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Measuring Energy Efficiency:

An Application of Data Envelopment Analysis

to Power Sector in Kerala

Abstract

Traditionally, there are two basically reciprocal energy efficiency Indicators: one, in

terms of energy intensity, that is, energy use per unit of activity output, and the other, in

terms of energy productivity, that is, activity output per unit of energy use. The enquiry that

has proceeded from the problems associated with this method of a single energy input factor in

terms of productivity has led to multi-factor productivity analysis. We have here two

approaches: parametric and non-parametric. Parametric approach famously includes two

methods: the erstwhile popular total factor energy productivity analysis and the currently

fanciful stochastic frontier production function analysis; The non-parametric approach is

popularly represented by data envelopment analysis. The present paper is an attempt to

measure efficiency in electrical energy consumption in Kerala, India. We apply the non-

parametric mathematical programming method of data envelopment analysis of the multi-

factor productivity approach, and estimate the efficiency measures under the two scale

assumptions of constant returns to scale (CRS) and variable returns to scale (VRS); t he latter

includes both increasing (IRS) and decreasing returns to scale (DRS). Scale efficiency measures

are also given to find out whether a firm is operating at its optimal size or not, implying degrees

of capacity utilization.
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1 Introduction

Traditionally, there are two basically reciprocal energy efficiency Indicators: one, in

terms of energy intensity, that is, energy use per unit of activity output, and the other, in

terms of energy productivity, that is, activity output per unit of energy use. As a general

concept, “energy efficiency refers to using less energy to produce the same amount of services or

useful output. For example, in the industrial sector, energy efficiency can be measured by the

amount of energy required to produce a tonne of product.” (Patterson, 1996: 377). Thus

Patterson defines energy efficiency broadly by the simple ratio of the useful output of a process

in terms of any good produced that is enumerated in market process, to energy input into that

process (ibid.).

Energy efficiency research in general has opened up three avenues of enquiry, namely, the

measurement of energy productivity, the identification of impact elements and the energy

efficiency assessment. The traditional interest in energy efficiency has centred on a single energy

input factor in terms of productivity that has become famous through the index method proposed

by Patterson (1996). In this case, energy intensity is obtained by dividing energy

consumption by GDP, which implies the quantum of energy consumption that must be

input in order to increase one unit of GDP. The enquiry that has proceeded from the problems

associated with this method has led to identifying the effect source of variation, in terms of some

decomposition analysis. Analyzed in terms of energy intensity changes, the index falls under

two major decomposition methods, namely, Structural Decomposition Analysis (SDA)

and Index Decomposition Analysis (IDA).
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SDA has both inputs and outputs as its theoretical foundation, and is hence also known as

equilibrium analysis. There are two approaches here: input-output method and neo-

classical production function method.

The stringent assumptions associated with these approaches have made them practically

unattractive for policy-orientated empirical exercises. Moreover, the prime significance of

energy consumption reduction through energy use efficiency improvements following the 1973

oil crisis has essentially required complete evaluation of energy consumption patterns and

identifying the driving factors of changes in energy consumption, creating a demand for effective

tools to decompose aggregate indicators.

This need led to the development of the Index Decomposition Analysis (IDA) in the late 1970s

in the United States (Myers and Nakamura 1978) and in the United Kingdom (Bossanyi 1979).

These pioneering studies then spurred a number of different decomposition methods, most of

which were derived from the index number theory, initially developed in economics to study the

respective contributions of price and quantity effects to final aggregate consumption. A variant of

factor decomposition analysis, IDA takes energy as a single factor of production, and explores

various effects on energy intensity changes, by decomposing these changes into pure intensity

changes effect and industrial structure changes effect. The first component (pure intensity

changes effect) implies that when the industrial structure remains unchanged, the energy

intensity change may be taken as the result of energy use efficiency changes in some sector, and

the second implies that given the fixed energy efficiencies of various industries and their

different energy intensity levels, the total energy intensity changes effect may be taken as the

result of the dynamic changes of the yield of each industry.

IDA, as applied to time series data of a specific period, involves results which are very sensitive

to the choice of the base period during the study period. In terms of the selection of base period,

the approach usually considers Laspeyres Index of fixed weights and Divisia Index of variable

weights.
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Divisia index decomposition approach has become very popular these days in the context of

analysis of energy intensity changes (see Ang and Zhang (2000), and Ang (2004) for a survey of

index decomposition analysis in this field). There are two common Divisia index decomposition

methods: Arithmetic mean (AMDI) and Logarithmic Mean Divisia index (LMDI). The AMDI

method was first used by Gale Boyd, John McDonald, M. Ross and D. A. Hansont in 1987, for

“separating the changing composition of the US manufacturing production from energy

efficiency improvements” using Divisia index approach (as the title shows). This was followed

by a number of studies, some attempts being directed towards modifying the index. These efforts

were finally culminated in Ang and Choi (1997), who used logarithmic mean function as weights

for aggregation with the attractive property that the decomposition leaves no residuals at all. Ang

et al. (1998) called this model “Logarithmic Mean Divisia index (LMDI)”.

Finally, a new energy efficiency estimation method, criticizing the single factor energy efficiency

method, has come up utilizing a multi-variate structure. We have here two approaches:

parametric and non-parametric. Parametric approach famously includes two methods: the

erstwhile popular total factor energy productivity analysis and the currently fanciful

stochastic frontier production function analysis; The non-parametric approach is popularly

represented by data envelopment analysis.

In this paper we apply the second approach in multi-factor productivity analysis, that is, the

non-parametric mathematical programming method of data envelopment analysis. The

paper is structured in four parts. The next section presents the theoretical framework of data

envelopment analysis (DEA) as a prelude to our empirical exercise for the Kerala power

sector. Part three discusses the DEA results from the empirical study. The last section

concludes the chapter.
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2. Data Envelopment Analysis (DEA)

It was Farrell (1957) who stimulated econometric modeling of production functions as

frontiers. He decomposed the concept of economic efficiency (which he called overall

efficiency) of a production unit into two components, viz., technical efficiency and allocative

efficiency (which he called price efficiency); the former refers to the capability of the unit to

produce maximum output from a given bundle of inputs, and the latter to the capability of the unit

to utilize the inputs in an optimum proportion subject to the given input prices. He illustrated the

concept using isoquant and price line (now called isocost line; these are the basic tools used in

economic textbooks) implyng a production function of two inputs (X1 and X2) for a single output

(Y), under the assumption of constant returns to scale. “‘Returns to scale’ describes the output

response to a proportionate increase of all inputs. If output increases by the same proportion, returns

to scale are constant for the range of input combinations under consideration. They are increasing if

output increases by a greater proportion and decreasing if it increases by a smaller proportion.”

(Henderson and Quandt 1971: 79).

An isoquant is “the locus of all combinations of X1 and X2 which yield a specified output level”,

that is, Y0, which is a parameter. (Henderson and Quandt 1971: 58). An isocost line is “the locus of

input combinations that may be purchased for a specified total cost: C
0

= r1 X1 + r2 X2 +b”

(Henderson and Quandt 1971: 63), where r1 and the r2 are the respective prices of the two inputs

and b is the cost of the fixed inputs. The production unit is said to be in equilibrium at C, where the

isoquant, II’, is tangential to the price line (PP’). Thus the point C represents an efficient point.
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Fig. 1: Farrel’s Representation of Technical and Allocative Efficiencies

Note that Farrel used isoquant in a two-input space as an output frontier (maximum output)

and hence all the points on the isoquant II’ are technically efficient. Thus the points A and C

are both technically efficient, but R is not. If a production unit is producing at point R, its

technical inefficiency is given by the distance AR, which implies that the unit could

proportionally reduce all inputs by this amount without reducing its output. This distance

can also be represented in percentage terms by the ratio AR/OR. This allows us to measure

the technical efficiency of the unit by one minus AR/OR, which is equal to the ratio

OA/OR. Since this ratio lies between zero and one, it functions as a measure of the degree of

technical efficiency of the production unit; a value of one means the unit is technically efficient,

and a value close to zero means it is technically inefficient.

We have seen that the points A and C are both technically efficient; but there is some

difference between them; this is in terms of allocative efficiency. Note that Farrel used price

line in a two-input space as a cost frontier (minimum cost) and hence all the points on the
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technically and allocatively efficient. But point A is only technically efficient, not

allocatively.

If the unit is producing at point R, its allocative efficiency is given by the ratio OB/OA, because

the distance BA can be taken as the fall in production costs corresponding to the production at

the technically and allocatively efficient point C, rather than at the technically efficient, but

allocatively inefficient, point A. The overall (economic) efficiency is then defined by the ratio

OB/OR, the distance BR being taken as representing a cost reduction. This economic efficiency

measure also is bounded by zero and unity. Also note that the overall (economic) efficiency at

point R is obtained from the product of technical and allocative efficiency: (OA/OR)(OB/OA)

= OB/OR.

As already noted, the efficiency of a production unit is measured in relation to an efficient

isoquant (representing an efficient firm), which is in fact unknown and must be estimated using

the sample data. For estimation, Farrell suggested (i) a non-parametric piecewise-linear convex

isoquant, estimated from the data in such a way that no actual data point should lie to the left or

below it, or (ii) a parametric frontier function, such as the Cobb-Douglas production function,

estimated from the data in such a way that no actual data point should lie to the right or above it.

The second of these we have employed in the last chapter, and the first one we are estimating in

this chapter.

Very few researchers were enthused with Farrell’s (1957) proposal of the piecewise-linear convex

isoquant. Suggestions came up after a while from Boles (1966) and Afriat (1972) to employ

mathematical programming methods that also failed in appeal. However, a new model, proposed

by Charnes, Cooper and Rhodes (1978) by the name of ‘data envelopment analysis (DEA)’,

immediately caught the fancy of the world and a large number of papers have followed it in

applications and extensions. Charnes, Cooper and Rhodes (1978) assumed constant returns to

scale (CRS), whereas Banker, Charnes and Cooper (1984) proposed a variable returns to scale
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(VRS) model. For detailed discussions, see Coelli, Rao, O’Donnell and Battese (2005) and

Cooper, Seiford and Tone (2006).

“Data Envelopment Analysis (DEA) was accorded this name because of the way it "envelops"

observations in order to identify a "frontier" that is used to evaluate observations representing the

performances of all of the entities that are to be evaluated.” (Cooper, Seiford and Tone 2006:

xix). DEA is a linear programming technique that seeks to optimize an objective function subject

to certain inequality constraints. Here the objective function relates to the frontier function of the

production unit, called in the DEA literature as decision making unit (DMU). The model seeks to

estimate for each DMU an efficiency measure in terms of weighted output-input ratio, which

can be written in matrix notation as a’Yi/b’Xi, where the numerator is a weighted average of all

the outputs of the ith DMU and the denominator is its weighted inputs, with a and b being

column vectors of output and input weights respectively. Then the linear programming (LP)

problem is to choose the optimal weights such as to maximize the efficiency measure (the

weighted output-input ratio) subject to the constraints that this measure (ratio) is less than or

equal to unity and the weights are non-negative:

Maxa,b (a'Yi/ b'Xi),

s t a'Yi/ b'Xi1, i = 1, 2,..., N,

a, b 0.

However, this formulation has a problem that it would yield an infinite number of solutions.

This problem can be averted by adding another constraint that β'Xi = 1. Thus the above LP

problem can be reformulated as
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Maxα,β (α'Yi/ β'Xi),s t   β'Xi = 1α'Yi– β'Xi0, i = 1, 2,..., N,α, β 0.

Note that the notations change from a and b to α and β to reflect the transformation, which is

known as the multiplier form of the LP problem.

We can use the duality in LP to derive an equivalent envelopment form of the multiplier

form problem:

min,,

st -Yi + y0,

Xi - x 0,

0,

where  is a scalar representing the efficiency score for the ith DMU that satisfies   1, and

 is a column (Nx1) vector of constants. The advantage of this envelopment form is that it

has fewer constraints than the multiplier form, and hence its appeal. A value of  = 1 means

a point on the frontier representing a technically efficient DMU, according to the Farrell

(1957) definition.

3. Data Envelopment Analysis: Empirical Results

For estimating the DEA frontier of the power sector in Kerala (in India), we consider three

sectors as above (Primary, Secondary and Tertiary) for the period from 1970-71 to 2016-17.
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Because of the data unavailability for estimating the usual output-input relationship, we

propose the following relationship:

Sectoral energy consumption = f (Sectoral number of consumers; Sectoral GSDP at

constant 2011-12 prices); all variables in log.

Note that unlike the usual frontier function with factors of production, we have a frontier

isoquant with two activity factors and one output.

For estimating DEA, we have made use of a Stata module for DEA, provided by Yong-bae

Ji and Choonjoo Lee, (2010).

Tables 1 – 3 report the DEA estimates of efficiency measures for the three sectors under the

two scale assumptions of constant returns to scale (CRS) and variable returns to scale (VRS);

the latter includes both increasing (IRS) and decreasing returns to scale (DRS). Thus we examine

whether the observed performance of the sectors in each year is along the frontier corresponding

to a particular returns to scale. Scale efficiency measures are also given; scale efficiency

denotes whether a firm is operating at its optimal size or not, implying degrees of capacity

utilization. If the firm is in underutlization, then using information on increasing or decreasing

returns to scale, we can find out whether the firm is too large or too small.
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Table 1: DEA Efficiency Estimates – Primary Sector

Year CRS VRS NIRS Scale RTS Year CRS VRS NIRS Scale RTS

1970-71 0.519 0.519 1.000 0.999 IRS 1994-95 0.691 0.696 0.696 0.992 IRS

1971-72 0.595 0.596 0.970 0.998 IRS 1995-96 0.712 0.717 0.717 0.994 IRS

1972-73 0.601 0.603 0.851 0.997 IRS 1996-97 0.720 0.725 0.725 0.993 IRS

1973-74 0.622 0.624 0.798 0.996 IRS 1997-98 0.728 0.731 0.731 0.996 IRS

1974-75 0.625 0.628 0.741 0.995 IRS 1998-99 0.734 0.737 0.737 0.996 IRS

1975-76 0.635 0.638 0.701 0.994 IRS 1999-00 0.754 0.757 0.757 0.996 IRS

1976-77 0.609 0.613 0.613 0.993 IRS 2000-01 0.750 0.753 0.753 0.996 IRS

1977-78 0.581 0.585 0.585 0.993 IRS 2001-02 0.723 0.726 0.726 0.996 IRS

1978-79 0.588 0.593 0.593 0.993 IRS 2002-03 0.607 0.610 0.610 0.996 IRS

1979-80 0.578 0.583 0.583 0.992 IRS 2003-04 0.624 0.626 0.626 0.996 IRS

1980-81 0.588 0.592 0.592 0.993 IRS 2004-05 0.606 0.609 0.609 0.994 IRS

1981-82 0.604 0.607 0.607 0.995 IRS 2005-06 0.603 0.607 0.607 0.993 IRS

1982-83 0.602 0.604 0.604 0.997 IRS 2006-07 0.624 0.626 0.626 0.996 IRS

1983-84 0.604 0.604 0.604 0.999 IRS 2007-08 0.629 0.632 0.632 0.996 IRS

1984-85 0.588 0.589 0.589 0.999 IRS 2008-09 0.624 0.628 0.628 0.994 IRS

1985-86 0.603 0.603 0.603 0.999 IRS 2009-10 0.640 0.643 0.643 0.995 IRS

1986-87 0.648 0.649 0.649 0.999 IRS 2010-11 0.632 0.634 0.634 0.996 IRS

1987-88 0.668 0.668 0.668 0.999 IRS 2011-12 0.655 0.658 0.658 0.996 IRS

1988-89 0.683 0.684 0.684 0.998 IRS 2012-13 0.664 0.667 0.667 0.996 IRS

1989-90 0.686 0.688 0.688 0.998 IRS 2013-14 0.666 0.669 0.669 0.996 IRS

1990-91 0.671 0.673 0.673 0.997 IRS 2014-15 0.660 0.662 0.662 0.996 IRS

1991-92 0.678 0.679 0.679 0.997 IRS 2015-16 0.658 0.661 0.661 0.996 IRS

1992-93 0.687 0.689 0.689 0.997 IRS 2016-17 0.673 0.676 0.676 0.996 IRS

1993-94 0.694 0.698 0.698 0.995 IRS

Note: CRS = Constant returns to scale; VRS = Variable returns to scale; NIRS = Non-increasing returns to scale;

RTS = Returns to scale; Scale = Scale efficiency.

Table 1 shows that energy efficiency in the primary sector is much lower than in the other

two sectors; the scale efficiency is below, but close to, optimum. Surprisingly, the sector

during the entire period is found to be in IRS stage.
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Table 2: DEA Efficiency Estimates – Secondary Sector

Year CRS VRS NIRS Scale RTS Year CRS VRS NIRS Scale RTS

1970-71 1.000 1.000 1.000 1.000 CRS 1994-95 0.995 0.998 0.998 0.997 DRS

1971-72 0.988 0.988 0.988 1.000 IRS 1995-96 0.997 1.000 1.000 0.997 DRS

1972-73 0.993 0.994 0.994 0.999 DRS 1996-97 0.948 0.950 0.950 0.997 IRS

1973-74 0.991 0.991 0.991 1.000 IRS 1997-98 0.960 0.962 0.962 0.998 IRS

1974-75 0.987 0.987 0.987 1.000 CRS 1998-99 0.987 0.990 0.990 0.997 DRS

1975-76 0.989 0.989 0.989 1.000 CRS 1999-00 0.988 0.991 0.991 0.997 DRS

1976-77 0.986 0.988 0.986 0.999 IRS 2000-01 0.999 1.000 1.000 0.999 DRS

1977-78 1.000 1.000 1.000 1.000 CRS 2001-02 0.981 0.985 0.985 0.996 DRS

1978-79 0.998 0.998 0.998 1.000 IRS 2002-03 0.973 0.979 0.979 0.994 DRS

1979-80 0.983 0.983 0.983 1.000 IRS 2003-04 0.961 0.968 0.968 0.992 DRS

1980-81 0.995 0.997 0.997 0.997 DRS 2004-05 0.971 0.981 0.981 0.990 DRS

1981-82 0.985 0.986 0.986 0.999 IRS 2005-06 0.973 0.984 0.984 0.989 DRS

1982-83 0.992 0.993 0.992 0.999 IRS 2006-07 0.978 0.990 0.990 0.987 DRS

1983-84 0.968 0.969 0.969 0.998 IRS 2007-08 0.979 0.992 0.992 0.987 DRS

1984-85 0.994 0.995 0.995 0.999 DRS 2008-09 0.976 0.988 0.988 0.988 DRS

1985-86 1.000 1.000 1.000 1.000 DRS 2009-10 0.988 1.000 1.000 0.988 DRS

1986-87 0.981 0.986 0.981 0.995 IRS 2010-11 0.987 0.999 0.999 0.987 DRS

1987-88 0.963 0.968 0.963 0.996 IRS 2011-12 0.985 0.998 0.998 0.987 DRS

1988-89 0.982 0.985 0.982 0.997 IRS 2012-13 0.987 1.000 1.000 0.987 DRS

1989-90 1.000 1.000 1.000 1.000 CRS 2013-14 0.986 0.999 0.999 0.987 DRS

1990-91 0.997 0.997 0.997 1.000 IRS 2014-15 0.987 1.000 1.000 0.987 DRS

1991-92 1.000 1.000 1.000 1.000 CRS 2015-16 0.988 1.000 1.000 0.988 DRS

1992-93 0.986 0.986 0.986 0.999 IRS 2016-17 0.986 1.000 1.000 0.986 DRS

1993-94 0.986 0.988 0.988 0.998 DRS

Note: CRS = Constant returns to scale; VRS = Variable returns to scale; NIRS = Non-increasing returns to scale;

DRS = decreasing returns to scale; RTS = Returns to scale; Scale = Scale efficiency.

However, the story is different for the other two sectors. Table 2 shows that energy

efficiency in the secondary sector is the highest for all the years, its performance in a number

of years being on or very close to the frontier; so is the scale efficiency also. However, the

returns to scale registers a variable pattern: in the initial years, the sector mostly experienced

IRS or CRS, whereas from the late 1990s the sector fell in the stage of DRS.
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Table 3: DEA Efficiency Estimates – Tertiary Sector

Year CRS VRS NIRS Scale RTS Year CRS VRS NIRS Scale RTS

1970-71 0.830 0.832 0.830 0.998 IRS 1994-95 0.946 0.953 0.966 0.993 DRS

1971-72 0.823 0.824 0.823 0.999 IRS 1995-96 0.948 0.956 0.969 0.992 DRS

1972-73 0.737 0.737 0.737 0.999 IRS 1996-97 0.961 0.969 0.982 0.992 DRS

1973-74 0.830 0.831 0.830 0.999 IRS 1997-98 0.967 0.975 0.989 0.992 DRS

1974-75 0.753 0.754 0.753 0.999 IRS 1998-99 0.976 0.985 1.000 0.991 DRS

1975-76 0.769 0.769 0.775 1.000 CRS 1999-00 0.968 0.977 0.986 0.991 DRS

1976-77 0.881 0.882 0.881 1.000 IRS 2000-01 0.969 0.978 0.989 0.991 DRS

1977-78 0.973 0.973 0.973 1.000 IRS 2001-02 0.944 0.953 0.963 0.991 DRS

1978-79 1.000 1.000 1.000 1.000 CRS 2002-03 0.953 0.962 0.972 0.990 DRS

1979-80 0.991 0.991 0.995 1.000 IRS 2003-04 0.952 0.962 0.976 0.990 DRS

1980-81 0.975 0.976 0.982 0.999 IRS 2004-05 0.941 0.951 0.960 0.990 DRS

1981-82 0.986 0.988 1.000 0.999 DRS 2005-06 0.958 0.968 0.977 0.990 DRS

1982-83 0.918 0.920 0.933 0.998 IRS 2006-07 0.968 0.978 0.986 0.989 DRS

1983-84 0.882 0.884 0.901 0.998 IRS 2007-08 0.973 0.984 0.988 0.989 DRS

1984-85 0.876 0.878 0.893 0.998 IRS 2008-09 0.964 0.975 0.978 0.989 DRS

1985-86 0.893 0.895 0.919 0.998 IRS 2009-10 0.965 0.976 0.978 0.989 DRS

1986-87 0.903 0.905 0.934 0.998 IRS 2010-11 0.968 0.979 0.981 0.989 DRS

1987-88 0.906 0.908 0.938 0.997 IRS 2011-12 0.976 0.988 0.990 0.989 DRS

1988-89 0.924 0.927 0.961 0.997 IRS 2012-13 0.977 0.988 0.988 0.989 DRS

1989-90 0.912 0.915 0.947 0.997 IRS 2013-14 0.988 1.000 1.000 0.988 DRS

1990-91 0.941 0.945 0.980 0.996 IRS 2014-15 0.984 0.996 0.996 0.988 DRS

1991-92 0.948 0.952 1.000 0.996 IRS 2015-16 0.986 0.999 0.999 0.987 DRS

1992-93 0.959 0.963 1.000 0.996 DRS 2016-17 0.986 1.000 1.000 0.986 DRS

1993-94 0.935 0.942 0.954 0.993 DRS

Note: CRS = Constant returns to scale; VRS = Variable returns to scale; NIRS = Non-increasing returns to scale;

DRS = decreasing returns to scale; RTS = Returns to scale; Scale = Scale efficiency.

The tertiary sector comes second to the secondary sector in terms of efficiency performance,

being close to the frontier for a few years (Table 3). In scale efficiency, the same pattern as in

the secondary sector holds here, the fall into DRS, however, starting from the early 1990s.
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Fig. 2: DEA Efficiency Estimates – Primary Sector- Model-wise
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Fig. 3: DEA Efficiency Estimates – Secondary Sector- Model-wise
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Fig. 4: DEA Efficiency Estimates – Tertiary Sector- Model-wise
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Table 4: DEA Efficiency Estimates – Summary Statistics

Variable Mean Median Minimum Maximum Std.

Dev.

C.V. Skewness Excess

kurtosis

5%

Perc.

95%

Perc.

IQ

range

Primary CRS 0.645 0.635 0.519 0.754 0.052 0.080 0.221 -0.368 0.579 0.744 0.079

Primary VRS 0.648 0.638 0.519 0.757 0.052 0.080 0.218 -0.329 0.584 0.746 0.077

Primary NIRS 0.679 0.667 0.583 1 0.088 0.130 1.881 4.171 0.586 0.923 0.107

Primary Scale 0.996 0.996 0.992 0.999 0.002 0.002 -0.153 -0.638 0.992 0.999 0.003

Secondary

CRS

0.985 0.987 0.948 1 0.012 0.012 -1.065 1.076 0.960 1 0.014

Secondary

VRS

0.990 0.991 0.950 1 0.011 0.011 -1.521 2.289 0.964 1 0.014

Secondary

NIRS

0.990 0.991 0.950 1 0.012 0.012 -1.449 1.927 0.962 1 0.014

Secondary

Scale

0.995 0.997 0.986 1 0.005 0.005 -0.740 -1.151 0.987 1 0.011

Tertiary CRS 0.931 0.953 0.737 1 0.064 0.069 -1.584 1.824 0.760 0.990 0.067

Tertiary VRS 0.937 0.962 0.737 1 0.067 0.071 -1.538 1.624 0.760 1 0.070

Tertiary NIRS 0.948 0.977 0.737 1 0.068 0.072 -1.772 2.186 0.762 1 0.055

Tertiary Scale 0.994 0.993 0.986 1 0.004 0.005 -0.060 -1.590 0.987 0.9999 0.009

Note: CRS = Constant returns to scale; VRS = Variable returns to scale; NIRS = Non-increasing returns to scale;

Std. Dev = Standard Deviation; C.V. = Coefficient of Variation; Perc = Percentile; IQ = Inter-Quartile.

Fig. 5: Mean DEA Efficiency Estimates – Sector- and Model-wise

Note: CRS = Constant returns to scale; VRS = Variable returns to scale;

NIRS = Non-increasing returns to scale;
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4. Conclusion

In this paper we have taken up the non-parametric mathematical programming method of

data envelopment analysis, the second approach in multi-factor productivity analysis. We

have started with the theoretical framework of data envelopment analysis (DEA) as a

prelude to our empirical exercise for the Kerala power sector. This approach originated with

Farrell who decomposed the concept of economic efficiency (overall efficiency) of a production

unit into two components, viz., technical efficiency and allocative efficiency (price efficiency); for

illustrating this approach, he used the usual economic concepts of isoquant and price line (isocost

line) involving a production function of two inputs and one output under the assumption of

constant returns to scale.

In this context, for measuring the unknown efficiency of a production unit in relation to an

efficient isoquant (representing an efficient firm) using the sample data, Farrell suggested (i) a

non-parametric piecewise-linear convex isoquant, or (ii) a parametric frontier function, such as

the Cobb-Douglas production function. The second of these we have employed in the last chapter,

and the first one in this chapter.

The non-parametric linear programming data envelopment analysis (DEA) was proposed by

Charnes, Cooper and Rhodes (1978), which paved the way for a large number of papers in

applications and extensions. DEA model has two variants, one under the assumption of constant

returns to scale (CRS), and the other under variable returns to scale (VRS) assumption. One

advantage of this approach is that it can be used for multiple output-multiple input cases, unlike

in the parametric production function analysis.

Following the theoretical framework, we have turned to estimating the DEA frontier of the

power sector in Kerala, considering three sectors (Primary, Secondary and Tertiary) for the
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period from 1970-71 to 2016-17. We have used the sectoral energy consumption as a

function of sectoral number of consumers and sectoral GSDP at constant 2011-12 prices (all

variables taken in log), unlike the usual frontier function with factors of production, to

represent frontier isoquant with two activity factors and one output. For estimating our DEA,

we have made use of a Stata module for DEA, provided by Chonjoo Lee and Ji Yong-Bae

(2009).

We have estimated the efficiency measures for the three sectors under the two scale

assumptions of constant returns to scale (CRS) and variable returns to scale (VRS); t he latter

includes both increasing (IRS) and decreasing returns to scale (DRS). Scale efficiency measures

are also given to find out whether a firm is operating at its optimal size or not, implying degrees

of capacity utilization.

The results have shown that energy efficiency in the primary sector is much lower than in the

other two sectors; the scale efficiency is below, but close to, optimum. Surprisingly, the

primary sector during the entire period is found to be in IRS stage. The secondary sector is

found to have the highest energy efficiency scores for all the years, its performance in a

number of years being on or very close to the frontier; the scale efficiency also faring

similarly. Coming to the returns to scale, the sector mostly experienced IRS or CRS in the

initial years, whereas from the late 1990s the sector fell in the stage of DRS. The tertiary

sector follows the secondary sector in terms of efficiency performance, being close to the

frontier for a few years. After the initial years of mostly IRS, the sector fell into DRS, starting

from the early 1990s.
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