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Abstract

We propose an autoregressive conditional duration (ACD) model with periodic time-

varying parameters and multiplicative error form. We name this model periodic autore-

gressive conditional duration (PACD). First, we study the stability properties and the

moment structures of it. Second, we estimate the model parameters, using (profile and

two-stage) Gamma quasi-maximum likelihood estimates (QMLEs), the asymptotic prop-

erties of which are examined under general regularity conditions. Our estimation method

encompasses the exponential QMLE, as a particular case. The proposed methodology is

illustrated with simulated data and two empirical applications on forecasting Bitcoin trad-

ing volume and realized volatility. We found that the PACD produces better in-sample

and out-of-sample forecasts than the standard ACD.
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1 Introduction

Recent research in time series analysis tends to avoid transforming original data prior to mod-

eling and prefers to represent them directly through models that take into account the actual

support of their distributions. Such an approach parallels to that of generalized linear models

(GLM) for independent data (McCullag and Nelder, 1989). In this way, numerous time se-

ries models with “specific values” have, recently, received great interest, such as integer-valued

models, including count and binary specifications, and positive-valued models.

A well-known model for positive-valued time series data is the autoregressive conditional

duration (ACD), introduced by Engel and Russell (1998). Originally designed to model du-

rations between financial events in high-frequency microstructure markets, the ACD model is

also useful for modeling a broad range of data, such as regularly-spaced return range series

(Chou, 2005), daily realized volatility (Lanne, 2006; Zheng et al, 2015; Aknouche and Francq,

2019) and trading volume (Li, 2019; Aknouche and Francq, 2020). Various generalizations of

the ACD model have been proposed to take into account additional facts of positive time series

data (Pacurar, 2008; Hautsch, 2012; Bhogal and Variyam, 2019).

As in the case of GARCH models, it has been documented that the high persistence observed

in empirical studies utilizing the standard ACD specification, is in fact artificial and can be

avoided by considering ACD models with time-varying parameters (Diebold, 1986; Andersen

and Bollerslev, 1997; Mikosch and Starica, 2004; Hejer and Veltic 2007; Caporin et al, 2017;

Gallo and Ortanto, 2018). In this paper, we extend the literature on time-varying ACD models,

by proposing an ACD model, the parameters of which are allowed to evolve periodically over

time. We name this model periodic autoregressive conditional duration (PACD).

Such a model aims to represent seasonally varying positive-valued series. The observed pro-

cess is defined as the product of a unit mean independent and periodically distributed (henceforth

ipdS) innovation process with the conditional mean of the model having a GARCH-type spec-

ification with periodic time-varying parameters. We first study the stability properties of the

PACD model, such as the existence of periodically stationary and ergodic solutions with finite

moments or log-moments. Such properties are needed in the estimation stage, which is the

second contribution of this paper.

To estimate the model parameters, the exponential quasi-maximum likelihood (EQMLE)
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is used, since it is well-adapted to the support of the distribution of the data, and it does not

require specifying a distribution for the periodically distributed innovation sequence. However,

because of the periodicity of that sequence, the EQMLE may be less efficient than the Gamma

QMLE (GQMLE) which, in fact, accounts for the periodicity of the model innovation.

Consequently, we propose a two-stage Gamma QMLE (2S-GQMLE) which i) utilizes the

EQMLE (or a profile GQMLE) in the first stage, ii) estimates the variance innovations, and

then iii) uses the latter as a by-product in the second stage of the computation of the GQMLE.

Consistency and asymptotic normality (CAN) of the proposed QMLEs are established and the

relative efficiency of the 2S-GQMLE is studied for some specific conditional distributions.

The PACD can be used to model various seasonal positive-valued phenomena (realized

volatility, trading volumes and transaction rates). The day-of-the-week pattern may be present

in all these phenomena, which means that each day of the week may have its own distribution

(Franses and Paap, 2000; Boynton et al, 2009; Tsiakas, 2006; Charles, 2010). In that sense,

a time-invariant ACD model for daily data is just an average model that does not take into

account the specificities of the underlying measures across days. Other examples of non-financial

intraday series that may be characterized by periodicity are wind power and wind speed series

(Ambach and Croonenbroeck, 2015; Ambach and Schmid, 2015; Ziel et al, 2016).

Our empirical applications concern Bitcoin trading volume data and the UN realized volatil-

ity. Both series are characterized by the day-of-the-week effect and we show that the PACD

produces better in-sample and out-of-sample forecasts than the benchmark ACD.

The rest of this paper is outlined as follows. In Section 2 we define the PACD and some

special cases of it, and describe the link/relationship between the PACD and the periodic

GARCH of Bollerslev and Ghysels (1996). In Section 3 we derive the stability conditions of our

model. In Section 4, various Gamma QMLEs are proposed and their asymptotic properties are

studied. In section 5 we conduct a simulation study and in section 6 we present the empirical

results from two series (Bitcoin trading volume and UN realized volatility). All the proofs are

given in the Appendix. A Supplementary material accompanies this paper.
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2 Periodic Autoregressive Conditional Duration model

All random variables and processes in this paper are defined on a probability space (Ω,F , P )

and valued in the set of positive real numbers R+ = (0,∞), which is endowed with the Borel

field B (R+). Let S ≥ 1 be a positive integer called the period, and ωt, αt1, ..., αtq, βt1, ..., βtp

(p, q ∈ N = {0, 1, ...}) be positive real parameters S-periodic over time, i.e. ωt = ωt+kS, αti =

αt+kS,i (i = 1, ..., q) and βtj = βt+kS,j (j = 1, ..., p) for all integers k and t. Let also {ξt, t ∈ Z} be

a sequence of positive random variables with E (ξt) = 1 for all t, and a finite Var(ξt) = σ2
t > 0.

Assume that {ξt, t ∈ Z} is ipdS in the sense that ξt
D
= ξt+S for all t, where

D
= denotes equality

in distribution.

A positive-valued stochastic process {Yt, t ∈ Z} is said to be a MEM (multiplicative error

model; Engle, 2002) periodic autoregressive conditional duration with orders p and q (henceforth

PACD(p, q)) if Yt is given for all t ∈ Z by

Yt = ψtξt (2.1a)

and

ψt = ωt +

q∑

i=1

αtiYt−i +

p∑

j=1

βtjψt−j (2.1b)

where the innovation term ξt is independent of ψt−j for all j ≥ 1. To ensure the almost sure

(a.s.) positivity of ψt, it is assumed that ωt > 0, αti ≥ 0, and βtj ≥ 0, for all t ∈ Z, i = 1, .., q

and j = 1, ..., p. To emphasize the periodicity of the model, let t = nS + v for n ∈ Z and

1 ≤ v ≤ S. Then, equation (2.1b) can be written as follows

ψv+nS = ωv +

q∑

i=1

αviYv−i+nS +

p∑

j=1

βvjψv−j+nS, n ∈ Z, 1 ≤ v ≤ S,

where by season or channel v (1 ≤ v ≤ S) we denote the set {..., v − S, v, v + S, v + 2S, ...}

with corresponding parameters ωv, αvi, βvi and σ2
v = V ar (ξv+nS). Let Ft be the σ-Algebra

generated by {Yt−i, i ≥ 0}. The conditional mean and conditional variance of the model (2.1)

are given respectively by

E (Yt|Ft−1) = ψt (2.2a)
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and

V ar (Yt|Ft−1) = σ2
tψ

2
t . (2.2b)

The PACD model, thus, follows the quadratic variance-to-mean relationship (i.e. the condi-

tional variance is proportional to the squared conditional mean), where σ2
t > 0 is the variance

of ξt and is S-periodic by construction (from the ipdS property of the innovation sequence

{ξt, t ∈ Z}). The specification (2.1) is a multiplicative error model (MEM) in the sense of

Engle (2002), but the conditional mean equation (2.1b) has rather periodic time-varying coef-

ficients. For S = 1, model (2.1) reduces to the standard autoregressive conditional duration

(ACD in short) of Engel and Russell (1998). No specification for the distribution of {ξt, t ∈ Z}

is imposed apart the semiparametric quadratic variance-to-mean function (2.2b). However, a

useful family of conditional distributions satisfying (2.2b) is the Gamma distribution with shape

1
σ2
t
and scale 1

σ2
tψt

, that is

Yt|Ft−1 ∼ Γ
(

1
σ2
t
, 1
σ2
tψt

)
, (2.3)

where ψt satisfies (2.1b). In the latter case, the innovation term ξt in (2.1) will be marginally

Gamma distributed

ξt ∼ Γ
(

1
σ2
t
, 1
σ2
t

)
, (2.4)

and the process defined by (2.3) is called Gamma PACD(p, q). A notable particular case of

model (2.3) appears when the variance σ2
t ≡ 1 is constant, so ξt ∼ Γ (1, 1), which corresponds

to the exponential PACD. As in the time-invariant case, the periodic ACD model can be seen as

a squared periodic GARCH (PGARCH) model as proposed by Ghysels and Bollerslev (1996).

Indeed, consider the following real-valued PGARCH(p, q) process given by

Xt =
√
htηt (2.5a)

and

ht = ωt +

q∑

i=1

αtiX
2
t−i +

p∑

j=1

βtjht−j (2.5b)

where {ηt, t ∈ Z} is an ipdS sequence with mean zero and unit variance, and the parameters

ωt, αti and βtj are defined as above. It is clear that the squared PGARCH process defined by

Yt = X2
t (t ∈ Z) satisfies the PACD equation (2.1) with ξt = η2t and ψt = ht. Conversely,
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let {Yt, t ∈ Z} be a PACD model given by (2.1), and assume {zt, t ∈ Z} is an independent

and identically distributed (iid) sequence uniformly distributed in {−1, 1} (see also Francq

and Zakoian, 2019 for the non-periodic case S = 1). Assume {zt, t ∈ Z} and {ξt, t ∈ Z} are

independent and define the process {Xt, t ∈ Z} by

Xt = zt
√
Yt =

√
htηt

where ht = ψt satisfies (2.5b) and ηt = zt
√
ξt is a term of an ipdS sequence. Hence {Xt, t ∈ Z}

is a PGARCH model in the sense of (2.5). Note finally that a PACD model admits a weak

periodic ARMA (PARMA) (Lund and Basawa, 2000; Francq et al, 2011). Setting Yt = ψt+ εt,

the process {Yt, t ∈ Z} may be written in the following PARMA

Yt = ωt +

max(p,q)∑

i=1

(αti + βtj)Yt−i + εt −
p∑

j=1

βtjεt−j

where

εt = Yt − E (Yt|Ft−1) = ψt (ξt − 1) (2.6)

is a zero-mean term of a martingale difference sequence with a finite periodic variance E (ε2t ) =

E (ψ2
t )E (ξt − 1)2 = E (ψ2

t ) σ
2
t .

A more general PACD, which is not necessarily MEM is defined through a conditional

distribution of the form

Yt|Ft−1 ∼ Fψt (2.7)

where Fψ is a cumulative probability distribution (with positive support) with mean ψ, and ψt

is given by (2.1b).

3 Periodic ergodicity and finite moment conditions

We now give necessary and/or sufficient conditions for model (2.1) to be strictly periodically

stationary and periodically ergodic. Such properties are recalled in the Supplementary material.

We also consider conditions for the existence of finite moments. Combining (2.1a) and (2.1b)
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we obtain the following stochastic recurrence equation (SRE)

Y t = AtY t−1 +Bt (3.1)

driven by the ipdS sequence {(At, Bt), t ∈ Z}, where Y t = (Yt, ..., Yt−q+1, ψt, ..., ψt−p+1)
′, Bt =

(
ωtξt, 0(q−1)×1, ωt, 0(p−1)×1

)′
, and

At =




αt1ξt · · · αt,q−1ξt αtqξt βt1ξt · · · βt,p−1ξt βtpξt

1 · · · 0 0 0 · · · 0 0

...
. . .

...
...

...
. . .

...
...

0 · · · 1 0 0 · · · 0 0

αt1 · · · αt,q−1 αtq βt1 · · · βt,p−1 βtp

0 · · · 0 0 1 · · · 0 0

...
. . .

...
...

...
. . .

...
...

0 · · · 0 0 0 · · · 1 0




,

0m×n being the null matrix of dimension m× n. Let

γS = inf

{
1

n
E log ‖AnS...A2A1‖ , n ≥ 1

}

be the top Lyapunov exponent associated with the ipdS-driven SRE (3.1) (Aknouche et al,

2020). Let also

βt =




βt1 · · · βt,p−1 βtp

1 · · · 0 0

...
. . .

...
...

0 · · · 1 0




,

and denote by ρ (A) the spectral radius of the squared matrix A, i.e. the maximum modulus

of the eigenvalues of A. The following result gives the conditions for equation (3.1) to have a

unique strictly periodically stationary and periodically ergodic solution.

Theorem 3.1 i) Assume E (log (ξv)) < ∞ for all 1 ≤ v ≤ S. A necessary and sufficient

condition for model (2.1) to have a unique nonanticipative strictly periodically stationary and
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periodically ergodic solution is that

γS < 0. (3.2)

Such a solution is given for all t ∈ Z by

Y t =
∞∑

j=0

j−1∏

i=0

At−iBt−j, (3.3)

where the series in the right hand side of (3.3) converges absolutely almost surely.

ii) If (2.1) admits a strictly periodically stationary solution then

ρ

(
S−1∏

v=0

βS−v

)
< 1. (3.4)

In the special case where p = q = 1, the periodic stationarity condition (3.2) is simplified

as follows
S∑

v=1

E (log (αvξv−1 + βv)) < 0,

while (3.4) reduces to
S∏
v=1

βv < 1.

Conditions for the existence of moments of the PACD(p, q) process are given as follows.

Theorem 3.2 Assume E (ξv) <∞ for all 1 ≤ v ≤ S. A sufficient condition for the process

given by (2.1) to be strictly periodically stationary and periodically ergodic with E (Yt) < ∞ is

that

ρ

(
S−1∏

v=0

E (AS−v)

)
< 1. (3.5)

Some remarks are in order:

- In the case, where S = 1, the conditional mean coefficients are time-invariant, that is

ωtj = ω, αtj = αj and βtj = βj. Therefore, using a similar device by Chen and An (1998), (3.5)

reduces to the following stationarity in mean condition

q∑

i=1

αi +

p∑

j=1

βj < 1

as provided by Engle and Russell (1998).

- When p = q = 1, the periodic stationarity in mean condition (3.5) is equivalent to the
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following condition
S∏

v=1

(αv + βv) < 1. (3.6)

Theorem 3.3 i) Under (3.2) there exists κ > 0 such that for all 1 ≤ v ≤ S

E (ψκv ) <∞ and E (Y κ
v ) <∞. (3.7)

ii) Let {Yt, t ∈ Z} be a strictly periodically stationary solution of (2.1) and assume that

E (ξmv ) (m ∈ N
∗) is finite for all 1 ≤ v ≤ S. A sufficient condition for E (Y m

v ) to be finite (for

all 1 ≤ v ≤ S) is that

ρ

(
S−1∏

v=0

E
(
A⊗m
S−v
)
)
< 1 (3.8)

where A⊗m is the Kronecker product: A⊗ A⊗ · · · ⊗ A with m factors.

In the special case of Gamma PACD with p = q = 1, explicit conditions equivalent to (3.8)

can be given. These conditions are also necessary for the existence of finite moments.

Proposition 3.1 The Gamma PACD (1, 1) model (2.3) admits a unique nonanticipative

periodically ergodic solution {Yt, t ∈ Z} such that:

i) E (Yv) <∞ (1 ≤ v ≤ S) if and only if (3.6) holds.

ii) E (Y 2
v ) <∞ ( 1 ≤ v ≤ S) if and only if E (ξ2v) <∞ (1 ≤ v ≤ S), (3.6) and

S∏

v=1

(
α2
vE
(
ξ2v−1

)
+ 2αvβv + β2

v

)
< 1. (3.9)

iii) E (Y 3
v ) <∞ (1 ≤ v ≤ S) if and only if E (ξ3v) <∞ ( 1 ≤ v ≤ S), (3.6), (3.9) and

S∏

v=1

(
E
(
ξ3v−1

)
α3
v + 3

(
σ2
v−1 + 1

)
α2
vβv + 3αvβ

2
v + β3

v

)
< 1. (3.10)

iv) E (Y 4
v ) < ∞ (1 ≤ v ≤ S) if and only if E (ξ4v) < ∞ ( 1 ≤ v ≤ S), (3.6), (3.9), (3.10)

and the following hold

S∏

v=1

(
E
(
ξ4v−1

)
α4
v + 4

(
1 + σ2

v−1

) (
1 + 2σ2

v−1

)
α3
vβv + 6

(
1 + σ2

v−1

)
α2
vβ

2
v + 4αvβ

3
v + β4

v

)
< 1.

(3.11)

For the particular exponential PACD(1, 1) model, Yt|Ft−1 ∼ Γ
(
1, 1

ψt

)
, just replace in
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Proposition 3.1 the moments E (ξ2v), E (ξ3v) and E (ξ4v) by 1, 6 and 24 respectively, and σ2
v

by 1 for all 1 ≤ v ≤ S.

4 Gamma quasi-maximum likelihood estimates

Let Y1, Y2, ..., YT be a series generated from the PACD(p, q) model, which we can rewrite in the

following form

YnS+v = ψnS+vξnS+v,

ψnS+v = ψnS+v (θ0) = ω0
v +

q∑
i=1

α0
viYnS+v−i +

p∑
j=1

β0
vjψnS+v−j,

1 ≤ v ≤ S, n ∈ Z (4.1)

where the true parameter θ0 = (θ0′1 , θ
0′
2 , ..., θ

0′
S )

′ with θ0v = (ω0
v , α

0
v1, ..., α

0
vq, β

0
v1, ..., β

0
vp)

′ (1 ≤ v ≤

S) belongs to a parameter space Θ ⊂
(
(0,∞)× [0,∞)(p+q)

)S
. The true innovation variance

parameter σ2
0 = (σ2

01, ..., σ
2
0S)

′
with σ2

0v = V ar (ξnS+v) (1 ≤ v ≤ S) also belongs to a parametric

space ∆ ⊂ R
S
+. The sample size T = NS (N ≥ 1) is assumed without loss of generality a

multiple of S. Given initial values Y0, ..., Y1−q, ψ̃0, ..., ψ̃1−p and a generic parameter θ ∈ Θ define

ψ̃nS+v (θ) = ωv +

q∑

i=1

αviYnS+v−i +

p∑

j=1

βvjψ̃nS+v−j (θ) , 1 ≤ v ≤ S, n ≥ 0, (4.2a)

as an observable proxy for ψnS+v (θ). The latter is defined as a periodically stationary solution

of the following generic model (θ ∈ Θ)

ψnS+v (θ) = ωv +

q∑

i=1

αviYnS+v−i +

p∑

j=1

βvjψnS+v−j (θ) , 1 ≤ v ≤ S, n ∈ Z. (4.2b)

4.1 Exponential and profile Gamma QMLEs

The true conditional distribution of (4.1) is unknown due to the unpecification of the law of

ξv (1 ≤ v ≤ S). Thus, a quasi-maximum likelihood estimate (QMLE) which does not require

any precise knowledge of the conditional distribution is suitable for estimating the parameter

θ0 involved in the conditional mean. Among many possible QMLEs, the one computed on

the basis of the exponential distribution (EQMLE in short) is especially useful for positive

duration data because it reduces to the maximum likelihood estimate when ξv is exponentially
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distributed (Aknouche and Francq, 2020). A more general QMLE, which can be more efficient

than the EQMLE in the periodic time-varying innovation context is the one computed on the

basis of the Gamma distribution with arbitrary fixed variance parameters. Let (σ2
t )t be fixed

known positive numbers, S-periodic over t, i.e. σ2
v+kS = σ2

v , for all k ∈ {0, ..., N − 1}. The

profile Gamma likelihood associated with σ2 = (σ2
1, ..., σ

2
S)

′
> 0 is given, ignoring constants, by

L̃T (θ) =
1
T

T∑

t=1

l̃t (θ) , (4.3a)

l̃t (θ) =
1
σ2
t

(
Yt

ψ̃t(θ)
+ log ψ̃t (θ)

)
, t ≥ 1. (4.3b)

The profile Gamma QMLE (GQMLE) θ̂G of θ0 is, then, the minimizer of L̃T (θ) over Θ,

θ̂G = argmin
θ∈Θ

L̃T (θ) . (4.4)

When σ2 = (1, ..., 1)′, the GQMLE defined by (4.4) reduces to the EQMLE and is denoted

by θ̂E (Aknouche and Francq, 2020).

Let γS (A0) be the top Lyapunov exponent associated with (A0
t , t ∈ Z) where the matrix A0

t

is just At defined in (3.1) with θ0 in place of θ. To establish the strong consistency of θ̂G we

need to the following assumptions.

A1 γS (A0) < 0 and ∀θ ∈ Θ, ρ

(
S−1∏
v=0

βS−v

)
< 1.

A2 θ0 ∈ Θ and Θ is compact.

A3 The polynomials α0
v (z) =

q∑
i=1

α0
viz

i and β0
v (z) = 1 −

p∑
j=1

β0
vjz

j have no common root,

α0
v (1) 6= 0, and α0

vq + β0
vp 6= 0 for all 1 ≤ v ≤ S.

A4 ξv is non-degenerate for all 1 ≤ v ≤ S.

As seen in Section 3, γS (A0) < 0 in A1 ensures periodic stationarity and periodic ergodicity

of the PACD model (4.1). The condition ρ

(
S−1∏
v=0

βS−v

)
< 1 is imposed for the invertibility of

equation (4.2b) for any θ ∈ Θ. The compactness assumption A2 is standard while A3 and A4

are made to guarantee the identifiability of the model.

Theorem 4.1 Let
(
θ̂G

)
be a sequence of EQMLEs defined by (4.3). Under A1-A4,

θ̂G → θ0 a.s. as N → ∞ for all σ2 > 0.
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Turn now to the asymptotic normality property of θ̂G. The following assumptions are to be

considered.

A5 θ0 belongs to the interior of Θ.

A6 The matrices

I
(
θ0, σ

2
)
=

S∑

v=1

σ2
0v

σ4
v
E
(

1
ψ2
v(θ0)

∂ψv(θ0)
∂θ

∂ψv(θ0)
∂θ′

)
, J
(
θ0, σ

2
)
=

S∑

v=1

1
σ2
v
E
(

1
ψ2
v(θ0)

∂ψv(θ0)
∂θ

∂ψv(θ0)
∂θ′

)
(4.5)

are finite, and J (θ0, σ
2) is nonsingular for all σ2 > 0.

Theorem 4.2 Under A1-A6 we have

√
N
(
θ̂G − θ0

)
D→ N (0,Σ) as N → ∞ for all σ2 > 0 (4.6a)

where

Σ = J
(
θ0, σ

2
)−1

I
(
θ0, σ

2
)
J
(
θ0, σ

2
)−1

(4.6b)

is block-diagonal and
D→ stands for convergence in distribution.

Remark 4.1

i) When σ2 = (1, ..., 1)′ := 1, the EQMLE has a covariance matrix in a ”sandwich” form

and is, in general, not asymptotically efficient unless σ2
0 = 1 and the conditional distribution is

exponential.

ii) For the special exponential PACD(p, q) model corresponding to V ar (ξv) = 1 for all

1 ≤ v ≤ S, if we set σ2 = 1 then J (θ0,1) = I (θ0,1) and the asymptotic covariance matrix of

the EQMLE reduces to Σ = J (θ0,1)
−1. The EQMLE is thus asymptotically efficient.

iii) If ξv has a constant variance, i.e. σ2
0v = V ar (ξv) = σ2

0 for all 1 ≤ v ≤ S, then it suffices

to take σ2 = (1, ..., 1)′ and apply the EQMLE. We would have I (θ0,1) = σ2
0J (θ0,1) and the

covariance matrix would be equal to Σ = σ2
0J (θ0,1)

−1. In this case, the EQMLE is the best

QMLE among all QMLEs belonging to the linear exponential family.

iv) For the non-periodic ACD corresponding to S = 1 and then σ2
0v = σ2

0 for all 1 ≤ v ≤ S,

it is natural to take σ2
v = σ2 for all 1 ≤ v ≤ S. In this case, the profile likelihood (4.3) would

be given by L̃t (θ) =
1
σ2

1
T

T∑
t=1

(
Yt

ψ̃t(θ)
+ log

(
ψ̃t (θ)

))
and the resulting GQMLE then reduces to

maximizing 1
T

T∑
t=1

(
Yt

ψ̃t(θ)
+ log

(
ψ̃t (θ)

))
which is nothing else but the EQMLE criterion. This
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is why, in general, the EQMLE is the most used QMLE for non-periodic ACD even when the

latter is strictly (conditionally) Gamma distributed.

v) When the profile variance σ2 coincides with the true variance σ2
0 we would have J (θ0, σ

2
0) =

I (θ0, σ
2
0) and Σ = J (θ0, σ

2
0)

−1
, where the GQMLE is the most efficient among all QMLEs be-

longing to the exponential family. As σ2
0 is generally unknown, a crucial step is to get a

consistent estimate σ̂2
0 and construct with it an estimated (profile) log-likelihood from which

a new Gamma QMLE, called the two-stage Gamma QMLE (2S-GQMLE), is computed. The

resulting estimate would have the aforementioned efficiency property.

vi) Theorem 4.1 and 4.2 also hold for the non-MEM PACD (2.7). It suffices to replace the

assumptions A1-A4 by the following:

A1’ The process {Yt, t ∈ Z} is strictly periodically stationary and periodically ergodic.

A2’ E
(
Y 1+ǫ
t

)
<∞ for some ǫ > 0.

A3’ ψt (θ) = ψt (θ0) a.s. ⇒ θ = θ0.

4.2 Estimating the innovation variances

To estimate the unknown variances σ2
0 under the MEM constraint recall (2.1)-(2.2) and let

ut = (Yt − ψt)
2 − V ar (Yt|Ft−1) = ψ2

t

(
(ξt − 1)2 − σ2

0t

)
.

Then,

(Yt−ψt)2
ψ2
t

= σ2
0t + vt (4.7a)

where vt = ut
ψ2
t

= (ξt − 1)2 − σ2
0t. The sequence (vt) is thus zero-mean iid with variance

E
(
(ξt − 1)2 − σ2

0t

)2
, which is finite under the following assumption.

A7 E (ξ4v) <∞ for all v = 1, ..., S.

Since ψt = ψt (θ0) depends on the unknown parameter θ0, the regressand in (4.7a) is unob-

servable. If we replace θ0 by a consistent estimate, say the GQMLE in (4.4), then we get the

following approximate regression but with observable regressand

(Yt−ψ̂t)
2

ψ̂2
t

= σ2
0t + v̂t, (4.7b)

13



where ψ̂t = ψt

(
θ̂G

)
. From (4.7b) a feasible OLS estimate (OLSE) of σ2

0 is given by

σ̂2
v =

1
N

N−1∑

n=0

(Yv+nS−ψ̂v+nS)
2

ψ̂2
v+nS

, for all v = 1, ..., S. (4.8)

The following result shows that the OLSE σ̂2
v (1 ≤ v ≤ S) is consistent and asymptotically

Gaussian.

Theorem 4.3 Under A1-A4

σ̂2
v → σ2

0v a.s. as N → ∞, for all v = 1, ..., S. (4.9a)

If in addition A7 holds then for all v = 1, ..., S

√
N
(
σ̂2
v − σ2

0v

) D→ N (0,Λv) as N → ∞ (4.9b)

where Λv = E
(
(ξv − 1)2 − σ2

0v

)2
.

A consistent estimate of the limiting variance Λv in (4.9b) is given by

Λ̂v =
1
N2

N−1∑

n=0

((
ξ̂v+nS − 1

)2
− σ̂2

v

)2

, v = 1, ..., S, (4.10)

where ξ̂v+nS = Yv+nS

ψ̂v+nS
is the residual of model (2.1). With (4.9b) and (4.10), the asymptotic

matrices in (4.5) may also be estimated. A consistent estimate of Σ is

Σ̂ = Ĵ−1Î−1Ĵ−1 (4.11)

where

Ĵ = 1
N

N−1∑

n=0

S∑

v=1

1

σ2
vψ

2
v+nS(θ̂G)

∂ψψv+nS(θ̂G)
∂θ

∂ψψv+nS(θ̂G)
∂θ′

, Î = 1
N

N−1∑

n=0

S∑

v=1

σ̂2
v

σ4
vψ

2
v+nS(θ̂G)

∂ψv+nS(θ̂G)
∂θ

∂ψv+nS(θ̂G)
∂θ′

.

4.3 Two-stage Gamma QMLE

We have seen above that the asymptotic distribution and then the asymptotic efficiency of the

profile GQMLE depend on the choice of the profile variance σ2. To improve the efficiency of the
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GQMLE, we can replace in (4.4) the profile variances σ2 by the OLS estimates σ̂2 = (σ̂2
1, ..., σ̂

2
S)

′

given by (4.8). The resulting estimate is denoted by 2S-GQMLE and is given by the following

steps.

Algorithm 4.1 Two-stage GQMLE

i) Fix an arbitrarily σ2 > 0, for example σ2 = (1, ..., 1)′.

ii) Get the profile GQMLE θ̂G from (4.4).

iii) Estimate the variance innovation σ2
0 using σ̂2 in (4.8).

iv) Consider the 2S-GQMLE as a solution of the following problem

θ̂∗G = argmin
θ∈Θ

N−1∑

n=0

S∑

v=1

(
Yv+nS

σ̂2
vψ̃v+nS(θ)

+ 1
σ̂2
v
log ψ̃v+nS (θ)

)
. (4.12)

Consistency of asymptotic normality of θ̂∗G are a by-product of Theorems 4.1-4.2.

Corollary 4.1 Under A1-A4

√
N
(
θ̂∗G − θ0

)
D→ N

(
0, J

(
θ0, σ

2
)−1
)

as N → ∞ for all σ2 > 0.

The latter result shows that whatever the distribution of (ξv)v is, the 2S-GQMLE θ̂∗G is

asymptotically the most efficient one among all QMLEs belonging to the linear exponential

family (cf. Gourieroux et al, 1984; Wooldridge, 1999). In particular, θ̂∗G in never asymptotically

less efficient than the profile GPQMLE θ̂G and therefore than the EQMLE θ̂E.

5 Simulation study

We examine the finite-sample behavior of the Gamma QMLEs, as defined above, using many

simulated PACD(1,1) series with sample size T = 2000. We consider two distributions for the

innovation ξt in (2.1), namely i) the exponential distribution (ξt ∼ E (1) ≡ Γ (1, 1)) so that

Yt|Ft−1 ∼ Γ (1, 1/ψt), and ii) the Gamma distribution (ξt ∼ Γ
(
σ−2
0t , σ

−2
0t

)
) so that Yt|Ft−1 ∼

Γ
(
σ−2
0t , σ

−2
0t /ψt

)
, where σ−2

0v (1 ≤ v ≤ S).

For these two cases we take S = 5, which is representative of many real daily trading

measurements, such as trading volumes and realized volatilities. The true conditional mean

parameters, which are reported in Tables 5.1 and 5.2, are chosen so that the PACD model to
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be stable in the sense of Section 3, while implying fairly persistent series that are in accordance

with the empirical evidence. For each case and for each series we compute the EQMLE and

the two-stage GQMLE (2S-GQMLE), using 1000 Monte Carlo replications.

The starting parameter value in the nonlinear optimization routines (4.4) and (4.12) is set to

the true value, while the unobservable starting values Y0 and ψ0 (θ) of the PACD(1, 1) equation

are set to the intercept ω0
0. The two-stage GQMLE is calculated, with the EQMLE computed

in the first stage.

EQMLE 2S-GQMLE

v θ0v ω0
v α0

v β0
v σ2

0v ω0
v α0

v β0
v

1

True

Mean

Std

0.5

0.5191

0.3163

0.6

0.5981

0.0709

0.35

0.3484

0.0698

1

0.9817

0.0968

0.5

0.5191

0.3168

0.6

0.5980

0.0710

0.35

0.3484

0.0699

2

True

Mean

Std

0.9

0.8941

0.3624

0.4

0.4003

0.0723

0.5

0.5039

0.0921

1

0.9917

0.1001

0.9

0.8940

0.3628

0.4

0.4001

0.0723

0.5

0.5040

0.0924

3

True

Mean

Std

1.5

1.4558

0.4795

0.5

0.5006

0.0784

0.5

0.5063

0.1010

1

0.9837

0.0992

1.5

1.4559

0.4806

0.5

0.5005

0.0783

0.5

0.5063

0.1011

4

True

Mean

Std

0.45

0.4521

0.4000

0.45

0.4490

0.0635

0.45

0.4453

0.0795

1

0.9859

0.1041

0.45

0.4525

0.4007

0.45

0.4492

0.0636

0.45

0.4452

0.0798

5

True

Mean

Std

0.7

0.6797

0.3828

0.55

0.5512

0.0726

0.40

0.4051

0.0804

1

0.9792

0.0939

0.7

0.6793

0.3832

0.55

0.5510

0.0728

0.40

0.4053

0.0806

Table 5.1. EQMLE and 2S-GQMLE results for 1000 PACD(1,1) series with n = 2000

generated from the exponential Γ (1, 1/ψt) distribution.

Means and standard deviations of the estimates θ̂E and θ̂∗G over the 1000 replications are

reported in Table 5.1 for the exponential PACD(1,1) model and in Table 5.2 for the homolog

Gamma PACD(1,1) model. It can be observed from Tables 5.1-5.2 that the results are consistent
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with asymptotic theory. They are indeed almost identical in the exponential case with a slight

superiority of the EQMLE over the 2S-GQMLE (cf. Table 5.1). The two estimates are, in

fact, asymptotically efficient in this case but the EQMLE is much simpler to compute. For

the Gamma PACD model in Table 5.2, θ̂∗G outperforms θ̂E in terms of bias and variability, as

expected. In all cases, the 2S-GQMLE is the least risky one in the misspecification case.

EQMLE 2S-GQMLE

v θ0v ω0
v α0

v β0
v σ2

0v ω0
v α0

v β0
v

1

True

Mean

Std

0.2

0.2099

0.1573

0.4

0.4022

0.0408

0.5

0.4991

0.0768

0.5

0.4976

0.0428

0.2

0.2020

0.1550

0.4

0.4012

0.0399

0.5

0.5006

0.0754

2

True

Mean

Std

0.9

0.8843

0.1462

0.3

0.3045

0.0654

0.6

0.6046

0.0891

0.3

0.2981

0.0240

0.9

0.8934

0.1452

0.3

0.3036

0.0553

0.6

0.6009

0.0798

3

True

Mean

Std

0.3

0.3341

0.2856

0.5

0.5030

0.1130

0.4

0.3815

0.1240

1.5

1.4729

0.1582

0.3

0.3417

0.2826

0.5

0.5058

0.1100

0.4

0.3777

0.1201

4

True

Mean

Std

0.4

0.4040

0.2645

0.45

0.4526

0.0702

0.45

0.4534

0.0971

1

0.9809

0.0935

0.4

0.3995

0.2599

0.45

0.4525

0.0681

0.45

0.4541

0.0933

5

True

Mean

Std

0.5

0.4997

0.2729

0.55

0.5546

0.0921

0.35

0.3494

0.1002

2

1.9424

0.2247

0.5

0.4923

0.2487

0.55

0.5546

0.0834

0.35

0.3533

0.0838

Table 5.2. EQMLE and 2S-GQMLE results for 1000 PACD(1,1) series with T = 2000

generated from the Gamma Γ (1/σ2
0t, 1/σ

2
0tψt) distribution.

6 Empirical applications

6.1 Application to Bitcoin trading volume data

In our application, we fit the PACD(1,1) model to the daily Bitcoin trading volume (BTV).

The dataset was obtained from the webpage www.blockchain.com. This series spans from July,
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Figure 6.1: Daily Bitcoin trading volume (BTV).

3, 2017 to June, 26, 2020, with a total of T = 1092 = 7× 156 observations. Figure 6.1 displays

the time series plot of the data.

In the context of Bitcoin prices, Mbanga (2019) found evidence of the presence of the day-of-

the-week pattern. Our aim here is to show that the Bitcoin volume data are also characterized

by the day-of-the-week effect, which implies a period of S = 7. Such a case is different from

the data usually encountered in non-cryptocurrency returns (such as stocks, exchange rates),

which are characterized by a periodicity of S = 5, due to the existence of non-trading days at

each week (Franses and Paap, 2000; Tsiakas, 2006).

Table 6.1 provides some descriptive statistics for the full sample and for each day of the week

separately. The mean of BVT series is clearly different from one day to another. The difference

is more pronounced for the Kurtosis and skewness across the days. Also, the estimated kernel

densities of the data across the days are visually different (see Supplementary material). In

that regard, we suspect that the day-of-the week effect may characterize the Bitcoin trading

volume series.

Day Full series Mon Tue Wed Thu Fri Sat Sun

Mean 40.8394 33.3621 41.3257 42.9304 46.3669 46.7979 44.2866 30.8063

Std 47.2340 40.9090 41.2095 49.5528 52.3069 57.7127 48.9096 34.3056

Kurtosis 17.2929 9.1734 6.6888 16.2964 11.3676 25.8981 10.0401 5.8247

Skewness 2.9736 2.3813 1.9404 3.1176 2.5808 3.8368 2.3894 1.8163

Table 6.1. Day-of-the-week pattern in the BVT series.
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We first estimate a standard ACD(1,1) model (i.e. PACD with S = 1), using the EQMLE

as recommended in Remark 4.1, (iv). This model is used as a competitor to our PACD(1,1).

The initial parameter values are set to θ(0) =
(
ω(0), α(0), β(0)

)
= (0.1, 0.3, 0.5) and the starting

values of the conditional mean equation are fixed to Y0 = ψ0 = ω(0). The estimated parameters

and their asymptotic standard errors (ASE) in parentheses, obtained from Theorem 4.2-4.3, are

reported in Table 6.2. In particular, the ASE of σ̂2 is computed from (4.10). The persistence

parameter estimate, α̂ + β̂ = 0.9865, indicates a strong persistence in the series, as expected.

ω̂ α̂ β̂ σ̂2 α̂ + β̂ IMSFE IMAFE

0.8293
(0.2062)

0.4615
(0.0270)

0.5250
(0.0296)

0.3351
(0.0019)

0.9865 701.9662 14.01243

Table 6.2. EQML estimates for the ACD(1,1); BTV series.

Table 6.2 also displays the in-sample mean square (one-step ahead) forecast error (IMSFE)

and the in-sample mean absolute forecast error (IMAFE) given by IMSFE= 1
T

T∑
t=1

(Yt − ψ̂t)
2

and IMAFE= 1
T

T∑
t=1

∣∣∣Yt − ψ̂t

∣∣∣, respectively. Unreported sample autocorrelations of the residu-

als consolidate the validity of the estimated ACD(1,1). Since this model does not take into

account the day-of-the-week effect, we fit a 7-periodic PACD(1,1) to the BVT series. To this

end, we utilize the 2S-GQMLE by starting from the EQMLE in the first stage with the fol-

lowing initial parameter values for the optimization routine: ω(0) = (0.6, 0.25, 0.35, 3, 2, 4, 1.5),

α(0) = (0.25, 0.15, 0.1, 0.3, 0.3, 0.4, 0.35) and β(0) = (0.7, 0.8, 0.85, 0.4, 0.5, 0.2, 0.45). These ini-

tial values are arbitrary but we checked that the estimates are robust even with other initial
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values.

Day v σ̂2
v ω̂v α̂v β̂v α̂v + β̂v IMSFE IMAFE

Mon 1 0.2526
(0.0050)

0.0165
(0.3537)

0.5205
(0.0421)

0.5645
(0.0481)

1.0850

Tue 2 0.2716
(0.0102)

2.9945
(0.4361)

0.5423
(0.0379)

0.7173
(0.0430)

1.2597

Wed 3 0.3682
(0.0180)

0.3109
(0.2705)

0.1544
(0.0414)

0.8710
(0.0428)

1.0244

Thu 4 0.2839
(0.0075)

0.0125
(0.6255)

0.4951
(0.0690)

0.5641
(0.0772)

1.0591

Fri 5 0.3299
(0.0092)

0.2889
(0.5360)

0.3663
(0.0655)

0.6358
(0.0714)

1.0021

Sat 6 0.2129
(0.0014)

1.3040
(0.5645)

0.4422
(0.0724)

0.4786
(0.0810)

0.9207

Sun 7 0.2372
(0.0043)

0.3513
(0.4721)

0.4339
(0.0781)

0.2256
(0.0914)

0.659 56

All
7∏
v=1

(α̂v + β̂v) 0.9025 651.9418 13.1164

Table 6.3. 2S-GQML estimates for the PACD(1,1); BTV series.

The 2S-GQML estimates and their ASEs in parentheses are reported in Table 6.3. We

observe that the estimates are quite different across the days. The persistence parameters over

the days show locally explosive behaviors except for Saturday and Sunday. However, the whole

persistence parameter,
∏7

v=1(α̂v + β̂v) = 0.9025 (also called the monodromy estimate) is, as

expected, considerably smaller than the one given by the estimated standard ACD(1,1). All

results have been obtained irrespective of any distributional specification of the models.

Note that the ASE of estimates for the PACD are larger than those obtained for the ACD.

This is due to the fact that for the PACD the ASEs are computed for lower channel series with

sample size T
S
= 156. To get the same precision as with the ACD we should consider larger

series with the sample size multiplied at least by 7. Nevertheless, in term of in-sample forecast

ability (IMSFE and IMASE), the PACD model outperforms the standard ACD.

To compare the out-of-sample forecasting performance of the two models, we estimate the

two competing models on the basis of the first Tf observations of the series, where 1 < Tf < T .

Then, we compute the one-step ahead forecast on the period (Tf + 1, ..., T ) based on

ψ̂t = ω̂t + α̂tYt−1 + β̂tψ̂t−1 for t = Tf + 1, ..., T .
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We finally calculate for each model the following three criteria: i) the mean square forecast

error MSFE= 1
T−Tf

T∑
t=Tf+1

(Yt − ψ̂t)
2, ii) the mean absolute forecast error MAFE =

1
T−Tf

T∑
t=Tf+1

∣∣∣Yt − ψ̂t

∣∣∣, and iii) the mean QLIKE (cf. Patton, 2011; Aknouche and Francq, 2019)

MQLI= 1
T−Tf

T∑
t=Tf+1

(log ψ̂t +
Yt

ψ̂t
).

Table 6.4 shows these computed values of these criteria for the two models and for various

truncated series with sample size Tf . It can be observed that irrespective of the chosen sample

size, the PACD yields better out-of-sample forecasts with regard to the aforementioned criteria.

Overall, the PACD(1, 1) outperforms the ACD(1, 1), both in terms of in-sample and out-of-

sample forecasting power.

Tf 500 600 700 800 900 1000

ACD

MSFE

MAFE

MQLI

207.8341

8.6659

3.8983

165.8957

7.8318

3.7735

89.6771

6.9127

3.6879

88.3917

6.6050

3.6052

94.4021

6.9080

3.6959

104.8815

7.6159

3.8487

PACD

MSFE

MAFE

MQLI

193.1508

8.0187

3.8759

151.0290

7.1074

3.7495

79.2446

6.1546

3.6605

80.8776

5.9031

3.5754

80.4284

6.02684

3.6635

93.9384

6.6908

3.8144

Table 6.4. Out-of-sample forecasting performance of the PACD and ACD; BVT series.

6.2 Application to the UN realized volatility

The second dataset is the daily UN realized volatility (RV) that covers the sample period from

January 04, 1999 to December, 31, 2008 with a total of T = 2489 observations. The plot of the

index series is displayed in Figure 6.2.

Table 6.5 reports some descriptive statistics concerning the whole series and the subseries

corresponding to the five trading days. It can be easily seen that these statistics strongly

indicate that the distributions of realized volatility are significantly different across the trading

days. This is also confirmed by the estimated kernel density of each trading day (Supplementary
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Figure 6.2: Daily UN realized volatility UN (UN-RV).

material). These facts suggests using a 5-periodic PACD(1, 1) model for these data.

Day Full series Mon Tue Wed Thu Fri

Sample size 2489 469 511 514 504 491

Mean 1.3085 1.1674 1.2528 1.3028 1.3631 1.4511

Std 1.7699 1.4919 1.4628 1.5890 1.9073 2.2648

Kurtosis 47.1196 26.3686 13.9103 23.4364 37.6800 55.2210

Skewness 5.1689 3.9488 2.9500 3.7675 5.0477 6.0455

Table 6.5. Day-of-the-week pattern in the UN-RV series.

As a reference model, we first estimate a standard ACD(1, 1) for the data. Table 6.6 shows

the EQML estimates and their asymptotic standard errors in parenthesis. The results signal a

high persistence near to instability.

ω̂ α̂ β̂ σ̂2 α̂ + β̂ IMSFE IMAFE

0.0109
(0.0031)

0.2849
(0.0157)

0.7084
(0.0162)

0.2841
(0.0005)

0.9933 1.1122 0.4842

Table 6.6. EQML estimates for the ACD(1,1); UN-RV series.

Table 6.7 displays the 2S-GQML estimates of the PACD(1,1) based on the UN-RV series.

These estimates are quite different across the days and are all significant. Also, the persistence

parameter, given by
∏7

v=1(α̂v+β̂v) = 0.8897, is significantly smaller than that obtained from the

the ACD. The ASEs of the estimates for the PACD are smaller than in the first application,

since the series here is quite longer. Moreover, the PACD model outperforms the standard
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ACD, according to the IMSFE and IMASE criteria.

Day v σ̂2
v ω̂v α̂v β̂v α̂v + β̂v IMSFE IMAFE

Mon 1 0.3805
(0.0082)

0.0164
(0.0098)

0.2374
(0.0390)

0.6702
(0.0417)

0.9076

Tue 2 0.2597
(0.0017)

0.0154
(0.0084)

0.3320
(0.0291)

0.6903
(0.0348)

1.0222

Wed 3 0.2552
(0.0012)

0.0015
(0.0088)

0.4023
(0.0327)

0.6521
(0.0354)

1.0544

Thu 4 0.2670
(0.0019)

0.0126
(0.0078)

0.3052
(0.0359)

0.7065
(0.0388)

1.0117

Fri 5 0.2682
(0.0023)

0.0884
(0.0132)

0.4138
(0.0390)

0.4851
(0.0442)

0.8989

All
7∏
v=1

(α̂v + β̂v) 0.8897 1.0570 0.4757

Table 6.7. 2S-GQML estimates for the PACD(1,1); UN-RV series.

We finally compare the out-of-sample forecasting performance of the two models, using the

same devices as before. From Table 6.8 it can be concluded that for all truncated series (with

sample size Tf ), the PACD gives more accurate forecasts, in terms of the MSFE and MAFE

values. Regarding the mean QLIKE criterion, the PACD is clearly the best one (except for

Tf = 1100 and Tf = 1200, where the models are almost comparable).

Tf 1100 1200 1500 1600 1800 2000

ACD

MSFE

MAFE

MQLI

1.0803

0.3662

0.4485

1.1501

0.3644

0.4534

1.4973

0.4219

0.5903

1.6645

0.4548

0.6690

2.1461

0.5509

0.9126

2.9891

0.6966

1.1470

PACD

MSFE

MAFE

MQLI

0.9729

0.3656

0.4564

1.0299

0.3564

0.4547

1.3543

0.4094

0.5893

1.4932

0.4353

0.6686

1.9275

0.5189

0.9074

2.7234

0.6536

1.1404

Table 6.8. Out-of-sample forecasting values for the PACD and ACD (UN-RV series).
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7 Conclusion and future research

A GARCH-like model for positive-valued data with seasonal behavior has been proposed. The

model consists of an ACD model with parameters evolving periodically over time. In our

methodology for studying and building such a model, we considered QML estimates that are

distribution free and are consistent and asymptotically Gaussian under general conditions. In

particular, our proposed two-stage Gamma QMLE takes into account the periodicity of the

innovation sequence, giving more accurate results compared to the exponential QMLE. The

proposed estimates are also consistent and asymptotically normal for more general non-MEM

forms.

The model was applied to two daily financial series with different periods (S = 7 and

S = 5) in an attempt to capture the day-of-the-week effect. A third application to daily S&P

500 volumes (with S = 5) is displayed in the Supplementary material and leads to the same

conclusions.

Our model can be applied to other data frequencies, such as monthly data with S = 12

and quarterly data with S = 4. Moreover, it may also be utilized as an approximate model for

count time series data with large values, such as the daily number of transactions in a market.

Although our model is named periodic ACD in reference to the ACD proposed by Engel

and Russell (1998), it is not recommended to model intraday durations, which are rather

characterized by a (stochastic) time-varying period, due to the irregularly-spaced nature of

durations. Furthermore, modeling intraday positive-valued series generally requires very large

periods for which the estimation of the parameters becomes very challenging.

For models with large periods, some basis functions for reducing the number of parameters,

such as Fourier approximation (Bollerslev et al, 2000; Rossi and Fantazani, 2015; Bracher and

Held, 2017), periodic B-splines (Ziel et al, 2015) or periodic wavelets (Ziel et al, 2016) could be

adapted to our model. These issues are left for future research.
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Proofs

Proof of Theorem 3.1 i) The ipdS-driven SRE (3.1) can be embedded in the following

system of S SREs

Y nS+v = AnS+vY (n−1)S+v + BnS+v, n ∈ Z, v ∈ {0, ..., S − 1} , (A.1)

where AnS+v =
∏S−1

i=0 AnS+v−i and BnS+v =
∑S−1

j=0

∏j−1
i=0 AnS+v−iBnS+v−j are such that the

sequence {(AnS+v,BnS+v), n ∈ Z} is iid for all v ∈ {0, ..., S − 1}. The standard top Lyapunov

exponent γ
(S)
v associated with the iid -driven SRE (A.1) is given for all v ∈ {0, ..., S − 1} by (cf.

Bougerol and Picard, 1992a)

γ(S)v = inf
{

1
n
E log

∥∥AnS+vA(n−1)S+v...AS+v

∥∥ , n ≥ 1
}

(A.2)

= lim
n→∞

1
n
log ‖AnS+vAnS+v−1...Av+1‖ a.s.

Since Eξv < ∞ it follows that E log+ ‖Av‖ < ∞ and E log+ ‖Bv‖ < ∞ for all 0 ≤ v ≤ S − 1.

Therefore, by Theorem 2.5 of Bougerol and Picard (1992a), equation (A.1) admits a unique

nonanticipative strictly stationary and ergodic solution
{
Y nS+v, n ∈ Z

}
under γ

(S)
v < 0. That

solution is given for all v ∈ {0, ..., S − 1} by

Y nS+v =
∞∑

j=0

j−1∏

i=0

A(n−i)S+vB(n−j)S+v, n ∈ Z, v ∈ {0, ..., S − 1} (A.3)

which is exactly (3.3), where the series in equality (A.3) converges absolutely a.s. This shows

that {Y t, t ∈ Z} is the unique causal strictly periodically stationary and periodically ergodic

solution of (3.1). By a sandwiching argument, it is easily seen that for all v ∈ {0, ..., S − 1}

γ(S)v = lim
n→∞

1
n
log ‖AnS+vAnS+v−1...Av+1‖ = lim

n→∞
1
n
log ‖AnSAnS−1...A1‖ := γ(S).

ii) If model (3.1) admits a nonanticipative strictly periodically stationary solution {Y t, t ∈ Z}

then from the non-negativity of the coefficients of At in (3.1) it follows that for all k > 1,

Y v ≥
k∑

j=0

j−1∏

i=0

Av−iBv−j, a.s.,
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so the series
∞∑
j=0

j−1∏
i=0

Av−iBv−j converges a.s. Therefore
j−1∏
i=0

Av−iBv−j → 0 a.s. as j → ∞, from

which we have to show that
j−1∏
i=0

Av−i → 0 a.s. as j → ∞.This holds whenever

lim
j→∞

j−1∏

i=0

Av−iem = 0, a.s. for all 1 ≤ m ≤ r, (A.4)

where r = p+q and (em)1≤m≤r is the canonical basis of R
r. Since At has the same zero-structure

as the matrix At in Bougerol and Picard (1992b), then (A.4) follows from their results using

the same argument.

ii) By the nonnegativity of {At, t ∈ Z} we have

γS (A) ≥ γS (β) := log ρ

(
S−1∏

v=0

βS−v

)
. (A.5)

If (3.1) admits a strictly periodically stationary solution then γS (A) < 0. In view of (A.5), it

follows that

γS (β) < 0 (A.6)

which in turn implies (3.4). �

Proof of Theorem 3.2 Theorem 3.2 is a particular case of Theorem 3.3, ii). �

Proof of Theorem 3.3 i) The proof is similar to the one of Lemma 2.3 of Berkes et al

(2003). See Supplementary material.

ii) Define
{
Ỹt, t ∈ Z

}
by 




Ỹt = AtỸt−1 +Bt t ≥ 1

Ỹt = 0 t ≤ 0,
(A.7)

and let Y (v) (0 ≤ v ≤ S − 1) be a random variable having the same distribution as the term

Y nS+v of the unique periodically stationary solution given by (3.1). By construction ỸnS+v
L→

Y (v) as n→ ∞. Let m = 2. From the weak convergence theory (Billingsley, 1968), to show that

E
(
vec
(
Y (v)Y (v)′

))
is finite for all v, it is sufficient to show that lim inf

n→∞
E
(
vec
(
Ỹ ′
nS+vỸnS+v

))
<

∞ for all v. Set VnS+v = E
(
vec
(
Ỹ ′
nS+vỸnS+v

))
. From (A.7) we get the following first-order
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S-periodic difference equation

VnS+v = E
(
A⊗2
v

)
VnS+v−1 + [E(Av ⊗ Bv) + E(Bv ⊗ Av)]E

(
ỸnS+v

)
+ vec(E (BvB

′
v)) (A.8)

where E
(
A⊗2
t

)
, E(At ⊗Bt) and vec(E (BtB

′
t)) are finite S-periodic matrices over t. Since, the

last two terms of the right-hand side of (A.8) are bounded, it follows that lim
n→∞

VnS+v exists for

every 1 ≤ v ≤ S as long as (3.8) holds, from which follows the proof for m = 2. For general m,

the proof is similar. �

Before giving the proof of Proposition 3.1, we need to state the following well-known result

on linear ordinary periodic difference equations. Let

yt = atyt−1 + bt, t ∈ Z, (A.9)

be an ordinary difference equation with S-periodic positive coefficients at = at+S > 0 and

bt = bt+S > 0 for all t ∈ Z.

Lemma 1 The real-valued ordinary difference equation (A.9) admits a unique solution

{yt, t ∈ Z} if and only if
S∏

v=1

av < 1.

Proof of Proposition 3.1 It is well-known that if Yt|Ft−1 ∼ Γ
(

1
σ2
t
, 1
σ2
tψt

)
then the

conditional moments up to the fourth order are given by

E (Yt|Ft−1) = ψt (A.10a)

E
(
Y 2
t |Ft−1

)
=

(
1 + σ2

t

)
ψ2
t (A.10b)

E
(
Y 3
t |Ft−1

)
=

(
1 + σ2

t

) (
1 + 2σ2

t

)
ψ3
t (A.10c)

E
(
Y 4
t |Ft−1

)
=

(
1 + σ2

t

) (
1 + 2σ2

t

) (
1 + 3σ2

t

)
ψ4
t . (A.10d)

In view of (A.10) it turns out that the conditional moment of Yt of order i is a polynomial

in ψt with degree i (i = 1, 2, 3, 4). Hence E (Y i
t ) < ∞ if and only if E (ψit) < ∞ (i = 1, 2, 3, 4),

conditions for which are given as follows.

i) Expanding E (ψt) using (2.1b) with p = q = 1 and (A.10a), we find the following linear
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S-periodic difference equation

E (ψt) = (αt + βt)E (ψt−1) + ωt, t ∈ Z. (A.11)

By Lemma 1, there is a unique solution of (A.11) if and only if (3.6) holds.

ii) For the existence of the second moments E (Y 2
v ) (1 ≤ v ≤ S), expanding E (ψ2

t ) using

(2.1b) and (3.10a)-(3.10b), we find the following linear periodic difference equation

E
(
ψ2
t

)
=
(
α2
tE
(
ξ2t−1

)
+ 2αtβt + β2

t

)
E
(
ψ2
t−1

)
+K

(1)
t , t ∈ Z, (A.12)

where

K
(1)
t = (2αtωt + 2βtωt)E (ψt−1) + ω2

t

is finite if and only if E (ψt−1) < ∞, and thus if and only if (3.6) holds. By Lemma 1, there

exists a unique solution to (A.12) if and only if (3.6) and (3.9) are satisfied.

iii) Expanding E (ψ3
t ) using (2.1b) and (A.10a)-(A.10c) we get the following linear periodic

difference equation

E
(
ψ3
t

)
=
(
α3
tE
(
ξ3t−1

)
+ 3α2

tβt
(
σ2
t−1 + 1

)
+ β3

t + 3αtβ
2
t

)
E
(
ψ3
t−1

)
+K

(2)
t , t ∈ Z (A.13)

where

K
(2)
t =

(
3α2

tωtE
(
ξ2t−1

)
+ 6αtβtωt + 3β2

t ωt
)
E
(
ψ2
t−1

)
+
(
3βtω

2
t + 3αtω

2
t

)
E (ψt−1) + ω3

t

is finite if and only if E
(
ψ2
t−1

)
<∞ and E (ψt−1) <∞. By Lemma 1, equation (A.13) admits

a unique solution if and only if (3.6), (3.9) and (3.10) hold.

iv) Expanding E (ψ4
t ) using (2.1b) and (A.10a)-(A.10d) we get the following linear periodic

difference equation

E
(
ψ4
t

)
=

(
α4
tE
(
ξ4t−1

)
+ 4α3

tβt
(
1 + σ2

t−1

) (
1 + 2σ2

t−1

)
+ 6α2

tβ
2
t

(
1 + σ2

t−1

)
+ 4αtβ

3
t + β4

t

)
E
(
ψ4
t−1

)

+K
(3)
t (A.14)
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where

K
(3)
t = 4α3

tωtE
(
Y 3
t−1

)
+ 12α2

tβtωtE
(
Y 2
t−1ψt−1

)
+ 12αtβ

2
t ωtE

(
Yt−1ψ

2
t−1

)

+4β3
t ωtE

(
ψ3
t−1

)
+ 6α2

tω
2
tE
(
Y 2
t−1

)
+ 12αtβtω

2
tE (Yt−1ψt−1) + 6β2

t ω
2
tE
(
ψ2
t−1

)

+4αtω
3
tE (Yt−1) + 4βtω

3
tE (ψt−1) + ω4

t

is finite under (3.6), (3.9) and (3.10). By Lemma 1, equation (A.14) admits a unique positive

solution if and only if (3.6), (3.9), (3.10) and (3.11) hold.

Proof of Theorem 4.1 Theorem 4.1 will be proved by showing several lemmas below. In

what follows M > 0 and ρ ∈ (0, 1) stand for constants that are not necessarily the same when

appearing in different terms. Let LT (θ) and lt (θ) be defined in the same way as L̃T (θ) and

l̃t (θ) in (4.3a) and (4.3b), respectively, with ψt (θ) in place of ψ̃t (θ).

Lemma 1 Under A1 and A2 we have

sup
θ∈Θ

∣∣∣LT (θ)− L̃T (θ)
∣∣∣→ 0 a.s. as T → ∞.

Proof Rewrite (4.2b) in a vector form as follows

ψ
t
= βtψt−1

+ αt, t ∈ Z, (A.15)

where ψ
t
= (ψt (θ) , ψt−1 (θ) , ..., ψt−p+1 (θ))

′ and αt =

(
ωt +

q∑
i=1

αtiYt−i, 0, ..., 0

)′

1×p
. By A1 and

the assumption A2 of compactness of Θ it follows that

sup
θ∈Θ

ρ

(
S−1∏

v=0

βS−v

)
< 1. (A.16)

Iterating (A.15) gives

ψ
t
=

t−1∑

k=0

k−1∏

i=0

βt−iαt−k +
t∏

i=0

βt−iψ0
, t ∈ Z.

Denote by ψ̃
t
and α̃t the vectors obtained from ψ

t
and αt, respectively, while replacing ψt−j (θ)

by ψ̃t−j with fixed initial values. From (A.15) and (A.16) we thus get

sup
θ∈Θ

∥∥∥ψ
t
− ψ̃

t

∥∥∥ = sup
θ∈Θ

∥∥∥∥∥

t−1∑

k=t−q

k−1∏

i=0

βt−i
(
αt−k − α̃t−k

)
+

t−1∏

i=0

βt−i

(
ψ

0
− ψ̃

0

)∥∥∥∥∥ ≤Mρt. (A.17)
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Using the inequality
∣∣log y

x

∣∣ ≤ |y−x|
min(y,x)

for positive x and y (cf. Francq and Zakoian, 2019) it

follows that

sup
θ∈Θ

∣∣∣LT (θ)− L̃T (θ)
∣∣∣ ≤ 1

T

T∑

t=1

sup
θ∈Θ

1
σ2
t

[∣∣∣ ψ̃t−ψt(θ)
ψ̃tψt(θ)

∣∣∣Yt +
∣∣∣log

(
ψt(θ)

ψ̃t(θ)

)∣∣∣
]

≤ max
1≤v≤S

sup
θ∈Θ

(
ω−2
v

σ2
v

)
M
T

T∑

t=1

ρtYt + max
1≤v≤S

sup
θ∈Θ

(
ω−2
v

σ2
v

)
M
T

T∑

t=1

ρt.

The existence of E
(
Y δ
t

)
(cf, Theorem 3.3, i)) implies, by the Borel-Cantelli lemma, that ρtYt →

0 a.s. and the conclusion follows by Césaro’s lemma. �

Lemma 2 Under A1-A4 there is t ∈ Z such that ψt (θ) = ψt (θ0) a.s. if and only if θ = θ0.

Proof From the assumption ρ

(
S−1∏
v=0

βS−v

)
< 1 in A1, the polynomials (βv (L))v are invert-

ible for all 1 ≤ v ≤ S and all θ ∈ Θ. Assume ψt (θ) = ψt (θ0) a.s. for some t ∈ Z. Using the

second equality in (4.1) and (4.2b) we have

(
αv(L)
βv(L)

− α0
v(L)
β0
v(L)

)
Yv+nS =

(
ω0
v

β0
v(L)

− ωv
βv(L)

)
for all 1 ≤ v ≤ S.

If αv(L)
βv(L)

6= α0
v(L)
β0
v(L)

for some 1 ≤ v ≤ S then there exists a deterministic periodic time-varying

combination of Yt−j, j ≥ 1. This contradicts A4 which assumes (ξt, t ∈ Z) non-degenerate,

since by (2.6) we have Yt = E (Yt|Ft−1) + ψt (ξt − 1). Therefore,

αv(z)
βv(z)

= α0
v(z)
β0
v(z)

∀ |z| ≤ 1 and ω0
v

β0
v(L)

− ωv
βv(L)

for all 1 ≤ v ≤ S,

and by the assumption A3 of no common roots between α0
v (z) and β0

v (z) it follows that

αv (z) = α0
v (z), βv (z) = β0

v (z) and ωv = ω0
v for all 1 ≤ v ≤ S. �

Lemma 3 Under A1
S∑

v=1

E (lv (θ0)) <∞,

and
∑S

v=1E (lv (θ)) is minimized at θ = θ0.

Proof By Jensen’s inequality and Theorem 3.3, ii) we have

S∑

v=1

E (logψv (θ0)) =
1
δ

S∑

v=1

E
(
logψv (θ0)

δ
)
≤ 1

δ

S∑

v=1

logE
(
ψv (θ0)

δ
)
<∞.
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Hence

S∑

v=1

E (lv (θ0)) =
S∑

v=1

1
σ2
v
E [ξv + logψv (θ0)] =

S∑

v=1

1
σ2
v
+

S∑

v=1

1
σ2
v
E (logψv (θ0)) <∞.

Using the inequality log (x) ≤ x− 1 we have for all θ ∈ Θ

S∑

v=1

E (lv (θ))−
S∑

v=1

E (lv (θ0)) =
S∑

v=1

1
σ2
v
E
[
log
(
ψv(θ)
ψv(θ0)

)
+ ψv(θ0)

ψv(θ)
− 1
]

≥
S∑

v=1

1
σ2
v
E
[
log ψv(θ)

ψv(θ0)
+ log ψv(θ0)

ψv(θ)

]
= 0, (A.18)

showing that
∑S

v=1E (lv (θ)) is minimized at θ0.

Lemma 4 For any θ 6= θ0 there exists a neighborhood V (θ) such that

lim
N→∞

inf inf
θ∈V (θ)

L̃NS
(
θ
)
> 1

S

S∑

v=1

E (lv (θ0)) .

Proof For all θ ∈ Θ and any positive integer k, let Vk (θ) be the open ball of center θ and

radius 1/k. In view of Lemma 1 we have

lim
N→∞

inf inf
θ∈Vk(θ)∩Θ

L̃T
(
θ
)

≥ lim
N→∞

inf inf
θ∈Vk(θ)∩Θ

LT
(
θ
)
− lim

N→∞
inf inf

θ∈Θ

∣∣∣LT (θ)− L̃T (θ)
∣∣∣

≥ lim
N→∞

inf 1
N

N−1∑

n=0

1
S

S∑

v=1

inf
θ∈Vk(θ)∩Θ

lv+nS
(
θ
)
.

By the ergodic theorem for the stationary sequence
{∑S

v=1 lv+nS
(
θ
)}

n
with E

(∑S

v=1 lv+nS
(
θ
))

∈

R∪{∞} (cf, Billingsley 1995, p. 495) it follows that

lim
N→∞

inf 1
N

N−1∑

n=0

1
S

S∑

v=1

inf
θ∈Vk(θ)∩Θ

lv+nS
(
θ
)
= 1

S

S∑

v=1

E

(
inf

θ∈Vk(θ)∩Θ
lv
(
θ
))

.

Beppo-Levi’s theorem (e.g. Billingsley, 1995, p. 219) yields

1
S

S∑

v=1

E

(
inf

θ∈Vk(θ)∩Θ
lv+nS

(
θ
))

→ 1
S

S∑

v=1

E (lv (θ)) as k → ∞,

and by (A.18) the result follows. �

31



Proof of Theorem 4.1 The proof of the theorem is completed by standard compactness

arguments using Lemmas 2-4. �

Proof of Theorem 4.2 The proof of Theorem 4.2 is based on a Taylor expansion of ∂L̃T (θ)
∂θ

at θ0 which, by A5 and the strong consistency of θ̂G, yields

0 =
√
N

∂L̃T (θ̂G)
∂θ

=
√
N ∂LT (θ0)

∂θ
+
√
N ∂2LT (θ

∗)
∂θ∂θ′

(
θ̂G − θ0

)
+
√
N

(
∂L̃T (θ̂G)

∂θ
− ∂LT (θ̂G)

∂θ

)

where θ∗ is between θ̂G and θ0. The derivatives ∂LT (θ)
∂θ

and ∂2LT (θ)
∂θ∂θ′

are given by

∂LT (θ)
∂θ

= 1
T

T∑

t=1

∂lt(θ)
∂θ

= 1
T

T∑

t=1

(
1− Yt

ψt(θ)

)
1

σ2
tψt(θ)

∂ψt(θ)
∂θ

∂2LT (θ)
∂θ∂θ′

= 1
T

T∑

t=1

[(
1− Yt

ψt(θ)

)
1

σ2
tψt(θ)

∂2ψt(θ)
∂θ∂θ′

+
(

2Yt
ψt(θ)

− 1
)

1
σ2
tψ

2
t (θ)

∂ψt(θ)
∂θ

∂ψt(θ)
∂θ′

]
.

Therefore, the asymptotic normality result (4.6) follows whenever the following lemmas are

established.

Lemma 5 Under A1-A2

i) sup
θ∈V (θ0)

√
N
∥∥∥∂LT (θ)∂θ

− ∂L̃T (θ)
∂θ

∥∥∥ p→
N→∞

0, ii) sup
θ∈V (θ0)

√
N
∥∥∥∂

2LT (θ)
∂θ∂θ′

− ∂2L̃T (θ)
∂θ∂θ′

∥∥∥ p→
N→∞

0

for some neighborhood V (θ0) of θ0.

Proof Following the same lines of Francq and Zakoian (2019, Section 7.4), it is easily seen

that under A1,

Eθ0

∥∥∥ 1
σ2
vψv(θ)

∂ψv(θ0)
∂θ

∥∥∥ < 1, Eθ0

∥∥∥ 1
σ2
vψ

2
v(θ)

∂2ψv(θ0)
∂θ∂θ′

∥∥∥ < 1, Eθ0

∥∥∥ 1
σ2
vψ

2
v(θ)

∂ψv(θ0)
∂θ

∂ψv(θ0)
∂θ′

∥∥∥ < 1. (A.19)

By (A.17), the compactness of Θ (cf. A2) and the fact that ρ

(
S−1∏
v=0

βS−v

)
< 1 (cf. A1) we

have

∣∣∣ 1

ψ̃t(θ)
− 1

ψt(θ)

∣∣∣ ≤ Mρt

ψt(θ)
ψt(θ)

ψ̃t(θ)
(1 +M) ρt,

sup
θ∈Θ

∣∣∣∂ψt(θ)∂θ
− ∂ψ̃t(θ)

∂θ

∣∣∣ ≤ Mρt, sup
θ∈Θ

∣∣∣∂
2ψt(θ)
∂θ∂θ′

− ∂2ψ̃t(θ)
∂θ∂θ′

∣∣∣ ≤Mρt,
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and

sup
θ∈V (θ0)

√
N
∥∥∥∂LT (θ)∂θ

− ∂L̃T (θ)
∂θ

∥∥∥ = sup
θ∈V (θ0)

1
S
√
N

∥∥∥∥∥

T∑

t=1

[(
1

ψ̃t(θ)
− 1

ψt(θ)

)
Yt

σ2
tψt(θ)

∂ψt(θ)
∂θ

+ 1
σ2
t

(
1− Yt

ψt(θ)

)(
1

ψt(θ)
− 1

ψ̃t(θ)

)
∂ψt(θ)
∂θ

+
(
1− Yt

ψt(θ)

)
1

σ2
t ψ̃t(θ)

(
∂ψt(θ)
∂θ

− ∂ψ̃t(θ)
∂θ

)]∥∥∥

≤ M

S
√
N

S∑

v=1

N−1∑

n=0

ρn (1 + ξv+nS)
∥∥∥1 + 1

ψt(θ0)
∂ψt(θ0)
∂θ

∥∥∥ . (A.20)

Therefore, (A.20) and the Markov inequality implies that for all ε > 0,

P

(
1√
N

S∑

v=1

N−1∑

n=0

ρn (1 + ξv+nS)
∥∥∥1 + 1

ψt(θ0)
∂ψt(θ0)
∂θ

∥∥∥ > ε

)

≤ 2
ε

(
1 + Eθ0

∥∥∥1 + 1
ψt(θ0)

∂ψt(θ0)
∂θ

∥∥∥
)

1√
N

N−1∑

n=0

ρn → 0 as N → 0,

from which the result i) follows. The same argument shows result ii). �

Lemma 6 Under A1-A6,

∂2LT (θ
∗)

∂θ∂θ′
p→

N→∞

1

s
J
(
θ0, σ

2
)

for any θ∗ between θ̂G and θ0.

Proof Let Vk(θ0) (k ∈ N
∗) be the open ball with center θ0 and radius 1/k. Assume that n

is large enough so that θ∗ belongs to Vk(θ0). By periodic stationarity and periodic ergodicity

of
{
supθ∈Vk(θ0)

∣∣∣∂
2lt(θ)
∂θi∂θj

− E
(
∂2lt(θ0)
∂θi∂θj

)∣∣∣
}
we have

∣∣∣∂
2LT (θ

∗)
∂θi∂θj

− J
(
θ0, σ

2
)
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∂θi∂θj
− E

(
∂2LT (θ0)
∂θi∂θj

)∣∣∣ = 1
T

∣∣∣∣∣

T∑
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∂2lt(θ∗)
∂θi∂θj

− E
(
∂2lt(θ0)
∂θi∂θj

)∣∣∣∣∣

≤ 1
NS

T∑

t=1

sup
θ∈Vk(θ0)

∣∣∣∂
2lt(θ)
∂θi∂θj

− E
(
∂2lt(θ0)
∂θi∂θj

)∣∣∣

a.s.→
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1
S

S∑
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E

(
sup
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∣∣∣∂
2lv(θ)
∂θi∂θj

− E
(
∂2lv(θ0)
∂θi∂θj

)∣∣∣
)
.

The Lebesgue dominated convergence theorem yields

lim
k→∞

E

(
sup

θ∈Vk(θ0)

∣∣∣∂
2lv(θ)
∂θi∂θj

− E
(
∂2lv(θ0)
∂θi∂θj

)∣∣∣
)

= E

(
lim
k→∞

sup
θ∈Vk(θ0)

∣∣∣∂
2lv(θ)
∂θi∂θj

− E
(
∂2lv(θ0)
∂θi∂θj

)∣∣∣
)

= 0,

from which the proof of the lemma follows. �
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Lemma 7 Under A1-A6

√
N ∂LT (θ0)

∂θ

L→
N→∞

N
(
0, 1

S2 I
(
θ0, σ

2
))

.

Proof It is clear that
√
N ∂LT (θ0)

∂θ
=

T∑
t=1

1
S
√
N

∂lt(θ0)
∂θ

is a term of a square integrable periodically

ergodic Martingale. Since by the periodic ergodic theorem (cf. Supplementary material)

1
N

T∑
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∂lt(θ0)
∂θ

∂lt(θ0)
∂θ′

= 1
N
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(1− ξt)
2 1
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2
t (θ0)

∂ψt(θ)
∂θ

∂ψt(θ)
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I
(
θ0, σ

2
)
,

the result thus follows from the martingale central limit theorem (e.g. Billingsley, 1995). �

Proof of Theorem 4.3 Set Uv,n (θ) = (Yv+nS−ψv+nS(θ))2
ψ2
v+nS

(θ)
, and denote by oa.s. (1) a term

converging almost surely to 0 as N → ∞. If we show

σ̂2
v =

1
N

N−1∑

n=0

Uv,n (θ0) + oa.s. (1) (A.21)

then the result (4.9a) would follow from standard arguments.

Now a Taylor expansion of Uv,n

(
θ̂G

)
around θ0 yields

σ̂2
v =

1
N

N−1∑

n=0

Uv,n
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θ̂G
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= 1

N
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n=0

Uv,n (θ0) +
(
θ̂G − θ0

)
1
N
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∂Uv,n(θ∗)

∂θ
(A.22)

where θ∗ is between θ̂G and θ0. Note that

∂Uv,n(θ)

∂θ
= 2

(
Y 2
v+nS

ψ2
v+nS

(θ)
− Yv+nS

ψv+nS(θ)

)
1

ψv+nS(θ)

∂ψv+nS(θ)

∂θ
.

Following the same lines of Francq and Zakoian (2019, p. 197) it can be easily seen that

E

(
sup

θ∈V (θ0)

Y 2
v+nS

ψ2
v+nS

(θ)

)
<∞, E

(
sup

θ∈V (θ0)
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ψv+nS(θ)

∂ψv+nS(θ)

∂θ

∥∥∥
)
<∞

for some neighborhood V (θ0) of θ0. Hence, by the ergodic theorem and the consistency of θ̂G
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we get

lim sup
N→∞
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−1

N−1∑

n=0

∂Uv,n(θ∗)

∂θ

∥∥∥∥∥ ≤ lim sup
N→∞
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∥∥∥∂Uv,n(θ)∂θ

∥∥∥

= E
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sup

θ∈V (θ0)

∥∥∥∂Uv,n(θ)∂θ
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<∞.

Thus
(
θ̂G − θ0

)
1
N

N−1∑

n=0

∂Uv,n(θ∗)

∂θ
= oa.s. (1) ,

and in view of (A.22) we obtain (A.21). Result (4.9b) follows by a similar argument. �
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Supplementary material for: "Periodic Autoregressive

Conditional Duration"

Abdelhakim Aknouche, Bader Almohaimeed and Stefanos Dimitrakopoulos

1 De�nitions of periodic stationarity and periodic er-

godicity

A positive real-valued stochastic process fYt; t 2 Zg de�ned on a probability space (
;F ; P )

is said to be strictly periodically stationary with period S 2 N� (henceforth spsS) i¤ each

one of its S corresponding "sub-processes" fYnS+v; n 2 Zg (1 � v � S) is strictly stationary

in the standard sense. The simplest spsS process is an ipdS sequence. The periodic analog

of the ergodic theorem for spsS processes (e.g. Boyles and Gardener, 1983) can be stated as

follows. If fYt; t 2 Zg is spsS with E (Yv) <1 for all 1 � v � S then

1
n

nX

t=1

Yt
a:s:
!
n!1

1
S

SX

v=1

Y �v ; (S:1)

for some random variables (Y �v )1�v�S de�ned on (
;F ; P ) and satisfying

Y �v = lim
n!1

1
n

n�1X

k=0

YkS+v; a:s:

When for a given season v0 2 f1; :::; Sg the sub-process fYnS+v0 ; n 2 Zg is ergodic, the

limiting random variable Y �v0 is almost surely constant and thenY
�
v0
= E(Yv0), almost surely.

The process fYt; t 2 Zg is said to be periodically ergodic with period S (peS) i¤ all sub-

processes fYnS+v; n 2 Zg (v 2 f1; :::; Sg) are ergodic in the usual sense. The simplest peS

1



process is an ipdS sequence. It follows that the limiting variable in (S:1) simpli�es to

1
n

nX

t=1

Yt
a:s:
!
n!1

1
S

SX

v=1

E (Yv) ;

the mean of the seasonal means. Like strict stationarity and ergodicity (see e.g. Billingsley,

1995, Theorem 36:4), strict periodic stationarity and periodic ergodicity are preserved under

certain periodic transformations. Indeed, if fYt; t 2 Zg is spsS and periodically ergodic and

if fZt; t 2 Zg is given by Zt = ft (:::; Yt�1; Yt; Yt+1; :::), where ft is a function from R
Z into R,

which is measurable, S-periodic over t (ft = ft+nS for all n and t) then so is fZt; t 2 Zg.

2 Proof of Theorem 3.3, i)

The proof is similar to that of Lemma 2.3 of Berkes et al (2003). Let us �rst show that if


S (A) < 0 then there exists � > 0 and n0 such that

E
�
kAn0SAn0S�1:::A1k

�
�
< 1: (S:2)

Since 
S (A) = infn2N�
�
1
n
E (log kAnSAnS�1:::A1k)

	
is strictly negative, there exists a positive

integer n0 such that

E (log kAn0SAn0S�1:::A1k) < 0:

Using a multiplicative norm and by the ipdS property of the sequence fAt; t 2 Zg we have

E (kAn0SAn0S�1:::A1k) = kE (An0SAn0S�1:::A1)k

� kE (ASAS�1:::A1)k
n0 <1:

Let f (x) = E (kAn0SAn0S�1:::A1k
x). Since under (3:2) in the main paper f 0 (0) = E (log kAn0SAn0S�1:::A1k)


S < 0; the function f (x) decreases in a neighborhood of 0 and as f (0) = 1, it follows that

there exists 0 < � < 1 such that (S:2) holds. Now from (3:3) in the main paper we have for

some v 2 f1; :::; Sg

kY vk �
1X

k=1








k�1Y

j=0

Av�j






 kBv�kk+ kBvk :

2



Since 0 < � < 1, it follows that

kY vk
� �

1X

k=1








k�1Y

j=0

Av�j








�

kBv�kk
� + kBvk

�
;

and then by the independence of f�t; t 2 Zg

E kY vk
� �

1X

k=1

E

 






k�1Y

j=0

Av�j








�!
E (kBv�kk

�) + E (kBvk
�)

� B (�)
1X

k=1

E

 






k�1Y

j=0

Av�j








�!
+ E (kBvk

�) ;

where B (�) = max
0�v�S�1

E (kBv�kk
�). In view of (S:2) there exists av > 0 and 0 < bv < 1 such

that

E

 






k�1Y

j=0

Av�j








�!
� avb

k
v � c;

where c = max
0�v�S�1

�
avb

k
v

	
. This proves that E kY vk

�
<1 establishing the results.
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3 Kernel densities of the Bitcoin trade volume across

days
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Figure S.1. Kernel densities of Bitcoin Trade Volume across days
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4 Kernel densities of the UN realized volatility across

days
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Figure S.2. Kernel densities of UN Realized Volatility across days.

5 Application to the S&P 500 volume

The third dataset is the daily S&P 500 volume over the sample period from January 04,

1999 to December, 31, 2008 with a total of T = 2382 observations. The time series plot of
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the index series is displayed in Figure S.1.
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Figure S.3. S&P 500 volume series (S&PV).

We followed the same scheme as in the applications of the main paper. The conclusions were

similar. The PACD dominates the ACD both in terms of the in-sample and out-of-sample

forecasting criteria. So we only reports the results on Tables S.1-S.4.

Day Full series Mon Tue Wed Thu Fri

Sample size 2382 446 488 487 481 480

Mean 3.7125 2.2519 1.5130 1.5333 1.8267 1.4538

Std 0.8718 0.8128 0.7704 0.8133 0.8349 1.0651

Kurtosis 9.4152 12.2353 9.7505 9.5183 10.0866 7.1056

Skewness 1.7019 2.2519 1.5130 1.5333 1.8267 1.4538

Table S.1. Day-of-the-week pattern in daily S&PV series.

7



0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K
e
rn

e
l
d
e
n
s
it
y

Kernel density of S&PV over Monday

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

K
e
rn

e
l
d
e
n
s
it
y

Kernel density of S&PV over Tuesday

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K
e
rn

e
l
d
e
n
s
it
y

Kernel density of S&PV over Wednesday

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K
e
rn

e
l
d
e
n
s
it
y

Kernel density of S&PV over Thursday

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

K
e
rn

e
l
d
e
n
s
it
y

Kernel density of S&PV over Friday

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
K

e
rn

e
l
d
e
n
s
it
y
Kernel density of S&PV over all days

Figure S.4. Kernel densities of S&P 500 volume across days

b! b� b� b�2 b� + b� IMSFE IMAFE

0:4822
(0:0521)

0:4574
(0:0192)

0:4123
(0:0264)

0:02515
(2:8e�06)

0:8698 0:3522 0:4004

Table S.2. ACD (1; 1) EQML estimates for the S&PV series.
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Day v b�2v b!v b�v b�v b�v + b�v IMSFE IMAFE

Mon 1 0:02327
(8:8e�06)

0:1633
(0:0542)

0:0211
(0:0288)

0:8538
(0:0388)

0:8748

Tue 2 0:0132
(2:3e�06)

0:2731
(0:0991)

0:6348
(0:0234)

0:3446
(0:0366)

0:9794

Wed 3 0:0156
(4:0e�06)

0:0684
(0:1067)

0:5904
(0:0363)

0:4081
(0:0529)

0:9985

Thu 4 0:0178
(2:5e�05)

0:7527
(0:1046)

0:4756
(0:0544)

0:3290
(0:0609)

0:8046

Fri 5 0:0463
(3:6e�05)

0:5609
(0:1770)

0:5713
(0:0782)

0:2861
(0:0961)

0:8574

All
7Q
v=1

(b�v + b�v) 0:5902 0:3141 0:3744

Table S.3. PACD(1,1) 2S-GQML estimates for the S&PV series.

Tf 1000 1200 1400 1600 1800 2000

ACD

MSFE

MAFE

MQLI

0:3750

0:3959

2:3145

0:4013

0:4054

2:3224

0:3925

0:4027

2:3099

0:4246

0:4165

2:3180

0:4246

0:4165

2:3180

0:6156

0:4984

2:3993

PACD

MSFE

MAFE

MQLI

0:3534

0:3769

2:3138

0:3705

0:3834

2:3214

0:3580

0:3804

2:3089

0:3872

0:3918

2:3169

0:3872

0:3918

2:3169

0:5559

0:4745

2:3979

Table S.4. Out-of-sample forecasting performance of PACD and ACD on S&PV series.
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