)

J(t, n) =
1

n

n
∑

j=t

(

L( j) − L̄
)

, where L̄ =
1

n

n
∑

k=1

L(k), wnt = n−
1
p Jk(t, n), t = 1, ..., n. (1.12)

(1.10) is Lp-close to (1 − x)k (Theorem 3.1 below), (1.11) is Lp-close to
(

x log 1
x
− 1 + x

)k
(Theo-

rem 3.2 below) and (1.12) is Lp-close to
(

t log 1
t

)k
(Theorem 3.3 below).

As one can see from this list, by looking at a sequence it is difficult to guess its Lp-limit.

2. Central limit theorems for linear and quadratic forms

The main subject of this section is convergence in distribution of quadratic forms (1.3). For

this we need some facts from the theory of operators in Hilbert spaces (all of them can be found in

[4]). Let A be a compact linear operator in a Hilbert space with a scalar product (·, ·). The operator

H = (A∗A)
1
2 is called the modulus of A, here A∗ is the adjoint operator of A. The eigenvalues of H,

denoted si, i = 1, 2, ... and counted with their multiplicity, are called s-numbers of A. U denotes a

partially isometric operator that isometrically maps the range R (A∗) onto the range R(A). Then we

have the polar representation A = UH. Denote r(A) the dimension of the range R(A) (r(A) ≤ ∞).

Let
{

φ j

}

be an orthonormal system of eigenvectors of H which is complete in R(H). Then, we

have the representation

Ax =

r(A)
∑

i=1

si(x, φi)Uφi

or, denoting ψi = Uφi,

Ax =

r(A)
∑

i=1

si(x, φi)ψi, (2.1)

where {φi} and {ψi} are orthonormal systems, Hφi = siφi, lim
i→∞

si = 0. In particular, when A is

selfadjoint, φi are eigenvectors of A and si = |λi|, where λi are eigenvalues of A.

Let us apply (2.1) to an integral operator

(K f ) (s) =

∫ 1

0

K (s, t) f (t)dt, f ∈ L2(0, 1),

with a square-integrable kernel K ∈ L2

(

(0, 1)2
)

. From

∫

K(s, t) f (t)dt =
∑

i

si

∫

f (t)φi(t)dtψi(s)

we get
∫















K (s, t) −
∑

i

siψi(s)φi(t)















f (t)dt = 0 a.e.
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Because f is arbitrary, we have the decomposition

K(s, t) =

r(A)
∑

i=1

siψi(s)φi(t), (2.2)

where si and φi are, respectively, the eigenvalues and eigenvectors of (K ∗K)
1
2 and ψ j = Uφ j.

The fundamental idea of Nabeya and Tanaka [10] was to postulate that the matrices kn in

(1.3) approach in some sense a function K on (0, 1)2 and express the limit properties of Qn(kn) in

terms of the properties of the associated integral operator K . The operator K is called nuclear if
∑

si < ∞ (
∑ |λi| < ∞ when K is selfadjoint). Nabeya and Tanaka required K to be continuous

and symmetric and K to be nuclear. Mynbaev [6] used Lp-approximability to relax the continuity

assumption and replace i.i.d. {vt}t∈Z with linear processes. Here we develop his approach further

by lifting the symmetry condition.

Let K ∈ L2

(

(0, 1)2
)

. For each natural n and 1 ≤ p < ∞, we define an n × n matrix

(

δnpK
)

i j
= n2(1− 1

p
)

∫ i
n

i−1
n

∫
j

n

j−1
n

K(s, t)dsdt, 1 ≤ i, j ≤ n. (2.3)

We say that the sequence {kn} is L2-close to K if

















∑

i, j

(kn − δn2K)2
i j

















1
2

= ‖kn − δn2K‖2 → 0.

Unlike the one-dimensional case, where L2-approximability of {wn} is enough to have convergence

in distribution, in the two-dimensional case one has to impose a stronger condition on the rate of

approximation. Mynbaev [8] proposed two such conditions. In Theorem 3.9.1 the conditions on

the innovations are weaker (e2
t must be uniformly integrable) and the requirement on the rate of

approximation

‖kn − δn2K‖2 = o

(

1

n

)

(2.4)

is stronger than in Theorem 3.9.7, where the fourth moments Ee4
t must exist but the rate of ap-

proximation

‖kn − δn2K‖2 = o

(

1
√

n

)

(2.5)

is less restrictive. For simplicity, we adhere to Assumption 1, which allows us to use (2.5), re-

membering that in cases (2.4) and (2.5) Mynbaev’s conditions on {vt}t∈Z from Theorems 3.9.1 and

3.9.7 can be repeated word for word. So, one of the main results of this section is the following:

Theorem 2.1. Let {vt}t∈Z satisfy Assumption 1 and let (2.5) hold. If K is nuclear, then

Qn(kn)
d−→















σe

∑

i

ci















2
∑

i≥1

siu
(1)

i
u

(2)

i
,
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where
{

u
(1)

i

}

,
{

u
(2)

i

}

are systems of independent (within a system) standard normals, si are s numbers

of K and

cov(u
(1)

i
, u

(2)

j
) = (ψi, φ j) for all i, j.

If K is symmetric, then u
(1)

i
= u

(2)

i
for all i.

Proof. We can exclude symmetric K covered in [8]. The proof is similar to that of Theorem

3.9.7 (all references are to [8]), so we indicate only the modifications. (2.2) above is analogous to

equation (3.38), which holds in the symmetric case. Hence, the initial segment of (2.2) is KL(s, t) =
∑L

i=1 siψi(s)φi(t). Subtracting from (2.2) its initial segment and applying Lemma 3.6.1(iii) we get

(

δ2
n2K − δ2

n2KL

)

s,t
=

∑

i>L

si

(

δ1
n2ψi

)

s

(

δ1
n2φi

)

t
, (2.6)

where δ2
n2
= δn2 is the two-dimensional discretization operator defined in (2.3) and δ1

n1
is its one-

dimensional version defined by

(

δnpF
)

i
= n1− 1

p

∫ i
n

i−1
n

F(x)dx, i = 1, ..., n.

Combining (1.3) and (2.6) we have

Qn

(

δ2
n2K

)

− Qn

(

δ2
n2KL

)

=
∑

i>L

si

n
∑

s,t=1

(

δ1
n2ψi

)

s
vs

(

δ1
n2φi

)

t
vt

=
∑

i>L

si

[(

δ1
n2ψi

)′
v
] [(

δ1
n2φi

)′
v
]′
. (2.7)

By Section 3.5.5 about the T-decomposition for means of quadratic forms

∣

∣

∣

∣

∣

E

(

[(

δ1
n2ψi

)′
v
] [(

δ1
n2φi

)′
v
]′)

∣

∣

∣

∣

∣

= σ2
e

∣

∣

∣

∣

(

T 0
nδ

1
n2ψi,T

0
nδ

1
n2φi

)

+
(

T−n δ
1
n2ψi,T

−
n δ

1
n2φi

)

+
(

T+n δ
1
n2ψi,T

+
n δ

1
n2φi

)

∣

∣

∣

∣

(applying the Cauchy-Schwarz inequality)

≤ σ2
e[
∥

∥

∥T 0
nδ

1
n2ψi

∥

∥

∥

2

∥

∥

∥T 0
nδ

1
n2φi

∥

∥

∥

2
+

∥

∥

∥T−n δ
1
n2ψi

∥

∥

∥

2

∥

∥

∥T−n δ
1
n2φi

∥

∥

∥

2

+
∥

∥

∥T+n δ
1
n2ψi

∥

∥

∥

2

∥

∥

∥T+n δ
1
n2φi

∥

∥

∥

2
]

(using boundedness of the operators T 0
n , T−n , T+n , see Section 2.3.2)

≤ 3 (σeαc)
2
∥

∥

∥δ1
n2φi

∥

∥

∥

2

∥

∥

∥δ1
n2ψi

∥

∥

∥

2

(using boundedness of the operators δ1
n2

, see Section 2.1.3(ii))

≤ 3 (σeαc)
2 ‖φi‖2 ‖ψi‖2 = 3 (σαc)

2 . (2.8)
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By nuclearity of K from (2.7)-(2.8) we have
∣

∣

∣

∣

E
(

Qn

(

δ2
n2K

))

− Qn

(

δ2
n2KL

)

∣

∣

∣

∣

≤ 3 (σeαc)
2
∑

i>L

si → 0, L→ ∞.

The conclusion is the same as in Section 3.9.3:

plimL→∞ [Qn (δn2K) − Qn (δn2KL)] = 0 uniformly in n.

Turning to the analog of Section 3.9.4, note that by selecting

wl
n = δn2ψl, l = 1, ..., L; wl

n = δn2φl, l = L + 1, ..., 2L,

we satisfy condition (ii) of Theorem 3.5.2 with

Fl = ψl, l = 1, ..., L; Fl = φl, l = L + 1, ..., 2L.

With Wn =
(

w1
n, ...,w

2L
n

)

by Theorem 3.5.2 we have

W
′

nv
d−→ N

















0,















σe

∑

i

ci















2

G

















, (2.9)

where

G =



























































(ψ1, ψ1) . . . (ψ1, ψL) (ψ1, φ1) . . . (ψ1, φL)
...

. . .
...

...
. . .

...

(ψL, ψ1) . . . (ψL, ψL) (ψL, φ1) . . . (ψL, φL)

(φ1, ψ1) . . . (φ1, ψL) (φ1, φ1) . . . (φ1, φL)
...

. . .
...

...
. . .

...

(φL, ψ1) . . . (φL, ψL) (φL, φ1) . . . (φL, φL)



























































.

Since both systems {φi}, {ψi} are orthonormal, this can be written as G =

(

I H

H′ I

)

, where the

identities are of size L × L and H has elements
(

φi, ψ j

)

. It follows that (2.9) is equivalent to

W
′

nv
d−→

∣

∣

∣

∣

∣

∣

∣

σe

∑

i

ci

∣

∣

∣

∣

∣

∣

∣

(

u(1)

u(2)

)

, (2.10)

where u(1), u(2) are standard normal vectors and cov
(

u(1), u(2)
)

= H.

Similarly to equation (2.7),

Qn

(

δ2
n2KL

)

=

L
∑

i=1

si

(

δ1
n2ψi

)′
v
(

δ1
n2φi

)′
v.

This is a continuous function of the vector at the left of (2.10). By the continuous mapping theorem

then

Qn

(

δ2
n2KL

) d−→
(

σe

∑

ci

)2
L

∑

i=1

siu
(1)

i
u

(2)

i
, n→ ∞.
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Establishing the analog of 3.9.4 is complete.

3.9.6 goes through with obvious changes. 3.9.10 is not impacted by the fact that K is not

symmetric. The proof of the generalization of Theorem 3.9.7 is complete. �

Recall the discussion about rates of approximation (2.4), (2.5). An interesting question is:

under what conditions on matrices kn and the kernel K just ‖kn − δn2K‖2 = o (1) would be enough

for the CLT to hold? The answer contained in the next theorem means that this is true when

essentially the two-dimensional case can be reduced to the one-dimensional.

Theorem 2.2. Let Assumption 1 hold and suppose that fn is L2-close to F and gn is L2-close to G:

‖ fn − δn2F‖2 → 0, ‖gn − δn2G‖2 → 0. (2.11)

Here fn, gn ∈ Rn for each n, F, G ∈ L2 (0, 1). Put kn = fng′n, K(s, t) = F(s)G(t). The integral

operator K with this kernel is not symmetric but it is nuclear (it is degenerate). Denote F0 =

F/ ‖F‖2, G0 = G/ ‖G‖2. Then

Qn(kn) = v′knvn

d−→














σ
∑

i∈Z
ci















2

‖F‖2 ‖G‖2 u1u2, (2.12)

where u1, u2 are standard normal and cov (u1, u2) =
∫ 1

0
F0(t)G0(t)dt

Proof. In the proof of Theorem 2.1 we showed how to deal with the fact that K is not symmetric.

Here we show how to lift the restriction (2.5). By Lemma 3.6.1(iii)
(

δ2
n2

K
)

st
=

(

δ1
n2

F
)

s

(

δ1
n2

G
)

t
. For

an n × n matrix A denote

g(A) =
[

E(v′nAvn)2
]1/2

.

Since g(A) is a seminorm, we have

g
(

kn − δ2
n2K

)

= g
(

fng′n −
(

δ1
n2F

) (

δ1
n2G

)′)

≤ g
((

fn − δ1
n2F

)

g′n

)

+ g
((

δ1
n2F

) (

gn − δ1
n2G

)′)
. (2.13)

Here the matrices A1 = fn − δ1
n2

F, A2 = δ1
n2

F are just columns and the matrices B1 = g′n, B2 =
(

gn − δ1
n2

G
)′

are just rows. Applying the last inequality of Section 3.9.9, we have

E
(

v′nAiBivn

)2 ≤ c ‖Ai‖22 ‖Bi‖22 , i = 1, 2,

which is just another way of writing

g
((

fn − δ1
n2F

)

g′n

)

≤ c
∥

∥

∥ fn − δ1
n2F

∥

∥

∥

2
‖gn‖2 ,

g
((

δ1
n2F

) (

gn − δ1
n2G

)′)
≤ c

∥

∥

∥δ1
n2F

∥

∥

∥

2

∥

∥

∥gn − δ1
n2G

∥

∥

∥

2
. (2.14)
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By Lemmas 2.1.3(ii) and 2.5.2(i) supn ‖gn‖ < ∞ and supn

∥

∥

∥δ1
n2

F
∥

∥

∥

2
< ∞, so (2.11), (2.13), (2.14)

imply g
(

kn − δ2
n2

K
)

→ 0. This gives [8, (3.50)]. The rest of the proof of convergence in distribu-

tion is the same.

We need to justify the format of the limit distribution. The operators K and K ∗ are given by

(K f ) (s) =

∫

K(s, t) f (t)dt = F(s)

∫

G(t) f (t)dt = F(s) (G, f ) , (2.15)

and

(K ∗g) (u) =

∫

K(s, u)g(s)ds = G(u)

∫

F(s)g(s) = G(u) (F, g) . (2.16)

Hence,

(K ∗K f ) (u) = G(u) (G, f ) ‖F‖22 .

If f is an eigenvector of K ∗K , it should be proportional to G : f = cG, and from the above

K ∗K f = λ f implies

G(u)c ‖G‖22 ‖F‖22 = λcG(u).

This gives λ = ‖G‖22 ‖F‖22 and s1 = ‖G‖2 ‖F‖2. The corresponding eigenvector is G0. The subspace

H1 of functions proportional to G is one-dimensional. Let f ⊥ H1, that is, (G, f ) = 0. (2.15)-(2.16)

show that K ∗K f = 0 on all such functions. Hence, s j = 0 for j > 1. From (2.15)-(2.16) we see

that the range R (K ∗) is spanned by G0 = G/ ‖G‖2 and the range R (K) is spanned by F0 = F/ ‖F‖2.

The required partially isometric operator obtains by setting UG0 = F0. Thus, (2.12) follows from

Theorem 2.1, where

s1 = ‖F‖2 ‖G‖2 , s j = 0 for j > 1, u(1), u(2) are standard normal and

cov
(

u(1), u(2)
)

= (φ1, ψ1) = (F0,G0). �

3. Slow variation and Lp-approximability

The seemingly innocuous condition (1.6) in fact entails many strong properties. We shall be

using, often without explicitly mentioning, the following standard properties of SV functions (see

[12]):

a) If L is SV, then La is SV for any a ∈ R.

b) If L and M are SV, then L + M and LM are SV.

c) If L is SV, then (1.6) is actually uniform in r ∈ [a, b], for any 0 < a < b < ∞ (uniform

convergence theorem).

d) If L is SV, then xγL(x)→ ∞, x−γL(x)→ 0 for any γ > 0.

If L is SV, then by Karamata’s theorem there exist a number B ≥ A > 0 and functions µ, ε on

[B,∞) such that

L(x) = exp

(

µ(x) +

∫ x

B

ε(t)
dt

t

)

, (3.1)

here µ is bounded, measurable, lim
x→∞

µ(x) exists and is finite, ε is continuous on [B,∞)] and

lim
x→∞

ε(x) = 0.

9



Following Phillips [11], we make a simplifying assumption that µ = const. Phillips argues that

asymptotically this does not affect regression estimation. To this justification we can add that if

µ is good in the sense that µ is continuously differentiable and lim
x→∞

xµ′(x) = 0, then the Phillips

assumption is satisfied because (3.1) can be equivalently written as

L(x) = cL exp

(∫ x

B

ε(t)
dt

t

)

(3.2)

with a new continuous function ε on [B,∞) such that lim
x→∞

ε(x) = 0 (see [8, p.133]). When (3.2)

holds, we write L = K(ε). Further, it is convenient to assume that L is continuous and does not

vanish, which can be achieved by properly extending the function ε to [0, B).

Expressions arising in regression statistics involve values L(t) for 1 ≤ t ≤ n. For a fixed

δ ∈ (0, 1), the values L(t) with δn ≤ t ≤ n can be handled using the uniform convergence theorem.

The values L(t) with 1 ≤ t ≤ c, for any c > 0, asymptotically do not present a problem because of

continuity of L. To cover the remaining values L(t) with c ≤ t ≤ δn, we need one more condition.

Let us call a remainder a positive function φ on [0,∞) with properties:

i) φ is nondecreasing and lim
x→∞

φ(x) = ∞,

ii) there exist positive numbers θ, X such that x−θφ(x) is nonincreasing on [X,∞).

L is called SV with remainder φ if for any r > 0 instead of (1.6) one has

L(rx)

L(x)
= 1 + O

(

1

φ(x)

)

, x→ ∞.

The following result allows us to handle the values L(t) with c ≤ t ≤ δn:

Lemma 3.1 (Seneta, 1985, p.102). If L is SV with remainder φ, then for any b > θ there exist

constants Mb > 0 and Bb ≥ B such that

∣

∣

∣

∣

∣

L(rx)

L(x)
− 1

∣

∣

∣

∣

∣

≤ Mbr−b/φ(x) for x ≥ Bb,
Bb

x
≤ r ≤ 1.

Assumption 2 (on SV function L). a) L = K(ε), that is, (3.2) holds, with ε described after (3.2).

b) ε is SV in the general sense (1.6).

c) There exists a remainder φε with properties i), ii) above such that for some c > 0

1

cφε(x)
≤ |ε(x)| ≤ c

φε(x)
for all x ≥ c. (3.3)

We write L = K(ε, φε) to mean that L satisfies Assumption 2. Note that all practically im-

portant SV functions from [8] (Table 4.1) satisfy this assumption with ε(x) =
xL′(x)

L(x)
, φ(x) = 1

|ε(x)|
and number θ > 0 which can be chosen arbitrarily close to zero. For our final results on Lp-

approximability, on top of Assumption 2 we shall have to impose more conditions, and all of them

hold for functions from Table 4.1.

Let us consider the function F defined in (1.10). Let [a] denote the integer part of a ∈ R. Now

we can proceed with our new results contained in the next lemmas and theorems:
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Lemma 3.2. If L = K(ε, φε), θ < 1, then

a) F([rn], n) = 1 − r + o(1), n→ ∞, uniformly in r ∈
[

δ, 1
δ

]

for any δ ∈ (0, 1).

b) For all large n we have

|F ([rn], n)| ≤ c uniformly in r ∈ (0, δ]

with a constant c independent of δ ∈ (0, 1/2].

Proof. a) r ∈
[

δ, 1
δ

]

implies nδ ≤ rn ≤ n
δ
. Since nr = [nr]+ α with 0 ≤ α < 1, we have for all large

n
δ

2
≤ δ − α + 1

n
≤ [nr] − 1

n
≤ 1

δ
− α + 1

n
≤ 1

δ
. (3.4)

By [8], Corollary 4.4.3

1

nL(n)

n
∑

t=1

L(t) = 1 − ε(n)[1 + o(1)], (3.5)

so

F ([rn], n) =
1

nL(n)















n
∑

t=1

L(t) −
[rn]−1
∑

t=1

L(t)















= (1 − ε(n)[1 + o(1)]) − ([rn] − 1)L([rn] − 1)

nL(n)
(1 − ε([rn] − 1)[1 + o(1)]) . (3.6)

According to the definition of ε we can continue (3.6) and have

F ([rn], n) = (1 + o(1)) − ([rn] − 1)L([rn] − 1)

nL(n)
(1 + o(1)). (3.7)

The o(1) here is uniform in r because by (3.4) [rn] − 1 ≥ n δ

2
. By the uniform convergence

theorem (3.5) also implies L
(

[rn]−1

n
· n

)

/L(n) = 1 + o(1). Hence, continuing (3.7)

F([rn], n) = 1 + o(1) − [rn] − 1

n
· L([rn] − 1)

L(n)
· (1 + o(1)) = 1 − r + o(1)

uniformly in r.

To prove b), consider two cases.

Case 1. (Bb + 1)/n ≤ r ≤ δ, where Bb is the constant from Lemma 3.1. Obviously,

|F([rn], n)| ≤
∣

∣

∣

∣

∣

∣

∣

n
∑

t=1

L(t)

nL(n)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

Bb
∑

t=1

L(t)

nL(n)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

[rn]−1
∑

t=Bb+1

L(t)

nL(n)

∣

∣

∣

∣

∣

∣

∣

. (3.8)

By (3.5), the first term at the right is 1 + o(1). L is continuous and bounded on [0, Bb], so

∣

∣

∣

∣

∣

∣

∣

Bb
∑

t=1

L(t)

nL(n)

∣

∣

∣

∣

∣

∣

∣

≤ cBb

nL(n)
→ 0, n→ ∞. (3.9)
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The third term is the most difficult to bound. From Bb + 1 ≤ t ≤ [rn] − 1 and r ≤ δ ≤ 1
2

we have

Bb/n < t/n ≤ ([rn] − 1)/n ≤ r ≤ 1, so by Lemma 3.1

∣

∣

∣

∣

∣

∣

∣

[rn]−1
∑

t=Bb+1

L(t)

nL(n)

∣

∣

∣

∣

∣

∣

∣

≤ 1

n

[rn]−1
∑

t=Bb+1

∣

∣

∣

∣

∣

∣

∣

∣

L
(

t
n
· n

)

L(n)
− 1

∣

∣

∣

∣

∣

∣

∣

∣

+
1

n

[rn]−1
∑

t=Bb+1

1

≤ Mb

nφ(n)

[rn]−1
∑

t=Bb+1

(

t

n

)−b

+
1

n
([rn] − Bb − 1) . (3.10)

Recall that 0 < θ < 1 and the number b > θ is arbitrarily close to θ, so we can choose 0 < b < 1.

Geometrically it is obvious that for any integer 0 < a < N

N
∑

t=a−1

t−b ≤
∫ N

a

t−bdt ≤
∫ N

0

t−bdt (3.11)

and therefore
[rn]−1
∑

t=Bb+1

t−b ≤
∫ [rn]−1

0

t−bdt =
([rn] − 1)1−b

1 − b
.

Using this we can continue (3.10) and get

∣

∣

∣

∣

∣

∣

∣

[rn]−1
∑

t=Bb+1

L(t)

nL(n)

∣

∣

∣

∣

∣

∣

∣

≤ Mb

nb−1

φ(n)

([rn] − 1)1−b

1 − b
+ 1

=
c1

φ(n)

(

[rn]

n
− 1

n

)1−b

+ 1 ≤ c1

r1−b

φ(n)
+ 1 ≤ c2. (3.12)

(3.8), (3.9) and (3.12) prove boundedness in Case 1.

Case 2. 0 < r < (Bb + 1) /n. In this case [rn] − 1 ≤ rn − 1 < Bb + 1. The third sum in (3.8) is

empty; the rest of the proof does not change. �

Theorem 3.1. For p ∈ [1,∞) and integer k ≥ 0 define a vector wn ∈ Rn by

wnt = n−
1
p Fk (t, n) , t = 1, ..., n.

If L = K (ε, φε), θ < 1, then wn is Lp-close to fk(t) = (1 − t)k.

Proof. We need the following fact (see [8], pp.149-150): definition (1.4) is equivalent to
(

∆npw
)

(u) = n1/pw[nu+1], 0 ≤ u < 1. (3.13)

Therefore in our case by using (3.13) we obtain
(

∆npw
)

(u) = Fk ([nu + 1], n), 0 ≤ u < 1.

Let 0 < δ ≤ 1
2
, δ ≤ u < 1. Define r = [nu+1]

n
. From the inequality nu < [nu + 1] ≤ nu + 1 we

have

δ ≤ u < r ≤ u +
1

n
<

1

δ
,
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if n is sufficiently large. Hence,

r = u + o(1), n→ ∞; r ∈
[

δ,
1

δ

]

.

This and Lemma 3.2 (a) imply

F([nu + 1], n) = F([rn], n) = 1 − u + o(1), n→ ∞, (3.14)

uniformly in u ∈ [δ, 1).

Now let 0 < u < δ. Then

0 <
[nu + 1]

n
= r ≤ nu + 1

n
< δ +

1

n
≤ 2δ ≤ 1,

if n is large enough. By Lemma 3.2 (b)

|F ([nu + 1], n)| = |F ([rn], n)| ≤ c for u ∈ (0, δ) . (3.15)

Obviously,

∥

∥

∥∆np − fk

∥

∥

∥

Lp(0,1)
≤

(∫ 1

δ

∣

∣

∣Fk ([nu + 1], n) − (1 − u)k
∣

∣

∣

p
du

)1/p

+

(∫ δ

0

∣

∣

∣(1 − u)k
∣

∣

∣

p
dt

)1/p

+

(∫ δ

0

∣

∣

∣Fk ([nu + 1], n)
∣

∣

∣

p
du

)1/p

.

By (3.14)-(3.15) this can be made as small as desired, by selecting first a small δ and then a large

n. �

Next consider the function I defined in (1.11).

Lemma 3.3. If L = K (ε, φε) , θ < 1, then for each δ ∈ (0, 1)

a) I([rn], n) = (1+ o(1))
(

r log 1
r
− 1 + r

)

, n→ ∞, uniformly in r ∈
[

δ, 1
δ

]

(the o(1) depends on

δ),

b) |I ([rn], n)| ≤ c for r ∈ (0, δ], where c does not depend on δ.

Proof. a) If r ≥ δ and n ≥ t ≥ [rn], then 1 ≥ t/n ≥ [rn]/n ≥ [δn]/n ≥ δ − 1/n ≥ δ/2 for large n.

By (1.8)

G(t, n) = G

(

t

n
n, n

)

= (1 + o(1)) log
t

n
for [rn] ≤ t ≤ n,

where o(1) does not depend on t. Hence, denoting s = [rn],

I ([rn], n) = (1 + o(1))
1

n

n
∑

t=s

log
t

n
= (1 + o(1))

1

n
log

s(s + 1)...n

nn−s+1

= (1 + o(1))
1

n
log

n!

(s − 1)!nn−s+1
.
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By Stirling’s formula [3, p.371], for each natural n there exists θ = θ(n) ∈ (0, 1) such that

n! =
√

2πn

(

n

e

)n

e
θ

12n .

So

I ([rn], n) = (1 + o(1))
1

n
log

√
2πn

(

n
e

)n
e
θ(n)
12n

√
2π(s − 1)

(

s−1
e

)s−1
e

θ(s−1)
12(s−1) nn−s+1

= (1 + o(1))
1

n
log

[

(

n

s − 1

)s−1/2

es−1−n+
θ(n)
12n
− θ(s−1)

12(s−1)

]

= (1 + o(1))













(

s

n
− 1

2n

)

log

(

s − 1

n

)−1

+
s − 1

n
− 1 +

θ(n)

12n2
− θ(s − 1)

12n2 s−1
n













. (3.16)

Since rn − 1 ≤ s = [rn] ≤ rn, we have

s

n
= r + o(1),

s − 1

n
= r + o(1) uniformly in r ∈

(

δ,
1

δ

)

.

Using the fact that s−1
n

is bounded and bounded away from zero, 1
δ
≥ r − 1

n
≥ s−1

n
≥ r − 2

n
≥ δ

2
for

large n, we have the bounds
∣

∣

∣

∣

∣

∣

∣

1

n
log

(

s − 1

n

)−1
∣

∣

∣

∣

∣

∣

∣

≤ 1

n
C(δ),

∣

∣

∣

∣

∣

1

n2(s − 1)/n

∣

∣

∣

∣

∣

≤ 2

n2δ
.

This and (3.16) prove part a).

b) First consider the case Bb+1

n
≤ r < δ and write

|I([rn], n)| ≤ 1

n|ε(n)|

n
∑

t=[rn]

∣

∣

∣

∣

∣

L(t)

L(n)
− 1

∣

∣

∣

∣

∣

.

From rn − 1 ≤ [rn] ≤ t ≤ n we have Bb

n
≤ r − 1

n
≤ t

n
≤ 1, so by Lemma 3.1 and (3.11)

|I ([rn], n)| ≤ Mb

n|ε(n)|φ(n)

n
∑

t=[rn]

(

t

n

)−b

=

=
Mbnb−1

|ε(n)|φ(n)

n
∑

t=[rn]

t−b ≤ Mb

1 − b
· 1

|ε(n)|φ(n)
≤ C. (3.17)

The last bound by (3.3).

Now let 0 < r <
Bb+1

n
. Then for t ≤ [rn] − 1 we have t ≤ rn ≤ Bb + 1 and |L(t)| ≤ c1. By [8],

Corollary 4.4.2, we have 1
n

∑n
t=1 G(t, n)→ 1, so

|I ([rn], n)| ≤
∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

t=1

G(t, n)

∣

∣

∣

∣

∣

∣

∣

+
1

n

∣

∣

∣

∣

∣

∣

∣

[rn]−1
∑

t=1

G(t, n)

∣

∣

∣

∣

∣

∣

∣
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≤ c2 +
1

n|ε(n)|

[rn]−1
∑

t=1

(

|L(t)|
L(n)

+ 1

)

≤ c2 +
[rn] − 1

n |ε(n)|

(

c1

L(n)
+ 1

)

≤ c3. (3.18)

This is because |ε(n)|, |ε(n)L(n)| are SV and n|ε(n)| → ∞, n |ε(n)L(n)| → ∞. (3.17) and (3.18)

prove b). �

Theorem 3.2. For p ∈ [1,∞) and integer k ≥ 0 define a vector wn ∈ Rn by

wnt = n−
1
p Ik (t, n) , t = 1, ..., n.

If L = K (ε, φε), θ < 1, then wn is Lp-close to fk(t) =
(

t log 1
t
− 1 + t

)k
.

Proof. The proof is similar to that of Theorem 3.1, just replace Lemma 3.2 with Lemma 3.3. �

Now consider the function J defined in (1.12).

Lemma 3.4. Suppose L = K (ε, φε), θ < 1. Then for each δ ∈ (0, 1)

a) J([rn], n) = (1 + o(1))r log 1
r
, n→ ∞, uniformly in r ∈

[

δ, 1
δ

]

.

b) |J ([rn], n)| ≤ c for 0 < r ≤ δ, where c does not depend on δ.

Proof. Obviously,

J ([rn], n) =
1

n

n
∑

t=[rn]

L(t) − L(n)

L(n)ε(n)
+

1

n

n
∑

t=[rn]

L(n) − L̄

L(n)ε(n)

= I ([rn], n) +
1

n

n
∑

[rn]

L(n) − L̄

L(n)ε(n)
.

Use here (3.5) to get

J ([rn], n) = I ([rn], n) + (1 + o(1))
1

n

n
∑

t=[rn]

1

= I ([rn], n) + (1 + o(1))
n − [rn] + 1

n

(applying Lemma 3.3a))

= (1 + o(1))(r log(1/r) − 1 + r) + (1 + o(1))(1 − r + o(1)) = (1 + o(1))r log(1/r).

In all of the above the o(1) does not depend on r.

b) In case 0 < r ≤ δ just use part b) of Lemma 3.3 instead of part a). �

Theorem 3.3. For p ∈ [1,∞) and integer k ≥ 0 define a vector wn ∈ Rn by

wnt = n−
1
p Jk (t, n) , t = 1, ..., n.

If L = K (ε, φε), θ < 1, then wn is Lp-close to fk(t) =
(

t log 1
t

)k
.

Proof. Just replace Lemma 3.2 in the proof of Theorem 3.1 with Lemma 3.4.�
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