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Abstract

Using endogenous, age-dependent measures of the value of statistical lives (VSL),
this paper examines the demographic implications of recessions driven by disease
contagions. Depending on the age-distribution mortality profile of the disease, long-
run welfare losses resulting from the recession may outweigh lost VSL’s directly at-
tributable to the disease. This is because disease contagions that induce high levels
of hospitalization simultaneously impact aggregate output, via a recession caused by
social-distancing, and the productivity of health care services. The efficiency of health
investment falls driving down life expectancy (LE). VSL’s fall both because LE’s fall
and the marginal value of health care investment falls. Using the Hall and Jones (2007)
model of age-specific, endogenous health investment, it is shown that the COVID-19
crisis of 2020 will lead to lost welfare for young agents that exceeds VSL’s lost from
the disease. If COVID-19 had the same age-mortality profile as the 1918 Spanish Flu,
where more young agents died, contagion-mitigation policies that cause deep reces-
sions would still be socially optimal since more of the high-valued lives of young
people would be saved.
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1 Introduction

In the United States (U.S.), the initial spring 2020 policy response to the spread of the

COVID-19 disease contagion was largely driven by public health experts concerned both

with mitigating the impact of an infection surge on the health care system and reducing

the total number of deaths. To accomplish this states and municipalities imposed poli-

cies to limit social contact. These policies forced certain businesses to close and led to

reductions in economic output. While these sacrifices were sold as necessary to contain

the spread of the disease and preserve lives, the distributional effects of such policies on

different consumers of different ages were left largely ignored.

In this paper it is argued that the economic impacts of the 2020 recession will be felt

unequally across the age distribution and may outweigh the welfare loss directly at-

tributable to disease deaths. Through the lens of the overlapping-generations, health-

production model of Hall and Jones (2007), it is shown that the welfare outcomes of

younger consumers, especially children, are more sensitive to an aggregate economic

shock. The model endogenously generates measures both of life expectancy (LE) and

the consumption value of a statistical life (VSL) that depend on age, income, and the effi-

ciency of the health care system. When aggregated over the population distribution, it is

shown that reductions both in LE and VSL due to recessions that accompany disease con-

tagions may exceed the welfare loss directly attributable to the disease. Further, young

agents, as a generation, bear the brunt of this excess burden as long as the age-mortality

profile of the disease is skewed older.

Because mortality rates for COVID-19, for example, are skewed toward older adults,

disease mitigation mandates that induce an economic contraction are socially sub-optimal

as long as total disease deaths remain below 750,000 in the U.S. for the year 2020. In

a counterfactual experiment, an alternative disease-mortality distribution is considered,

specifically one that resembles the 1918 Spanish Flu which primarily impacted teenagers

and young adults. With such a disease, sacrificing income for policies designed to mit-

igate contagion spread and save lives is more likely to improve aggregate welfare since

the high-value lives of young consumers are being saved. Meanwhile with COVID-19,

policymakers have fewer paths to aggregate welfare improvement, where some policies

that restrict economic output just shift the burden of the crisis from old to young.

The main mechanism of the model works as follows. An aggregate shock simultane-

ously affects income and the efficiency of health investments. Optimal health care invest-

ments and other consumption fall as income falls. With age-specific health investment

elasticities, it is estimated that younger consumers experience greater long-run welfare
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loss to reduced health investment than older consumers despite being relatively unaf-

fected in the short run. This long-run impact reduces their age-specific VSL, which is the

primary measure of welfare considered here.

The macroeconomic data justify examination of such a mechanism. The 2020 reces-

sion is the first recession since the 1960-1961 recession during which aggregate personal

health care services expenditure has declined, falling 3.85% in the first quarter of 2020

from the fourth quarter of 2019.1 Amidst the current crisis, many hospitals and medical

offices effectively shut down for months, foregoing procedures for all but the most imme-

diate of emergencies in order to devote system capacity to disease patients. Consumers

have had no choice but to delay or even cancel medical procedures and doctor visits,

all while still paying health insurance premiums. As local shutdowns are reversed and

these restrictions are relaxed, medical professionals have been forced to deal with a back

log of patients which could exacerbate difficulties getting appointments for non-critical

procedures. In such an environment, the risk of certain diseases, like cancer, diabetes,

and cardiovascular diseases, going undiagnosed increases. Thus, the restrictions on med-

ical procedures amount to a health-care productivity shock, impacting the efficiency of

health investment and health outcomes. This paper examines the potential consequences

of these shutdowns across the age distribution through the lens of a model in which con-

sumers respond to aggregate income and health productivity shocks by endogenously

adjusting their health care investment. This affects year-on-year survival rates, LE’s, and

VSL’s.

Finally, non-health-technology factors unique to the current recession could also be

adversely affecting health outcomes, especially for children. In many regions, kids forewent

in-person instruction for much of the spring-2020 school semester and thus have had

reduced social contact with influential adults. While for many children this may not

be problematic, children with learning disabilities and other behavioral issues are more

likely to be adversely affected. A review of the literature reveals that increased behavioral

issues in children are often associated with adverse health outcomes, which will be dis-

cussed in more detail below. Thus, there is reason to believe that residual forces unique

to the current recession may also be affecting long-run health outcomes independent of

the apparent shock to the efficiency of health services.

This paper thus confronts some of the primary challenges presented by the COVID-

1See the National Income and Product Accounts Table 2.8.5. from the U.S. Bureau of Economic Analysis,
accessed on July 1, 2020. In addition to the decline in health spending, the 2020 recession associated with
the COVID-19 crisis is shaping up to be primarily driven by a decline in consumption: aggregate personal
consumption expenditure fell 6.6% month-on-month in March of 2020 followed by an additional 12.6% in
April before rebounding 8.2% in May.
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19 crisis, with a specific focus on the intergenerational impacts of lost economic output

and death from disease contagion. It is thus recognized that policymakers may face the

dilemma of enacting policies that reduce short-run deaths but also decrease aggregate

output and health-care efficiency which each have long-run, negative impacts on wel-

fare. Depending on the severity of the recession and how deadly the disease is, under

many policies the damage to long-run welfare may exceed the short-run benefits. Life ex-

pectancy and the consumption value of life for the young are particularly harmed by the

indirect economic factors associated with the current recession. Meanwhile, older adults

are more at risk from dying from the disease. In order for the consumption value of lost

life years associated with COVID-19 to exceed the value of lost years associated with in-

direct factors resulting from a policy-driven recession, the recession needs to be relatively

mild and the number of deaths prevented relatively high. Otherwise, a greater share of

the burden is placed on the shoulders of the young.

This paper will proceed as follows. Section 2 will present evidence from the literature

arguing why using a welfare measure that depends on health investment is important

to understand the distributional implications of the 2020 COVID-19 crisis. Section 3 pro-

vides a brief overview of the Hall and Jones (2007) model. Section 4 describes the data

used for parameter selection and important outcomes of the estimation. Section 5 simu-

lates various recession and COVID-19 death scenarios to analyze the welfare implications

of the 2020 crisis through the model’s lens. Finally, Section 6 concludes.

2 Background

2.1 Welfare Implications of COVID-19

Many economists have considered the welfare implications of COVID-19. In a model with

no consumer heterogeneity, Eichenbaum, Rebelo, and Trabandt (2020) show that contain-

ing the spread of the contagion may be welfare-improving in spite of the severe recession

such policies cause. By contrast Bethune and Korinek (2020) show that a more nuanced

approach, where infected agents are fully isolated, is socially optimal and yields milder

recessions compared to full shutdowns. Bethune and Korinek (2020) acknowledge that

in the event such a nuanced approach is infeasible aggressive containment is still opti-

mal though very costly. Glover et al. (2020) advocate for a partial, possibly Swedish-style

containment policy. Their approach, like the one in this paper, considers the effects of

shutdowns on different age groups, and they find that elderly consumers benefit far more

than the young from stringent containment policies that vastly reduce economic activity.
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Meanwhile, Correia, Luck, and Verner (2020) attempt to use variation between U.S. cities’

economic shutdown policies during the 1918 Spanish Flu pandemic to argue that short-

term shutdowns to mitigate disease contagion improve long-run growth. Barro, Ursúa,

and Weng (2020) have similar findings. Both results hinge on the fact that working-age

adults were most likely to die from the 1918 Spanish Flu, which is not true in the case of

COVID-19. But, as is shown here, accounting for differences in the age-mortality distri-

bution matters for optimal-mitigation policies.

The primary contribution of this paper is to consider aggregate welfare implications

in a framework with both endogenous LE’s and VSL’s that are also heterogeneous across

ages and depend on health investment. Results and conclusions presented here conform

more with results in Bethune and Korinek (2020), Glover et al. (2020), and Krueger, Uhlig,

and Xie (2020), suggesting a nuanced response to COVID-19 that does not too drastically

limit commercial activity. Such policies can be aggregate-welfare improving as long as

they reduce overall COVID-19 deaths sufficiently, depending on the various modeling

assumptions.

2.2 The Impact of Recessions and Poverty on Childhood Development

Since this paper argues that the welfare impacts of the COVID-19 recession are dispropor-

tionately shouldered by young people, it is important to understand why policymakers

and economists should care about this by reviewing the literature on recessions, poverty,

and childhood development. Generally speaking, if the 2020 COVID-19 economic reces-

sion leads to increases in poverty and malnourishment amongst children and decreases in

stimulating contact with adults, like educators and mentors, adverse impacts to long-run

welfare should be expected.

Heckman, Pinto, and Savelyev (2013) establish the long-run, positive impacts of in-

teractive early childhood development programs on the life outcomes of an individual

participant. Heckman (2008) discusses how ability gaps between advantaged and dis-

advantaged children start early in life and can be mitigated by substantial, targeted in-

vestment in early childhood programs. Early environmental factors due to parenting

and familial practices can also lead to better developmental outcomes (Heckman 2008).

But financially-stressed families are less likely to have time for full parental engagement,

which could negatively affect future outcomes for school-aged children of working par-

ents who are out of school due to COVID-19 shutdowns.

Campbell et al. (2014) find that stimulating early childhood development leads to sig-

nificantly better health and cognitive outcomes during adulthood. In their study, children
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subjected to a treatment where they were engaged in “social stimulation interspersed

with caregiving and supervised play throughout a full 8-hour day for the first 5 years” of

their lives where they were also given “two meals and a snack at the childcare center [and]

were offered primary pediatric care” had significantly lower risk for non-communicable

diseases in their mid-30s (Campbell et al. 2014). Hoddinott et al. (2011) provide strong

evidence that sustained investments in early-life nutrition and childhood development

lead to welfare improvements over the life cycle and thus the long run. If the current

shutdown not only leads to less stimulating social contact but also limits the ability of

impoverished children to benefit from free school breakfast and lunch programs, school

closures will have adverse impacts that affect social, intellectual, and physical develop-

ment.

The evidence on child health outcomes resulting from economic contractions versus

expansions is mixed. Ferreira and Schady (2009) review empirical evidence finding that

in rich countries, like the U.S., recessions may not have an adverse impact on the health

and human capital development of children. Indeed, they find that child health and ed-

ucational outcomes appear counter-cyclical. The counter-cyclical nature of educational

outcomes for children may be due to the outsize, positive effect of the Great Depression

on high school graduation rates (Goldin 1999; Black and Sokoloff 2006). Recent microe-

conomic evidence in the U.S. also suggests that infant mortality may be counter-cyclical

(Chay and Greenstone 2003; Dehejia and Lleras-Muney 2004; Ferreira and Schady 2009).

But, while infant mortality may be countercyclical, there is evidence that out-of-pocket

spending on childhood health care services is pro-cyclical, especially for children with

a high baseline level of medical care (Karaca-Mandic, Choi Yoo, and Sommers 2013).

Such children often have special needs and are more sensitive to pullbacks in medical

care spending. Further evidence from developing countries suggests that on the whole,

children’s health outcomes are made worse by recession, with potential long-run con-

sequences resulting from malnutrition and stunted growth (Jensen 2000; Stillman and

Thomas 2004; Paxson and Schady 2005; Alderman, Hoddinott, and Kinsey 2006; Ferreira

and Schady 2009).

Other microeconomic studies focussing on parents’ labor market outcomes suggest

that economic downturns likely harm childhood development more than they open up

opportunities for developmental improvement. Kalil (2013) reviews the preponderance

of evidence as to how parental job loss and income instability affect childhood develop-

ment, concluding that the Great Recession likely adversely affected children’s long-run

economic outcomes. For example, parental job loss, especially in families with lower so-

cioeconomic status, is associated both with negative effects on educational outcomes and
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behavioral and emotional health problems for children during their teenage years (Ore-

opoulos, Page, and Stevens 2008; Ananat et al. 2011; Kalil 2013). Further, the adverse

impacts on emotional and psychological health of children experiencing parental job loss

appear to persist for at least five years (Kind and Haisken-DeNew 2012). Many studies

suggest that mere perceptions of parents’ job insecurity are enough to cause stress that

leads to poor educational outcomes and behavioral problems (Barling, Dupre, and Hep-

burn 1998; Barling, Zacharatos, and Hepburn 1999; Conger and Donnellan 2007; Ananat

et al. 2011; Schneider, Waldfogel, and Brooks-Gunn 2015). This is because fear and anx-

iety can tax cognitive skills, adversely affecting behavioral health (Leininger and Kalil

2012; Shah, Mullainathan, and Shafir 2012). Given the high unemployment numbers seen

during the 2020 economic crisis, we should expect that familial stresses induced by job

insecurities are at play, possibly affecting children’s health outcomes.

Poverty in general, whether wrought from aggregate shocks or just bad luck, induces

stress and results in adverse child-development outcomes (Boyer and Halbrook 2011).

Childhood stress can manifest itself as poor physical health outcomes during teenage

years (Evans and Schamberg 2009). It can also stunt brain development and limit the

ability of the individual to engage in complicated cognitive functions, like deep critical

thinking, in the future (Sapolsky 2004). Disparities in academic outcomes in early school-

ing years brought on by a lack of initial human capital development may be magnified as

children progress through school (Cunha et al. 2006). In conclusion, childhood poverty is

associated with poor outcomes during adulthood, including a higher propensity for crim-

inal behavior, mental illness, and general health disparities (Evans and Kim 2007; Evans

and Schamberg 2009; Nikulina, Widom, and Czaja 2011; Kim et al. 2013).

Thinking about the dynamic, long-run impacts of economic shocks to individuals

across the age distribution, especially with respect to health outcomes, will help build

inference as to which policies can dampen and mitigate recessions’ adverse effects on

children. In light of evidence that directly links the health and viability of adults to their

early childhood education (Campbell et al. 2014), policies that reduce negative impacts of

recessions on childhood cognition should be considered.

2.3 Measuring the Value of Statistical Lives

In this paper, the primary exercise is to analyze a dynamic model that generates en-

dogenous measures of LE and VSL as a result of the consumption and health invest-

ment choices of age-heterogeneous agents. While the model will generate a measure of

VSL that relies on how marginal changes to health investment improve age-specific, non-
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accidental mortality rates, in the literature such a measure of VSL is rather uncommon.

To the best knowledge of this author, the only other paper that attempts to estimate VSL’s

using both mortality rates and age-specific health spending is Hall and Jones (2007), from

which the model here is borrowed directly with a few slight modifications.

In the empirical literature, VSL’s are typically estimated using labor market outcomes.

Specifically, one can regress the between-industry wage premium on differentials in industry-

specific accidental mortality rates, while controlling for skills and human capital. In the

VSL literature, this is known as the “revealed preference” approach. Other approaches,

known as “stated preference” approaches, explicitly ask individuals how much they would

be willing to accept in exchange for increased risk of death. Viscusi and Aldy (2003) and

Kniesner and Viscusi (2019) provide a review of both of these strands of the VSL litera-

ture, suggesting that for working-age men, VSL’s are $10 million in 2018 dollars. That

is consumption value of an average working-age male’s life is around $10 million. But,

some authors have criticized estimates from labor market measures as quantitatively frag-

ile, since skills and human capital are difficult to observe (Siebert and Wei 1994; Leigh

1995; Miller 2000; Hintermann, Alberini, and Markandya 2010). Nordhaus (2002) criti-

cizes measures of VSL from the labor market literature because they fail to account for

possible dynamic changes to both future risk and future income, as such estimates only

reflect a current risk to current income tradeoff. This is problematic considering that mor-

tality premia have risen along with the health services share of consumption (Nordhaus

2002, 2005). Such a criticism thus provides impetus for alternative models which generate

VSL’s using health spending and mortality outcomes, as is done in this paper.

Further, using labor market outcomes to quantify VSL’s can be limiting since not all

age groups actually work. Specifically, VSL’s for children and elderly retirees are ignored

in such studies. This may be problematic since Aldy and Viscusi (2008) find significant

correlations between VSL and age for workers in different age groups. They conclude

that VSL follows an inverted-U-shaped profile, where younger workers in their late teens

and early twenties and older workers nearing retirement have similar VSL’s of around $5

million in 2018 dollars, while prime-age workers have VSL’s over $13 million. But how

can we measure the VSL for, say, a 10-year old when using only labor market outcomes?

To estimate youth VSL’s, some studies rely on parents’ willingness to pay (WTP) to re-

duce childhood risks of death or trauma. Byl (2013) uses evidence from the infant car-seat

market to show that children’s lives are valued at a premium to adults’. This premium

is almost double and could be as high as $17 million in inflation-adjusted 2018 dollars.

Jenkins, Owens, and Wiggins (2001), using the market for bicycle helmets, estimate sep-

arate VSL’s for children and adults, finding the opposite of Byl (2013): adults’ lives are
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typically more valuable. Other authors have used stated-preference surveys to ask adults

how much they would pay to reduce the risk by half of a child being killed by a parent

or caregiver (Corso, Fang, and Mercy 2011; Peterson, Florence, and Klevens 2018). Such

surveys conclude that the level of VSL for children is around $17 million in 2018 dollars.

Hammitt and Haninger (2010) also find significantly higher VSL’s for children using a

stated-preference survey involving willingness to pay to reduce risk from fatal diseases

and traumas — around $16 million for children versus $7-12 million for their parents.

While there seems to be a consensus in the literature as to the range of plausible VSL’s

for adults, there is debate as to the shape of the life-cycle VSL profile when younger age

groups are included. The findings presented in this paper, as well as those in Hall and

Jones (2007), suggest that VSL’s are likely declining, almost monotonically, in age. The

results here thus confirm many of the aforementioned WTP studies, while contrasting

with the age-profile VSL estimates of Aldy and Viscusi (2008).

This paper takes the health production approach to measuring age-specific VSL’s. It

is thus assumed that increases in health investment lead to decreases in non-accidental

mortality and thus increases in life expectancy. VSL’s are then identified parametrically

by the marginal cost, in consumption units, of decreasing the non-accidental mortality

rate. The approach presented here thus relies on a revealed preference argument: the

investments made in children’s health care by society as a whole reflect how much value

society places on children’s lives. Indeed, as will be shown, children enjoy a large VSL

premium over their parents when using health investment data.

3 Model

In modeling how a sudden and unexpected disease contagion simultaneously affects both

economic and health outcomes, we turn to the centralized endowment economy in Hall

and Jones (2007). In their dynamic model, health investment by consumers positively

affects health status through a health production function that is both age- and time-

dependent. Increases in health status lead to declines in mortality risk, raising the proba-

bility the age-a consumer in period t will live to be an age-a + 1 consumer in period t + 1.

Consumers thus face a tradeoff in choosing consumption cat, which yields flow utility to-

day, versus health investment hat, which increases the probability of future survival and

thus the value of future consumption flow utilities. In this manner, health status and thus

survival probabilities are endogenous.

The model here departs from Hall and Jones (2007) by assuming the period-length is

one year instead of five. Consumers live up to age 100, so in any given period there are
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101 cohorts of consumers alive, counting newborns. Each age-a cohort in period t is char-

acterized by a representative agent, so that there is no heterogeneity within age groups,

only across age groups and over time. In any given period, there are Nat consumers of age

a alive. Every consumer is assumed to contribute the same amount yt to net resources,

so that yt can be thought of as income per-capita. From this assumption, all variation in

contributions to aggregate welfare across age groups and over time is strictly dependent

on variation of per-capita health investments by age.

Using endogenous health investment, the model generates measures of VSL by age

from the marginal cost of health production. This permits analysis as to how different co-

horts are disparately impacted by both aggregate output shocks affecting yt and shocks to

health care technology directly impacting health status. Each of these channels will affect

welfare measures which rely on VSL’s. First, health investment will vary as net resources

change, affecting the marginal cost of health production and thus mortality rates. Sec-

ond, changes in the productivity of health services will directly affect the marginal cost of

health production for any given level of health investment. But, this will also induce con-

sumers to adjust their health investments as long as mortality risk is not perfectly inelastic

with respect to health investment.

Denote health status as xat, which is a function of health care consumption hat, an ag-

gregate health sector productivity component zt, and an idiosyncratic, age-specific com-

ponent wat, so that xat = fa(hat; zt, wat), where fa is increasing in all arguments. hat can

also be thought of as health investment, since its purchase level has dynamic, long-run

implications for survival. wat accounts for factors orthogonal to health technology ad-

vancement, like un-modeled decisions related to education or habits like smoking and

drug use. Hall and Jones (2007) assume zt and hat account for some known fraction µ of

the decline in U.S. mortality rates over the last half century, while wat accounts for the re-

mainder. This leads to an identification issue which is addressed in Section 4.1, re-visiting

some fundamental findings from the health outcomes literature.

Health status, xat, is the inverse of the age-a, period-t mortality rate, mat = 1/xat.

Survival rates are thus 1 − mat = 1 − 1/xat. Total mortality is the sum of accidental macc
at

and non-accidental mnon
at mortality. Health care investment decisions hat are assumed to

only affect non-accidental mortality, so that health status can be written

xat = fa(hat; zt, wat) =
1

macc
at + mnon

at

=
1

macc
at + 1/x̃at

(1)

x̃at(hat) = Aa(zthatwat)
θa (2)

In addition to choosing hat, consumers also choose other consumption cat. They receive
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flow utility from cat according to the iso-elastic function u(cat) =
c1−γ

at
1−γ

.2

Each consumer receives exogenous endowment income yt which evolves according to

some known process. All risk is thus idiosyncratic and endogenous, acting through the

survival function. Finally, each period assume consumers have base utility bat, which will

be calibrated to ensure that the value of life is zero upon death. As Hall and Jones (2004)

discuss in their working paper, bat will usually be positive since calibrated choices of γ

are > 1, ensuring that u(cat) < 0. There is no savings mechanism and labor is assumed

to be supplied inelastically.

Under these conditions and assuming equal Pareto weights for all agents alive in pe-

riod t, the social-welfare maximizing allocations satisfy

Vt(Nt) = max
{hat ,cat}a

∞

∑
a=0

Nat

[
bat + u(cat)

]
+βVt+1(Nt+1) (3)

subject to
∞

∑
a=0

Nat(yt − cat − hat) = 0 (4)

Na+1,t+1 =

(
1 −

1

xat

)
Nat (5)

xat = fa(hat; zt, wat) (6)

yt+1 = egyt yt (7)

where Nt is a vector with components N1t, N2t, . . . , Nat, . . . describing the population dis-

tribution in t, and β ∈ (0, 1) describes a consumer’s time preferences.3

Optimal allocations of {hat, cat}a are subject to the equilibrium condition

β va+1,t+1

uc︸         ︷︷         ︸
Marginal Benefit of Saving a Life

=
x2

at

f ′(hat)︸    ︷︷    ︸
Marginal Cost of Saving a Life

∀a, t (8)

va+1,t+1 is the standard envelope condition, ∂Vt+1
∂Na+1,t+1

, which captures how the total future

value of social welfare changes in response to variation in the population level of agents

surviving from age a in t to become age a + 1 in t + 1. Under the parameterization of

2Hall and Jones (2007) consider both a flow utility function that only features other consumption and one
where consumers benefit from health status. This so-called “quality of life” utility component is omitted
here, without loss of generality. Indeed, Hall and Jones (2007) show that regardless of whether the quality
of life component is included, VSL estimates are hardly affected.

3The planner’s optimization problem is the same as that in the working paper Hall and Jones (2004),
where base utilities are allowed to be both age- and time-dependent. This specification is preferred to that
in the published version of the paper, so that bat can be directly calibrated to match VSL’s estimated from
health investment technology.
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health technology in (2), the right hand side of (8) is hat x̃at(hat)/θa, which is a measure of

VSL. In practice, the age- and time-varying utility intercepts bat, can be backed out of (8) to

ensure that the empirical estimates of VSL’s, using the marginal cost of health production

on the right, exactly equal the marginal benefit attributable to household preferences.

That is, given data on health outcomes, income, consumption, bat can be calibrated to

force (8) to hold.

4 Parameter Selection

Updating both versions of Hall and Jones (2004, 2007), the health production parameters

are selected using a regression of survival probabilities on health spending that accounts

for possible trends in age-specific residuals, wat. The estimation of x̃at(hat) is described in

detail in Section 4.1, where several assumptions on the fraction of trend decline in mor-

tality associated with technological change, which is denoted by µ, are considered. With

health production parameters, productivities, and residuals in hand, age-specific, period-

t VSL’s can be computed using the marginal cost approach: VSLat = hat x̃at(hat)/θa. Hav-

ing VSL’s, base utilities bat, can be backed out of the equilibrium condition (8) following a

procedure described briefly in Section 4.2. Finally, in Section 4.3, given the health produc-

tion parameters, productivities, and base utilities, the model is solved backwards from

2018 to 1959 by simulating equilibrium choices of cat and hat for yt computed from NIPA.

4.1 Estimating Health Production Parameters

Aggregate NIPA data from 1959-2018 and age-specific health spending data from Meara,

White, and Cutler (2004) are used to estimate Aa and θa for each a. Aggregate health

spending is the sum of personal consumption expenditure (PCE) on health care and gov-

ernment spending on health care. All other non-health-care consumption is the sum of

other PCE spending and non-health-related government spending. To compute these

data points, we can turn to NIPA’s PCE Tables 2.5.3, 2.5.4, and 2.5.5, and the government

outlay Tables 3.15.3, 3.15.4, and 3.15.5. Dealing with unit-uniformity issues arising from

combining chain-weighted price and quantity indices, the procedures in Whelan (2002)

are used to construct new indices for the combined aggregate series using both PCE and

government spending. Using the aggregated health spending data, age-dependent health

spending distributions are constructed by utilizing the weights for five-year age groups

described in Meara, White, and Cutler (2004) and interpolating both within periods across

age groups and over time to arrive at annual distributions of health spending from 1959
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to 2018 for consumers of ages 0 to 100. A cubic polynomial is used for interpolation over

the time dimension. Where extrapolation is required, assume the health spending distri-

bution across ages is stationary after the last year of observations in the sample.4 Within a

period, a simple replication scheme is followed: since health spending data is only avail-

able for individual averages over ten-year age groups, the same health spending level is

assigned to all individuals within an age group. For age-specific mortality data, several

sources for both accidental and non-accidental mortality rates are used — for years 1950

to 2003, the National Center for Health Statistics report, Health, United States, 2003, and

for years 2004 to 2017, the National Vital Statistics Reports, Volume 68, Number 9, Deaths:

Final Data for 2017, updated on June 24, 2019. Finally, life-expectancy data, which are not

directly used in the estimation but matched independent of parameter selection, are taken

from Table 4 of the 2017 National Vital Statistics Reports.

With health investment and mortality data, (2) is estimated separately for each age-a

consumer unit using a two-step regression procedure where the trend in wat is assumed

orthogonal to health outcomes x̃at whenever it is also assumed that some fraction µ of

mortality trend decline is attributable to non-technological factors. Note that when µ = 1

all trend decline in mortality is assumed to be attributed to technological change acting

through either zt or yt via hat. For more details on this identification argument see the

discussion in Hall and Jones (2007).

Here, two separate assumptions on µ are considered and the orthogonality restriction

for the trend in wat is assessed using a C-test on the difference in two Sargan/Hansen

statistics described in detail in Hayashi (2000). In all cases the growth rate in zt is assumed

to be identical to growth in yt, i.e. gz = gy. This assumption is affirmed by empirical work

in Horenstein and Santos (2019) who find little evidence to suggest productivity growth

in the health sector substantially differs from GDP growth. In the first exercise, it is as-

sumed that µ = 1, so that all decline in mortality is due to technical advancement. In the

µ = 1 case, the orthogonality of trend in wat is irrelevant. Alternatively, examining the

case where µ = 2/3 as in Hall and Jones (2007) allows for the orthogonality restriction on

trend growth in wat to be tested. The C-test fails to reject such a restriction, so gwa t is used

as an instrumental variable (IV). This empirical result jibes with the original findings in

Hall and Jones (2007) and other studies which suggest that factors not related to health

spending have played an important role in mortality rate declines (Fogel 2004; Grossman

2005; Cutler, Deaton, and Lleras-Muney 2006). The preferred health production specifica-

4This extrapolation assumption was tested where the extrapolated data using the Meara, White, and
Cutler (2004) age-specific health spending estimates were compared against data from the Centers for Medi-
care & Medicaid Services (CMS 2019). Differences between the age-distributions of health investment are
insignificant. The results of this test are available upon request.
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tion is thus the 2SLS estimation where µ = 2/3 and gwa t is used as an IV.

(a) Health Production Intercept (b) Elasticity w.r.t. Health Investment

Figure 1: Here, plots of the estimates for ln Aa and θa are presented. The cases where
µ = 1 and µ = 2/3 with no trend instrument track each other in terms of the declining
profile by age. The IV versus non-IV regressions yield similar estimates except for the
15-25 age group. All estimates of θa are significant at the 1% level.

Figure 1 presents estimates for the time-independent health production parameters,

where age indexes the horizontal axes. The stair-step feature of the estimates reflects the

interpolation scheme assigning the same health and survival rates to everyone in ten-year

age groups. In the µ = 2/3 case, the introduction of the linear-trend IV only significantly

affects inference as to the elasticity of health outcomes θa for 15-25 year olds, which can

be seen by looking at the differences in the gold versus red lines in Figure 1b.

Focussing on θa, notice that this elasticity appears to consistently decline in age, with

the exception of the jump for teens and young adults. Its negative, −θa, is the elasticity

of the preventable mortality rate with respect to health spending. It thus represents the

percent change of a percentage-point decline in mortality with respect to health spending.

To fix intuition as to why θa mostly declines with age, consider the non-accidental mor-

tality rates of a 30-year old and a 70-year old. Currently, a 30-year old has a probability

of dying before he reaches age 31 of approximately 0.0006, or 0.06%, while a 70-year old

has a probability of dying before reaching age 71 of 0.0175 or 1.75%. Estimates of θ30 and

θ70 for the µ = 2/3 case with no IV are 0.6540 and 0.4012 respectively. A 1% increase in

health spending by a 30-year old thus leads to a 0.65% reduction in the mortality rate, so

that the new mortality percentage is 0.02%, amounting to an absolute reduction of 0.04%.

Meanwhile, for a 70-year old, a 1% increase in health spending leads to mortality declin-

ing from 1.75% to 1.05%, or 0.7% in absolute terms. Thus, despite the fact that θ70 < θ30,
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a 1% increase in health spending for a 70-year old actually has a greater impact on overall

mortality-rate decline because the 70-year old is starting at a base rate that is substantially

lower than that of the 30-year old.

(a) Productivity Levels, 2018 = 1 (b) Productivity Growth Rates

Figure 2: These plots illustrate both the evolution of age-weighted health productivities
(a) and the age-specific growth rates (b). In panel (a) estimates are projected out to 2100
to illustrate the differential rates at which returns to health care investment evolve for
different age groups. In panel (b), estimated health productivity growth rates from 1959
to 2018 show that younger and older adults benefitted the most from residual returns to
health care efficiency zt and other age-specific indirect factors wat over the latter half of
the twentieth century.

Figure 2 shows the age-weighted productivity levels and growth rates over time under

the assumption µ = 2/3. Age-weighted growth is (1/µ − 1) (gha + gz) + gz. Both older

and younger age groups experience faster health productivity growth than working-age

adults. The measure of productivity presented here accounts both for changes in the total

factor productivity of health services zt and changes to the idiosyncratic, age-specific com-

ponent wat, which captures other exogenous factors, unrelated to health services produc-

tivity. These include everything from improvements to public-school lunch and nutrition

programs for children to heightened on-the-job safety standards for adults, as well as the

effects of changes to pollution, urban density, and other environmental forces. wat, espe-

cially for young agents, will capture the aforementioned residual, non-health-technology

impacts of the 2020 recession, such as factors resulting from school closures adversely

affecting young agents’ health outcomes. Multiplied together, ztwat then captures the de-

gree to which returns to health productivity zt are either enhanced or dampened by these

other age-dependent factors.
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4.2 Estimating Base Utilities, bat

To compute bat, an estimate of VSLat is needed so that the health production function

TFP and elasticity estimates can reconcile both cat and hat in a full decision-theoretic equi-

librium environment. The right-hand side of (8) is a measure of VSLat, which can be

computed using only health data and fitted health production parameters. Thus, after

fitting the health production function, with an estimate for VSLat in hand and assuming

that v101,t = 0 for all t, β va+1,t+1 can be backed out and the model’s full Lagrangian

expression can be used to compute

vat = bat + u(ct) +β va+1,t+1 + uc (yt − ct − hat) (9)

where uc is the marginal utility of consumption, and output per-capita, consumption per-

capita, and health investment are data. Note that, given the problem here is that of a

planner efficiently allocating resources, it is without loss of generality that ct = cat since,

by the Second Welfare Theorem, there exist implicit transfers reconciling this efficient

allocation for a de-centralized environment.5 With bat in hand, it remains only to vary γ

and β to solve for equilibrium values of ct and hat generated by the full decision-theoretic

model.

4.3 Equilibrium VSL’s and Life Expectancy

Given γ, β is selected to match consumption growth gc from a classical Euler equation,

so that β = (1 + gc)γ/1.04, where 1.04 is assumed to be the gross interest rate and

gc = 0.0168 — average per-capita consumption growth from 1959-2018. Given bat and

the health production parameters, the model is solved using several values of γ selected

over the interval (1, 2]. γ = 1.25 best matches the life expectancy of newborns and the

aggregate share of health spending in 2018. Figure 3 presents model-generated equilib-

rium LE’s of newborns under different values of γ along with LE estimates from data.

The model’s equilibrium appears to adequately capture the increasing profile over time.

γ = 1.25 is used for the upcoming simulations because the equilibrium time series un-

der this assumption appears to provide the closest match to LE’s from the data in 2018.

Further, lower values of γ are associated with greater leveling-off in long run LE growth,

which is also apparent in the data, especially in the decade after the Great Recession.

In equilibrium, the model generates estimates for working-age adults’ VSL’s in line

with VSL estimates from labor market outcomes. Table 1 presents these estimates for the

5Hall and Jones (2007) also recognize this fact, as evidenced by their calibration scheme.
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Figure 3: This plot presents the life expectancy of newborns from the simulated model
equilibria under different values of γ alongside life-expectancy data taken from the Na-
tional Vital Statistics Reports. In all separate simulations where γ is varied, it is assumed
thatµ = 2/3 and health production function estimates from the 2SLS model are used. The
preferred specification has γ = 1.25, which most closely matches life expectancy data in
2018, the last year in the present data sample.

preferred specification where µ = 2/3, γ = 1.25, and health production parameters are

taken from the 2SLS regression with a trend IV. Both cumulative VSL’s and VSL’s divided

by age-specific LE, where the latter is a measure of the value of life per year of life saved,

are presented. 2018 VSL estimates for 30, 40, and 50 year olds in the baseline model range

from $4 to $9 million. Estimates using Mincer-style regressions on wages and industry-

specific mortality risk, which are thoroughly reviewed in Kniesner and Viscusi (2019),

suggest values within this range. Meanwhile, VSL estimates for children are notably

higher and exceed the ranges of estimates from microeconomic studies looking at parents’

WTP for child-safety products and reviewed in this paper in Section 2.3.

Notice that, not only do children have higher VSL’s measuring the expected consump-

tion value of their remaining life years (top half of table), but some, particularly 10-year-

olds, also have higher VSL’s per life-year remaining (VSL/LE in the bottom half of the

table). Now consider the fact that there are far more children between the age of say

5 and 15 than elderly people between the age of say 75 and 85. Suppose an arbitrary
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Table 1: Equilibrium VSL’s, γ = 1.25, µ = 2/3 with IV

Value of Life in Thousands of 2018$

Age 1960 1970 1980 1990 2000 2010 2018

0 2010.966 3330.654 4763.997 6525.515 7996.263 8935.804 9552.773

10 5854.994 8033.472 11068.602 16009.304 21853.497 29520.890 34287.264

20 1889.003 2223.565 2679.445 3655.983 4916.239 6113.957 6841.157

30 2672.409 3614.118 4547.095 6298.397 8388.125 8932.166 8281.171

40 1534.607 2344.928 3161.870 4411.828 5495.411 6220.439 6202.894

50 793.792 1347.851 1890.560 2717.719 3485.834 4009.968 4404.305

60 506.081 914.671 1332.577 1944.938 2556.526 3049.265 3482.870

70 439.982 799.947 1166.095 1714.775 2247.303 2666.708 3100.446

80 452.276 799.654 1124.982 1622.251 2103.413 2426.037 2763.816

90 412.520 716.010 979.319 1383.096 1769.241 2017.137 2194.594

Value of Life per Year of Life Remaining in Thousands of 2018$

Age 1960 1970 1980 1990 2000 2010 2018

0 28.958 46.452 64.840 86.651 104.302 115.317 122.684

10 97.375 129.009 173.109 243.731 326.261 435.649 503.326

20 37.353 42.167 49.285 65.235 85.832 105.394 117.244

30 64.834 83.254 101.022 135.150 175.666 184.334 169.622

40 47.771 68.404 88.287 118.234 143.133 159.137 156.979

50 33.427 52.384 69.720 95.470 118.329 133.165 144.156

60 30.552 50.277 68.955 95.161 120.207 139.696 156.764

70 41.031 67.271 91.862 127.021 159.315 183.833 209.797

80 70.835 113.389 150.135 204.224 253.941 285.457 321.687

90 109.947 175.853 229.368 309.328 382.910 428.040 465.715

drop in economic activity causes all VSL/LE’s to decline by a fixed percentage across the

board. The per-capita hit to children will be higher than to others since they have such

high starting VSL/LE baselines. Further, the total impact on each age group will be higher

for younger cohorts than older ones because there are more youths than senior citizens.

In the context of a disease whose mortality rates are disproportionately skewed toward

older people, policies designed to curb the spread of disease in order to preserve lives

while simultaneously causing an economic recession thus amount to a transfer of welfare

from young to old. This phenomenon is explored in more detail in the simulations in

Section 5.
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5 The Welfare Impacts of Disease Contagion

Aggregate shocks will affect income and possibly health investment and thus health out-

comes. Aggregate shocks coupled with a global pandemic will also affect the efficiency

of health investment when it comes to generating health outcomes. This is because a

pandemic strains health care systems due to large numbers of people with acute illnesses

requiring immediate care. Indeed, this potential capacity problem was the main reason

why many localities quickly enacted measures to mitigate the spread of COVID-19 in the

early weeks of the contagion. For April and May, many U.S. localities allowed only essen-

tial medical procedures to occur, so that consumers were forced to put off preventative

care and elective surgeries despite still paying insurance premiums which would cover

such procedures. Money spent for health care during this time was thus spent less ef-

ficiently as multiple weeks and months passed with preventative and elective care put

on hold. Thus, while those policies were implemented to seemingly maintain capacity

and efficiency in the health care system, health outcomes beyond those directly related to

the COVID-19 pandemic may still have been adversely affected. While health efficiency

shocks are represented by a drop in zt, the 2020 recession has also likely brought on resid-

ual shocks to wat. Aside from the adverse residual effects on childhood development

which have been discussed, gym closures may restrict adults’ exercise regimens, and

families confined to close-quarters for months on end may be more likely to engage-in

and/or experience abusive behavior, amongst other possible outcomes.

In terms of the model here, the U.S. economy therefore experienced two simultaneous

aggregate shocks to welfare, independent of health outcomes that directly result from

the COVID-19 pandemic: 1) a reduction in yt affecting health investment choices; 2) a

reduction in ztwat affecting the efficiency of those same choices. COVID-19 overwhelm-

ingly affects individuals with compromised immune systems who are older. The degree

to which COVID-19 causes premature deaths for consumers of different ages combined

with the degree to which consumers of different ages are differentially affected by both

shocks to yt and ztwat will determine how the present crisis adversely impacts individuals

across the age distribution.

In this section, equilibrium outcomes under several scenarios are considered in or-

der to account for uncertainty around the magnitude of the economic shocks, as well

as mortality directly caused by the COVID-19 contagion. Specifically, life expectancies,

and VSL’s for people of all ages change in response to income and health productivity

shocks. Several shock scenarios are simulated relative to a baseline where yt and ztwat

18



continue to grow at their pre-COVID rates.6 The simulations can be divided into two

camps: 1) those where both yt and ztwat are shocked, while accounting for differential

COVID-19 mortality risk across the age-distribution; 2) the same as the first simulation,

except replacing COVID-19 mortality risk with age-specific estimates for the 1918 Span-

ish Flu. The latter counterfactual exercise is undertaken in order to assess the importance

of the disease contagion’s age-mortality distribution on both aggregate and distributional

welfare outcomes.

In each broad camp, there are six separate scenarios for income and health productiv-

ity shocks.7 The first income shock scenario builds on the Congressional Budget Office’s

(CBO) May 2020 projections of output loss due to the policy-driven recession (CBO 2020).

The CBO estimates a −5.6% annual growth rate for 2020 followed by 4.2% for 2021. An

L-shaped recession is considered in scenario two, where output falls −5.6% in the first

year and recovers thereafter only at the post-Great Recession rate of 0.98%. Next, a quasi-

V-shaped recession is considered where output falls by 5.6% in 2020 and rises by 5.6%

in 2021. Finally, these exercises are repeated after adjusting the magnitude of the initial

shock to −10%.

The six scenarios for health productivity shocks directly correspond to the income

shock processes. Assume that health productivity shocks and recovery rates are propor-

tional to those of yt. For example, suppose that output continued to grow at the post-

Great Recession rate, and call the level of 2020 per-capita output associated with this

growth y2020. Then, a −5.6% year-on-year shock to 2019 output leads to a reduction in

2020 output relative to y2020 of −0.056 − 0.0098 = −0.0658. Now, note that baseline

gz + gwa can be computed under the assumption that µ = 2/3 and a further assumption

that zt grows at the same rate as yt. In every different shock and recovery scenario and for

each age-a agent in each subsequent period after the shock, the log of age-specific produc-

tivities ztwat can be rescaled by the proportional growth factor (in this example, −0.0658)

6Specifically, assume that had COVID-19 not occurred, yt would continue to grow at its post-Great Re-
cession annual rate of 0.0098 and ztwat would evolve along its constant, age-specific growth path presented
in Figure 2a.

7It should be noted that all shocks are modeled in the “MIT” sense. That is, they occur suddenly and
without expectation. Indeed, consumers and thus the social planner are not thought to have any idea that
such a shock were to ever be possible, thus failing to plan for it. The model is first solved for equilibrium
outcomes using output growth and population projections out to year 2100, assuming that no adverse shock
pertaining to a contagion has occurred in 2020. Then, having equilibrium consumption and health invest-
ment decisions in hand, per-capita income yt and health productivities suddenly decline, corresponding to
the recession and recovery characteristics described above. In this formulation, with a period length of one
year, 2019 is the last period prior to the shock affecting output in 2020. Recovery begins in 2021 in every
scenario, and the simulations are conducted by solving the model backwards from 2100 where per-capita
growth after 2021 is projected out at the model-implied post-Great Recession (after 2009) annual average of
0.98%.
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relative to the baseline. Having now shocked both yt and ztwat, equilibrium outcomes

can be computed.

5.1 Joint Income and Health Investment Productivity Shocks Account-

ing for COVID-19 Mortality Risk

COVID-19 itself, being an acute event, has little impact on the LE of the young, because

mortality rates from the disease are skewed toward older people. Rather, LE is impacted

through channels residual to the COVID-19 crisis, such as the drop in income and health

investment due to the economic fallout. This section considers the distributional impli-

cations of the economic shutdown while accounting for health productivity shocks and

shocks to mortality directly resulting from the crisis. Indeed, shutting down the economy

amounts to a transfer of welfare from the young to the old. Depending on the ultimate

severity of the crisis, the value of life years lost attributable directly to people dying from

the COVID-19 disease may be exceeded by the value of life years lost due to the non-

COVID-19 residual economic impacts.

Note that the analysis here takes no stand on whether shutting down the economy

to reduce COVID-19 deaths is somehow optimal. Rather, the focus here is on the trade-

off between the value of short-run lives saved and long-run lives lost when VSL’s are

age-dependent and health investment heterogeneity ensures that consumers of different

ages are differentially-affected by economic shocks. Unlike work in Bethune and Korinek

(2020), Eichenbaum, Rebelo, and Trabandt (2020), Glover et al. (2020), and Krueger, Uh-

lig, and Xie (2020) the model here contains no mechanism endogenously linking output

loss to reductions in total disease-related deaths. Rather, income and total disease deaths

are exogenous. Since there is so much uncertainty surrounding how the economic cri-

sis and, ultimately, the disease contagion will play out, this assumption allows for direct

comparison of outcomes under differing degrees of simultaneous economic and disease

contagion. Specifically, the exercises here involve simulating VSL’s and LE’s under dif-

ferent combinations of output shocks and total disease deaths to understand how welfare

loss is distributed between generations. The goal of such an exercise is to understand

how people of different ages are affected by these simultaneous occurrences.

As of July 9, 2020, over 126,000 people in the U.S. had died of COVID-19 (JHUM 2020).

According to the Centers for Disease Control and Prevention (CDC), over 59% of deaths

were individuals 75 years of age or older, and over 80% of deaths were individuals 65

years of age or older (CDC 2020c). Letting mcovid
a,2020 denote the age-specific mortality rate

from COVID-19 taken from the CDC’s provisional COVID-19 death counts, the mortality
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distribution associated with COVID-19 can be computed. Specifically, since the CDC

currently reports the total number of deaths by age for each week of the pandemic back

to February 1, 2020, there exists data for the conditional age-distribution of all current

COVID-19 mortalities. Figure 4 presents the age-distribution of COVID-19 deaths where

each line corresponds to a different week of the pandemic. Notice that the age-specific

death distribution has been stable over time and skews older.

Figure 4: Age bins are on the horizontal axis. The different lines represent the distribution
of COVID-19 deaths by age conditional on getting the disease for different weeks of the
pandemic. The sample begins the week starting Sunday, March 8, 2020, and concludes
with the week ending Saturday, June 27, 2020 (CDC 2020c). The conditional age-specific
death distribution appears stationary over time.

While Figure 4 shows the probability of dying from COVID-19 conditional on getting

the disease, the age-specific marginal probability of dying from the disease, mcovid
a,2020, also

depends on the total number of deaths and the population levels of different age groups.

Using the COVID-19 forecasting models presented at the CDC’s main forecasting hub for

4-weeks out,8 mcovid
a,2020 is computed for seven separate scenarios of total disease deaths: 1)

average 4-week deaths across all models cited by the CDC of 145,224 which is closest to

4-week projections from the Notre Dame-FRED COVID-19 forecasts (ND 2020); 2) maxi-

mal 4-week ahead deaths of 180,226 predicted by Columbia University’s Shaman Group

(CU 2020); 3) 250,000 deaths; 4) 500,000 deaths; 5) 750,000 deaths; 6) 1,000,000 deaths; 7)

1,500,000 deaths; 8) 2,000,000 deaths. Scenarios (3) through (8) account for how the crisis

8See CDC (2020b) for a full list and description of the models the CDC uses for COVID-19 case and death
forecasting and CDC (2020a) for the actual forecasting data.
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may possibly unfold over the next 6-8 months.9

Assume mcovid
a,2020 is not affected by health investments. In this manner all COVID-19

deaths are treated as accidental. The reasoning behind this assumption is that, given

fixed health care resources entering the period, mitigation of the spread and thus severity

of COVID-19 requires measures to be taken outside the scope of the model — things like

social distancing mandates and forced closure of so-called “non-essential” businesses.

Such policies are further assumed, implicitly, only to impact the total number of deaths,

and thus they exogenously affect mcovid
a,2020. Finally, the health crisis is assumed to have

resolved itself and disappeared by the end of 2020. While one may wonder how pro-

ductivity variables like zt and wat are not affected by innovations leading to COVID-

19 therapies, consider that improvements to health care efficiency directly pertaining to

COVID-19 treatments likely will not be realized until such treatments are widely avail-

able in the future, probably after the end of 2020. The same goes for the prevalence of

vaccines. In the event that effective cures or vaccines for COVID-19 are found after 2020,

such improvements will be captured by future productivities. The crisis associated with

COVID-19 is thus limited to the initial, latent period prior to the development and wide

dissemination of such treatments, after which COVID-19 is treated in this exercise just

like any other disease that circulates widely amongst the populace. Modeling mcovid
a,2020 as

exogenous in 2020 reflects the acute nature of the initial spread. After 2020, deaths caused

by mcovid
a,2020 will be assumed to be folded into mnon

at and directly affected by health produc-

tivities and investments. That is, for all t , 2020, mcovid
at = 0. The inverse mortality rate in

2020 is xa,2020 = 1
macc

a,2020+mcovid
a,2020+1/x̃a,2020

.

The main mechanism affecting LE’s and VSL’s is the reduction in survival rates driven

by reductions in health investments due both to falling health productivities and income.

Since aggregate health investment is not a directly-targeted data moment in the model

calibration, for the results presented here to be taken seriously, endogenous health in-

vestment generated by the model’s equilibrium should resemble real-world measures

of health investment. Particularly, we should care about how changes in health invest-

ment resulting from the modeled income and health productivity shocks match observed

changes in health investment in the data. Note that personal health care spending fell

-1.5% year-on-year from the first quarter of 2019 to 2020. Figure 5 compares how simu-

lated equilibrium aggregate health investments under COVID-19 scenario number one,

assuming 145,224 deaths, vary year-on-year compared to aggregate personal health care

9Recall, however, that since we are analyzing a one-year model period, death shocks associated with the
crisis are modeled as aggregates over all of 2020. For this reason, projections (1) and (2) are on the lower
end of possible outcomes.
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investment data from NIPA. The data are in quarterly intervals but the simulated out-

comes are in annual intervals. Notice that the last data point (blue dot) presented for

first quarter 2020 resides along the model-predicted path of decline in aggregate health

investment. It should be noted, however, that model predictions account for variation in

both personal spending and government spending, so the comparison is not exact unless

it is assumed that government health investment and personal health investment decline

equally in response to the COVID-19 crisis. Under the current crisis it is not unreasonable

to assume this since precautionary and elective procedures both for patients using private

health insurance and those using government Medicare or Medicaid have been limited

for certain periods.

Figure 5: The statistic presented here is annual rates of change of aggregate health invest-
ment. The colored lines represent simulated equilibrium aggregate health investment,
and the blue dots represent data points for personal consumption expenditure on health
care. Since the shocks are simulated in the “MIT”-sense — suddenly and unexpectedly
— there are no deviations in aggregate health spending amongst the different model sim-
ulations prior to the 2020 recession.

With a satisfactory model fit, we can now analyze the welfare implications of the

shock. To understand the effects across the age-distribution, let LEat describe the baseline

life expectancy in the constant-growth economy and L̃Eat describe life expectancies, inde-

pendent of COVID-19 risk, in one of the shocked economies. Recall, the constant growth

economy is assumed to feature continued growth in income per-capita of gy = 0.0098,

the post-Great Recession growth rate. Let VSLat be the endogenous baseline VSL for age-

a consumers in period t in the no-recession, constant growth simulation and ṼSLat be

the VSL independent of COVID-19 risk for one of the shocked economies. The goal is to
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show how long it takes LE’s to recover from the recession, and compare VSL welfare loss

due to non-COVID-19 factors against VSL’s lost due to COVID-19 deaths. Lost life years

per-capita due to non-COVID-19 factors relative to the 2020 baseline are

L̃Eat − LEa,2020 (10)

The per-capita consumption value of each COVID-19 death is measured as foregone base-

line VSL’s

VSLa,2020 mcovid
a,2020 (11)

Meanwhile, the consumption value of lost life years per-capita due to non-COVID-19

factors resulting from the economic fallout is just the statistic

(
VSLat/LEat − ṼSLat/L̃Eat

)
︸                                  ︷︷                                  ︸

∆ VSL Per Year of Life

×
(

LEat − L̃Eat

)
︸              ︷︷              ︸
∆ Life Expectancy

∀a, t (12)

The units of this statistic are 2018 dollars. Note that unlike the statistic in (10), the statistic

in (12) does not directly describe how long it takes for VSL’s to recover from the recession

but rather how welfare deviates from a no-shock baseline along the growth path.

Figure 6 shows the deviations of age-specific life expectancies from pre-pandemic lev-

els described by the statistic in (10). Note that L̃Eat represents simulated life expectancies

by age after subtracting out lost life years directly attributable to the COVID-19 epidemic.

Thus, all reductions in life expectancy relative to the baseline are driven by the declines

in income and health productivities. The idea here is to understand two things: 1) how

long it takes for life expectancy to recover to where it was at the dawn of the recession;

2) how such a recovery varies by age group. In the most severe cases (-10% 2020 shock

followed by slow recoveries), life expectancy fails to return to the baseline 2020 level by

2025. This can be seen by noting that the yellow line is below zero for all age groups in

panels (d) and (e). Depending on the severity of the recession, younger agents initially

lose anywhere from 0.5 to 0.8 life years. Depending on the shape of the recovery, life ex-

pectancies may return to the predicted 2020 baseline faster, as in the quick recoveries of

panels (a), (c), and (f), where the 2025 life-expectancy profiles have essentially returned to

pre-pandemic levels. Still, this exercise shows just how severe the effects a recession that

includes simultaneous health productivity shocks may be.

Table 2 presents the value of lost VSL’s due to the disease crisis and economic fall-

out. The top half of the table shows the breakdown in VSL’s lost due to COVID-19 and
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(a) -5.6% 2020, 4.6% 2021 (b) -5.6% 2020, 0.98% 2021 (c) -5.6% 2020, 5.6% 2021

(d) -10% 2020, 4.6% 2021 (e) -10% 2020, 0.98% 2021 (f) -10% 2020, 10% 2021

Figure 6: Age is presented on the horizontal axes and deviation in LE relative to that
for the no-shock, constant-growth 2020 baseline level is presented on the vertical axes.
In this figure, we only consider simulations where total COVID-19 deaths at the end of
2020 are 250,000, a large but not implausible value. The blue lines describe the lost years
of LE by age group in 2020, with the red lines corresponding to the same distribution of
outcomes for 2021, the gold lines for 2025, and the violet lines for 2030. Panels (a) through
(c) show how LE by age group deviates from a no-shock environment in response to the
CBO-predicted 5.6% decline in output followed by various recovery paths. Panels (d)
through (f) show how life expectancy deviates from the baseline under a steeper, 10%
annual decline in 2020 output. In most cases, it takes until at least 2025 before LE’s have
returned to their pre-pandemic levels.

non-COVID-19 factors while the bottom half shows the total social loss in VSL’s as the

sum of the two components. A policymaker looking to reduce aggregate welfare loss due

to COVID-19 deaths must first have an idea of how many deaths would occur if no so-

cial distancing were in place. Some early models starkly suggested that 1,000,000 people

could die in the U.S. if no measures were taken (Ferguson et al. 2020). In such a situ-

ation, with no economic shutdown, lost lives due to COVID-19 would amount to $2.46

trillion. If such projections are believable then policies that lead to economic shutdowns

in order to curb disease-spread may be preferred, but only as long as total VSL’s lost

are reduced relative to the predictive baseline. Relative to the no-recession scenario with

1,000,000 deaths, a policy which reduces deaths to approximately 250,000 at the expense

of a -5.6% economic contraction is aggregate welfare improving. However, excessively
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Table 2: 2020 Lost Social Welfare Measured in Total VSL’s in Trillions of 2018$

COVID-19 VSL’s Lost a; VSL’s Lost Due to Non-COVID-19 Factors b

(1) (2) (3) (4) (5) (6)

COVID-19
Deaths

−5.6%, 4.6% −5.6%, 0.98% −5.6%, 5.6% −10%, 4.6% −10%, 0.98% −10%, 10%

145,224 0.357; 1.544 0.357; 1.679 0.357; 1.487 0.357; 4.097 0.357; 4.318 0.357; 3.720

180,226 0.443; 1.544 0.443; 1.679 0.443; 1.487 0.443; 4.097 0.443; 4.318 0.443; 3.720

250,000 0.615; 1.544 0.615; 1.679 0.615; 1.487 0.615; 4.097 0.615; 4.317 0.615; 3.720

500,000 1.230; 1.544 1.230; 1.679 1.230; 1.487 1.230; 4.097 1.230; 4.317 1.230; 3.720

750,000 1.846; 1.544 1.846; 1.679 1.846; 1.487 1.846; 4.097 1.846; 4.317 1.846; 3.720

1,000,000 2.461; 1.544 2.461; 1.679 2.461; 1.487 2.461; 4.096 2.461; 4.317 2.461; 3.719

1,500,000 3.691; 1.543 3.691; 1.679 3.691; 1.487 3.691; 4.096 3.691; 4.316 3.691; 3.719

2,000,000 4.922; 1.543 4.922; 1.679 4.922; 1.486 4.922; 4.096 4.922; 4.316 4.922; 3.719

Total Lost VSL’s c

(1) (2) (3) (4) (5) (6)

COVID-19
Deaths

−5.6%, 4.6% −5.6%, 0.98% −5.6%, 5.6% −10%, 4.6% −10%, 0.98% −10%, 10%

145,224 1.901 2.036 1.844 4.454 4.675 4.077

180,226 1.987 2.122 1.930 4.540 4.761 4.163

250,000 2.159 2.294 2.102 4.712 4.932 4.335

500,000 2.774 2.909 2.717 5.327 5.547 4.95

750,000 3.390 3.525 3.333 5.557 5.863 5.566

1,000,000 4.005 4.140 3.948 6.557 6.778 6.180

1,500,000 5.234 5.370 5.179 7.787 8.007 7.410

2,000,000 6.465 6.601 6.108 9.018 9.238 8.641

NOTE: In the top half of the table, VSL’s lost due to COVID-19 deaths are presented on the left side of the
semicolon, while lost VSL’s due to the economic fallout are on the right side. When the left-hand side
exceeds the right-hand side, COVID-19 causes greater direct welfare loss than the economic fallout.

a This value is ∑a VSLatm
covid
at where t = 2020.

b This value is ∑a Nat

(
VSLat/LEat − ṼSLat/L̃Eat

)(
LEat − L̃Eat

)
where t = 2020.

c This value is ∑a VSLatm
covid
at + ∑a Nat

(
VSLat/LEat − ṼSLat/L̃Eat

)(
LEat − L̃Eat

)
where t = 2020.

stringent policies that lead to, say, a -10% contraction would increase lost VSL’s due to

non-COVID-19 factors faster than VSL’s saved due to preventing disease deaths.

This story is contingent on the Ferguson et al. (2020) predictions being correct. Sup-

pose, instead, that 750,000 deaths were ex-ante expected, leading to $1.85 trillion in lost

VSL’s due to disease deaths. In this scenario, inducing an economic contraction to miti-

gate disease spread is not welfare improving under any of the simulated scenarios. Though

there does exist a scenario where a very mild economic contraction associated with social-

distancing mandates can be welfare-improving if baseline-predicted total deaths are 750,000

or less, projections suggest that the 2020 recession is far from mild. To determine which

disease-mitigation policies are socially optimal, it is important to have both reasonably-

confident predictions regarding total deaths and the economic fallout from the policy.

The acceleration of COVID-19 cases at the end of June and beginning of July 2020 has
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posed an emerging problem for policymakers. Having shut down much of the economy

in March, April, and May to mitigate the disease spread, many local and state leaders dur-

ing the summer of 2020 have been faced with the difficult decision whether to mandate

social-distancing once again. It is questionable as to whether the public has the appetite

for such policies. Suppose, hypothetically, that the summer resurgence forces total 2020

COVID-19 deaths closer to 500,000, while the recession remains around -5.6% followed by

4.6% growth in 2021. Relative to a baseline of 1,000,000 deaths and no recession, 500,000

deaths and the CBO-predicted contraction amounts to a reduction in aggregate welfare,

from a loss of $2.461 trillion to $2.774 trillion. In such a case, the policy-induced reces-

sion of the spring of 2020 will have been wasted if deaths spike and the total death rate

increases substantially. Under this hypothetical scenario, the model’s welfare measures

suggest a rather unpalatable outcome: it would have been social-welfare improving to do

nothing and let the disease spread, sacrificing one million, mostly older, lives.

Figure 7 illustrates how both the COVID-19 disease contagion and the residual eco-

nomic crisis have disparate effects on the welfare of different age-cohorts. The age-specific

values of (11) and (12) weighted by cohort population Nat for the year 2020 under differ-

ent disease-death and economic-shock scenarios are presented. The more red area in the

figures, the greater the welfare hit due to the recession, while greater blue area corre-

sponds to a more intense welfare hit due to disease deaths. The disparity between VSL’s

lost from COVID-19 versus economic factors is driven primarily by the aggregate hit ex-

perienced by younger cohorts from the economic fallout. In most cases non-COVID-19

factors have a greater aggregate impact on welfare than COVID-19 itself. This is again

due to the fact that there are just more younger and working-age adults who are less sus-

ceptible to death from the disease. The deeper the economic shock, say -10% versus -5.6%,

the greater VSL’s lost due to non-COVID-19 factors, and young agents shoulder a greater

share of the aggregate welfare burden. It is thus apparent that policy-induced economic

shocks amount to a transfer of welfare from young to old, which is a direct consequence

of the unique mortality profile of the disease.

The COVID-19 disease has high mortality rates for elderly consumers, but the eco-

nomic fallout of the disease impacts young people more, as long as total COVID-19 deaths

remain below some threshold. Youths are particularly burdened by the reduction in the

consumption value of life brought on from indirect factors. Both reduced LE’s and re-

duced VSL’s per-year of life remaining directly impact young people more than actual

COVID-19 deaths. Disparities in the adverse welfare consequences wrought by both the

disease and economic contagions are a direct result of the age-specific mortality rates of

the COVID-19 disease. Indeed, if young people were more likely to die from the disease,
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(a) -5.6%, 4.6%; 180,226 Deaths (b) -5.6%, 4.6%; 500,000 Deaths (c) -5.6%, 4.6%; 1,000,000 Deaths

(d) -10%, 4.6%; 180,226 Deaths (e) -10%, 4.6%; 500,000 Deaths (f) -10%, 4.6%; 1,000,000 Deaths

Figure 7: The horizontal axes index age while the vertical axes present the sums, over all
age-a individuals, of VSL’s lost due either to the COVID-19 disease (blue) or non-COVID-
19 factors resulting from the economic fallout (red). Model results under 2020 COVID-19
deaths of 180,226, 500,000, and 1,000,000 are shown. Panels (a) through (c) feature the
CBO’s predicted aggregate shock of -5.6% followed by a 4.6% recovery in 2021. Panels (d)
through (f) feature a deeper shock of -10% followed by a 4.6% recovery in 2021. Shaded
areas comprise the difference between lives lost due to COVID-19 versus long-run factors
(blue) and vice-versa (red). The more red area that is shaded, the greater the hit to long-
run VSL’s. The more blue area that is shaded, the greater the hit due to COVID-19 deaths.
When the blue area exceeds the red area, the value of lives lost due to COVID-19 exceeds
the value of statistical lives lost due to indirect, economic factors. The reverse is also true.

the welfare consequences of an economic shutdown designed to contain its spread would

be less dramatic. In such a situation reducing commerce to save lives may be a welfare-

improving strategy. However, given the underlying nature of COVID-19, this seems to

only be true if the disease is indeed very deadly and the policy-induced recession is not

too deep. Otherwise, lost VSL’s due to the economic shutdown outweigh the value of

potential increases in lost lives due to the disease if such a shutdown had not taken place.
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Figure 8: Age is on the horizontal axis. The distribution of total disease-related deaths by
age is more heavily skewed to the right for COVID-19. The Spanish Flu of 1918, mean-
while, had a more pronounced effect on children and young adults.

5.2 Inverted Disease Contagion Mortality Rates: What if the Spanish

Flu Occurred in 2020?

To assess the degree to which the age-specific mortality profile of the COVID-19 disease

contributes to the above conclusions, consider COVID-19 in contrast to the mortality pro-

file of the 1918 Spanish Flu. Unlike COVID-19, the Spanish Flu disproportionately af-

fected younger people, which can be seen by inspecting Figure 8 (Luk, Gross, and Thomp-

son 2001; Gagnon et al. 2013). The data used for Spanish Flu mortality rates in the analysis

presented here comes from Luk, Gross, and Thompson (2001).10

In the simulations here, mcovid
at is replaced with m

spanish
at . In Luk, Gross, and Thomp-

son (2001) age-specific mortality rates are displayed as number of deaths per 100,000. By

applying their mortality distribution to a conceptual 2020 pandemic, it would thus be

assumed that the underlying total mortality rate for the Spanish Flu in 1918 would be

the same as if the disease had occurred today. This would imply Spanish Flu deaths

of 1,115,900 given the U.S. population distribution in 2020. But it may be too strong

to assume that the Spanish Flu would be as deadly today as it was in 1918, given ad-

vancements in hygiene, early disease detection, health care technology, and our general

10Luk, Gross, and Thompson (2001) present mortality rates for broad, 10-year age groups. To arrive
at the one-year age groups, the same interpolation scheme as that used for the health spending data is
performed here, where it is assumed that all ages within the age group experience the same mortality rate.
This generates the stair-step mortality profile in Figure 8.

29



knowledge as to how diseases spread. To accommodate these possibilities, consider the

same eight scenarios for total number of deaths as in Section 5.1 while also simulating the

shocks to income and health productivities in the same six ways as before.

Table 3: 2020 Spanish Flu Counterfactual Lost Social Welfare in Trillions of 2018$

Spanish Flu VSL’s Lost; VSL’s Lost Due to Non-Spanish-Flu Factors

(1) (2) (3) (4) (5) (6)

Spanish Flu
Deaths

−5.6%, 4.6% −5.6%, 0.98% −5.6%, 5.6% −10%, 4.6% −10%, 0.98% −10%, 10%

145,224 1.096; 1.544 1.096; 1.680 1.096; 1.487 1.096; 4.097 1.096; 4.318 1.096; 3.720

180,226 1.359; 1.544 1.359; 1.680 1.359; 1.487 1.359; 4.097 1.359; 4.318 1.359; 3.720

250,000 1.886; 1.544 1.886; 1.680 1.886; 1.487 1.886; 4.097 1.886; 4.318 1.886; 3.720

500,000 3.771; 1.544 3.771; 1.680 3.771; 1.487 3.771; 4.097 3.771; 4.318 3.771; 3.720

750,000 5.657; 1.544 5.657; 1.680 5.657; 1.487 5.657; 4.097 5.657; 4.318 5.657; 3.720

1,000,000 7.543; 1.544 7.543; 1.680 7.543; 1.487 7.543; 4.097 7.543; 4.318 7.543; 3.720

1,500,000 11.314; 1.544 11.314; 1.680 11.314; 1.487 11.314; 4.097 11.314; 4.318 11.314; 3.720

2,000,000 15.085; 1.544 15.085; 1.680 15.085; 1.487 15.085; 4.097 15.085; 4.318 15.085; 3.720

Total Lost VSL’s

(1) (2) (3) (4) (5) (6)

Spanish Flu
Deaths

−5.6%, 4.6% −5.6%, 0.98% −5.6%, 5.6% −10%, 4.6% −10%, 0.98% −10%, 10%

145,224 2.640 2.775 2.583 5.193 5.413 4.816

180,226 2.903 3.039 2.847 5.457 5.677 5.080

250,000 3.430 3.565 3.373 5.983 6.203 5.606

500,000 5.315 5.451 5.259 7.869 8.089 7.492

750,000 7.201 7.337 7.144 9.754 9.975 9.377

1,000,000 9.087 9.222 9.030 11.640 11.860 11.263

1,500,000 12.858 12.994 12.801 15.411 15.632 15.034

2,000,000 16.629 16.765 16.573 19.183 19.403 18.806

NOTE: This table is the hypothetical Spanish-Flu analog of Table 2 after replacing mcovid
at with m

spanish
at in

the various statistics.

A disease like the Spanish Flu, which affects young more than old, delivers a larger

blow to aggregate welfare at every total-death level, since young agents have such high

baseline VSL’s and there are so many of them relative to their elders. In Table 3 the same

aggregate welfare measures for the Spanish Flu counterfactual are presented as in Table

2. In the top half of the table it can be seen that under the CBO’s economic shock scenario

in column 1, the value of Spanish Flu deaths (left) exceeds lost VSL’s due to indirect

economic factors (right) for all but the lowest death totals. When the economic shock is

more severe, this threshold increases, as can be seen in columns 4 through 6.

Notice that the VSL’s lost due to the recession in the top half of the table are almost the

same as for COVID-19, yet the VSL’s lost directly from the Spanish Flu are far higher. The

Spanish Flu is more costly because its age-distribution of mortality rates skews younger.

A policymaker trading off 2,000,000 deaths in the event of no recession and no social dis-

30



tancing would be willing to accept a 10% drop in output and a slow recovery for 1,000,000

deaths, as in row 4 and columns 4 through 6 of the bottom half, in order to reduce lost so-

cial welfare.11 Contrast this with the COVID-19 disease where a 10% reduction in output

is only optimal if projected deaths would dramatically fall from 2,000,000 absent social

distancing to < 250,000, depending on the nature of the recovery.12 This exercise thus

highlights the importance the mortality distribution plays in determining optimal public

health policy.

(a) -5.6%, 4.6%; 180,226 Deaths (b) -5.6%, 4.6%; 500,000 Deaths (c) -5.6%, 4.6%; 1,000,000 Deaths

(d) -10%, 4.6%; 180,226 Deaths (e) -10%, 4.6%; 500,00 Deaths (f) -10%, 4.6%; 1,000,000 Deaths

Figure 9: The horizontal axes index age while the vertical axes present the sum, over all
age-a individuals, of VSL’s lost due either to a hypothetical 2020 outbreak of the Spanish
Flu (blue) or other factors resulting from the economic fallout (red). Panels (a) through (c)
feature the CBO’s predicted aggregate shock of -5.6% followed by 4.6% recovery in 2021.
Panels (d) through (f) feature a deeper shock of -10% followed by a 4.6% recovery in 2021.
Shaded areas comprise the difference between lives lost due to Spanish Flu versus long-
run factors (blue) and vice-versa (red). The more red area that is shaded, the greater the
hit to long-run VSL’s. The more blue area that is shaded, the greater the hit due to Spanish
Flu deaths.

In terms of the welfare effects across the age distribution, the risk-profile of the Span-

11To see this, compare the number to the left of the semicolon in the top half of the table. Since VSL’s for
deaths are measured as VSL’s lost relative to the baseline economy where no economic shock occurs, the
statistic representing Spanish Flu VSL’s lost measures welfare loss in an economy plagued by disease but
still growing along the balanced growth path.

12Utilize the same comparison as here: inspect the value to the left of the semicolons in the last row of
the top half of Table 2 and compare it to total VSL’s lost in the bottom half of the same table in the event of
a recession that also reduces total deaths.
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ish Flu leads to a generational divide that is the opposite of that induced by COVID-19.

Notice in Figure 9 that younger consumers experience a double-whammy, with long-run

VSL harmed by the economic contagion at the same time that many die due to Span-

ish Flu. Indeed, in Figure 9f when the economic shock is deep and 1,000,000 people die

from the disease, long-run VSL’s lost by older adults exceed their age-specific hit from the

disease, while the opposite is true for the young.

This counterfactual exercise thus demonstrates how the nature of disease risk impacts

welfare inference. If COVID-19 had the same mortality risk profile as the Spanish Flu,

policies encouraging economic shutdowns to mitigate disease spread may be preferred,

especially if they lead to a total reduction in VSL’s lost. However, overly-restrictive poli-

cies could still cause greater aggregate welfare loss if the underlying death rate of the

disease is mis-estimated. In contrast to a disease like COVID-19, the aggregate welfare

loss of the old due to a slight reduction in output is smaller than under COVID-19. This

is because less old people are alive at the start of the contagion anyway, they are less

affected by the disease, and their VSL’s are lower to begin with.

6 Conclusion

This paper explores the age-distributional welfare implications of disease contagion through

the lens of an overlapping generations model with endogenous health status, survival

rates, and health investment that generates age-dependent estimates of life expectancies

and the value of statistical lives. These model-implied statistics are used to quantity the

welfare implications of simultaneous recessions and disease contagions. Estimated VSL’s

using revealed preferences for health investment are declining in age and are particularly

high for children and young adults. Given the age-profile of VSL’s, it is shown that eco-

nomic shocks, independent of disease contagions, disproportionately harm young people

if death-risk skews older. Finally, it is shown that the degree to which the adverse effects

of the recession dominate those of the disease depend both on the age-mortality profile

of the disease and its overall deadliness.

Through this lens, the intergenerational distributional implications of the 2020 COVID-

19 crisis are profound. While the actual COVID-19 virus may take the lives of older in-

dividuals at higher rates, it is the younger generations that appear to bear the long-run

costs of the crisis, regardless of whether social-distancing efforts actually lead to aggre-

gate welfare improvements. This is apparent while even abstracting from possibly unbal-

anced income shocks that may affect young people more. It is thus shown, in a planner’s

problem where the only objective is to efficiently allocate resources across generations,
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that the costs of this crisis are born by younger cohorts. This is a direct consequence of

the mortality profile of COVID-19: if COVID-19 were instead more like the Spanish Flu,

social distancing mandates that lead to substantial income losses are more likely to be

welfare improving.

Moving forward, researchers should more deeply explore the implications of this ex-

ercise by examining microeconomic data pertaining to the effect of the shutdown on the

health and welfare of children and young adults. While the results here are extrapolatory

in nature due to being estimated during the early innings of the 2020 COVID-19 crisis,

they should provide a useful framework to help both researchers and policymakers form

new questions. Namely, if the intergenerational welfare disparities are indeed true, how

can we minimize the harm to young people while still preserving lives? Perhaps policies

that encourage school and work attendance for children and young adults could sup-

plement social-distancing recommendations that target at-risk, older individuals. Such a

nuanced approach, among others, could help minimize the intergenerational welfare hit

to young while still keeping the mortality rates of the disease in check.
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