
Munich Personal RePEc Archive

Blockchain Forks: A Formal

Classification Framework and Persistency

Analysis

Schär, Fabian

Center for Innovative Finance, University of Basel, Faculty of

Business and Economics, University of Basel

2020

Online at https://mpra.ub.uni-muenchen.de/101712/

MPRA Paper No. 101712, posted 20 Jul 2020 14:24 UTC

Blockchain Forks: A Formal Classification

Framework and Persistency Analysis

Fabian Schär1

Center for Innovative Finance

Faculty of Business and Economics

University of Basel

Abstract: Blockchain forks can have severe economic implications, sow uncertainty

and undermine trust. In this paper, we introduce a formal framework to study the

emergence, persistency and economic consequences of blockchain forks. We argue

that blockchain forks can be process- or protocol-based and emerge unintentionally

or deliberately. We then proceed with a sub-classification of protocol-based forks

and study the circumstances under which a chain split may become permanent. It

can be shown that the persistency of a fork depends on the nature of the change to

the consensus rules and on the relative allocation of the consensus-relevant resources.

Lastly, we discuss business implications as well as potential consequences for policy

makers and practitioners.

JEL Classification: C38, G15, G23

Keywords: blockchain, chain split, cryptoasset, distributed ledger, fork.

1Address: Universität Basel, Peter Merian-Weg 6, CH-4052 Basel, Switzerland.

Phone: +41 61 207 33 25

Email: f.schaer@unibas.ch

1

1 Introduction

For economists, cryptocurrencies are very difficult to analyze. On the one hand, we

would like to assume that the rich history of economic research provides us with the

tools necessary to study this relatively new phenomenon. After all, our models are

general and should be applicable to any asset and monetary regime. On the other

hand, there are some characteristics in which cryptocurrencies differ fundamentally

from everything we have seen so far. The concept of a truly decentralized and

permissionless digital asset raises new questions in the context of monetary policy,

transaction finality and governance. One of the unique characteristics, which is a

direct consequence of decentralization, are blockchain forks, i.e. potentially persistent

disagreements on the current state of the ledger that may cause the blockchain to

split and create two or more competing database instances.

Forks have been discussed as early as the original Bitcoin paper (Nakamoto,

2008). They have been identified as a potential problem in security surveys (Lin and

Liao, 2017) and analyzed in terms of their compatibility (Berentsen and Schär, 2017;

Zamyatin et al., 2018). Additionally, there have been case study analyses for specific

forks (Islam et al., 2019; Kiffer et al., 2017).

Although most economists would likely agree that chain splits are an interesting

topic, there is surprisingly little economic research on forks. In fact, there is not even

a clear definition of the word fork. Instead, the term is used to describe a variety

of situations. Sometimes it refers to a temporary state of uncertainty, when two or

more competing blocks are created at approximately the same time; at other times

it refers to a change of the consensus rules that may or may not cause the network

2

to split and a competing version of the Blockchain to emerge.

Despite the lack of a clear definition, forks are very real and can have devas-

tating economic effects. They cause confusion and mix-ups when there are several

competing versions of a cryptoasset. Moreover, they may open up new attack vec-

tors through the potential of a replay attack and jeopardize data protection through

cross-chain identity analyses. Tax and legal questions (Himmer et al., 2018; Landoni

and Pieters, 2019; Webb, 2018), as well as the need for large financial investments

to ensure the compatibility of storage solutions with new forks, introduce additional

inefficiencies and, when the forked blockchain is used for the tokenization of off-chain

assets or serves as a platform for interoperable decentralized applications, the sit-

uation gets even more complicated. To sum up, forks undermine the trust in the

system and sow uncertainty.

There is no lack of examples for Blockchain forks. As of May 2020, there are more

than forty listed cryptoassets that originated from a Bitcoin chain split and five that

split from Ethereum.2 While most forks are economically irrelevant, the two most

prominent examples highlight the uncertainty involved in a forking event (Berentsen

and Schär, 2018). On 20 July 2016, a large portion of the Ethereum community

decided to change the consensus rules in response to the DAO hack (Mehar et al.,

2017). Some members of the community wanted to perform an irregular state change

and thereby undo the hack, while others decided to stick to the original rules and the

blockchain’s immutability. The resulting fork led to two competing chains. Ethereum

Classic (following the original rules) and Ethereum (where the hack was undone).

2The website https://forks.net provides an extensive list of first order Bitcoin and Ethereum

forks. Accessed 25 May, 2020.

3

On 1 August 2017, a long standing disagreement in the Bitcoin community led to

the Bitcoin Cash fork. The difference was mainly in block size. While the Bitcoin

community kept a limit of 1 MB blocks and was in favor of second layer scaling

solutions, Bitcoin Cash followers wanted to scale on-chain and implemented a 8 MB

block size.

Interestingly, the two examples had a completely different outcome. In the case of

Bitcoin, the blockchain with the modified rules corresponds to approximately 2.5% of

the Bitcoin market cap. With Ethereum, it is the other way around. The DAO fork

version became the dominant chain and has a market cap that is approx. 30 times

higher than the market cap of the blockchain with the original consensus rules.3

In addition to forks that materialize in chain splits, there are certain types of

forks that dissolve immediately. Bitcoin’s Segregated Witness (SegWit) modifica-

tion changed some of the rules. However, as a result of the way the change was

implemented and the allocation of consensus-relevant resources, the SegWit version

was uncontested.

Considering these examples, the diversity of potential outcomes and the corre-

sponding economic consequences, it is essential to have a good understanding of

blockchain forks. It is particularly important to be able to distinguish between the

different types of forks. That is why this article introduces a formal classification

framework, in an attempt to untangle the various meanings of the term fork and to

provide a foundation for further research.

After this short introduction, we propose our framework in Section 2. We differen-

3Market cap data source: coinmarketcap.com. Data obtained 25 May, 2020.

4

tiate between process-based and protocol-based forks, study different sub-categories

of protocol-based forks and argue that our classification allows us to explain the

severity and long-term implications. In Section 3, we study the persistency of forks

and demonstrate how the probability that a permanent protocol-based fork emerges

depends on two factors: the allocation of consensus-relevant resources and the rela-

tive size of the intersection of the two block acceptance sets. In Section 4, we briefly

discuss our results and conclude with areas that need further research.

2 Formal Classification Framework

Let us assume that there are two consensus-relevant nodes (CRN) MA and MB. Both

are validating and relaying transactions and are trying to extend the blockchain by

assembling candidate blocks. Candidate blocks are transaction collections that com-

pete for the inclusion into the blockchain. They will get accepted if they are created

in accordance with the blockchain’s consensus rules. In particular, the candidate

block and all included transactions must be cryptographically sound, exclusively ref-

erence valid outputs and provide solutions to the locking scripts (utxo model), result

in valid state changes (account-based model) and satisfy the threshold criterion that

artificially decreases the block creation speed.

Let us further assume that there is a finite block acceptance set S with S 6= ∅,

that incorporates all of these criteria, so that a candidate block b will get accepted

by any network participant who is employing S if a proposal b ∈ S and refused if

b /∈ S. For the sake of readability, we denote confirmed blocks with bh, where index

5

h ∈ {0, ..., N − 1} is a sequence number representing the block’s position in the

blockchain, i.e. the block height and N is the length of the dynamic block sequence

vector. Figure 1 shows a simple block sequence (or blockchain) consisting of 4 blocks.

b0 b1 b2 b3

Figure 1: A simple block sequence

The decentralized nature of block creation can lead to disagreements, which may

result in the emergence of two or more incompatible versions of the blockchain. This

is usually referred to as a fork or chain-split. More precisely, we define a fork as a

network state in which there are two (or more) active branches, with a common origin,

i.e. a block from which these branches split. A generic example of this situation is

shown in Figure 2, where the two branches with blocks b3 and b3a respectively, both

originate from b2.

b0 b1 b2 b3

b3a

Figure 2: A simple fork

Some forks will only have a temporary effect and dissolve relatively quickly. Oth-

ers may permanently split the network into two (or more) competing versions. Once

we understand that forks differ significantly – not only in their type but also in

the potential consequences – it becomes apparent that there is a need for a formal

6

analysis and a framework to assess the type and potential consequences of a fork.

Let us first differentiate between process-based forks and protocol-based forks. To

do so, we must allow each CRN to choose its own block acceptance set. Let us denote

the block acceptance set of CRN MA with A and the block acceptance set of CRN

MB with B.

We call a fork process-based when it emerges, despite the two CRN MA and

MB generating blocks in accordance with the same block acceptance set S, such

that A = B = S. Since there are no differences in the rule set, the state will be

determined exclusively by the allocation of consensus-relevant resources; hence, the

name process-based.

We call a fork protocol-based when it emerges as a consequence of differences in

the block acceptance sets, i.e. A 6= B. It may be caused due to differences in the

interpretation or a change of the consensus rules. If, for example, MA has a different

understanding of the consensus protocol than MB, and therefore does not accept

MB’s newly created block, this may cause a protocol-based fork.

Process- and protocol-based forks can both emerge unintentionally or deliberately.

Unintentionally means that the fork just happens without any party actively trying to

create a fork. Deliberately means that at least one party wanted the fork to emerge

and has taken steps to actively promote it. Table 1 summarizes our preliminary

findings. The four categories will be described in the following sections.

7

Process-based (A = B = S) Protocol-based (A 6= B)

Unintentional Probabilistic Block Race Client Incompatibility
• Soft Fork

• Hard Fork

• Forced Fork

Deliberate Block Withholding & Rule Change
Forced Block Race • Soft Fork

• Hard Fork

• Forced Fork

Table 1: The 4 types of forks.

2.1 Process-based

An unintentional process-based fork is usually referred to as probabilistic block race.

It emerges whenever two or more CRN find a new block at approximately the same

time. This is possible due to the probabilistic nature of the block creation process,

inherent to many consensus protocols. Let us turn to the example in Figure 2 and

assume that, b3 and b3a have been created nearly at the same time. Both blocks

have the same block height and therefore are conflicting, meaning that only one of

these blocks can prevail. A probabilistic block race is a temporary phenomenon that

resolves after a short period of uncertainty – in particular, when one of the competing

blockchain versions gets extended by another block. Considering the longest chain

consensus rule, or more precisely the highest accumulated difficulty (Nakamoto, 2008)

or any of its variations (Sompolinsky and Zohar, 2015), the extension creates an

incentive for all neutral CRN to join the dominant version.

Deliberate process-based forks are somewhat more complex and harder to resolve.

They may originate from two distinct sources.

8

First, a CRN may decide to attack the dominant version of the blockchain by

creating a new block that builds on an already confirmed block with h(ba) < N − 1.

If conducted successfully, this attack may render any blocks with h ≥ h(ba) invalid.

Attacks of this kind can only create temporary forks, which dissolve when the attacker

is successful or decides to abort the attack.

Second, deliberate process-based forks may also emerge, when a CRN succeeds in

creating a new block but decides to withhold the information regarding the existence

of this block. The CRN may use the newly found block as a parent and immediately

start working on the next block without telling anyone that it has found a valid block

- giving it a head start and potentially letting others partially waste their consensus-

relevant resources. This phenomenon is usually referred to as selfish mining or block

withholding (Eyal and Sirer, 2018; Sapirshtein et al., 2016). The practical implica-

tions of these forks are debatable and there are certain defense mechanisms (Zhang

and Preneel, 2017). While block withholding may create severe uncertainty in the

short run and potentially undermine the perceived immutability characteristics of

the blockchain, it is important to note that (a) the CRN will only be able to do this

successfully if it is in control of a large portion of the network’s consensus-relevant

resources and (b) that this type of fork is a temporary phenomenon that will au-

tomatically dissolve once the CRN discloses the information. Nonetheless, forks of

this kind may potentially lead to transactions being reordered or completely removed

from the dominant version of the blockchain.

9

2.2 Protocol-based

An unintentional protocol-based fork may emerge in the case of a bug in the software

client. Let us assume that MA and MB use different clients, that is, different versions

of the same client or alternative software implementations of the same consensus rule

set. If one of these clients happens to have a bug, it may accept a block that is not

accepted by other implementations or, conversely, not accept a block that is accepted

by other implementations. Both situations may cause a chain split (Kim et al., 2018).

Similar situations may arise if the consensus rules are not well specified, i.e. if there

is room for interpretation. Client incompatibilities usually get resolved quickly, as

there is no incentive to keep using a faulty version of a client once a bug is detected.

A deliberate protocol-based fork is what most people think of when they use the

term “fork”. It emerges when part of the network decides to alter the blockchain’s rule

set and proceed with an adapted consensus protocol. In many cases, a new distinct

cryptocurrency is created from this type of fork. It is therefore rather unsurprising

that this type receives most attention and public awareness.

Sold

Snew

(a) Soft fork

Snew

Sold

(b) Hard fork

Sold

Snew

Sold

(c) Forced fork

Figure 3: The block acceptance set of the old (Sold) and new (Snew) client im-
plementation in the case of a (protocol-based) soft fork, hard fork or forced forks.
Process-based forks are excluded since the old and the new blok acceptance sets are
equal. Visualization in the style of (Berentsen and Schär, 2017).

10

To proceed with our analysis of protocol-based forks, we must assume that there is

a consensus rule change. For the sake of readability, we rewrite the block acceptance

sets A and B as Sold and Snew. We further assume that any rule changes will be

reflected in Snew, while Sold will stick to the original rules. This notation allows us

to propose a formal sub-classification model for protocol-based forks, with the three

subtypes: soft forks, hard forks and forced forks. The sub-classification depends on

the nature and the implementation of the rule change. As we will see in the next

section, the outcome and persistence of protocol-based forks, including the question

whether the fork emerges in the first place, is contingent on whether the new block

acceptance set Snew is a proper subset or a proper superset of the old block acceptance

set Sold, or whether the two differ significantly in the sense that neither one is a proper

subset of the other. Let us first have a look at the three sub-types and then analyze

the persistence under different assumptions. The three possible types are shown in

Figure 3 and described below.

2.2.1 Soft Fork

A soft fork refers to a change in the consensus protocol, in which the rules for creating

new blocks become stricter (Berentsen and Schär, 2017), such that the new block

acceptance set Snew is a proper subset of the original block acceptance set Sold.

Snew ⊂ Sold (1)

As a result, blocks that are valid under the new implementation will always get

11

accepted by anyone using the old implementation. However, in most cases, the new

client will not accept blocks generated by anyone who is applying the old rule set.

This becomes apparent when we look at a simple example of a soft fork: a block size

limit decrease. Let us assume that some individuals in the Bitcoin network want to

decrease a 1 MB block size limit to 512KB (0.5 MB) and thereby halve the number

of transactions that can be included in each block. Anyone who is applying the new

rule set will produce blocks with a maximum size of half a MB. Since these blocks

are below the original 1 MB block size limit, they will get accepted by either party.4

2.2.2 Hard Fork

A hard fork refers to the reverse situation. The new implementation makes the con-

sensus rules for block creation less strict (Berentsen and Schär, 2017). Consequently,

the new block acceptance set Snew is a proper superset of the old block acceptance

set Sold.

Snew ⊃ Sold (2)

The consequence of this is that blocks created using the new implementation can

be rejected by old clients. Conversely, new clients will always consider blocks that

are generated in accordance with Sold as valid. A block size limit increase is a vivid

4A more relevant – and more complex – example is Bitcoin’s SegWit soft fork. An in-depth

analysis of the SegWit implementation would go far beyond the scope of this paper. In very simple

terms, segregated witness introduces a new transaction type with the goal to move signature data

to a separate data structure and thereby fixes an issue known as transaction malleability. Nodes

who use the old consensus rules are unable to observe the new locking condition and will therefore

still accept blocks that have been created under the new rules.

12

example of a hard fork. Let us assume that some individuals in the Bitcoin network

want to increase the 1 MB block size limit to 2 MB and thereby double the number

of transactions that can be included in each block. Anyone who is applying the new

rule may potentially produce blocks with a size greater than 1MB, that is, greater

than the limit of the original consensus rules. These blocks will be rejected by anyone

who is applying the old rule set.

2.2.3 Forced Fork

A forced fork corresponds to a change in the rule set that will inevitably lead to

incompatibilities and cause a permanent chain split. The new block acceptance set

Snew is neither a subset nor a superset of the old block acceptance set Sold, or more

formally:

(Snew \ Sold 6= ∅) ∧ (Sold \ Snew 6= ∅) (3)

Where Snew \ Sold denotes the relative complement, such that

Snew \ Sold

def
= {x ∈ Snew|x /∈ Sold} (4)

meaning that both relative complements must not correspond to the empty set.

It refers to a situation in which the old clients will not unconditionally accept

blocks created in accordance with the new clients’ rule set and vice versa. Eventually,

a forced fork with non-zero allocations of consensus-relevant resources for both block

acceptance sets will always lead to a chain-split. Good examples include severe

13

changes in the scripting language, the transaction logic or the signature scheme.

Snew dominant (rnew > rold) Sold dominant (rnew < rold)

Soft fork

Hard fork

Forced fork

Table 2: Persistency analysis and ledger development with soft, hard and forced
forks, depending on the allocation of consensus-relevant resources. White = blocks
generated in accordance with block acceptance set Sold. Blue = blocks generated in
accordance with block acceptance set Snew. Forks occur respectively at h = 3. We
further assume rnew > 0 and rold > 0. Visualization in the style of (Berentsen and
Schär, 2017).

3 Persistency Analysis

The outcome and persistence of process-based forks exclusively depend on the allo-

cation of consensus-relevant resources and the speed of block propagation, which is

subject to network topology. The outcome and persistence of protocol-based forks

depend on an additional factor: the nature of the protocol change as discussed in

our sub-classification in the previous section. We now build on this sub-classification

and analyze the different types of protocol-based forks in greater detail. Table 2

visualizes the outcomes of our persistency analysis.

14

3.1 Forced Fork Persistency

For forced forks, there is always a certain risk that new blocks will only get accepted

by a subset of the clients. The likelihood of a permanent chain split, given a change

in the block acceptance set that fulfills our criteria of a forced fork, depends on the

size of intersection Sold ∩ Snew in relation to the size of Sold and Snew.

Now let us define R as a measure for the aggregate consensus-relevant resources.

We further assume that R = rold + rnew where rold and rnew represent the consensus-

relevant resources employed to find valid blocks in accordance with Sold and Snew

respectively.

Considering the two block acceptance sets as well as the allocation of consensus-

relevant resources, we get the probability of a chain split with the creation of the

next block.

P (b ∈ Snew ∨ b ∈ Sold) =
rold

R

(

1−
|Snew ∩ Sold|

|Sold|

)

+
rnew

R

(

1−
|Snew ∩ Sold|

|Snew|

)

(5)

3.2 Soft Fork Persistency

Recall that we classify a fork as a soft fork if it materializes due to a change in the

block acceptance set, with Snew ⊂ Sold.

If the majority of the consensus-relevant resources are allocated to consensus

activities in accordance with the block acceptance set Snew, meaning rold < rnew, we

would expect the CRN to agree on a generally accepted version of the blockchain.

If, on the other hand, the majority of the consensus-relevant resources follow the

15

old block acceptance set, meaning rold > rnew, there would be a severe risk of a

permanent chain split.

The likelihood of a permanent fork arising with the creation of the next block is

given by either of the groups creating a block that will not be accepted by the other

group. Given the definition of a soft fork, that any block b created in accordance

with Snew also is an element of Sold, we get

P [(b /∈ Sold) ∧ (b ∈ Snew|Snew ⊂ Sold)] = 0. (6)

The probability of creating a block that is accepted by Sold but is not accepted

by Snew CRN depends on the relative size of the intersection Snew, as well as the

relative size of rold.

P [(b ∈ Sold) ∧ (b /∈ Snew|Snew ⊂ Sold)] =
rold
R

(

1−
|Snew|

|Sold|

)

(7)

This equation corresponds to the soft fork probability that the next block creation

event will permanently split the chain.

3.3 Hard Fork Persistency

Recall that we classify a fork as a hard fork if it materializes due to a change in the

block acceptance set, with Snew ⊃ Sold.

If the majority of the consensus-relevant resources are allocated to consensus

16

activities in accordance with the block acceptance set Sold, meaning rold > rnew, we

would expect the CRN to agree on a generally accepted version of the blockchain.

If, on the other hand, the majority of the consensus-relevant resources follow the

old block acceptance set, meaning rold < rnew, there would be a severe risk of a

permanent chain split.

As in our previous examples with soft forks, the respective probabilities that a

fork materializes with the creation of the next block are given by the following two

equations.

P [(b /∈ Snew) ∧ (b ∈ Sold|Snew ⊃ Sold)] = 0 (8)

P [(b ∈ Snew) ∧ (b /∈ Sold|Snew ⊃ Sold)] =
rnew
R

(

1−
|Sold|

|Snew|

)

(9)

This equation corresponds to the hard fork probability that the next block cre-

ation event will permanently split the chain.

4 Conclusion

In this paper, we have shown the importance of distinguishing between various types

of forks. We have proposed a formal classification framework and analyzed the

likelihood and persistency of forks depending on their type and the allocation of

consensus-relevant resources. The framework is applicable to a large variety of con-

sensus models. However, some sub-classifications are exclusive to models with prob-

abilistic finality and unrestricted validator pools. In particular, most permissioned

17

consensus systems may not create process-based forks.

Considering that forks may have severe economic consequences and cause financial

damage, the need for a formal classification should be evident. In particular, the

framework may help policy makers and practitioners to anticipate potential outcomes

and react accordingly. In the following, we discuss some general implications.

First, economic agents must protect themselves from replay attacks, i.e. situa-

tions in which a signed transaction is broadcasted on one blockchain network, but

then copied and relayed on competing blockchain instances. When a new protocol-

based fork emerges, one should not sign and broadcast any transactions until they

know that proper replay attack protection is in place. This is of particular impor-

tance for organizations that assume the role of a custodian and are responsible for

client funds.

Secondly, tokenized assets may be very problematic in the context of forks. Native

protocol assets, such as Bitcoin or Ether, are relatively straightforward to handle.

They simply split, meaning that the previous owner will receive a version of the

asset on each blockchain instance and the market will decide the price of each assets.

However, when external promises or real world assets are tokenized, a fork will lead

to a situation in which there are multiple tokens but only one physical asset.

Thirdly, forks may raise complicated tax and legal questions, lead to substantial

development costs and force economic agents to make decisions under uncertainty.

Consequently, each organization should define economic and financial threshold val-

ues, as well as other minimum requirements that must be fulfilled for a fork to

be considered relevant. Custodians should add these standards to their terms and

18

conditions and inform their clients that assets assets will only be made available, if

they meet the minimum requirements. Our framework helps practitioners and policy

makers to take these decisions and to formally define the relevant parameters.

For academics, the framework is a solid foundation for further research and a

first step in the direction of a more formal terminology. As such, it will significantly

improve our understanding of blockchain forks.

We strongly encourage further research on this topic. Some interesting ideas

include the incorporation of velvet forks (Kiayias et al., 2017) and the analysis of

the framework in the context of various consensus protocols. Moreover, it would be

interesting to collect data on real world forks and see how they can be categorized

in our framework.

Acknowledgments

The author would like to thank Tobias Bitterli, Raphael Knechtli, Emma Littlejohn,

Jeremias Lenzi, Jakob Roth and Aljoscha Schöpfer as well as the journal editor and

reviewers for their valuable inputs.

References

Berentsen, A. and F. Schär (2017). Bitcoin, blockchain und kryptoassets: Eine

umfassende einführung. Aufl. Norderstedt: BoD–Books on Demand .

19

Berentsen, A. and F. Schär (2018). a short introduction to the world of cryptocur-

rencies. Review of the Federal Reserve Bank of St Louis 100 (1), 1–16.

Eyal, I. and E. G. Sirer (2018). Majority is not enough: Bitcoin mining is vulnerable.

Communications of the ACM 61 (7), 95–102.

Himmer, K., M. Berchtold, J. Messmer, and P. Sandner (2018). Soft und hard forks:

Was sind die wirtschaftlichen und steuerrechtlichen auswirkungen. FSBC Working

Paper .

Islam, N., M. Mäntymäki, and M. Turunen (2019). Understanding the role of actor

heterogeneity in blockchain splits: An actor-network perspective of Bitcoin forks.

In Proceedings of the 52nd Hawaii International Conference on System Sciences.

Kiayias, A., A. Miller, and D. Zindros (2017). Non-interactive proofs of proof-of-

work. IACR Cryptology ePrint Archive 2017 (963), 1–42.

Kiffer, L., D. Levin, and A. Mislove (2017). Stick a fork in it: Analyzing the Ethereum

network partition. In Proceedings of the 16th ACM Workshop on Hot Topics in

Networks, pp. 94–100.

Kim, S. K., Z. Ma, S. Murali, J. Mason, A. Miller, and M. Bailey (2018). Measuring

Ethereum network peers. In Proceedings of the Internet Measurement Conference

2018, IMC ’18, New York, NY, USA, pp. 91–104. ACM.

Landoni, M. and G. C. Pieters (2019). Taxing blockchain forks. SMU Cox School of

Business Research Paper (19-18).

20

Lin, I.-C. and T.-C. Liao (2017). A Survey of Blockchain Security Issues and Chal-

lenges. IJ Network Security 19 (5), 653–659.

Mehar, M., C. Shier, A. Giambattista, E. Gong, G. Fletcher, R. Sanayhie, H. M.

Kim, and M. Laskowski (2017). Understanding a revolutionary and flawed grand

experiment in blockchain: The DAO attack. Journal of Cases on Information

Technology (21), 19–32.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

Sapirshtein, A., Y. Sompolinsky, and A. Zohar (2016). Optimal selfish mining strate-

gies in Bitcoin. In International Conference on Financial Cryptography and Data

Security, pp. 515–532. Springer.

Sompolinsky, Y. and A. Zohar (2015). Secure high-rate transaction processing in

Bitcoin. In International Conference on Financial Cryptography and Data Security,

pp. 507–527. Springer.

Webb, N. (2018). A fork in the blockchain: Income tax and the Bitcoin/Bitcoin Cash

hard fork. North Carolina Journal of Law & Technology 19 (4), 283.

Zamyatin, A., N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W. J. Knotten-

belt (2018). A wild velvet fork appears! inclusive blockchain protocol changes in

practice. In International Conference on Financial Cryptography and Data Secu-

rity, pp. 31–42. Springer.

Zhang, R. and B. Preneel (2017). Publish or perish: A backward-compatible defense

21

against selfish mining in Bitcoin. In Cryptographers’ Track at the RSA Conference,

pp. 277–292. Springer.

22

	Introduction
	Formal Classification Framework
	Process-based
	Protocol-based
	Soft Fork
	Hard Fork
	Forced Fork

	Persistency Analysis
	Forced Fork Persistency
	Soft Fork Persistency
	Hard Fork Persistency

	Conclusion

