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Abstract

A recurrent policy question in the airline industry is whether baggage should be priced indepen-

dently from airline tickets. We show that this policy has ambiguous welfare implications, depending

on the cost of carrying luggage and on the market power of the firm. The intuition is simple: there is

a trade-off between over-consumption caused by the non-existence of a baggage price against under-

consumption caused by firm markups in the case of a separate price for baggages. The commonly

used argument that the price of travelling without luggage might drop under a two price-system does

not hold in our model.
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1 Introduction

In the last decade, it became common for airline companies to charge a separate fee for ancillary services,

such as for baggage handling. This began in 2008, when U.S. airlines spearheaded the efforts, but quickly

become an industrial trend worldwide. In 2008, baggage fees revenues amounted to US$ 0.5 billion in U.S.

companies, while by the end of 2016 this number had quickly grown to more than US$ 4.0 billion1 - and

now amounts to more than 10% of the revenues of the majority of large airline carriers.2 Understandably,

this change generated political attention and cries for regulation. In 2011 U.S. Senator Mary Landreau

attempted to banish baggage fees (Halsey III, 2011) and recently there’s been a discussion about forcing

airlines to disclose baggage fees to consumers at the point of sale (Henry, 2017), which is due to concerns

about baggage fees salience. However, there is still limited evidence on the welfare effect of this change.

We construct a simple model to investigate this issue. In our model, consumers optimally choose

whether to consume two goods - passenger travel and baggage travel - under the restriction that the

∗Costa: Sao Paulo School of Economics -FGV. E-mail: raone.botteon@fgv.br. Ferman: Sao Paulo School of Economics
-FGV. E-mail: bruno.ferman@fgv.br. Monte: Sao Paulo School of Economics -FGV. E-mail: daniel.monte@fgv.br.

1https://www.bts.gov/content/baggage-fees-airline-2017
2https://bit.ly/2BN2NsX
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second good is only available after the purchase of the first. The model is solved for two distinct

scenarios: in the first, the monopolist firm is obliged to set the price of baggage fees to zero, and in the

second it may optimally choose prices using a two-part tariff. The results show that allowing for two

prices is not always welfare enhancing, and depends on the marginal cost of conveying baggage. The

intuition is simple: we have a trade-off between over-consumption and under-consumption of baggages

in the different scenarios. When the airline can only charge a single price, some consumers with low

valuation for baggages might opt to embark their luggage anyway (as the price for doing so is zero)

leading to over-consumption. With two prices this does not happen, but due to the firm’s monopolist

power, it will set its prices in such a way that some consumers with baggage valuation higher than its

marginal cost will still opt to withdraw from the market.

After this initial analysis, we extend the model to a price competition duopoly similar to the Bertrand

model, which we see as an approximation of the perfect competition case. This allows us to document

the intuitive result that firms’ market power is also important. In a competitive setting, allowing for

two distinct prices is always welfare enhancing. Finally, we study the issue of allocation. We show that

while a monopolist firm is at least neutral towards the change from a single price to two distinct prices,

the effects on consumer utility are uncertain. In our main model, consumers are only differentiated by

their preferences over baggage handling, and that makes them at best indifferent towards this change as

the monopolist firm is able to fully extract consumer surplus on the passenger market. However, once

the model is extended to allow for heterogeneous preferences over both goods, we show that consumers

might also be favorable to the change.

The literature on the impact of baggage fees on social welfare is still limited. Allon et al. (2011)

studies the problem using a different modelling approach. In their setting, consumers choose not whether

to buy baggage transportation, but whether to exert an effort to avoid having to travel with baggage.

They conclude that moving from one to two prices for airlines services is unequivocally good for society,

even in a monopoly setting. This result contrasts with our main finding, which was that the change from

a single to two distinct prices is not always socially optimal. The difference in results is due to different

modelling techniques: in their setting, there is not the possibility of under-consumption of baggage as

this is undesired by both consumers and the firms. As such, the introduction of the explicit baggage

fee in their setting leads naturally to the optimal effort level by the consumer, essentially solving the

problem. In our model, this is not the case, as consumers derive utility directly from baggage travel. In

this sense our model contributes to the discussion by analyzing the case in which consumers effectively

want to embark their baggage and see that as an consumption good.

Research generally agrees that explicit baggage fees are positive for firm metrics. We have evidence

that baggage fees have a much lower elasticity than regular fares, which tends to increase firms market

power (Scotti and Dresner, 2015). These fees also tend to increase airlines stock price (Barone et al.,

2012) and the likelihood of on-time departure performance (Nicolae et al., 2017). Moreover, contrafactual

exercises on the potential regulation of such fees indicates that banning baggage fees would have little to
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no effect on total travel prices (Agarwal et al., 2014). The main criticism for allowing dual prices comes

from salience issues, as there is evidence that the opacity of baggage prices is relevant for revenues in this

market (Bradley and Feldman, 2016) and that this feature might hurt consumers utility in behavioral

ways (Coy and Chiang, 2012). Our model connects to this strand of research by showing that those

improvements on firm’s metrics might not be good for society even without bounded rationality and

salience issues.

In methodological terms, as our model can be understood as a two-part tariff model in which

consumers are restricted to only being allowed to purchase one of the goods after the consumption of

the other, it connects to the larger literature on price discrimination and bundling. Two good examples

of such are Armstrong and Vickers (2010) and Armstrong (2006). Our research also connects to the

literature of multi-dimensional screening, as in our final extension we deal with two distinct sources of

consumer private information. A good review on the subject can be found in Armstrong and Rochet

(1999).

The rest of the paper is organized as follows. Section 2 describes our main model. Section 3 briefly

discusses some interesting extensions and section 4 provides a conclusion, with an eye on potential

applications of the model to different problems.

2 The Model

2.1 Setup

Consider an economy with 2 goods: airplane passenger travel and luggage travel. The goods are assumed

to be offered in discrete quantities in which each consumer may opt to consume either one unit or no

units of the good (i.e. they choose to travel or not). There is a monopolist firm that offers both goods

and a continuum of measure one of consumers. Let q1 denote consumption of airplane travel and q2

denote consumption of luggage travel.

Each consumer i have to choose between three travel options. He can either choose to travel heavy

(i.e: travel with a dispatched baggage), travel light (i.e. to travel without any dispatched baggage) or

not to travel at all. If the consumer decides to travel, he gets utility u > 0, which is assumed to be

constant for all consumers by simplicity.3 If he decides to embark his baggage, he gets utility δi, which

is a random variable drawn from an uniform [0, 1]. The utility of not travelling is normalized to 0. Note

that this structures entails that consumers can purchase q2 only if they also decided to purchase q1.

The firm has two distinct marginal costs: c1 is the marginal cost of transporting passengers and c2

the marginal cost of transporting baggage. We assume that both c1 and c2 are greater than 0 and, for

simplicity, we assume that there no fixed costs.4

3This will be relaxed in the extensions provided in the next section.
4This is, of course, a simplification, but we believe it captures the main aspects of the industry costs. Passenger travel

is obviously costly due to spacing issues inside the airplane. Luggage travel is also costly, as it affects the weight of the
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There are two distinct prices: one for the consumption of q1 (called p1) and one for consumption

of q2 (p2). Still, we analyze two distinct cases. In the first case, named “single price case”, firms are

restricted to set p2 = 0. In the second case (the “dual price case”) they may set both prices as they see

fit.

In all cases, prices and consumer utilities are assumed to be measured in the same unit. Hence, the

decision to consume one unit of passenger travel adds u units to the consumer’s utility, but subtract p1

units.

2.2 Demand

Consumer demand comes from standard utility maximization. In the single price case (i.e. p2 = 0) we

have the following demand functions:

q1i(p1) := 1{u≥p1}∪{u+δi≥p1} and q2i(p1) := 1{u+δi≥p1}. (1)

Equation 1 tells us that consumers will opt to travel (and to embark their luggage) when the the

utility of doing so is at least as high as the costs associated to it. For the case of the first good, this may

happen by two reasons. Either travelling is good enough to be consumed on its own (that is, u ≥ p1) or

it might be a cost worth paying to travel heavy (which implies that, u + δi ≥ p1). Note that in this

setting, due to the presence of a single price for both goods, the consumer will never prefer to travel

light over travelling heavy.5 Hence, we may simplify demand to q1i(p1) = q2i(p1) := 1{u+δi≥p1}

In our second case, demand will be given by:

q1i(p1, p2) := 1{u≥p1}∪{u+δ1≥p1+p2} and q2i(p1, p2) := 1{u+δi≥p1+p2}∩{δi>p2}. (2)

Now, because of the two price structure, we cannot simplify demand for the first good like we did

before, as the restrictions are not nested anymore. Moreover, demand for the second good now requires

two conditions. Passengers will only opt to travel heavy when this option is better than his other two

options: not travelling (which requires u+ δi ≥ p1 + p2) and travelling light (which requires δi ≥ p2).

2.3 First case: Single price

In this scenario, the firm is restricted to set p2 = 0. Hence, it will choose p1 to solve the following

problem:

Max Π1(p1) := E{(p1 − c1)q1i(p)− c2q2i(p)}, (3)

The subscript 1 on the above equation denotes that this is the profit function of our first case. Proposition

1 stated below characterize the solution to this case.

airplane, which has impact on fuel costs (Stromberg, 2015).
5As we assume for simplicity that δ ≥ 0, we get that u ≥ p1 implies u+ δi ≥ p1

4



Proposition 1 (Single Price Characterization) The single price problem is characterized by the

following function:

p∗1 =























u if c1 + c2 ≤ u− 1,

1 + u+ c1 + c2
2

if u− 1 ≤ c1 + c2 ≤ u+ 1,

∞ if c1 + c2 ≥ u+ 1.

Proposition 1 tells us that the single price case divides the plane (c1, c2) into three different regions.

In the region defined by c1 + c2 ≤ u− 1, which we name L, costs are low enough so that the firm finds

it optimal to bring all consumers to the market, as the potential cost of losing a fraction of consumers

is higher than the benefit of an increased price for the fraction that remains. In order to do that, the

firm sets p∗1 = u, eliminating consumer surplus for the consumption of q1. In this case, firms earn

Π1(u) = u− c1 − c2 and all consumers opt to travel heavy.

In the region c1 + c2 ≥ u+ 1, which we define as H, the opposite happens: costs are so high that

the firm finds it optimal to shut down the market entirely. In this case, profits are obviously null and

consumers will always choose not to travel.

In between those two extremes, which we name M, the firm find it optimal to only attend consumers

that have a sufficiently high value of δi. To see this point more clearly, let λi be a random variable that

assumes value 0 if consumer i opts to not travel, 1 if he decides to travel light and 2 if he decides to

travel heavy. We then have that in region M:

Pr(λi = 2) := Pr(δi ≥ p∗1 − u) =

(

1 + u− c1 − c2
2

)

. (4)

As with a single price the cost of travelling heavy and travelling light are the same, consumers will

never opt for the latter option in this case, so Pr(λi = 1) = 0 and Pr(λi = 0) = 1− Pr(λi = 2).

To finish our analysis, profits in this intermediate case will me given by

Π1(p
∗
1) =

(

1 + u− c1 − c2
2

)2

. (5)

Table 1 summarizes our findings for the single price case and figure 1 exemplify the regions for the case

u = 3.

2.4 Second case: Two distinct prices

In this scenario, firms are free to set p2 at its optimal value, so the firm problem turns into:

Max Π2(p1, p2) := E{(p1 − c1)q1i(p) + (p2 − c2)q2i(p)}. (6)

The subscript 2 on the above equation denotes that this is the profit function of our second case.

Proposition 2 stated below characterize the solution to this case.
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Table 1: Single Price Setting Resume

L M H

p∗1 u

(

1 + u+ c1 + c2
2

)

∞

Π1 u− c1 − c2

(

1 + u− c1 − c2
2

)2

0

Pr(λi = 1) 0 0 0

Pr(λi = 2) 1

(

1 + u− c1 − c2
2

)

0

Figure 1: Optimal Choice for the single price scenario with u = 3
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Proposition 2 (Two-Price Characterization) The two-price problem is characterized by the fol-

lowing function:

(p∗1, p
∗
2) =







































(

u,
1 + c2

2

)

if c1 ≤ u and c2 ≤ 1,

(u,∞) if c1 ≤ u and c2 > 1,
(

1 + u+ c1 + c2
2

, 0

)

if c1 > u and c1 + c2 ≤ u+ 1,

(∞,∞) if c1 > u and c1 + c2 > u+ 1.

Proposition 2 tells us that the two price case divides the plane (c1, c2) into four different regions.

We will name those regions after the first letters of the alphabet, to differentiate from the letters used in

the single price case.

If c1 < u then firm behavior is effectively different from the single price case. In this case, the firm

knows that passenger travel is a profitable endeavor by itself and can set p1 to the value that maximizes

profits in that activity, namely u. Then, the firm evaluates whether of not it wants to price baggage

travel in a way that attracts consumers. If c2 ≤ 1 it finds profitable to do so, and sets p2 = 1+c2
2 . In

that case, it earns profits of Π2(u,
1+c2
2 ) = (u− c1) + [ (1−c2)

2 ]2, a fraction 1− (1−c2)
2 of passengers travel

light and 1−c2
2 of passenger travel heavy. No passenger opts not to travel. We name this region as A.

On the other hand, if c2 > 1 then it is more profitable to shut down the baggage market. In that case,

firm profit is given by Π2(u,∞) = (u− c1) and all consumers travel light. We name this region B. Note

that in the single price case the firm could not act in this way because it lacked capacity to separate its

consumers in the two markets (i.e. it was impossible for the firm to force a consumer to travel light in

that environment).

If c1 ≥ u the firm’s choices in the two price case are effectively the same as in the single price case. In

this case, passenger travel is never profitable enough to be sold on its own, so the firm is only interested

in providing the consumption of baggage travel. As the model forces consumers to buy q1 in order to

buy q2, the firm must offer q1 at a loss to some consumers in order to earn profits from the sale of

q2. This strips away from the firm the possibility to differentiate light travellers from heavy travellers,

making all its consumers heavy travellers, just as in the single price case. The solution is then equal to

that case, that is, firms differentiate between consumers if c1 + c2 ≤ u+ 1 and shot down the market

if c1 + c2 ≥ u + 1. We name the first region as C and the second as D. Both profits and passenger

behavior are obviously equal to the respective single price case in those scenarios.

Table 2 summarizes our findings for the two price case and figure 2 exemplify the regions for the

case u = 3.
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Table 2: Two Price Setting Resume

A B C D

p∗1, p
∗
2 (u, (1 + c2)/2) (u,∞) ((1 + u+ c1 + c2)/2, 0) (∞,∞)

Π2 (u− c1) + [(1− c2)/2]
2 u− c1 [(1 + u− c1 − c2)/2]

2 0
Pr(λi = 1) 1− (1− c2)/2 1 0 0
Pr(λi = 2) (1− c2)/2 0 (1 + u− c1 − c2)/2 0

Figure 2: Optimal Choice for the two distinct prices scenario with u = 3
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2.5 Efficiency and Welfare Analysis

Both scenarios are inefficient in different contexts. The single price case suffers from over-consumption

issues, that is, consumers with private benefit for luggage travel inferior to its marginal costs (i.e: δi < c2)

might still opt to consume as the firm cannot prevent the consumption of q2 without also dampening

consumption of q1 with only a single price for both goods6. This is obviously not an issue in the two-price

analysis. However the two price scenario has a different source of inefficiency. With two prices, the

firm can better separate its consumers between those that are profitable to serve in both goods and

those that are not. By doing this, the effective markup of the firm increases, and in doing so we also

increase its monopoly inefficiency. Thus, the two price case suffers from under-consumption issues, that

is, consumers with private benefit for luggage travel superior to its marginal costs might be priced

away from the market due to the monopoly power of the firm. This leads to a natural question: which

scenario is the best for society in each region of the plane (c1, c2)? Naturally, the firm should be at least

indifferent when moving from a single price to dual price scenario as it can always set p2 = 0 optimally

if needed, but what about consumers and overall welfare? This is the question we tackle in this section.

To begin our analysis, let us define our aggregate welfare function and a bit of notation. Let k ∈ {1, 2}

denote the different price setting that we are dealing, with k = 1 the single price case and k = 2 for the

two price case. Let r ∈ {A,B,C,D} ∩ {L,M,H} := R2 ∩ R1 denote the region on the plane (c1, c2)

that we are analyzing. Finally, let Ukri denote consumer i utility in region r of case k.

Using the previous section results and a bit of algebra, we have that aggregate utility in each case

and region are given by:

∫ 1

0
U1ridi =























1

2
if r = L,

(1 + u− c1 − c2)
2

8
if r = M,

0 if r = H.

(7)

∫ 1

0
U2ridi =







































(1− c2)

8

2

if r = A,

0 if r = B,

(1 + u− c1 − c2)
2

8
if r = C,

0 if r = D,

(8)

Let Πkr denote aggregate profits for region r and case k. As we have no reason to differentiate

consumers, we define the aggregate welfare function is a natural way as

6It is easy to see that this happens to at least some consumers in regions L and M, as the choice to consume q2 in this
case does not depend solely on p2 and δi.
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Wkr := Πkr +

∫ 1

0
Ukridi. (9)

Define the correspondence g : R1 → R2 as g(L) 7→ {A,B}, g(M) 7→ {A,B,C} and g(H) 7→ {B,D}.

We interpret g as the correspondence that connects each region in the single price case to a possible

counterpart in the two price case.7 Now, define the map f : x → g(x). Using this notation, we are

interested in the values of ∆Wr,f(r) := W2,f(r)−W1,r and ∆Ur,f(r) :=
∫ 1
0 U2f(r)i−U1ridi that we interpret

as variations in, respectively, aggregate welfare and aggregate consumer utility from moving to the dual

price case from the single price case.

The following proposition, which is our main result, shows that the change from a single price to

two prices is not always good for aggregate welfare as defined above. It also shows that the consumers

are never better off with this change.

Proposition 3 (Welfare Analysis is Uncertain) If r = L, then ∆Wr,f(r) < 0 if and only if c2 <

1/3. If r = M then ∆Wr,f(r) < 0 if and only if c2 < (u−c1)/2−1/3. Finally, if r = H then ∆Wr,f(r) ≥ 0.

Furthermore ∆Ur,f(r) ≤ 0 in all cases.

As regions L and M are the ones in which we have an active market in the single price case, a

corollary of Proposition 3 is that whenever we have an active market in the single price case such that

c1 < u− 2/3,8 then there is a positive value c∗2 such that, if c2 ≤ c∗2, then the change of a single price to

a dual price case is negative to overall welfare. This is the case when the inefficiencies generated by

the under-consumption of baggages in the dual price case are larger than the ones generated by the

over-consumption of the single price case. Therefore, the value of c2 is an important variable for a social

planner to consider when promoting this change.

Proposition 3 also shows that consumers are never better off by the change from the single to the

dual price case. There is however a region in which the move from a single to two prices in our model

generates a Pareto-improvement. This is the region H∩B, as in this region we would have no market in

the single price case and a full (and profitable) market for passengers in the dual price case. Consumers

are not better off with this change because we simplified away the demand for passengers using u to

determine the utility of passenger travel, so our monopolist firm is able to fully extract consumer surplus

in this case. This suggests that if we relax either the assumption of the single value of u as the utility

for all consumers of the monopoly of the firm then it would be possible for consumers to also be better

off by the change in airline pricing depending on the parameters. This is indeed the case, as will be

shown in the next section.

The chart below summarizes our conclusions. The blue area denotes the region in which aggregate

7For example, when we are in region H of the single price case, we can be in two different regions of the two price case,
region B if c1 ≤ u or region D otherwise, thus g(H) 7→ {B,D}

8To understand this inequality note that the equation c1 = u− 2/3 determines the point in which the value of c2 that
generates ∆Wr,f(r) < 0 when r = M is lower than 0
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Figure 3: Welfare and utility comparison in all regions

welfare is reduced when we move from a single to the dual price scenario, that is, the region in which

the under-consumption problem of the dual price case is more relevant than the over-consumption of

the single price case. In the white region this change is positive for aggregate welfare, but negative to

consumers. In red we have the Pareto-improvement region and finally in green the region where the

change provokes no economic effect.

3 Extensions

In this section we attempt to briefly extent our main model in two ways. In the first we solve the model

under a price competition duopoly to understand the effect of market power in the analysis. Since we

are considering a Bertrand duopoly, we can use these results as an approximation of a competitive

equilibrium. In the second we differentiate consumer preference over passenger travel into two types, in

order to clarify the allocative issues raised by the model in the previous analysis. The results shows

that market power is crucial in the analysis, as in a perfectly competitive environment the two price

case always generates at least the same aggregate welfare as the single price case. Moreover, consumers

might benefit from this change when we allow for different valuations of the passenger travel, as in this

case the firm will not be able to fully extract the surplus generate by the change.
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3.1 Duopoly

In this section we assume that two firms exists in our previous model. The firms have equal costs and

compete through prices to provide both goods. That simple change have profound effects in our model

results. By allowing the presence of an extra firm, our model turns into a two part tariff competition in

a homogeneous market duopoly, which is thoroughly analyzed by Krina and Nikolaos (2015). In this

context we can prove the following proposition.

Proposition 4 (Bertrand Duopoly Characterization) Assume that two firms compete though prices

into q1 and q2 with the same costs, given by c1 and c2. Then the single price case is characterized by

p11 = p21 = (c1 + c2) and the dual price case by (p11, p
1
2) = (p21, p

2
2) = (c1, c2) where pji denotes the optimal

price for firm j in good i. Moreover, both firms make 0 profits in both cases.

Proof. In the single price case we have all the elements of the standard Bertrand model, which is well

known to have its equilibrium characterized by the price being equal the marginal cost and profits begin

null. As in this case all consumers that opt to purchase q1 will also trivially want to purchase q2 the

result follows. In the dual price case the proof is a simple application of the first proposition of Krina

and Nikolaos (2015) .

Using Proposition 4 it is straightforward to conclude that in the symmetric duopoly case both

∆Wr,f(r) and ∆Ur,f(r) are strictly positive whenever u > c1 and c2 > 0 and neutral otherwise for all

possible r. The intuition is that in this case we have no under-consumption issues, as the firms have no

markup. As the problem of over-consumption in the single price case is still intact, the change from one

to two distinct prices is at least neutral to overall welfare and consumer utility. Therefore, we conclude

that a measure of market power is critical for the result of Proposition 3.

3.2 Heterogeneous preferences over passenger travel

In this section we relax the assumption that every consumers gets the same utility value u for the

purchase of q1. Specifically, we assume that consumers are now of two distinct types: L and H. While

type L consumers gets utility uL for the purchase of q1, type H consumers get uH , with 0 < uL < uH .

Moreover, we assume that the probability of consumer i being of type L is given by γ and that ui is

independent of δi. This effectively turns our model into a multidimensional screening one, as consumers

have now two dimensions of private information. Those problems are notoriously hard to solve and have

few conclusive results (see Armstrong and Rochet (1999) for a good review). As such, we do not attempt

to fully present the solution, but rather to show its properties. The following proposition categorize the

firm’s optimal behavioral in the single price world.

Proposition 5 (Single-Price Heterogeneous Consumers Characterization) Assume that the util-

ity of passenger travel has two possible values uL and uH , with 0 < uL < uH , Pr[ui = uL] = γ and uiδi.
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Then, we can reduce the firms price choice p∗1 of the single price case to one of the options below:

1) p∗1 = uL, with Π1(p
∗
1) = uL − c1 − c2.

2) p∗1 =
1 + γ(uL + c1 + c2)

2γ
, with Π1(p

∗
1) =

1

γ

(

1 + γ(uL − c1 − c2)

2

)2

. This option is only available

under the restrictions p∗1 ≤ uH and uL < p∗1 < 1 + uL.

3) p∗1 =
1 + α1 + c1 + c2

2
, with Π1(p

∗
1) =

(

1 + α1 − c1 − c2
2

)2

and α1 := γuL + (1− γ)uH . This option

is only available under the restrictions uH < p∗1 < uH + 1 and uL < p∗1 < 1 + uL.

4) p∗1 = uH , with Π1(p
∗
1) = (1 − γ)(uH − c1 − c2). This option is only available under the restriction

p∗1 ≥ 1 + uL.

5) p∗1 =
1 + uH + c1 + c2

2
, with Π1(p

∗
1) = (1 − γ)

(

1 + uH − c1 − c2
2

)2

. This option is only available

under the restrictions uH < p∗1 < 1 + uH and p∗1 ≥ 1 + uL.

6) p∗1 = ∞, with Π1(p
∗
1) = 0.

Proposition 5 tells us that firms optimal policy in the single price case now depends on 4 parameters:

(c1 + c2), γ, uL and uH . As this case requires p2 = 0, the firm can still only differentiate consumers that

will choose not to travel from those that will choose to travel heavy. The only difference is that as we

have two types of consumers now, the firm has more effective options in order to do this split. If option

1 is found to be the best, then the firm will effectively allow for all consumers to travel heavy. Under

option 2, the firm will segregate between type L consumers, making that only those with high enough

values of δi will decide travel heavy, while allowing for all type H to be inside the market. Under option

3 the firm segregates among the two consumers types. Option 4 is the case when type L are excluded

from the market and all type H will opt to travel heavy, while option 5 is the case when type L are

excluded and type H are segregated. Finally, option 6 is the case when the firm wants to shut down the

market. We now need to do the same analysis for the two price case. This is done in the proposition

below.

Proposition 6 (Two-Price Heterogeneous Consumers Characterization) Assume that the util-

ity of passenger travel has two possible values uL and uH , with 0 < uL < uH , Pr[ui = uL] = γ and uiδi.

Then, we can reduce the firms price choice (p∗1, p
∗
2) of the two price case to one of the options below:

1) (p∗1, p
∗
2) =

(

uL,
1 + c2

2

)

, with Π1(p
∗
1, p

∗
2) = (uL − c1) +

(

1− c2
2

)

2) (p∗1, p
∗
2) = (uL,∞), with Π1(p

∗
1, p

∗
2) = (uL − c1)

3) (p∗1, p
∗
2) =

(

(1− γ)− γ2(uL + c1)− γ(uL − c1)

2γ(1− γ)
,
c2
2

+
γ

1− γ
uL

)

, with

Π1(p
∗
1, p

∗
2) =

1

4

[(

1

γ
−

γ + 1

1− γ
uL − c1

)

(1 + γα2) +

(

2γ

1− γ
uL − c2

)

(1− c2 + γ(uL − c1))

]

and α2 :=

(3uL − c1 − c2). This option is only available under the restrictions uL < p∗1 < uH and uL < p∗1 + p∗2 <
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1 + uL.

4) (p∗1, p
∗
2) =

(

uH ,
1 + c2

2

)

, with Π1(p
∗
1, p

∗
2) = (1 − γ)

[

(uH − c1) +

(

1− c2
2

2
)]

. This option is only

available under the restrictions uL < p∗1 ≤ uH and p∗1 + p∗2 ≥ 1 + uL.

5) (p∗1, p
∗
2) = (uH ,∞), with Π1(p

∗
1, p

∗
2) = (1− γ)(uH − c1)

6) (p∗1, p
∗
2) = (pS1 , 0), where pS1 is the optimal price of single price case as defined in proposition 5

Proposition 6 tells us that firms optimal policy in the dual price case now depends on 5 parameters:

c1, c2, γ, uL and uH . Now the firm can differentiate both types of consumers into the full three options.

If options 1 or 2 is found to be the best, then the firm will effectively allow for all consumers to at least

travel light, the difference among the options being if the market for baggage travel will be open (option

1) or not (option 2). This is analogous to what our firm did in regions A and B in the dual price case of

our main model but now the firm is not fully extracting consumer surplus on the passenger travel market

of the H type consumers. Under option 3 the firm segregates among the two consumers types, but type

L consumers will decide whether to travel heavy or not to travel, and type H will decide whether to

travel light or travel heavy9. Note that, as p∗1 < uH we once again have the result that the firm is not

able to perfectly extract consumer surplus of the passenger travel market in this case. Under option 4

and 5 the firm will opt to only serve type H consumers. It will either allow for baggage travel (option 4)

or not (option 5) depending on c2. In both cases it will be able to fully extract consumer surplus as no

type L is present. Finally, under option 6 the firm behave as it did on the single price case, which will

happen either if costs are too high (and the firm prefers to set p∗1 > uH effectively behaving just like our

firm did in regions C and D in the dual price case of our main model) or if the firm wants to segregate

type L consumers among those that will travel heavy and not to travel using only p∗1 (that is, setting

uL < p∗1 ≤ uH) but allowing for all type H passengers to travel heavy (that is, setting p∗2 = 0).

The analysis of Propositions 5 and 6 suggests that the results of our main model about efficiency

are still largely valid in this environment, as the issues of over and under consumption of baggage are

unaltered. However, the allocative properties must be different now, as in some cases of proposition 6

the firm is not able to fully extract consumer surplus on the passenger market, which it always did in

our main model. The propositions below confirms this intuition:

Proposition 7 (For high values of c2 welfare change is positive) Let Ui(c2) :=
∫ 1
0 Uij(c2)dj de-

note aggregate utility understood as a function of c2, with i = 1 denoting the single price case and

i = 2 the dual price case. Let Πi(c2) define optimal profits as a function of c2 for each case, which

is given as the maximal option in the list provided by propositions 5 and 6. Furthermore, define

∆W (c2) := ∆Π(c2) + ∆U(c2) where ∆Π(c2) := Π2(c2) − Π1(c2) and ∆U(c2) := U2(c2) − U1(c2). Fix

c1, γ, uL, uH . Then, there exists c̄2(c1, γ, uL, uH) ∈ R such that ∀c2 ≥ c̄2 ⇒ ∆W (c2) ≥ 0.

9As uL < p∗1 ≤ uH the option to travel light is never better than the option not to travel for type L consumers and
always at least as good as this option for type H
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Proposition 8 (It is possible for welfare to be negative) Let Ui and Πi defined as in proposition

7. Then there exists values of (c1, c2, γ, uL, uH) such that ∆W > 0 and ∆U > 0. There also exists a

different set of parameters that generates ∆W < 0 and ∆U < 0.

Proposition 7 ensures us that for sufficiently high values of c2 the change from the single to the dual

price case is at least neutral for overall welfare. The last part of proposition 8 then guarantees that for

small values of c2 this change is not always beneficial to society, just like we had in our main model. The

novelty is that the first part of proposition 7 ensures us that for some parameters, this change promotes

gains not only for the firms, but also to aggregate consumer utility.

4 Conclusion

This paper models an airline company in two different scenarios. It it either restricted to a single price

for the provision of two goods - passenger travel and baggage travel - or it might charge two different

prices. We concluded that a change from the single price to dual price case leads to uncertain effects in

overall welfare, which is a new result in the literature. Moreover, our model sheds light on the relevant

factor for this analysis, that is, the magnitude of the marginal cost of baggage travel and the market

power of the firm. The intuition for these results is that in markets with high market power (i.e: a

monopoly) and low marginal cost of baggage travel, allowing for two distinct prices generates a problem

of under-consumption of baggages due to the markup of the firms. Depending on the parameters, this

problem might be higher than the more commonly thought problem of over-consumption of baggages

generated by the single price scenario. In terms of allocative issues, we showed that the change from a

single price to two distinct prices is always at least neutral for the firms and uncertain for the consumers,

with the last result begin dependent on parameters and the capacity of the firm to extract consumer

surplus.

Although specifically tailored to the airline sector, our model can be readily applied to other problems

in which firms have two products and can restrict the consumption of one of them until the purchase of

the other. A good example of such case is the mobile phone market. In this market, it is usual for the

firm to have two distinct prices for its telephone and internet services, and consumers can usually only

get internet access after purchasing a telephone plan. This paper’ analysis suggests that this might not

necessarily be optimal for overall welfare, so regulation might be desirable.
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5 Appendix

Proof of Proposition 1. Using equation 1 and the uniform [0, 1] assumption on δi the above problem

can be rewritten as

Max Π1(p) =



















(p1 − c1 − c2)(1− p+ u) if p1 ∈ [u, u+ 1]

(p1 − c1 − c2) if p1 ≤ u

0 if p1 ≥ u+ 1

(10)

16



Let us first deal with the scenario where the firms choose p1 ∈ [u, u+ 1]. We will first solve for the

unrestricted problem and then look for boundary issues. As the objective function is concave, the first

order condition for the unrestricted problem completely determines the interior optimal. This is given

by:

p∗1 =
1 + u+ c1 + c2

2
(11)

Let us now look for conditions for the optimal to this problem to be indeed interior. For that we

need p∗1 ∈ [u, u+ 1]. This is equivalent to u− 1 ≤ c1 + c2 ≤ u+ 1. If the lower bound on this inequality

is not met, the firm would have to settle for a corner solution with the lowest possible price10. That is,

in this case firms settle p∗1 = u. Notice that this scenario is exactly the (trivial) solution for the case

when the firms are restricted to choose price on the range p1 ≤ u, so we do not need to bother with

that case. If the upper bound is not met, the opposite happens and firms settle the maximum possible

price at p∗1 = u+ 1. Once again, this (one of) the solution(s) to the case when firms are restricted to

choose prices on the range p1 ≥ u+ 1, so we do not need to bother with that case as well. We pick ∞

to represent the optimal price in this case just to clarify that the firm will opt to shut down the market

in that scenario.

Proof of Proposition 2. We will split the problem in two cases in order to facilitate solution. In the

first, firms will solve the problem under the restriction p1 ≤ u. In the second, they solve under p1 > u.

We then compare profits to see which case is the relevant firm choice for each pair (c1, c2). We start by

proving the following two claims:

Claim 1 : The second case is equivalent to the single price scenario.

Proof: Assume first firms choose p1 ≥ u. Then, equation 2 collapses to q1i(p1, p2) = q2i(p1, p2) =

1{u+δ1≥p1+p2}. Thus, we can rewrite equation 6 as:



















(p1 − c1 + p2 − c2)(1− p2 − p1 + u) if u ≤ p1 + p2 ≤ 1 + u

0 if p1 + p2 ≥ 1 + u

(p1 − c1 + p2 − c2) if p1 + p2 ≤ u

(12)

We first solve for the interior solution, then check borders. The first order conditions for the

unrestricted problem is the same for both p1 and p2 and equals

1− 2p∗2 − 2p∗1 + u+ c1 + c2 = 0 (13)

Equation 13 defines p∗1 implicitly as a function of p∗2. Note that p∗1(0) =
1+u+c1+c2

2 . This is the same

as in the interior solution of the single price case. Note that, for the optimal solution for this problem to

10As the objective function is a negative square function of price
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be indeed interior, we need u ≤ p∗2 + p∗1 ≤ 1 + u. This is equivalent to u− 1 ≤ c1 + c2 ≤ u+ 1, which is

precisely the same restriction that defines region Y in the single price problem. We can check trivially

that the border solutions are also the same. Thus we conclude that when firms set p1 ≥ u the solution

is equivalent to the case with a single price price.

Claim 2 : The first case solution is characterized by

(p∗1, p
∗
2) =











(

u,
1 + c2

2

)

if c1 ≤ u and c2 ≤ 1

(u,∞) if c1 ≤ u and c2 > 1

Its profits are given by

Π2(p
∗
1, p

∗
2) =











u− c1 +

(

1− c2
2

)2

if c1 ≤ u and c2 ≤ 1

u− c1 if c1 ≤ u and c2 > 1

Proof: Using equation 2, this case problem can be simplified to:

Π2(p1, p2) =



















(p1 − c1) + [(p2 − c2)(1− p2)] if 0 ≤ p2 ≤ 1

p1 − c1 if p2 > 1

p1 − c1 + p2 − c2 if p2 < 0

(14)

Once again, we solve for interior solution and then deal with boundary issues. Let µ1 and µ2 denote,

respectively, the multiplier associated with the restriction p1 ≤ u and the restriction 0 ≤ p1. The

Kuhn-Tucker conditions for this problem are given by:

1− µ1 + µ2 = 0 (15a)

(1− p2) + (p2 − c2)(−1) = 0 (15b)

µ1(p1 − u) = 0 (15c)

µ2(−p1) = 0 (15d)

(15e)

By 15a we get that µ > 0. Hence we must have p1 = u in this case. Condition 15b then imply that

the optimal internal price is given by
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p∗2 =
1 + c2

2
(16)

We need 0 ≤ p∗2 ≤ 1 for an internal solution to be valid. This is equivalent to −1 ≤ c2 ≤ 1. The

lower bound on this inequality is true by assumption. The upper bound is equivalent to c2 ≤ 1. When

the upper bound is not met, firms settle for a corner solution with the highest possible price. If that is

the case, consumers would always travel light and profits equal

Π2(u,∞) = (u− c1)

This is (one of) the solution(s) for the case when the firms are restricted to choose price on the range

p2 > 1 so we do not worry about this sub-case. When the firm is restricted to choose p2 ≤ 0 it will

obviously set (p∗1, p
∗
2) = (u, 0). This provides profits of u− c1 − c2, which is inferior to setting p2 > 1, so

this sub-case never happens.

To finish analysis, we need to compare profits in both cases. We claim that the firm prefer to set

p1 ≤ u if c1 ≤ u. To prove this statement we will split the plane (c1, c2) in six regions and then compare

the difference in profits between the first and the second case.

Region 1: c1 + c2 ≤ u− 1 and c2 ≤ 1.

First note that in this region, we always have u ≥ c1. Then if the firm opts to set p1 ≥ u, it will get

profits equivalent to those earned in region X of the single price case. However, if it choose to set p1 = u

it will get Π2(u, p
∗
2) = u− c1 +

(

1−c2
2

)2
. The difference in profits between those choices is then given by:

u− c1 +
(

1−c2
2

)2
− (u− c1 − c2) =

(

1−c2
2

)2
+ c2. This is greater than 0 as c2 > 0. Hence in this region

the firm will always prefer to put itself into the first case. We proceed in similar fashion for the other

regions of the (c1, c2) plane.

Region 2: u− 1 ≤ c1 + c2 ≤ u+ 1 and c2 ≤ 1.

In this region, the difference between profits is given by:

u− c1 +

(

1− c2
2

)2

−

(

1 + u− c1 − c2
2

)2

(17)

Simple algebra shows that when u ≥ c1, the condition for equation 17 to be positive is 2+ 2c2 − (u−

c1) ≥ 0. By assumption we know that c1+c2 ≥ u−1 and c2 ≤ 1. This implies u−c1 < 1+c2 ≤ 2 < 2+c2.

Thus this condition is always met implying that the firm will once again always prefer to put itself in

the first case in this region when u ≥ c1. On the other hand, when u ≤ c1, the condition for equation 17

to be positive is 2 + 2c2 − (u− c1) ≤ 0. This is obviously never met, so in this case the firm prefer to
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put itself in the second case.

Region 3: c1 + c2 ≥ u+ 1 and c2 ≤ 1.

First note that in this case we always have u ≤ c1. The difference in profits is given by u− c1 +
(

1−c2
2

)2
.

As in this region we assumed c1 + c2 ≥ u+ 1 we get that u− c1 ≤ c2 − 1. As c2 ≤ 1 we also have c22 < 1.

Thus:

(u− c1) +

(

1− c2
2

)2

≤ (c2 − 1) +

(

1− c2
2

)2

=
c22 − 1

2
< 0

Thus in this region the firm will prefer to be in the second case.

Region 4: c1 + c2 ≤ u− 1 and c2 ≥ 1.

In this case we always have u ≥ c1. The difference in profits is given by u− c1 − (u− c1 − c2) = c2 > 0.

Hence, in this region the firm prefer to be in the first case.

Region 5: u− 1 ≤ c1 + c2 ≤ u+ 1 and c2 ≥ 1

In this case we always have u ≥ c1. The difference in profits is given by

u− c1 −

(

1 + u− c1 − c2
2

)2

(18)

To see the signal of equation 18 assume first that (u− c1) ≥ 1/4. As we know by assumption that

c1 + c2 ≥ u− 1 we get u− c1 ≤ c2 + 1. Thus we have:

(u− c1)−

(

1 + u− c1 − c2
2

)2

≥ (u− c1)−

(

1 + 1 + c2 − c2
2

)2

= (u− c1)−
1

4
≥ 0

Now assume (u − c1) < 1/4. As c2 > 1 and c1 + c2 ≤ u + 1 we have 0 ≤ u − c1. Define

α := u− c1 ∈ [0, 1/4[. By c1 + c2 ≤ u+ 1 we get that c2 ∈]1, 1 + α]. We then have that:

(u− c1)−

(

1 + u− c1 − c2
2

)2

= α−

(

1 + α− c2
2

)2

≥ α−
α2

4
≥ 0

Hence in this region firms will always prefer to put itself in the first case.

Region 6: c1 + c2 ≥ u+ 1 and c2 ≥ 1.
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The difference in profits is given by u− c1. This is obviously positive whenever u ≥ c1.

Collecting the results of the six regions proves our last claim and finishes the proof of the propo-

sition.

Proof of Proposition 3.

We split the proof into three cases:

Case 1: r = X: If r = L, then f(r) ∈ {A,B}. If f(r) = A, we can use the previous results for

profits and utility to conclude that ∆Ur,f(r) =
(1−c2)

8

2
− 1

2 and ∆Wr,f(r) =
3c22+2c2−1

8 . As the definition

of A ensures that c2 ≤ 1 we get that ∆Ur,f(r) < 0 in this case. Moreover, it is straightforward to show

that ∆Wr,f(r) ≥ 0 ⇐⇒ c2 ≥ 0. If f(r) = B we have that ∆Ur,f(r) = −1
2 and ∆Wr,f(r) = c2 −

1
2 .

Trivially then ∆Ur,f(r) < 0. As the restrictions on region L ∩ B force c2 > 1 we get that ∆Wr,f(r)

is always positive in this region. Taking these observations together prove the first part of the proposition.

Case 2: r = M: If r = M then f(r) ∈ {A,B,C}. If f(r) = A, we get that ∆Ur,f(r) =
(1−c2)

8

2
− (1+u−c1−c2)2

8 . This is clearly non-positive, as both (1− c2) and (u− c1) are non negative due

to the restrictions of the case. Moreover, it is straightforward to show that

∆Wr,f(r) = (u− c1)
3(c1 + c2 − u+ 1) + 3c2 − 1

8
(19)

To see the sign of equation 19, note that in region A ∩M we get that u− c1 ≥ 0. Thus, the change

in welfare in this region is proportional to 3(c1 + c2 − u+ 1) + 3c2 − 1. Rewriting this term, we conclude

that ∆Wr,f(r) ≥ 0 ⇐⇒ c2 ≥
u−c1
2 − 1

3 .

If f(r) = B, we get that ∆Wr,f(r) = −
(1 + u− c1 − c2)

2

8
. As the definition of region M ensures that

c1 + c2 ≤ u+ 1 we get that ∆Wr,f(r) ≤ 0 in this case. Moreover, the previous results imply that

∆Wr,f(r) = (u− c1)−
3

8
(1 + u− c1 − c2)

2 (20)

The following claim guarantees that ∆Wr,f(r) is positive in this region:

Claim: For all (c1, c2) ∈ M ∩B we have ∆Wr,f(r) ≥ 0

Proof: Assume first that (u− c1) ≥
3
8 . Pick any x ∈ B ∩M. As x ∈ M, we know that c1 + c2 ≥ u− 1.

This implies u− c1 ≤ c2 + 1. Thus we have:

(u− c1)−
3

8
(1 + u− c1 − c2)

2 ≥ (u− c1)−
3

8
(1 + 1 + c2 − c2)

2

= (u− c1)−
3

8
≥ 0

Now assume that (u − c1) < 3
8 . As x ∈ B we know that c2 > 1. As x ∈ M, we know that
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c1 + c2 ≤ u+ 1. Together, these conditions imply 0 < c2 − 1 ≤ u− c1. By c1 + c2 ≤ u+ 1 we get that

c2 ∈]1, 1 + u− c1]. We then have that:

(u− c1)−
3

8
(1 + u− c1 − c2)

2 = u− c1 −
3

8
((u− c1)− (c2 − 1))2

> u− c1 −
3(u− c1)

2

8
≥ 0

This finish the proof of the claim

Finally, if f(r) = C then trivially ∆Ur,f(r) = ∆Wr,f(r) = 0 as the single price and the dual price

behavioral are the same in this case. Taking these observations together proves the second part of the

proposition

Case 3: r = Z: If r = Z then f(r) ∈ {B,D}. If f(r) = B then the previous results imply

∆Ur,f(r) = 0. Moreover ∆Wr,f(r) = u− c1 which is always positive by definition of region B. If f(r) = D

then trivially ∆Ur,f(r) = ∆Wr,f(r) = 0 as we have no market for both goods in all cases. This proves the

last part of the proposition.

Proof of Proposition 5.

Let Φδ denotes the CDF of δ. As we are in the single price case the firm’s problem can by written as

Max (p1 − c1 − c2) Pr[δi + ui ≥ p1]. By uiδi, this is equivalent to Max (p1 − c1 − c2)[1− (Φδ(p1 − uL)γ +

Φδ(p1−uH)(1− γ))]. As both Φδ(p1−uL) and Φδ(p1−uH) might assume value 0, 1 or an interior value

we have 9 possible cases. We deal with each one in what follows:

Case 1: p1 is chosen such that Φδ(p1 − uL) = Φδ(p1 − uH) = 0.

This case’s restrictions are p1 ≤ uH and p1 ≤ uL which collapses to p1 ≤ uH . Thus, the firm’s

problem can be rewritten as

Max p1 − c1 − c2 s.t. p1 ≤ uL

The trivial solution is p∗1 = uL, which earns profits of Π1(p
∗
1) = uL − c1 − c2. As the firm may always

choose to put its price under uL, we have no parameter restriction for this case to happen.

Case 2: p1 is chosen such that Φδ(p1 − uL) ∈]0, 1[ and Φδ(p1 − uH) = 0.

This case’s restrictions are p1 ≤ uH and uL < p1 < 1 + uL. Thus, the firm’s problem collapses to

Max (p1 − c1 − c2)[1− (p1 − uL)γ] s.t.







p1 ≤ uH

uL < p1 < 1 + uL

The objective function is strictly concave, so the problem’s first order conditions are sufficient in the
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interior of the restrictions. Those are given by

(p1 − c1 − c2)(−γ) + (1− p1γ + uLγ) = 0

Which implies

p∗1 =
1 + γ(uL + c1 + c2)

2γ

Profits are then given by

Π1(p
∗
1) =

1

γ

(

1 + γ(uL − c1 − c2)

2

)2

For the solution to be indeed interior we need to verify the problems restrictions.

Case 3: p1 is chosen such that Φδ(p1 − uL) ∈]0, 1[ and Φδ(p1 − uH) ∈]0, 1[.

This case’s restrictions are uH < p1 < 1 + uH and uL < p1 < 1 + uL. Thus, the firm’s problem

collapses to

Max (p1 − c1 − c2)[1− (p1 − uL)γ] s.t.







uH < p1 < 1 + uH

uL < p1 < 1 + uL

The objective function is strictly concave, so the problem’s first order conditions are sufficient in the

interior of the restrictions. Those are given by

(p1 − c1 − c2) + [1− γ(p1 − uL)− (1− γ)(p1 − uH)] = 0

Which implies

p∗1 =
1 + γuL + (1− γ)uH + c1 + c2

2

Profits are then given by

Π1(p
∗
1) =

(

1 + γuL + (1− γ)uH − c1 − c2
2

)2

For the solution to be indeed interior we need to verify the problems restrictions.

Case 4: p1 is chosen such that Φδ(p1 − uL) = 1 and Φδ(p1 − uH) ∈]0, 1[.

This case’s restrictions are uH < p1 < 1+ uH and p1 ≥ 1+ uL. Thus, the firm’s problem collapses to

Max (p1 − c1 − c2)[1− (γ + (p1 − uH)(1− γ)] s.t.







uH < p1 < 1 + uH

p1 ≥ 1

The objective function is strictly concave, so the problem’s first order conditions are sufficient in the
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interior of the restrictions. Those are given by

−(p1 − c1 − c2)(1− γ) + [1− γ − (1− γ)(p1 − uH)] = 0

Which implies

p∗1 =
1 + uH + c1 + c2

2

Profits are then given by

Π1(p
∗
1) = (1− γ)

(

1 + uH − c1 − c2
2

)2

For the solution to be indeed interior we need to verify the problems restrictions.

Case 5: p1 is chosen such that Φδ(p1 − uL) = 1 and Φδ(p1 − uH) = 0.

This case’s restrictions are p1 ≤ uH and p1 ≥ 1 + uL. Thus, the firm’s problem collapses to

Max (p1 − c1 − c2)[1− γ] s.t.







p1 ≤ uH

p1 ≥ 1

The trivial solution is p∗1 = uH , which earns profits of Π1(p
∗
1) = (1− γ)(uH − c1 − c2). For this solution

to satisfy the restrictions we need uH ≥ 1 + uL.

Case 6: p1 is chosen such that Φδ(p1 − uL) = Φδ(p1 − uH) = 1.

This case’s restrictions are p1 ≥ uH + 1 and p1 ≥ 1 + uL, which collapses to p1 ≥ 1 + uH . Thus, the

firm’s problem can be rewritten as

Max 0 s.t. p1 ≥ uH + 1

Any price that satisfy the restrictions is a valid solution. Profits are obviously given by Π1(p
∗
1) = 0. As

the firm may always choose to put its price above uH + 1, we have no parameter restriction for this case

to happen.

Cases 7,8,9: p1 is chosen such that



















Φδ(p1 − uL) = 0 and Φδ(p1 − uH) ∈ ]0, 1[

Φδ(p1 − uL) = 0 and Φδ(p1 − uH) = 1

Φδ(p1 − uL) ∈ ]0, 1[ and Φδ(p1 − uH) = 1

.

In the first two cases we have Φδ(p1 − uL) = 0 ⇐⇒ p1 − uL ≤ 0 → p1 − uH ≤ 0 → Φδ(p1 − uH) = 0.

In the third case we have Φδ(p1 − uL) ∈ ]0, 1[ ⇐⇒ 0 ≤ p1 − uL ≤ 1 → p1 − uH ≤ 1 → Φδ(p1 − uH) < 1.

Hence the restrictions gives rise to a maximization in an empty set for all cases

Taking together the 9 cases observation the desired result follows from continuity of Φδ.
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Proof of Proposition 6

During the proof of proposition 2 we stated that the dual price case turned effectively into the single

price case whenever the optimal price p∗1 of the dual price case is higher than u. We start this proof by

showing that this result is indeed general, and can be applied in the two-type consumer case as well

with only minor changes. This is shown in the lemma below.

Lemma 1 Assume that ui is a random variable with support in [uL, uH ]. Let Φui+δi denote the CDF

of ui + δi. Then, if the optimal price for passenger travel p∗1 of the dual price case is such that p∗1 > uH

we get that the dual price case problem is analogous to the single price one.

Proof. We start with the single price analysis in this environment. Using equation 1 the single price

case can be written as:

Max (p1 − c1 − c2)(1− Φui+δi(p1))

The first order condition is given by

(p1 − c1 − c2)(−Φui+δi(p1)) + (1− Φui+δi(p1)) = 0

. We now move to the analysis of the dual price problem. using equation 2 and the fact that p∗1 > uH

we can rewrite our maximization problem as:

Max (p1 + p2 − c1 − c2)(1− Φui+δi(p1 + p2))

The first order condition for both prices gives us the same result, which is:

(p1 + p2 − c1 − c2)(−Φui+δi(p1 + p2)) + (1− Φui+δi(p1 + p2)) = 0 (21)

Equation 21 defines p∗1 implicitly as a function of p∗2. Moreover, it collapses to the first order condition

of the single price case when we set p∗2 = 0.

Lemma 1 allows us to focus on the cases where p1 ≤ uH to prove our desired result as long as we

allow the firm the option to behave as it did in the single price case - which we did in option 6) of the

proposition. To prove the remainder of the proposition, let us further divide our problem in two cases.

In the first, the firms solve the problem under the additional restriction p1 ≤ uL and in the second they

solve under ul < p1 ≤ uH . As in the previous proposition’s proof, we assume Φδ denotes the CDF of δi

Case 1: Using equation 2 and p1 ≤ uL the firms problem collapses to

Max (p1 − c1) + (p2 − c2)(1− Φδ(p2))
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This problem was already solved in claim 2 of the proof of proposition 2. The solution is given by

(p∗1, p
∗
2) =











(

uL,
1 + c2

2

)

if c2 ≤ 1

(uL, ) if c2 > 1

The profits associated are given by:

Π2(p
∗
1, p

∗
2) =











(uL − c1) +

(

1− c2
2

)2

if c2 ≤ 1

uL − c1 if c2 > 1

Case 2: We now assume ul < p1 ≤ uH . Hence our problem becomes

Max (p1 − c1)[1− γ + γ(1− Φδ(p1 + p2 − uL))]+

+ (p2 − c2)[(1− γ)(1− Φδ(p2)) + γ(1− Φδ(p1 + p2 − uL))]

We will further simplify this problem into the following sub-cases to facilitate solution:

Sub-Case 2.1: (p1, p2) are chosen such that Φδ(p2) ∈]0, 1[ and Φδ(p1 + p2 − uL) ∈]0, 1[.

This case’s restrictions are 0 < p2 < 1, uL < p1 + p2 < 1 + uL and uL < p1 ≤ uH . Thus, the firm’s

problem collapses to

Max (p1 − c1)[1− γ(p1 + p2 − uL)] + (p2 − c2)[1− p2 − γ(p1 − uL)] s.t.



















0 < p2 < 1

uL < p1 + p2 < uL + 1

uL < p1 ≤ uH

The objective function is strictly concave, so the problem’s first order conditions are sufficient in the

interior of the restrictions. Those are given by

γ(p1 − c1 + p2 − c2) = 1− γ(p1 + p2 − uL)

γ(p1 − c1) + p2 − c2 = 1− p2 − γ(p1 − uL)

Which implies
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p∗1 =
(1− γ)− γ2(uL + c1)− γ(uL − c1)

2γ(1− γ)
p∗2 =

c2
2

+
γ

1− γ
uL

Profits are then given by

Π1(p
∗
1, p

∗
2) =

1

4

[(

1

γ
−

γ + 1

1− γ
uL − c1

)

(1 + γ(3uL − c1 − c2)

+

(

2γ

1− γ
uL − c2

)

(1− c2 + γ(uL − c1))

]

For the solution to be indeed interior we need to verify the problems restrictions However, the first

restriction is already embedded in the last two, so we may as well ommit it.

Sub-Case 2.2: (p1, p2) are chosen such that Φδ(p2) ∈]0, 1[ and Φδ(p1 + p2 − uL) = 1.

This case’s restrictions are 0 < p2 < 1, p1+p2 ≥ 1+uL and uL < p1 ≤ uH . Thus, the firm’s problem

collapses to

Max (p1 − c1) + (p2 − c2)(1− γ)(1− p2) s.t.



















0 < p2 < 1

p1 + p2 ≥ uL + 1

uL < p1 ≤ uH

The problem is separable into two distinct problem, the first begin a maximization with p1 as the choice

variable (first term of the sum) and the second begin a maximization with p2 as the choice variable

(second term). In the first problem the obvious solution is p∗1 = uH . In the second, we have a concave

problem, which first order condition generates p∗2 =
1+c2
2 . Taking these together, profits are then given

by:

Profits are then given by

Π1(p
∗
1, p

∗
2) = (1− γ)

[

(uH − c1) +

(

1− c2
2

)2
]

For the restriction p1 + p2 ≥ 1 + uL to be respected we need uH − uL ≥ p∗2 =
1−c2
2 .

Sub-Case 2.3: (p1, p2) are chosen such that Φδ(p2) = 1 and Φδ(p1 + p2 − uL) = 1.

This case’s restrictions are p2 ≥ 1, p1 + p2 ≥ 1 + uL and uL < p1 ≤ uH . Thus, the firm’s problem

collapses to Max (p1 − c1)(1 − γ) plus the restrictions. The obvious solution is to set p∗1 = uH and

p∗2 to any value that is higher than 1 (to accommodate the restrictions). Profits are then given by

Π2(p
∗
1, p

∗
2) = (uH − c1)(1− γ).
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Any other Sub-Case:

In any other sub-case the restrictions either generates an empty set or the firms choice collapse to

the single price problem. If Φδ(p2) = 0, then the firm is restricted to set p2 ≤ 0. The obvious choice is

then to set p∗2 = 0 as without the effect on demand, profit is a strictly positive function of the prices. As

this is the forced choice of the single price case, any sub-case in which Φδ(p2) = 0 makes the dual price

problem to collapse to the single price one. If Φδ(p2) = 1 and Φδ(p1 + p2 − uL) ∈]0, 1[ or if Φδ(p2) = 1

and Φδ(p1 + p2 − uL) = 0 we have empty sets as p2 ≥ 1 makes that uL < p1 → uL + 1 < p1 + 1 ≤

p1 + p2 → 1 < p1 + p2 − uL → Φδ(p1 + p2 − uL) = 1. Finally, if Φδ(p2) ∈]0, 1[ and Φδ(p1 + p2 − uL) = 0

we have uL < p1 → 0 < p1 + p2 − uL → Φδ(p1 + p2 − uL) > 0, so this also generates an empty set.

Taking together all the cases analyzed the desired result follows from continuity of Φδ and Lemma 1.

Proof of Proposition 7.

Take c2 → ∞. Then the set of options for the firm in the single price case collapse to options 1), 4)

and 6), as the restrictions on the other options will not be met11. The obvious choice is then option 6).

For the dual price case, the options collapse to 2), 5) and 6), with option 6) being Π2(c2) = 0 for sure.

These observations allows us to conclude that for a large enough value of c2 we have Π1(c2) = 0 and

Π2(c2) = Max {0, uL − c1, (uH − c1)(1− γ)}. It is then straightforward to check that, for large values of

c2 we have U1(c2) = 0 and

U2(c2) =







(1− γ)(uH − uL) if Π2(c2) = uL − c1

0 in any other case

As uH > uL we get the desired result.

Proof of Proposition 8.

The easiest way to prove this proposition is through counterexamples. Let (c1, c2, γ, uL, uH) =

(1; 0.25; 0.3; 1; 1.3). The optimal options for the firm in this case is to choose option 3) of both

propositions 5 and 6. This leads to Π1 ≈ 0.23 and Π2 ≈ 0.30. Utilities is then U1 ≈ 0.12 and U2 ≈ 0.84.

This yields ∆U ≈ 0.71 and ∆W =≈ 0.78, which proves the first part of the proposition

Let (c1, c2, γ, uL, uH) = (0.9; 0.6; 0.5; 2.5; 3). The optimal options for the firm in this case is to choose

option 2) of proposition 5 and option 1 of proposition 6. This leads to Π1 = 1.125 and Π2 = 1.64.

Utilities is then U1 = 1.25 and U2 = 0.27. This yields ∆U = −0.98 and ∆W = −0.465, which proves

the last part of the proposition.

11Taking limits under the optimal price of options 2), 3) and 5) when c2 → ∞ gives us p∗1 → ∞, which is not possible
given the restrictions of the options
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