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Abstract

We propose a new Unconditional Coverage test for VaR-forecasts under a Bayesian framework

that significantly minimise the direct and indirect effects of p-hacking or other biased outcomes

in decision-making, in general. Especially, after the global financial crisis of 2007-09, regulatory

demands from Basel III and Solvency II have required a more strict assessment setting for the

internal financial risk models. Here, we employ linear and nonlinear Bayesianised variants of two

renowned mortality models to put the proposed backtesting technique into the context of annuity

pricing. In this regard, we explore whether the stressed longevity scenarios are enough to capture

the experiences liability over the foretasted time horizon. Most importantly, we conclude that our

Bayesian decision theoretic framework quantitatively produce a strength of evidence favouring one

decision over the other.
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1. Introduction and Motivation

Over the past few decades, the popularity of Value-at-Risk (VaR) has increased significantly

among practitioners for measuring and managing risk in the insurance and financial services in-

dustries. However, a risk measure is only as good as it is able to accurately predict future risks

accordingly, and thus, to measure its accuracy we need to develop effective backtest procedures.

These processes should allow the possibility to validate a risk measure given its out-of-sample fore-

casts and actual realized results (Christoffersen and Pelletier, 2004), such as those found using

VaR.1 By definition, the VaR is the q-quantile of a Profit/Loss distribution, and a backtesting

∗Corresponding author
Email addresses: Melvern.Leung@monash.edu (Melvern Leung), Youwei.Li@hull.ac.uk (Youwei Li),

Athanasios.Pantelous@monash.edu (Athanasios A. Pantelous ), vignes@tcd.ie (Samuel A. Vigne)
1While VaR is a widely used risk measure in finance, and in several decision-making processes in general, however

other risk measures such as Stressed-trends and Expected Shortfall can also be backtested. The results presented in
this study can be extended in several other directions, however we will address them in our future research.
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mechanism is to determine whether the required coverage q is indeed achieved. In practice, the

idea of backtesting as explained by Kupiec (1995) is a type of “reality check” to identify whether

risk measurement models are able to accurately determine the risk exposures experienced.

After the global financial crisis of 2007-09, regulatory demands from Basel III and Solvency

II have required a very strict assessment for internal financial risk models, respectively for banks

and insurance companies (Drenovak et al., 2017). Kupiec (1995) was the pioneer of backtesting,

whereby sequences of ones and zeros are determined by whether the risk-measure forecasts is able

to capture the actual realized returns. A likelihood ratio test is then constructed to test if the

proportion of ones and zeros correctly represents the required coverage. Although there has been

a large emphasis on VaR forecasting in literature (e.g., Berkowitz and O’Brien, 2002, Glasserman

et al., 2002, Christoffersen, 2009, Nieto and Ruiz, 2016), the backtesting literature has since gained

traction after the development of the Unconditional Coverage (UC) backtest by Kupiec (1995),

these include the works from Christoffersen (1998), Ziggel et al. (2014) and Wied et al. (2016).

With the recent developments of Bayesian statistical techniques, there is an increasing motion

towards the use of a Bayesian decision framework in hypothesis testing. In particular, Harvey (2017)

mentions the importance and how to implement a Bayesian test in concurrence of the standard

Null Hypothesis Significance Testing (NHST), as means of comparisons between hypotheses. The

issue as stated and convincingly discussed in the American Finance Association president’s address

Harvey (2017) is that hypothesis testing, which is a significant tool used extensively in the finance

literature, and its testing procedures are based on the critical assumption that the null hypothesis is

true, and the alternative hypothesis is indirectly inferred. However, the idea of p-value has caused

some scepticism among researchers, since non-rejected null hypotheses can simply be removed after

the testing procedure in order to obtain a significant result in for example regression analysis. This

formed the basis of the idea of p-hacking and biased outcomes as noted by Harvey (2017).

The Bayesian testing began when Berger and Sellke (1987) developed the idea of Bayes Factor

(BF) to determine a ratio of evidence, and recently, this idea has been applied extensively in

different scientific fields. Overall, the Bayesian test has many advantages in the realm of testing,

it allows a measure of evidence towards one hypothesis in comparison to another using direct

inference, and there is no arbitrary cut-off point. Most importantly, using Bayes rule, we are

able to obtain the probability of a hypothesis being correct given the dataset. The idea behind a

Bayesian backtesting framework is to alleviate the use of frequentist p-values, and instead focus on

the BF (or Posterior odds) which expresses conclusions based on a ratio rather than those expressed
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indirectly via a confidence interval and p-value. We can conduct inference using sampling properties

of our posterior distribution rather than on large sample asymptotic approximations to the null

distribution.

Our paper contributes to the literature in three distinctive ways. Firstly, we propose a new

Bayesian framework for the UC VaR backtest. This framework allows for the inclusion of prior

knowledge to be used in the decision making step which deviates from standard testing procedures

under the frequentist framework. We first state the assumptions used by the UC test, then develop

the Bayesian decision theoretic framework surrounding these assumptions. Further, the flexibility

of the Bayesian framework can also be tailored to one-tail testing, as opposed to the two-tail

tests presented in Kupiec (1995), this permits the capability to separately test whether the VaR-

model underestimated or overestimated a required VaR-exceedance criteria. Most importantly,

our Bayesian VaR backtesting framework developed in this study is highly flexible, and easy to

implement due to the Bayesian conjugacy property which allows a closed-form expression of the

posterior. What is more, in the case where Bayesian conjugacy does not exist, we employ recent

econometric advancements in Bayesian estimation which also allows for numerical approximations

such as Monte-Carlo Markov Chain (MCMC) methods. Furthermore, as a robustness test, varying

prior distributions were used to ensure the decision is coherent among varying hyper-parameters.

Secondly, since 2016, Solvency II was established with the aim of ensuring insurance companies

meet their obligations to policyholders (e.g., Eckert and Gatzert, 2018).2 The idea behind this

notion is that the company is required to meet its obligation payments with a probability of 99.5%

over 12 months (Hari et al., 2008). However, Pillar 1 allows room for internal models in terms of

assessing the financial stability of the insurance company, they have the choice to either use the

capital requirements laid by the supervisory regulators or keep capital reserves based on their own

risk-based models. The supervisory regulator uses a mortality shock based model which has been

criticized, see for instance, Plat (2011), for its over-estimation of longevity trend risk. Moreover,

they apply risk measures such as VaR and also longevity-trend stress test scenarios in order to

evaluate the solvency capital requirement. In the present paper, we employ the linear and nonlinear

variants of the Lee and Carter (1992) (LC) and the Cairns et al. (2006) (CBD) model which are two

renowned mortality models in the corresponding literature. Then, we develop Bayesian estimation

methods for the mortality models utilizing the Extended Kalman Filter (EKF) and the MCMC

2This regulation contains three pillars, and our focus in this paper is on pillar 1, where it contains the risk based
solvency capital requirements.
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techniques.

Finally, we develop the idea of backtesting in annuity liabilities which has two main advan-

tages (Leung et al., 2018). Firstly, the backtesting framework allows us to measure the ability for

mortality models to capture longevity risk associated with annuity itself. Secondly, it allows the

ability to determine models most suitable for longevity risk applications.3 Our focus is on the long

term longevity trend risk, and in this case a longevity stress test scenarios would be most suitable.

This mainly stems from the fact that longevity trend risk exacerbates over a longer period, and

as such a one-year VaR would most likely be unsuitable. Thus, under a longevity stress trend

scenario, it is crucial that a suitable backtesting method is developed to determine if the under-

lying longevity risks associated with a pricing instrument are actually captured by the mortality

model used. In essence, the backtesting procedure is determined by the outcome of whether the

specified mortality model will be able to produce a forecast such that with probability of 99.5%

obligated payments from an annuity can be met. Although our focus is on the immediate annuity

with contingent payments based on the policyholders lifespan, we should emphasise here that the

backtesting framework we develop can also be extended to measure accuracy of any type of risk

measures.

The paper is organised as follows. Section 2 and Appendix A focus on developing the VaR

Bayesian backtesting framework for the novel Unconditional Coverage test. Section 3 explains the

estimation procedure of the Bayesian mortality models under a state-space representation setting.

A particular interest is paid to the nonlinear dynamics when modelling (central) death rates rather

than the crude mortality estimates. Section 4 and Appendices B and C (see also, the extensive SI

provided) contain the empirical results of fitted LC and CBD model, as well the Bayesian forecast-

ing method algorithms used in the paper. Section 5 applies the Bayesian backtesting framework

developed to a 99.5% longevity stressed scenarios under an immediate annuity calculation. We

determine clearly which model produces the most favourable results under a longevity stressed

scenario implementing the Solvency II regulation. Finally, Section 6 concludes the paper.

2. A Bayesian Backtesting Tool

Financial risk model evaluation plays a major part in risk management, and typically this

evaluation process is called backtesting procedure4 which tries to measure the accuracy of the risk

3More discussion about life annuities can be found in Supplementary Information (SI) Section 1.
4A good overview of backtesting and its procedures is given in Campbell (2007), see also Nieto and Ruiz (2016).
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models promised coverage. For instance, a VaR model tries to define a conditional quantile (or

coverage) of the return distribution. To evaluate the effectiveness of the VaR model, we can

backtest it and determine whether the required coverage rate is met. This is usually accomplished

by using ex-post returns on ex-ante VaR forecasts. In this Section, we propose a new UC backtest

for VaR-forecasts under a Bayesian framework which is a cornerstone in this paper.

2.1. The Bayesian Framework

Before we proceed with the new UC backtest, let us consider two hypotheses,H0 andH1, we wish

to test. Under the standard NHST framework, inference is normally conducted on P (y|Hi), i = 0, 1,

however applying Bayes rule, we obtain the following relation,

π(Hi|y) =
π(y|Hi)π(Hi)

π(y)
,

where π(y) is the marginalizing constant to ensure P (Hi|y) is a proper probability distribution,

and finally the point of interest, the posterior odds ratio, is given by,

π(H0|y)

π(H1|y)
=
π(y|H0)π(H0)

π(y|H1)π(H1)
= BF01

π(H0)

π(H1)
, (2.1)

where BF01 = π(y|H0)
π(y|H1)

is commonly referred to as the BF, and π(H0)
π(H1)

is known as the prior odds.

BF01 measures the change in evidence when going from the prior to posterior odds. In the decision

making process where both hypotheses are given equal weighting, the testing framework focuses

solely on BF01, thus a higher positive value for BF01 implies π(H0|y) > π(H1|y), and concludes an

increased support for H0.

Consider now a point null hypothesis {H0 = θ0} and a composite alternative hypothesis {H1 6=

θ0}. The Bayesian framework then assigns a prior distribution over both hypotheses. Let y :=

{y1, ..., yn} be a vector of n observations, the likelihood function of the observed data is given by

l(y|θ), where θ is the parameter of interest. Then, for a given prior, π(θ), our posterior distribution

is given by,

π(θ|y) =
l(y|θ)π(θ)

π(y)
. (2.2)

The prior specifications will be as follows: “under H0, we assign the (point mass) prior π(θ) = θ0,

whereas for H1, we assign a prior distribution over the parameter space required”. The decision to

accept H0 is denoted by “a0” and the decision against H0 is denoted by “a1”. Overall, for a given

loss function, L[ai; θ], i = 0, 1, H0 is rejected when the expected posterior loss for H0 is sufficiently
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larger than the expected posterior loss under H1. The expected posterior loss for the ith decision

is given by,

Eπ(θ|y) [L(θ, ai)] =

∫

θ

L[ai; θ]π(θ|y)dθ, for i = 1, 2 (2.3)

and we will reject H0 when,

∫

θ

(L[a0; θ]− L[a1; θ])π(θ|y)dθ > 0. (2.4)

If we choose to employ a zero-one loss function5,

L[a0; θ] =







0 if θ = θ0,

1 if θ 6= θ0,

(2.5)

with L[a1; θ] = 1−L[a0; θ]. Given equal probability of the H0 and H1 occurring, that is π(H0) =

π(H1) = 0.5, we will have the following decisions to make. For the first decision, when θ = θ0, we

will accept H0 with decision a0, and the second decision, a1, occurs when θ 6= θ0. To tabulate the

decision outcome more formally:

Choose:







a0, if θ = θ0,

a1, if θ 6= θ0.

Combining Eqs. (2.3), (2.4) and (2.5), rejection of the H0 will occur when,

∫

θ
L[a0; θ]π(θ|y)dθ

∫

θ
L[a1; θ]π(θ|y)dθ

=
l(y|θ = θ0)

∫

θ
l(y|θ)π(θ)dθ

< 1, (2.6)

where the quantity l(y|θ=θ0)∫
θ
l(y|θ)π(θ)dθ

is the BF01.
6 Further, note that the marginalizing constant π(y)

from Eq. (2.2) disappears in Eq. (2.6), since it appears in both the numerator and denominator.

The Bayesian version of the Likelihood Ratio Test (BLRT) was pioneered by Li et al. (2014), where

instead of having a 0 − 1 loss function which corresponds to BF01, they used a continuous loss

5A zero-one loss function is a commonly chosen loss function used in Bayesian hypothesis testing, this is simply
due to its binary outcome, and is equivalent to either rejecting(a1) or accepting(a0) the null hypothesis.

6The range of values that BF01 can take represents different levels of evidence which supports the null or alternative
hypothesis, in Table 1 of Goodman (2001) the strength of evidence against the null hypothesis for a given BF is shown.
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difference function, defined by

∆L[H0; θ] = −2 [log(π(y|θ0))− log(π(y|θ))] ,

under a continuous loss difference function, rejection of H0 occurs when

∫

θ

∆L[H0; θ]π(θ|y)dθ > 0,

and the Bayesian test statistic is given by,

TBLRT(y, θ) =

[

−2

∫

θ

[log(π(y|θ0))− log(π(y|θ))]π(θ|y)dθ

]

+ 1. (2.7)

The main difference between the BLRT and BF01 is that the BLRT focuses on averaging over the

(log)posterior distribution, whereas BF01 averages over the prior distribution. Li et al. (2014) also

found that TBLRT(y, θ) has an asymptotic χ2(1)-distribution, and a convenient property of the

BLRT statistic is that if the integral in Eq. (2.7) has no analytical form, it can be approximated

via an MCMC,

TBLRT(y, θ) = −2

M∑

i=1

[
log(π(y|θ0))− log(π(y|θi))

]
/M + 1, (2.8)

where i represents the ith MCMC draw, and M corresponds to the number of MCMC iterations.

In this case, we can produce Bayesianised p-values via

p = P (χ2(1) ≤ TBLRT).

2.2. A New Unconditional Coverage Backtest

The statistical backtest for VaR developed by Kupiec (1995) tests whether a risk model truly

generated the correct coverage using the LRT. In this section, we formulate a novel approach of the

UC backtest using the Bayesian decision theoretic framework developed in the previous section.

Let y denote the daily observed asset or portfolio return time series yt for t ∈ (1, . . . , T ), and

the VaR as P (yt ≥ V aRt|Ft−1
(p)) = p. To produce interval forecasts for each observation, we let

Ut|Ft−1
(p) denote the lower forecast interval produced for time t using information up until t − 1
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with coverage p. Let us define an indicator variable where,

Ip(t) =







1, if yt ∈ (−∞, Ut|Ft−1
(p))

0, otherwise,

(2.9)

where Ft−1 corresponds to the information set Ft−1 := {Ip(1), . . . , Ip(t− 1)}.

In laymen terms, if the observed daily return, yt, is not greater than the expected lower bound,

yt > Ut|Ft−1
(p), then we conclude that the VaR forecasts are violated at time t and we assign a

value of 1. Kupiec (1995) examines whether the average non-violations shown in Eq. (2.9) occurs

at the required coverage p, mathematically,

E

[

(1/T )
T∑

t=1

Ip(t)

]

= P (Ip(t) = 1) = p, ∀t. (2.10)

This also implies that each Ip(t) ∼ Be(p), where Be(p) represents the Bernoulli distribution with

probability p success. Let Ip := {Ip(t) : t ∈ (1, ..., T )}, and let m1 and m0 denote the number of

one and zero occurrences in Ip respectively. Then Ip will be a vector of size T = m1 +m0. Our

aim is to determine whether or not E[Ip(t)] = p∗, for some predetermined probability p∗ and since,

Ip(t) ∼ Be(p) ∀t, the joint likelihood function will be given by,

l(I|p) = pm1(1− p)m0 . (2.11)

The Bayesian framework starts by assigning priors on p. Under the H0 := p = p∗ with an assigned

point mass prior. Under the alternative H1 := p 6= p∗, since p has a support between (0,1), we use

a Beta prior distribution which mimics the support between 0 and 1. Formally, let

π(p) =







1 if p = p∗,

Beta(a, b), if p 6= p∗.

The priors chosen here are non-informative and conjugate to the posterior, hence the posterior loss

distribution will be mainly data driven and have a closed form expression.

Lemma 2.1. The BF for the UC backtest is given by,

BF01 =
(p∗)m1(1− p∗)m0

β(a+m1, b+m0)
.

8



For a proof of Lemma 2.1 see Appendix A.1. Then using the derived BF01 from Eq. (2.1), the

decision to reject the H0 will occur when,

BF01 =
(p∗)m1(1− p∗)m0

β(a+m1, b+m0)
< 1, (2.12)

where β corresponds to the β-function. For the BLRT statistic, we can use Eq. (2.7) instead of the

simulation method presented in Eq. (2.8). The following Theorem provides an analytical form for

the BLRT statistic for the UC backtest, which is extremely useful in what follows.

Theorem 2.1. The analytical form for the BLRT statistic for the UC backtest is given by,

TBLRT(y, p) = −2[Aπ0 −Bπ1 ] + 1, (2.13)

where,

Aπ0 = m1 log(p
∗) +m0 log(1− p∗),

Bπ1 = m1(ψ(a+m1)− ψ(a+m1 + b+m0))−m0(ψ(b+m0)− ψ(a+m1 + b+m0)),

and ψ corresponds to the digamma function.

For a proof of Theorem 2.1 see Appendix A.2. Let CBLRT be determined using a required tail

significance from a χ2(1)-distribution, then the decision to reject H0 will occur when TBLRT(y, p) >

CBLRT. A more formal representation for the test outcomes is shown in Table 1.

Table 1: Criteria for the rejection or acceptance of the H0

Reject H0 Do not reject H0

BF01
(p∗)m1 (1−p∗)m0

β(a+m1,b+m0)
< 1 (p∗)m1 (1−p∗)m0

β(a+m1,b+m0)
> 1

TBLRT TBLRT > CBLRT TBLRT < CBLRT

3. Bayesian Model Estimation and Forecasting

Government interventions such as the introduction of Solvency II regulation has required insur-

ance companies to strictly manage their reserves to reduce the risk of insolvency. Thus it becomes

a crucial aspect for insurance services companies to not over or under compensate the required

reserves which is contingent on the underlying mortality assumptions. This is particularly impor-

tant to pension providers where management of pension payments are crucially dependent many

risk factors including longevity risk (e.g., Konicz and Mulvey, 2015). In this Section, we develop
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the Bayesian modelling estimation7 and forecasting procedures for applying the new backtesting

technique developed in the previous section for the annuity liability experience in the insurance

industry.

3.1. Preliminaries

One of the more renowned models in mortality modelling is the Lee and Carter (1992) model,

which is commonly used as tool for mortality estimation and forecasting due to its simplistic model

nature (Debón et al., 2008). Another widely accepted mortality model is the Cairns et al. (2009)

model which offers accuracy of mortality rates for higher ages and non-age specific parameters. A

possible downfall of the estimation procedure is that it requires two steps approach: firstly, a point

estimation stage is produced, secondly a fitting stage is then conducted on the latent dynamics.

In this paper, we focus on a Bayesian estimation of both a linear variant of the LC and CBDmod-

els, and a nonlinear variant based on Poisson and Binomial distributed death counts, respectively.

A Kalman Filter alongside a Metropolis-Within-Gibbs sampler embedded in a MCMC algorithm

will be used and this benefits two folds. Firstly, the Kalman Filter is a one-step procedure and is

able to retain the state dynamics without the need for an extra fitting procedure, and secondly, we

are able to retain the MCMC draws for posterior inference and parameter risk analysis.

Let µx(t) denote the force of mortality for an individual aged x at time t. Under the piecewise

constant force of mortality assumption we have,

µx+s(t+ s) = mx,t for 0 ≤ s < 1 and x ∈ N,

with qx,t = 1 − e−mx,t , where qx,t represents the 1-year death probability for an individual aged x

at time t. Denote the crude central death rate and crude death rate as,

m̃x,t =
dx,t
Ex,t

, q̃x,t = 1− e−m̃x,t , (3.1)

where dx,t is the number of deaths recorded at age x during year t, and Ex,t is the total population

at age x during year t. The N -year survival rate of a person aged x at time t can be calculated as

Sx(t,N) =
N∏

n=1

(1− qx+n,t+n) = exp

(

−
N∑

n=1

mx+n,t+n

)

. (3.2)

7Arguments and some necessary details about the Bayesian state-space model estimation procedure can be found
in SI Section 1.1.
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Further, we work in a discrete-time modelling environment. Let us assume x ∈ {x1, . . . , xn} and

t ∈ {t1, . . . , tT }, where x1 represents the initial age of the dataset, xn represents the ultimate age

of our dataset, t1 represents the initial year, tT corresponds to the final year used, for simplicity

we will represent t1 = 1, ..., tT = T , where T is the time horizon.

In the next section we will introduce the idea of MCMC and Bayesian model estimation, for

more information regarding a general Bayesian modelling framework see SI Section 1.1.

3.2. The Lee-Carter model

Let yx,t := ln(mx,t)
8, then the LC model assumes that the central mortality rate is governed by

the following process,

yt = α+ βκt + εt, (3.3)

where yt := {yx,t : x ∈ (x1, ..., xn)}; α
′ := {αx : x ∈ (x1, ..., xn)} and β′ := {βx : x ∈ (x1, ..., xn)}

are age dependent variables, κt captures the time dynamics of the population common through

all ages, and εt ∼ N(0, Inσ
2
ε). Here, In represents the n × n identity matrix and a random walk

with drift process will be used to model the latent state dynamics to facilitate the state-space

formulation,

κt = κt−1 + δ + ωt, (3.4)

where ωt ∼ N(0, σ2ω) and δ represents the drift term of the process, furthermore ωt and εt are

assumed to be independent. It is shown in Lee and Carter (1992) that the parametrization in

Eq. (3.3) is not unique, which means that for a particular likelihood maximization there is an

indefinite number of solutions to the maximum likelihood estimate. To rectify this situation Lee

and Carter (1992) imposed the constraints,
∑xn

x=x1
βx = 1, and

∑T
t=1 κt = 0. In our case we will

also follow these constraints. For more information regarding the LC model, we refer to SI Section

1.2.

3.2.1. Linear variant

The LC model in linear state-space form is given by

yt =α+ βκt + εt, εt ∼ N(0, Inσ
2
ε) (3.5)

κt =κt−1 + δ + ωt, ωt ∼ N(0, σ2ω), (3.6)

8As the central mortality rate cannot be observed, we can instead model the crude central mortality rate given
by Eq. (3.1).
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with the static model parameter vector ΘLC = {α,β, δ, σ2ω, σ
2
ε}. Recall that in the Bayesian setting,

our aim is to draw samples from the joint posterior density π(κ1:T ,ΘLC|y1:T ), using Gibbs sampling,

our MCMC procedure consists of

1. Initialise ΘLC = Θ
(0)
LC.

2. For i = 1, . . . ,M ,

(a) sample κ
(i)
1:T from π(κ1:T |Θ

(i−1)
LC ,y1:T ),

(b) sample Θ
(i)
LC from π(ΘLC|κ

(i)
1:T ,y1:T ).

A sample of the conditional distribution π(κ1:tT |ΘLC,y1:tT ) can be obtained via forward-backward

sampling using Kalman filtering (Carter and Kohn, 1994). To draw samples from π(ΘLC|κ
(i)
1:tT

,y1:tT ),

we assume the following conjugate prior distributions:

π(δ) ∼ N(µθ, σ
2
θ),

π(σ2ε) ∼ I.G(aε, bε)
9, π(σ2ω) ∼ I.G(aω, bω)

π(αx) ∼ N(µα, σ
2
α), π(βx) ∼ N(µβ , σ

2
β) for x ∈ {(x1, ..., xn).

The prior distributions were chosen such that when multiplied by the likelihood function, the

resulting posterior distribution will be of the same family; this is known as the conjugacy property

and it facilitates the Gibbs sampling procedure. In the case where no conjugacy is involved, the

Metropolis-Hastings (MH) algorithm can be applied. The full conditional posterior distribution for

ΘLC are as follows10:

π(αx|y,κ,β, σ
2
ε) ∼ N

(

µασ
2
ε + σ2α

T∑

t=1
(yxt − βxκt)(σ

2
αT + σ2ε)

−1, (σ2αT + σ2ε)(σ
2
ασ

2
ε)

−1

)

π(βx|y,κ,α, σ
2
ε) ∼ N

(

(µβσ
2
ε + σ2β

T∑

t=1
(yxt − αx)κt)(σ

2
β

T∑

t=1
(κ2t + σ2ε))

−1, (σ2βσ
2
ε)(σ

2
β

T∑

t=1
(κ2t + σ2ε))

−1

)

π(σ2ε |y,κ,β,α) ∼ I.G(aε +
Tn
2 , bε +

1
2

T∑

t=1

n∑

x=1
(yxt − (αx + βxκt))

2)

π(δ|y,κ, σ2ω) ∼ N

(

(µδσ
2
ω + σ2δ

T∑

t=1
(κt − κt−1))(σ

2
δσ

2
ω)

−1, (σ2δσ
2
ω)(Tσ

2
δ + σ2ω)

−1

)

π(σ2ω|y,κ, δ) ∼ I.G(aω + T
2 , bω + (κt − (κt−1 + δ))2)

9The I.G. represents the Inverse Gamma distribution.
10For a full derivation of posterior parameters and MCMC algorithm see Fung et al. (2017)
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3.2.2. Nonlinear variant

For the Poisson model estimation under a Bayesian state-space framework, we use a Gibbs

sampler, the EKF and a MH, embedded in an MCMC algorithm. Let first assume that the number

of deaths Dx,t follows a Poisson distribution with rate Ex,tmx,t, where log(mx,t) is assumed to be

the standard LC model. We have,

P (Dx,t = dx,t) =
exp−Ex,tmx,t(Ex,tmx,t)

dx,t

dx,t!
,

log(Ex,tmx,t) =
[

NLα+ log(Ex,t) NLβ

]




1

NLκt



 ,

NLκt =NLκt−1 +NL δ +NL ωt, NLωt ∼ N(0,NL σ
2
ω).

Let our static model parameter vector be defined as ΘPLC = {NLα, NLβ, NLδ, NLσ
2
ω, NLσ

2
β}, then

our MCMC algorithm is as follows:

1. Initialise ΘPLC = Θ
(0)
PLC.

2. For i = 1, . . . ,M ,

(a) Apply the EKF for κ(i) using the function EKF-LC κt(NLα
(i), NLβ

(i), NLδ
(i), NL(σ

2
ω)

(i)).

(b) Using the function MH-LC κt((NLκ
∗)(i), NLκ

(i), NLα
(i), NLβ

(i), NLδ
(i), NL(σ

2
ω)

(i)) produce

draws from π(κ|Θ
(i−1)
PLC ,y1:T ).

(c) Using the function MH-LC β(NLκ
(i), NLα

(i), NLβ
(i), NLδ

(i), NL(σ
2
ω)

(i), (NLσ
2
β)

(i)) produce

draws from π(κ|Θ
(i−1)
PLC ,y1:T ) for κ

(i).

(d) Gibbs sampling for Θ
(i)
PLC from π(ΘPLC|κ

(i),y1:T ).

A sample of the conditional distribution π(κ1:tT |ΘPLC,y1:tT ) is obtained via forward-backward

sampling using the EKF and the MH algorithm. The full MCMC algorithm is shown in Appendix B.

To draw samples from π(ΘPLC|NLκ
(i)
1:tT

,y1:tT ), we assume the following conjugate prior distributions:

π(NLδ) ∼ N(µδ, σ
2
δ ),

π(NLσ
2
ω) ∼ I.G(aω, bω), π(NLσ

2
β) ∼ I.G(aβ , bβ)

π(NLαx) ∼ LogGamma(aα, bα), π(NLβx) ∼ N(µβ , σ
2
β) for x ∈ {(x1, ..., xn).

Non-informative priors were chosen to ensure the posterior distribution is mainly data driven. The

conditional posterior distribution for ΘPLC are as follows11:

11For a derivation of the posterior distributions see Lemmas 1.1-1.5 (with their proofs) in SI Section 1.3
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π(NLαx|y, NLβ, NLκ) ∼ LogGamma(aα +
∑T

t=1 dx,t, bα +
∑T

t=1 Ex,t exp(NLβx NLκt)),

π(NLσ
2
β |y, NLβ) ∼ I.G

(
aβ + N

2 , bβ + 1
2NL

βNLβ
′
)
,

π(NLδ|y, NLκ, NLσ
2
ω) ∼ N

(

(µδ NLσ
2
ω + σ2δ

T∑

t=1
(NLκt − NLκt−1))(σ

2
δ NLσ

2
ω)

−1, (σ2δ NLσ
2
ω)(Tσ

2
δ + NLσ

2
ω)

−1

)

,

π(NLσ
2
ω|y, NLκ, NLδ) ∼ I.G(aω + T

2 , bω + (NLκt − (NLκt−1 + NLδ))
2),

the sampling procedure for π(NLβx|y,NL κ,ΘPLC) was accomplished via a Random Walk MH algo-

rithm (see SI Algorithm 3).

3.3. The Cairns-Blake-Dowd model

The CBD model has a wide variety of applications ranging from actuarial pricing, longevity

derivative pricing and mortality predictions. Cairns et al. (2006) proposed to model the dynamics

of the true 1-year death rates as follows

qx,t =
eκ1,t+κ2,t(x−x̄)

1 + eκ1,t+κ2,t(x−x̄)
,

or equivalently

ln

(
qx,t

1− qx,t

)

= κ1,t + κ2,t(x− x̄), (3.7)

where x̄ = n−1
∑

i xi and the latent period factor κt := [κ1,t, κ2,t]
′ is a multivariate random walk

with drift process with non-trivial variance-covariance structure:

κt = θ + κt−1 + ωt, ωt ∼ N(0,Σ), (3.8)

where θ := [θ1 θ2]
′ is the drift vector,and Σ is a 2 × 2 covariance matrix. For a more detailed

analysis of the CBD model see SI Section 1.4

3.3.1. Linear variant

Since the true death probabilities, qx,t, are unobservable, we can instead model the observable

crude death probabilities, q̃x,t, estimated using Eq. (3.1), which allows the CBD model to directly

follow a linear structure shown in Eqs. (3.7) and (3.8). For convenience, let ΘCBD = (θ1, θ2, σ
2
ν ,Σ)

denote the static parameter vector for the CBD model in Eq. (3.7) and with the introduction

of an error component. Let yx,t := ln(q̃x,t/(1 − q̃x,t)), then the CBD model in linear state-space

14



representation is given by








yx1,t

...

yxn,t







=








1 (x1 − x̄)
...

...

1 (xn − x̄)











κ1,t

κ2,t



+








νx1,t

...

νxn,t







,








νx1,t

...

νxn,t







∼ N(0, Inσ

2
ν), (3.9)




κ1,t

κ2,t



 =




θ1

θ2



+




κ1,t−1

κ2,t−1



+




ω1,t

ω2,t



 ,




ω1,t

ω2,t



 ∼ N(0,Σ), (3.10)

where In represents the n×n identity matrix. Eqs. (3.9) and (3.10) correspond to the measurement

equation and the state equation respectively. A measurement error term, νx,t, was included in

Eq. (3.9) to facilitate the linear Gaussian state-space model estimation. Since model (3.9) and

(3.10) belongs to the class of linear and Gaussian state-space models, we can perform MCMC

estimation of the model utilizing a multivariate Kalman filter. Similar to the case in the LC

model, our aim is to draw samples from the joint posterior density π(κ1:T ,ΘCBD|y1:T ) using Gibbs

sampling which is as follows:

1. Initialise ΘCBD = Θ
(0)
CBD.

2. For i = 1, . . . ,M ,

(a) sample κ
(i)
1:T from π(κ1:T |Θ

(i−1)
CBD ,y1:T ),

(b) sample Θ
(i)
CBD from π(ΘCBD|κ

(i)
1:T ,y1:T ).

A sample from π(κ1:T |ΘCBD,y1:T ) can be obtained via a multivariate forward-backward sampling.

To draw samples from the full conditional posterior distributions, we assume the following priors

for ΘCBD,

π(σ2ν) ∼ I.G(aν , bν), π(θi) ∼ N(µθi ,Σθi), i = 1, 2,

π(Σ|(σ21, σ
2
2)) ∼ I.W

(

(ν + 2)− 1, 2ξ diag
(

1
σ2
1
, 1
σ2
2

))

,

π(σ2k)
indep
∼ I.G

(
1
2 ,

1
Ak

)

, k = 1, 2,

where I.W corresponds to the Inverse Wishart distribution, Ak are hyper-parameters, and the

notation
indep
∼ corresponds to “independently distributed”. For more information for the MCMC

algorithm and posterior derivations, see Leung et al. (2018). Using the prior distributions described

above, the posterior distributions for the static parameters are given by:

π(σ2ν |y,κ) ∼ I.G(aν +
Tn
2 , bν +

1
2

T∑

t=1

n∑

x=1
(yx,t − (κ1,t + (x− x̄)κ2,t))

2),
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π(θ|y,κ,Σ) ∼ N
(

(Σ−1
θ + nΣ−1)−1

(

Σθ
−1µθ + nΣ−1

∑T
t=1[κt − κt−1]

)

,
(
Σ−1
θ + TΣ−1

)−1
)

,

π(σ2k|Σ)
i.i.d
∼ I.G( ξ+T

2 , ξ[Σ−1]kk +
1

(Ak)2
) for k ∈ (1, 2),

π(Σ|σ21, σ
2
2,y,κ,θ) ∼ I.W (ξ + T + n− 1, 2ξ × diag( 1

σ2
1
, 1
σ2
2
) +

∑T
t=1 [κt − θ] [κt − θ]′),

where [Σ−1]kk denotes the (k, k) element of [Σ−1]. Derivations of these posteriors are provided in SI

Section 1.5. The choice of a hierarchical prior for Σ is to circumvent the issue of the Inverse-Wishart

prior leading to a biased estimator for the correlation coefficient when the variances are small.12

3.3.2. Nonlinear variant

The Binomial model for the number of deaths is used for the CBD model due to its canonical

link with the generalized dynamic linear model in mortality modelling. Instead of using the crude

death rates, we use the observed number of deaths, and assume it follows a B(n, p), with n = Ex,t,

p = qx,t, and logit(qx,t) is defined as in Eq. (3.7). The nonlinear state-space framework is given as

follows:

P (Dx,t = dx,t) =

(
Ex,t

dx,t

)

qx,t
dx,t(1− qx,t)

Ex,t−dx,t ,

logit(qx,t) =
[

1 (x− x̄)
]




NLκ1,t

NLκ2,t



 ,




NLκ1,t

NLκ2,t



 =




NLθ1

NLθ2



+




NLκ1,t−1

NLκ2,t−1



+




ω1,t

ω2,t



 ,




ω1,t

ω2,t



 ∼ N(0, NLΣ).

With the static model parameter vector ΘBCBD = {NLθ1, NLθ2, NLΣ}, the MCMC algorithm is as

follows:

1. Initialise ΘBCBD = Θ
(0)
BCBD.

2. For i = 1, . . . ,M ,

(a) Apply the EKF for NLκ
(i)
1:T using the function EKF κt(NLθ

(i−1), NLΣ
(i)).

(b) Using the function MH κt(κ
∗

1·, κ
∗

2·, NLκ1·, NLκ2·, NLθ, NLΣ) produce draws from

π(NLκ1:T |Θ
(i−1)
BCBD,y1:T ).

(c) Gibbs sampling for Θ
(i)
BCBD from π(ΘBCBD|κ

(i)
1:T ,y1:T ),

12For more details the reader is referred to Section 2 of Leung et al. (2018).

16



where, NLκ
∗

1· := NLκ
∗
1,1:T and NLκ

∗

2· := NLκ
∗
2,1:T . A sample from π(NLκ1:T |ΘCBD,y1:T ) can be

obtained via an EKF with MH algorithm. To draw samples from the posterior distributions,

π(ΘBCBD|κ
(i)
1:T ,y1:T ), we assume the following priors for ΘBCBD,

π(NLθi) ∼ N(µθi ,Σθi), i = 1, 2,

π(NLΣ|(σ
2
1, σ

2
2)) ∼ I.W

(

(ν + 2)− 1, 2ξdiag
(

1
σ2
1
, 1
σ2
2

))

,

π(σ2k)
indep
∼ I.G

(
1
2 ,

1
Ak

)

k = 1, 2.

Using the prior distributions described above, the posterior distributions for the static parameters

are given by:

π(NLθ|y,κ, NLΣ) ∼ N
(

(Σ−1

θ
+ nNLΣ

−1)−1

(

Σθ
−1µθ + nNLΣ

−1
∑T

t=1
[NLκt −NL κt−1]

)

,
(
Σ−1

θ
+ T NLΣ

−1
)
−1
)

,

π(σ2k|NLΣ)
i.i.d
∼ I.G( ξ+T

2 , ξ[NLΣ
−1]kk +

1
(Ak)2

) for k ∈ (1, 2),

π(NLΣ|σ
2
1, σ

2
2,y, NLκ, NLθ) ∼ I.W (ξ+T+n−1, 2ξ×diag( 1

σ2
1
, 1
σ2
2
)+
∑T

t=1 [NLκt − NLθ] [NLκt − NLθ]
′),

where [NLΣ
−1]kk denotes the (k, k) element of [NLΣ

−1]. Derivations of these posteriors are provided

in SI Appendix 1.5. The choice of a hierarchical prior for Σ is to circumvent the issue of the

inverse-wishart prior leading to a biased estimator for the correlation coefficient when the variances

are small13. Details for the MCMC algorithm including EKF are provided in Appendix C.

4. Empirical Results

In this section, we compare the results obtained from estimating the LC and the CBD models

under the linear and nonlinear variants. We used the Human Mortality Database for the following

list of countries: Australia, United Kingdom, Italy, France, Spain, New Zealand, Sweden, Germany,

and Russia aged 50 to 95 total population, across time periods 1950 − 2000. For countries where

the mortality data does not date back to 1950, the most earliest year was used instead. A total of

20, 000 MCMC iterations are conducted, and the first 5, 000 was used as the burn-in period. Hyper-

parameters were chosen to be non-informative, such that our posterior distribution will be mainly

data driven. The hyper-parameter specifications are shown in SI Table 1, and they were identical

for all countries. The Geweke statistic is a tool used in Bayesian statistics to determine whether

the last iterations of the MCMC draws from the full conditional posteriors are different from the

13For more details the reader is referred to Leung et al. (2018)
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first half of the iterations, if there is no statistical evidence of a difference we say that the chain

has reached a stationary state. The Geweke Statistic shown in SI Tables 2 to 19, indicated that

most parameters reached a stationary state with a 95% confidence. Furthermore, the trace-plots

shown in SI Figures ?? and 11 indicates no apparent signs of serial correlation, and once again

confirming our hypothesis that the chain has reached convergence. For more details on the LC and

CBD parameter implications see SI Section 1.6.1.

4.1. K-step ahead forecasting

In this section we provide the algorithm to produce a K-step ahead forecast for both the linear

and nonlinear variants of the LC and CBD models. Under the Bayesian method of forecasting, we

utilize our posterior draws which retain information about our parameter uncertainty to produce

our K-step ahead forecasts. The method to produce the forecasts for the LC and CBD model varies

in the dimension of the variance-covariance matrix and drift term. Let us start by denoting k as the

kth step ahead forecast, this is consistent with the notion used in Algorithms 1 and 2. Furthermore,

let m denote the mth iteration from the MCMC, where M is the number of kept iterations after

the burn-in period. For the parameter estimation results and convergence statistics see SI Section

1.7.

Algorithm 1 Bayesian K step ahead forecasting for the LC model

1: for k = 1, ...,K do
2: for i = 1, ...M do
3: κiT+k ∼ N(κi

T+(k−1) + δi, (σ2ω)
i)

4: log(m̃i
x,T+k) ∼ N(αi

x + βixκ
i
T+k(σ

2
ε)

i) (Linear)

5: mi
x,T+k = exp(αi

x + βixκ
i
T+i) (Nonlinear)

6: end for
7: end for

Algorithm 2 Bayesian K step ahead forecasting for the CBD model

1: for k = 1, ...,K do
2: for i = 1, ...M do
3: κi

T+k ∼ N(κi
T+(k−1) + θi, (σ2ν)

i)

4: logit(q̃iT+k) ∼ N((x− x̄)κi
T+(k−1), (σ

2
ε)

i) (Linear)

5: qiT+k =
exp((x−x̄)κi

T+k
)

1+exp((x−x̄)κi
T+k

)
(Nonlinear)

6: end for
7: end for

For both Algorithms 1 and 2, the latent states are taken from the Forward Filtering Backward

Sampling (FFBS) algorithm, where the model static parameters are taken from Gibbs sampling at
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the mth iteration. SI Section 1.7 shows a 10-step ahead forecast of κt from the LC model and κt

from the CBD model. The 10-year ahead mortality forecasts for ages 50-90 in increments of 10

years over the years 2000 till 2010 was also produced. For example, m(90, t) will correspond to the

mortality rate for the age 90 of a specified country across the time horizon of 2000 till 2010.

5. The backtesting of stressed longevity trends

In this section, we apply a stress test procedure on the longevity trend with the aim of capturing

longevity risk. In essence the idea is to obtain a liability estimate by stressing the mortality forecasts

at the 0.5% interval, this in turn will trigger an increased in the liability estimate conditioned on

improvements in life expectancy. Assume now we have a $1 continuously paid temporary annuity

to a person currently aged x for the next N years. Let the price of a zero coupon bond which

matures in T years be denoted as B(0, T ), we then have the liability for a $1 annuity paid to a

person aged x at time t for the next N years to be,14

Lx(N) =
N∑

n=1

B(0, n)Sx(t, n). (5.1)

We intentionally choose to not use market based annuity rates since besides longevity risk the

premium will include company dependent factors such as profits and expenses. Eq. (5.1) will only

be affected by longevity improvements over time and as such allows us to focus on longevity trend

risk. First, let N be determined by our limiting age set at ω = 95, for example if x = 55 then

N = ω − x. Using our forecast intervals obtained in section 4.1, a mean and upper bound on

Lx(N) was obtained. Denote the mean of Lx(N) as Lmean
x (N) = E[Lx(N)] and the upper bound

as Lupper
x (N), where Lupper

x (N) is calculated using the 0.5% quantile of the mortality forecasts15

applied to Eq. (3.2), and thus would represent the liability estimated at the upper 99.5% quantile.

In order to generate our out-of-sample forecasts, we used ages x1 = 50 till xn = ω = 95, where

the period of interest is from year 2001 till 2010. The forecasts was obtained using the methods

described in section 4.1 applied to J = 9 different countries. Lastly, we obtain the following set:

{(Lmean
x (N), Lupper

x (N)) : x ∈ (50, ..., 95)}.

The capital requirement is a ratio which determines the extra capital amount needed to be held

at time t for someone aged x, given that mortality is stressed at the 0.5% level. It is determined

14Here, B(0, t) := ( 1
1+i

)t

15A lower quantile estimate of mortality forecast represents an increase of the annuity liability.
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(a) Average over countries of the Percentage
of extra capital required across ages 50− 95.

(b) Average difference of Realised annuity
and the upper 99% predicted annuity liabil-
ity across ages 50− 95 under both Lee-Carter
model variants

Figure 1: LC model

using,

CapR =

(
Lupper
x (N)

Lmean
x (N)

− 1

)

× 100%. (5.2)

Figures 1 and 2 represent the percentage of extra capital required for a 99% mortality stressed

scenario. It is interesting to note that the linear and nonlinear variant of the LC model produced

similar capital requirements and average difference across all countries for the realised annuity and

99.5% upper bound. Whereas on the contrary, the nonlinear CBD model produced largely varying

results. The graph for the extra capital amount shows that the linear CBD model required a larger

amount for all ages when compared with its nonlinear counterpart. Furthermore, we see that the

average difference across all ages shows that it peaks for the higher age groups, this indicates that the

linear CBD model overestimates the upper 99.5% annuity price. The findings can be summarized

as follows. Firstly, the linear and nonlinear LC models show similar structures in the extra capital

required and average difference of the upper annuity liability compared with the realised one, thus

not much difference can be seen between the two models. The linear CBD model seems to over

estimate the annuity liabilities and hence has the highest peak for the average difference curve, this

is also reflected in the larger extra capital required to ensure a 99.5% of the annuity obligation can

be met.

The idea of backtesting in the context of annuity pricing is to determine whether the stressed
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(a) Average over countries of the Percentage
of extra capital required across ages 50− 95.

(b) Average difference of Realised annuity
and the upper 99% predicted annuity liability
across ages 50 − 95 under both CBD model
variants

Figure 2: CBD model

longevity scenarios were enough to capture the experienced liability over the forecasted time horizon

from 2001 till 2013. Our aim is to test whether the “hits” (when I = 1) follows a Be(p∗) distribution,

where p∗ represents the quantile of interest, in our case we are interested in a longevity stressed

scenario at the upper 99.5%, thus the probability of violations should be p∗ = 0.005. A backtesting

procedure using BF and BLRT test statistic shown in Eqs. (2.12) and (2.13) will be used to

determine the strength of evidence for the null and alternative models. This procedure statistically

examines whether the frequency of exceptions for N -year annuity liabilities is in line with the

regulations of Solvency II. That is, whether companies are able to hold reserves capable of sustaining

the liabilities in the long term. In this section we define “long term” to be capped at ω years, however

this assumption can be relaxed. Let j represent a country used in Section 4 and denote jL
∗
x(N) for

x ∈ (50, ..., 95) as the sample path of our realised liabilities. Let us create an indicator variable, Ij
x

where for a given interval forecast (jL
mean
x (N), jL

upper
x (N)), we have

Ij
p(x) =







1, if jL
∗
x(N) ∈ (jL

mean
x (N), jL

upper
x (N)),

0, if jL
∗
x(N) /∈ (jL

upper
x (N), jL

upper
x (N)).

(5.3)

We wish to test for Ip(x) ∼ Be(p∗). Let Ip∗ := {Ij
p(t) : j ∈ (1, ..., J), x ∈ (50, ..., 95)}, and let m1

and m0 denote the number of one and zero occurrences in Ip∗ respectively. Then Ip∗ will be a
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vector of size T = m1 +m0, and the joint likelihood function will be given by,

l(Ip|p) = pm1(1− p)m0 . (5.4)

We assign the point mass prior under H0 : p = p∗ and under the alternative H1 := p 6= p∗ we use a

Beta(1,1) prior distribution which is a uniform over (0, 1). Let

π(p) =







1 if p = p∗,

Beta(1, 1), if p 6= p∗.

with,

BF01 =
(p∗)m1(1− p∗)m0

β(a+m1, b+m0)
.

For the BLRT statistic we find TBLRT(y, θ) = −2[Aπ0 − Bπ1 ] + 1 as defined in Eq. (2.13), with

p∗ = 0.005, a = 0.5, and b = 0.5. Appendix Table 3 shows the violations across age groups

and countries, and also results of the extra capital required and difference from realised annuity

liability.16

Table 2 contains the BF and BLRT statistic for each variant of the LC and CBD model by

tallying the “ones” from Appendix Table 3. A higher value for BF01 represents evidence favouring

H0, meaning that indeed the violations occur at frequency of p∗. For values smaller than 1, it shows

evidence towards H1, that violations do not follow a frequency of p∗. For the BLRT statistic, we

compare it against the χ2-distribution with 1 degrees of freedom. At the 5% region, the critical

value (CBLRT) is 2.841. A variety of prior specifications was conducted as a means of robustness

check, however the goal of choosing a diffuse prior still applies. Besides the Beta(0.5,0.5) distribution

corresponding to Jeffreys Prior, the Beta(ǭ,ǭ) known as Haldane’s prior and the Neutral-Information

(NI) Beta(13 ,
1
3) prior was also used.17

Furthermore, we can back-solve BF01 to obtain an implicit p̂, which represents the true frequency

rate implied by the model. p̂ can be found by,

p̂ = min
p∈(0,1)

(p)m1(1− p)m0

β(a+m1, b+m0)
. (5.5)

16For the full table of results see SI Section 2.
17Here, ǭ represents a small positive real number (ǭ ∈ R

+).
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Table 2: Derived BF and BLRT under the linear and nonlinear LC and CBD models across varying
prior hyper-parameter specifications.

LC model

Linear Nonlinear

Hyper-Parameters Haldanes-Beta(ǭ,ǭ) NI-Beta(13 ,
1
3) Jeffreys-Beta(0.5,0.5) Haldanes-Beta(ǭ,ǭ) NI-Beta(13 ,

1
3) Jeffreys-Beta(0.5,0.5)

Bayes Factor 8.472522× 10−09 2.556865× 10−08 4.431379× 10−08 2.8695× 10−06 9.2722× 10−09 1.6618× 10−05

BLRT 37.0473 37.0613 37.0635 25.1922 25.2094 25.2120
p̂ 0.039 0.039 0.039 0.031 0.031 0.031

CBD model

Linear Nonlinear

Hyper-Parameters Haldanes-Beta(ǭ,ǭ) NI-Beta(13 ,
1
3) Jeffreys-Beta(0.5,0.5) Haldanes-Beta(ǭ,ǭ) NI-Beta(13 ,

1
3) Jeffreys-Beta(0.5,0.5)

Bayes Factor 0.0000 0.3492 1.4415 0.5394 3.3818 8.2784
BLRT 5.1504 4.4837 4.1510 -0.0790 0.0350 0.0430
p̂ NA NA NA 0.005 0.005 0.005

As we observe in Table 2, the outcomes of both test statistics and p̂ is shown. Both the LC

models presented with a rejection of H0 under the BF and BLRT, meaning that a frequency of p∗

was rejected. In particular since the BF can be compared between models, we see that the nonlinear

version of the LC model presents as a stronger model compared with its linear variant due to its

larger BF, with its resulting p̂ closer to p∗. The nonlinear CBD model performed the best out of the

group, this can be seen from the BF and BLRT statistic giving evidence for H0 and the BF being

the largest of the models. Its implicit p̂ of 0.005 in Table 2 also shows that the model achieved

the correct mortality coverage. It is interesting to note that although the linear CBD model was

not able to achieve the correct coverage, it was due to it having no violations across all countries

and ages. This meant that the linear CBD model overestimated the mortality rate and was able

to capture the realised longevity liability in all cases. From a pricing perspective, although the

linear variant of the CBD model captured all realised liabilities under its mortality forecasts, the

liability estimates over the long run would over compensate for more than 0.5% under the longevity

stress trend scenario. In a scenario where we are trying to minimize the capital required in order

to achieve a 0.5% coverage, the nonlinear CBD model out-performed all models. With varying

prior specifications, the test outcomes said mostly consistent. Under Jeffreys prior, the linear CBD

model also seemed to not reject the H0 hypothesis, however if we compare that to the nonlinear

CBD model, it is over 8 times more likely to not reject the H0. As pointed out by Li et al. (2014),

the BLRT seems to have the least deviations with prior changes, mainly due to its loss function

being averaged over the posterior rather than the prior distribution as in the BF.
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6. Conclusion

In this paper we develop a new approach to backtesting under the Bayesian paradigm which can

be an excellent tool for decision and policy makers and its demonstrated effectiveness establishes

its excellent potential for a much broader area of applications. We utilized tools from Bayesian

decision theory to determine test outcomes from the UC test and as an application we used annuity

liabilities in a longevity stressed scenario from two renowned mortality models, the LC model and

CBD model. To keep the framework aligned in the Bayesian paradigm, we chose to undergo a

Bayesian model estimation in the linear and nonlinear state-space framework. Using the dynamic

linear model structure, we modelled the central death counts using the Poisson distribution under

the LC model and Binomially distributed death rates using the CBD model. We show that their

nonlinear variants benefited more so when backtested under the UC test.

As a natural extension of our work, one could consider the multivariate version of our newly

proposed backtest which would have to account for possible correlations in VaR-violations across

different types of annuities and time. Moreover, we want to develop a set of tests of i.i.d. VaR-

violations, and of course, of conditional coverage under the same Bayesian decision theoretic frame-

work. As these issues are beyond the scope of the present paper, we will address them in our future

research.
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Appendix A Bayesian Testing

A.1 Proof of Lemma 2.1

When testing two hypotheses, H0 and H1, where H0 is a point null hypothesis and H1 is a

composite hypothesis, the BF is given by,

l(y|θ = θ0)
∫

θ
π(y|θ,H1)π(θ|H1)dθ

.
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Under the UC backtest assumptions, the sequence of ones and zeros are assumed to follow a

Bernoulli distribution, hence the likelihood function for the data corresponds to,

l(I|p) =

m∏

i=1

pyi(1− p)1−yi = pm1(1− p)m0 ,

where m is the number of data points, m1 represents the number of “ones” in the data, likewise

m0 corresponds to the number of “zeros”. The null hypothesis is defined as p = p∗ for a given p∗,

and the alternative hypothesis as p 6= p∗. With the following prior specifications for p:

π(p) =







1 if p = p∗,

Beta(a, b), if p 6= p∗.

We derive an analytical form for the BF due to the conjugate property of the Beta-Binomial

distribution, i.e.,

l(y|p = p∗)
∫

p 6=p∗
l(y|θ)π(θ)dθ

=
(p∗)m1(1− p∗)m0

∫

p 6=p∗
pm1(1− p)m0Beta(a, b)dp

=
(p∗)m1(1− p∗)m0

β(m1 + a,m0 + b)
∫

p 6=p∗
pm1+a−1(1−p)m0+b−1

β(m1+a,m0+b) dp

=
(p∗)m1(1− p∗)m0

β(m1 + a,m0 + b)
.

A.2 Proof of Theorem 2.1

To derive the analytical form for the BLRT for the UC test, we begin with the test statistic,

TBLRT(y, θ) =− 2








∫

θ

log(l(y|θ0))π(θ|y)dθ

︸ ︷︷ ︸

(1)

−

∫

θ

log(l(y|θ))π(θ|y)dθ

︸ ︷︷ ︸

(2)







+ 1.

Here, it can be shown that integral (1) can be decomposed to the following:

∫

θ

log(l(y|θ0))π(θ|y)dθ =

∫

θ

log((θ∗)m1(1− θ∗)m0)
θa+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ

=m1 log(θ
∗) +m0 log(1− θ∗).

(A.1)
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Now, expanding integral (2), we have:

∫

θ

log(l(y|θ))π(θ|y)dθ =

∫

θ

[m1 log(θ) +m0 log(1− θ)]
θa+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ.

∫

θ

m1 log(θ)
θa+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ =

m1

β(a+m1, b+m0)

∫

θ

log(θ)θa+m1−1(1− θ)b+m0−1dθ

=
m1

β(a+m1, b+m0)

∫

θ

∂θa+m1−1

∂a
(1− θ)b+m0−1dθ

=
m1

β(a+m1, b+m0)

∂β(a+m1, b+m0)

∂a

=
m1∂ log(β(a+m1, b+m0))

∂a

=
m1∂ log(Γ(a+m1))

∂a
−
m1∂ log(Γ(a+m1 + b+m0))

∂a

=m1(ψ(a+m1)− ψ(a+m1 + b+m0)).

(A.2)

∫

θ

m0 log(1− θ)
θa+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ =

∫

θ

m0 log(1− θ)
θa+m1−1(1− θ)b+m0−1

β(a+m1, b+m0)
dθ

=
m0

β(a+m1, b+m0)

∫

θ

log(θ)θa+m1(1− θ)b+m0dθ

=
m0

β(a+m1, b+m0)

∫

θ

∂θa+m1−1

∂a
(1− θ)b+m0−1dθ

=
m0

β(a+m1, b+m0)

∂β(a+m1, b+m0)

∂a

=
m0∂ log(β(a+m1, b+m0))

∂a

=
m0∂ log(Γ(a+m1))

∂a
−
m1∂ log(Γ(a+m1 + b+m0))

∂a

=m0(ψ(b+m0)− ψ(a+m1 + b+m0)).

(A.3)

Combing Eqs. (A.1), (A.2), and (A.3), we retrieve the analytical form for th BLRT statistic.

TBLRT(y, θ) = −2[m1 log(θ
∗) +m0 log(1− θ∗)− (m1(ψ(a+m1)− ψ(a+m1 + b+m0))+

m0(ψ(b+m0)− ψ(a+m1 + b+m0)))] + 1, (A.4)
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as required.

Appendix B MCMC Algorithm for the Lee-Carter Poisson model

(i) Set initial values for the parameter vector (α0, β0,κ0, δ0, (σ2ω)
0, (σ2β)

0).

(ii) Conditional on (α(i−1), β(i−1), δ(i−1)), apply the EKF and Backward Smoother shown in

Algorithm 1 of SI to obtain κ∗ as the candidate for step (iii).

(iii) Simulate κ(i) using the MH step for κt shown in Algorithm 2 of SI, the candidate draw is

taken from step (ii) to obtain the density f∗ and κ(i−1) is used to compute the density f .

(iv) Simulate β(i) using the MH step for βx shown in Algorithm 3 of SI.

(v) Drawα(i) from the transformed posterior LogGamma(aα+
∑

t dx,t, bα+
∑

t Ex,t exp(β
(i−1)
x κ

(i−1)
t )).

(vi) Draw δ(i) from its posterior distributionN(µ, σ2), with µ = 1/( 1
100+

T−1
(σ2

ω)
(i−1) )(1/((σ

2
ω)

(i−1)))
∑

t(κ
(i)
t −

κ
(i)
t−1) and, σ

2 = ( 1
100 + T−1

(σ2
ω)

(i−1) )(1/(σ
2
ω)

(i−1)).

(vii) Draw (σ2β)
(i) from its posterior distribution I.G(aβ + n/2, bβ + (1/2)ββ′).

(viii) Draw (σ2ω)
(i) from I.G(aω + (T − 1)/2, bω + (1/2)

∑

t((κ
(i)
t − κ

(i)
t−1)− δ(i))2).

(ix) Conditional on κ(i),α(i),β(i−1), (σ2ω)
(i), (σ2β)

(i), simulate β(i) using Algorithm 3 with tuning

parameter σ2x.

Appendix C MCMC Algorithm for the CBD Binomial model

(i) Set initial values for the parameter vector (κ0
1,κ

0
2, θ

0, Σ0).

(ii) Conditional on (θ(i−1), Σ(i−1)), apply the EKF and Backward Smoother shown in Algorithm

4 of SI to obtain κ∗ as the candidate for step (iii).

(iii) Simulate κ(i) using the MH step for κ shown in Algorithm 5 of SI. The candidate draw, κ∗,

is taken from step (ii) to obtain the density f∗ and κ(i−1) is used to compute the density f .

(v) Draw θ(i) from its posterior distribution π(θ(i)|y,κ
(i)
1 ,κ

(i)
2 ,Σ(i−1)).

(vi) Draw Σ
(i)
kk from its posterior distribution π(Σ

(i)
kk |y,κ

(i)
1 ,κ

(i)
2 ,θ(i)) for k ∈ 1, 2.

(vii) Draw Σ(i) from its posterior distribution π(Σ
(i)
ω |Σ

(i)
kk ,y,κ

(i)
1 ,κ

(i)
2 ,θ(i)).
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Appendix D Annuity Liability Results

Table 3: Table showing the percentage of extra capital required, difference from realised annuity, and the indicator variable jI
x
p (N) over

all countries used under the linear and nonlinear LC and CBD models.

LC model: Linear variant

Australia United Kingdom Italy France Spain New Zealand Sweden Germany Russia

x CapR(%) ∆R jI
x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N)

62 1.0871 0.0345 0 1.3976 -0.0027 1 1.4167 0.0346 0 1.3211 0.0754 0 1.6937 0.1345 0 1.2647 0.0457 0 0.7653 0.0139 0 1.1181 0.0007 0 2.9916 0.1953 0
63 1.1863 0.0400 0 1.5136 -0.0126 1 1.5539 0.0459 0 1.4437 0.0793 0 1.8621 0.1560 0 1.3784 0.0342 0 0.8516 0.0229 0 1.2135 -0.0093 1 2.9308 0.0746 0
64 1.2891 0.0432 0 1.6438 -0.0277 1 1.7054 0.0484 0 1.5849 0.0882 0 2.0546 0.1594 0 1.4972 0.0355 0 0.9434 0.0225 0 1.3135 0.0030 0 2.8399 0.1390 0
65 1.4045 0.0434 0 1.7866 -0.0260 1 1.8837 0.0725 0 1.7383 0.1028 0 2.2676 0.1615 0 1.6369 0.0540 0 1.0441 0.0450 0 1.4354 0.0105 0 2.7367 0.1525 0
66 1.5266 0.0409 0 1.9488 -0.0182 1 2.0850 0.0875 0 1.9075 0.1149 0 2.5059 0.1859 0 1.7883 0.0644 0 1.1604 0.0651 0 1.5661 0.0700 0 2.6445 0.1601 0

67 1.6674 0.0451 0 2.1263 -0.0152 1 2.2985 0.1191 0 2.1026 0.1409 0 2.7705 0.1993 0 1.9546 0.0775 0 1.2778 0.0583 0 1.7244 0.0553 0 2.5420 0.0837 0
68 1.8089 0.0494 0 2.3145 -0.0063 1 2.5403 0.1292 0 2.3119 0.1550 0 3.0570 0.2183 0 2.1262 0.1207 0 1.4140 0.0878 0 1.8940 0.0893 0 2.5299 0.1208 0
78 3.6317 0.1937 0 4.8381 0.3167 0 6.0905 0.4478 0 5.3598 0.3220 0 6.3595 0.3362 0 4.3679 0.3027 0 3.3127 0.2586 0 4.6747 0.2946 0 4.5228 -0.0945 1
79 3.7922 0.2315 0 5.1090 0.3803 0 6.4520 0.4760 0 5.7091 0.3397 0 6.5175 0.3137 0 4.6064 0.4092 0 3.4933 0.3098 0 5.0275 0.3529 0 4.9417 -0.0125 1
83 4.4613 0.3334 0 5.9857 0.4174 0 7.6583 0.5039 0 6.7247 0.3379 0 6.6271 0.2436 0 5.6131 0.4988 0 4.1458 0.3883 0 6.1867 0.2771 0 7.3121 -0.0343 1

89 3.3419 0.2215 0 4.3346 0.2995 0 5.5666 0.2744 0 4.8763 0.2055 0 3.4448 -0.0029 1 4.5050 0.3767 0 3.2734 0.2785 0 5.2542 0.1695 0 11.1593 0.1917 0
90 3.0166 0.1994 0 3.8785 0.2400 0 5.0126 0.2081 0 4.3462 0.1607 0 2.9596 -0.0044 1 4.1780 0.3092 0 2.9890 0.2129 0 4.9491 0.1366 0 11.0033 0.1582 0
91 2.7074 0.1729 0 3.4274 0.2243 0 4.3573 0.1942 0 3.7929 0.1780 0 2.3229 -0.0517 1 3.8098 0.2965 0 2.6991 0.2141 0 4.4998 0.1203 0 11.6785 0.1490 0
93 2.0600 0.1206 0 2.4038 0.1287 0 2.9633 0.1280 0 2.5141 0.1001 0 1.6598 -0.0240 1 2.8808 0.2030 0 2.0125 0.1506 0 3.4585 0.0721 0 8.3450 0.1345 0
94 1.6045 0.0888 0 1.8104 0.0776 0 2.2519 0.0757 0 1.8733 0.0527 0 1.3483 -0.0252 1 2.2760 0.1381 0 1.5699 0.0976 0 2.7775 0.0496 0 6.5192 0.0965 0

LC model: Nonlinear variant

Australia United Kingdom Italy France Spain New Zealand Sweden Germany Russia

x CapR(%) ∆R jI
x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N)

63 1.2695 0.0503 0 1.7360 -0.0052 1 1.6612 0.0471 0 1.5021 0.0803 0 2.0136 0.1692 0 1.4916 0.0420 0 1.0001 0.0261 0 0.8158 -0.0071 1 3.4137 0.0808 0
64 1.3791 0.0545 0 1.8832 -0.0182 1 1.8260 0.0508 0 1.6402 0.0890 0 2.2261 0.1744 0 1.6240 0.0450 0 1.1102 0.0267 0 0.8634 0.0025 0 3.2759 0.1433 0
65 1.4949 0.0559 0 2.0537 -0.0133 1 2.0143 0.0753 0 1.8048 0.1044 0 2.4505 0.1777 0 1.7636 0.0643 0 1.2315 0.0505 0 0.9456 0.0114 0 3.1094 0.1537 0
66 1.6245 0.0554 0 2.2286 -0.0037 1 2.2267 0.0908 0 1.9833 0.1172 0 2.7054 0.2038 0 1.8948 0.0736 0 1.3728 0.0714 0 1.0541 0.0751 0 2.9430 0.1604 0
91 2.3049 0.1302 0 3.2832 0.1903 0 4.3565 0.1690 0 3.6473 0.1583 0 1.9845 -0.0045 1 3.6316 0.2798 0 2.5641 0.1658 0 1.8977 0.0736 0 10.3803 0.1823 0

93 1.7617 0.0904 0 2.2035 0.1038 0 2.8844 0.1119 0 2.4057 0.0867 0 1.3278 -0.0075 1 2.9968 0.2011 0 1.8977 0.1172 0 1.3124 0.0389 0 7.7978 0.1469 0
94 1.4047 0.0676 0 1.6078 0.0588 0 2.1721 0.0629 0 1.7553 0.0420 0 1.0020 -0.0190 1 2.4746 0.1397 0 1.5227 0.0749 0 1.0246 0.0259 0 6.0321 0.1054 0
63 1.2695 0.0503 0 1.7360 -0.0052 1 1.6612 0.0471 0 1.5021 0.0803 0 2.0136 0.1692 0 1.4916 0.0420 0 1.0001 0.0261 0 0.8158 -0.0071 1 3.4137 0.0808 0
76 3.3241 0.1787 0 4.8855 0.3000 0 5.6138 0.4152 0 4.8224 0.3075 0 6.3248 0.4009 0 3.9225 0.2331 0 3.3571 0.2020 0 2.9556 0.2970 0 2.7350 -0.0271 1
78 3.6884 0.1930 0 5.4783 0.3447 0 6.4470 0.4454 0 5.5334 0.3251 0 7.0404 0.4116 0 4.4158 0.2503 0 3.8241 0.2429 0 3.4005 0.3212 0 3.3081 -0.1337 1

79 3.8234 0.2251 0 5.7610 0.4048 0 6.8284 0.4707 0 5.8599 0.3392 0 7.2263 0.3956 0 4.6646 0.3493 0 4.0534 0.3223 0 3.6003 0.3748 0 3.8562 -0.0345 1
80 3.9549 0.2345 0 6 0.3577 0 7.1986 0.4754 0 6.1692 0.3513 0 7.4181 0.4106 0 4.7713 0.3364 0 4.2201 0.3082 0 3.7534 0.3606 0 4.2202 -0.0017 1
83 4.3148 0.2917 0 6.5218 0.4124 0 7.9736 0.4780 0 6.8316 0.3269 0 7.3116 0.3324 0 5.4876 0.4766 0 4.5474 0.3669 0 3.9718 0.2714 0 6.4005 -0.0374 1

CBD model: Nonlinear variant

Australia United Kingdom Italy France Spain New Zealand Sweden Germany Russia

x CapR(%) ∆R jI
x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N) CapR(%) ∆R jI

x
p (N)

70 3.1158 0.0927 0 3.7519 0.1045 0 4.1374 0.1496 0 3.5182 0.0263 0 4.6068 0.1828 0 3.2907 0.1245 0 2.1797 -0.0052 1 1.7275 0.0502 0 7.9876 0.0733 0
82 11.7376 0.5207 0 12.3340 0.3435 0 15.3102 0.7242 0 12.1693 0.5594 0 15.0026 0.7515 0 11.7768 0.6471 0 8.0685 0.2912 0 5.5538 -0.0247 1 14.4498 0.5227 0

30


