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Abstract 

This study investigates the long range dependence and correlation structures of some 

select stock markets. Using novel wavelet methods of long range dependence, we show 

presence of long memory in the stock returns of some emerging economies and the lack 

of it in developed markets of Europe and the United States. Moreover, we conduct a 

wavelet based fractal connectivity analysis, which is the first application in economics 

and financial studies, to segregate markets into fractally similar groups and find that 

developed markets have similar fractal structures. Similarly stock returns of emerging 

markets exhibiting long-memory tend to follow similar fractal structures. Furthermore, 

network analyses of fractal connectivity support our findings on market efficiency which 

has theoretical roots in both fractal and adaptive market hypothesis.  
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1.1 Introduction 

Long memory processes, also known as long-range dependent process, are ubiquitous in 

financial and economic time-series. This study seeks to understand the long memory 

behaviour of global equity returns using novel methods from wavelet analysis, where 

long-range dependence and long-run correlation structure of major global equity returns 

are analysed within the framework of wavelet log-scale analysis and the recently 

introduced fractal connectivity matrix generated via the implementation of multivariate 

wavelet long memory estimators of Achard and Gannaz (2016), making it the first 

application of fractal connectivity analysis to studies in economics and finance.  The 

genesis of the long memory experiment is due to Hurst (1951) who analysed the flow of 

Nile River. Mandelbrot and Van Ness (1968), using the idea of Hurst exponent, employed 

the idea of long-memory processes in conjunction with fractional Brownian motion and 
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related stochastic processes. However, in the field of time series analysis, Granger and 

Joyeux (1980) and Hosking (1981) were among the first to integrate long memory 

processes with existing time series methods. The majority of research focusing on 

estimation of long memory relies on the traditional rescaled range (R/S) approaches of 

Mandelbrot and Wallis (1968) and its modified version developed by Lo (1991). The 

spectral domain approach proposed by Geweke and Porter-Hudak (1983) to estimate the 

long memory parameter has been used by many researchers too.  

This paper investigates long memory among select global equity markets using estimators 

from the wavelet domain. Studies investigating long memory in global financial markets 

based on wavelet based long memory methods are relatively few as compared to 

traditional time and spectral domain estimators of long memory. Furthermore, empirical 

studies based on log-scale wavelet domain estimator of long-range dependence are 

practically nonexistent. Moreover, to the best of our knowledge, this is the first empirical 

study of long-run correlation structure generated by fractal connectivity matrix in the 

domain of economics and finance.The dearth of studies concerning wavelet based 

analysis of long memory and long run fractal connectivity based correlation structures of 

global equity markets necessitates an exploration based on these methods.  

1.2 Literature Review 

The presence of long memory in squared daily returns of S&P 500 index is evident in the 

works of Ding et al. (1993) where significant autocorrelation for lags up to ten years were 

present. Similarly, Lobato and Savin (1998) also demonstrated the presence of long 

memory in the squared returns of the S&P 500 dataset spanning three decades. 

Furthermore, Lobato and Velasco (2000) using a frequency domain tapering procedure 

in a multi stage semi-parametric method unearthed the presence of long memory in stock 

returns and volatility of returns. The presence of long memory in the returns of Brazilian 

equity market is documented in Assaf and Cavalcante (2005). Barkoulas et al. (2000), 

while investigating the long memory properties of the Athens stock exchange, find 

evidence of long-range persistence in the returns of the Athens stock market. Moreover, 

the forecast performance of a long memory incorporated model significantly outdid 

forecasts generated from a regular random walk model. Similarly, Panas (2001), using a 

spectral measure of fractality along with the Levy index, found nonlinearities in Greek 

equity returns and unearthed the existence of long memory, thereby rejecting the weak-
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form efficiency of the Greek equity market. Henry (2002), using a mixture of semi-

parametric and spectral estimators, found evidence of long memory in the returns of 

South Korean stock market. Moreover, some evidence of weak long memory was 

unearthed in the markets of Germany and Taiwan. The empirical investigations 

documented the presence of long-range dependence in four emerging eastern European 

markets, thereby rejecting evidence in favour of the efficient market hypothesis. Similar 

analysis using wavelet based methods to detect long memory in the returns of the Dow 

Jones Industrial average (DJI) were employed by Elder and Serletis (2007) where no 

evidence of long memory was detected, thereby supporting results from a vast number of 

studies that reject the presence of long memory in the developed markets of the U.S. 

However, the presence of long memory in the equity returns of some developed markets 

of Europe, the U.S., and Japan is documented in Ozdemir (2007). Furthermore, Ozun and 

Cifter (2007), also using a wavelet based estimator of long memory, found some evidence 

of long-range dependence in the returns of the Istanbul Stock Index, thereby rejecting the 

weak form efficiency of Istanbul share prices. Similarly, evidence of long memory in the 

equity markets of G7 countries is documented in Bilal and Nadhem (2009). On the other 

hand, Mariani et al (2010), using detrended fluctuation analysis and truncated Levy flight 

method, found evidence of long memory in several eastern European markets. However, 

among the countries that are part of the Organisation for Economic Co-operation and 

Development (OECD), long-memory, as investigated by Tolvi (2003), was only 

evidenced in the smaller equity markets of Denmark and Finland. Jefferis and 

Thupayagale (2008), using a long-memory variant of the GARCH model, investigated 

long memory behaviour of some select African equity markets and found evidence 

supporting the presence of long-memory in the developing markets of Botswana and 

Zimbabwe. The presence of long memory in the developing markets of Central and 

Eastern European countries (CEE) is documented in the studies of Jagric et al. (2006) and 

Kasman et al. (2009), where the presence of long memory in equity returns is specifically 

limited to the developing markets of Hungary, Czech, Slovenia and Croatia. Kristoufek 

and Vosvrda (2012) constructed a measure of efficiency by measuring the distance 

between an efficient case and a vector containing long memory and other measures of 

fractality. Long memory is evidenced in many developing and emerging markets whereas 

all developed markets show signs of efficiency, with the Japanese NIKKIEI leading all 

other developed markets in terms of efficiency. Cont (2005) attempted to identify 

economic intuition and mechanisms behind the existence of fractality and long memory 
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in returns and returns volatility. The possible economic factors underlying the existence 

of long memory in volatility are, i) heterogeneous investment horizons of market agents, 

ii) evolutionary trading models that employ genetic algorithms, iii) market fluctuations 

arising out of investors’ sudden switch between several trading strategies, and iv) the 

inactivity of investors, operating at certain time periods and market regimes, based on 

trading strategies or behavioral aspects. Vuorenmaa (2005) investigated the time-varying 

long memory of Nokia Oyj returns using the wavelet OLS method and found significantly 

strong long memory during the dot-com bubble period. Ozun and Ciftr (2007), 

demonstrating the superiority of wavelet OLS method as compared to the spectral long 

memory estimator of Geweke and Porter-Hudak (1983), found significant long memory 

in the returns of Istanbul stock exchange. Similarly, DiSario et al. (2008), on investigating 

the volatility structure of S&P 500 returns using the wavelet OLS method, found evidence 

of long-memory in the S&P 500 returns volatility. In the same vein as the aforementioned 

studies, Tan et al. (2012) while examining the fractal structure of emerging economies 

using wavelet OLS method demonstrated significant long memory in the returns of larger 

firms as compared to smaller firms. Likewise, Tan et al. (2014), using the wavelet 

estimator of Jensen (1999) and detrended fluctuation analysis, examined long memory 

behavior of equity returns and volatility of ten markets from both developing and 

developed economies. On the other hand, Power and Turvey (2010) investigated long 

memory structure of fourteen commodity futures using the Hurst estimator of Veitch and 

Abry (1999) and demonstrated long-range dependence in all commodities. Boubaker and 

Peguin-Feissolle (2013) proposed semiparametric wavelet base long memory estimators 

and demonstrated its superiority, with respect to several non-wavelet estimators, using 

simulation experiments. Pascoal and Monteiro (2014), while investigating the 

predictability of the Portuguese stock returns using wavelet estimators of long memory, 

fractal dimension and the Holder exponent, found no evidence of long memory in the 

PSI20 returns, thereby confirming the efficiency of the Portuguese equity market. More 

recently, Tiwari et al. (2019) examined the efficiency of oil prices using several methods 

of long memory including wavelet and the periodogram approach and found future 

contracts of Brent oil to be less efficient than WTI oil.  However, markets are in a constant 

stage of development which can influence efficiency and predictability 

Our study, however, implements the wavelet based approaches of Abry and Veitch 

(1998) and Abry et al. (2003) to graphically examine the Hurst exponents of select equity 
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returns using a log-scale wavelet plot. We then proceed to examine the long run 

correlation structure of both developed and emerging markets using fractal connectivity 

approach of Achard and Gannaz (2016). Finally, we conduct a network analysis to 

support the findings from fractal connectivity based experiment. The novelty of our 

approach stems from the application of such measures to empirical studies in economics 

and finance, which we believe is the first such exercise pertaining to applications in 

economics and finance. 

1.3 Data 

The empirical data consists of some select developed stock markets of France (CAC40), 

Germany (DAX), U.S. (S&P500), Great Britain (FTSE100), Switzerland (SMI), and the 

Eurozone (STOXX50). The data for emerging economies constitute the select stock 

markets of India (BSE30), Brazil (Brazil), Indonesia (JKSE), Pakistan (KSE100), China 

(SSE), and Malaysia (KLSE). The period of study ranges from 01-07-1997 to 20-01-2014 

consisting of 4096 dyadic length observations making it suitable for various wavelet 

methods. Returns of all the stock indices are calculated by taking the first order 

logarithmic differences.  

1.4 Methodology 

Long memory process is associated with a slow power law decay of the autocorrelation 

function of a stationary process x.  The covariance function ( )x k  of the long memory 

process x takes the following form, 

(2 2 )( ) c ,   H

x k k k − − →+                                           (1.1) 

where c is a positive constant and (0,0.5)H   . The Hurst parameter H is used to 

measure the presence of long memory. The spectrum ( )x   of the long memory process 

x is given by, 

1 2( ) | | ,    0H

x fc  − →                                    (1.2) 

where   is the frequency, 1 (2 1)sin( )fc c H H  −=  − − , and the Gamma function is 

given by  . This mathematical structure of long memory processes is the reason for its 
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inclusion in a class of stochastic processes which have the 1/ | |  form. The property of 

long memory also finds some close association with the phenomenon of scale invariance, 

self-similarity and fractals. Hence, statistically a self- similar process like fractional 

Brownian motion (FBM) is closely related to long memory phenomenon.   

Let 0  be an arbitrary reference frequency selected by the choice of 0 , the mother 

wavelet. The amount of energy in the signal during scaled time 2 j k and scaled frequency 

02 j− is measured by the squared absolute value of the detail wavelet coefficient 

2| ( , ) |
x

d j k  . A wavelet based spectral estimator of Abry et al. (1993) is constructed by 

taking a time average of 2| ( , ) |
x

d j k at a given scale, and is given by,  

2
0

1
(2 ) | ( , ) |j

x x

kj

d j k
n




− =                                         (1.3) 

where  is the “number of wavelet coefficients” at level  j, and = 2 j n− , where n is 

the data length. Therefore , ( )x 


  captures the amount of energy that lies within a given 

bandwidth and around some frequency  . Hence, ( )x 


  can be regarded as an estimator 

for the spectrum ( )x   of x. The wavelet based estimator of the Hurst exponent H


  is 

designed by performing a simple linear regression of 2 0log ( (2 ))j
x 


−  on  j , i.e., 

2
2 0 2

1
log ( (2 )) log | ( , ) | (2 1)j

x x

kj

d j k H j c
n


  

−
 

 = = − +  
 
                (1.4) 

 where c


 estimates (1 2 ) 2
2 0log ( | | | ( ) | )H

fc d  −   , where 0  is the Fourier transform 

of the mother wavelet 0 . A weighted least square estimator is constructed by performing 

a WLS fit between the wavelet scales 1j  and  2j  which gives the estimator of the “Hurst 

exponent”, H.  The estimators of multivariate long memory and the related “fractal 

connectivity matrix”, based on the above univariate estimator is given in Achard et al. 

(2008) and Achard and Gannaz (2016). 

 

jn jn
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1.5 Empirical results 

1.5.1 Wavelet based log-scale alignment approach 

The presence of long memory in the volatility of select equity returns, as given by the 

absolute value of equity returns, is investigated by applying the wavelet based estimator 

of the Hurst exponent developed by Abry and Veitch (1998) and Abry et al. (2003).  

This method enables one to graphically analyze long memory from the log-log plot of the 

wavelet regression which contains additional information about the fractal nature of 

equity returns. The logscale diagram is a plot of wavelet variance at each scale against 

the wavelet scale. Formally, the plot of the logarithm of 
2

1

1
( , )

jn

j X

kj

v d j k
n =

=  against the 

wavelet scale j gives the logscale diagram. Here 
j

n  is the “number of wavelet 

coefficients” at scale j and ( , )Xd j k  is the wavelet details of the process ( )X t . The 

visualization of the logscale diagram can help one detect regions of long-range 

dependence via the help of an alignment region in the graph. The range of wavelet scales 

where log ( 
j

v ) falls on a straight line is known as the alignment region (Abry et al. 2003) 

and perfect alignment, mostly at higher scales, normally constitutes long memory. In the 

logscale plot, perfect alignment requires the red straight line to cross (or touch) the 

vertical lines depicting the confidence band in an upward sloping manner. If the 

alignment region includes the largest scales in the logscale plot, then the returns exhibit 

long-range dependence. Furthermore, the value of the self-similar parameter2   should 

lie in the interval (0, 1). Correspondingly, the value of the Hurst exponent H should lie in 

the interval (0.5, 1) for the data to exhibit long memory. Figure 1.1 gives the logscale 

diagram3 of the equity returns of select developed markets. It can be observed from the 

figure that straight line slopes downward and the corresponding Hurst exponents for all 

six developed markets of Europe and the U.S. lie within the interval (0, 0.5) indicating 

short-memory. 

 
2 α is also known as the scaling exponent of self-similarity. The Hurst parameter H and α are related by the 
expression: H=(1+ α)/2 
3 After repeated simulations, the optimal lower cut-off scale is taken to be 2 and the highest scale is taken 
to be 8. 
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Figure 1.1 Logscale diagrams of stock returns from developed markets 

 

The absence of long memory in the returns of developed markets is in confirmation with 

results from a vast majority of literature that rejects long memory in developed financial 

markets. Figure 1.2 gives the logscale diagram of the equity returns of some select 

emerging markets. It can be noticed that the Hurst exponents of emerging markets’ equity 

returns lie within the interval (0.5, 1).  
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Figure 1.2 Logscale diagrams of stock returns from emerging markets 

 

It can be observed from the above figure that the upward sloping alignment of the straight 

red line includes all higher scales, i.e. scales five up to eight, indicating the presence of 
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“long-range dependence”. However, among the six emerging markets, equity returns of 

India (BSE 30), Pakistan (KSE 30) and Malaysia (KLSE) exhibit relatively stronger long-

memory.  

 

1.5.2 The fractal connectivity approach 

The dynamic evolution of long memory structure can differ depending on various stages 

of market development, where a movement towards sophisticated state from an under-

developed market implies efficiency of financial markets in terms of correctly priced 

assets. Hence, varying developmental stages of emerging economies correspond to 

different stages of market efficiency based on the evolution or backward evolution of 

long-memory (M. Hull and McGroarty, 2013). This phenomenon is also consistent with 

the self-correcting mechanism propounded by Grossman and Stiglitz (1980). Moreover, 

markets are in a constant stage of development where investors, with their inherent 

behavioral biases, adapt to changing scenarios in financial markets. This idea led to the 

development of an alternative notion of efficiency as ingrained in the efficient market 

hypothesis in the form of adaptive market hypothesis (AMH) of Lo (2004), where 

evolutionary perspective and behavioral aspects of investors are taken into consideration. 

Contrary to the EMH, which is based on utility maximizing rational individuals, 

behavioral biases of investors could distort utility optimizing decisions. Moreover, 

investors adapt to changing market conditions where individuals who cannot adapt to 

changing market conditions are cast out. Therefore, as compared to the EMH, the AMH 

incorporates “[…] considerably more complex market dynamics, with cycles as well as 

trends, and panics, manias, bubbles, crashes, and other phenomena that are routinely 

witnessed in natural market ecologies.” (Lo, 2004, p.24).     

However, stock returns of both developed and emerging economies can exhibit similar 

or dissimilar fractal structures as opposed to the homogenous notion of efficiency as 

propounded in the EMH. Therefore, we attempt to investigate the underlying fractal 

structures based on the long-range correlation matrix, also referred to as fractal 

connectivity which offers, i) an efficient way to estimate long-memory, ii) evaluate a 

correlation structure, iii) and analyze similar fractal structure among markets. The 

aforementioned fractal connectivity matrix estimated via multivariate wavelet based 

estimator aids in inspecting correlation structure at long-range frequencies, thereby 
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enabling one to identify markets with similar fractal structures. Furthermore, the fractal 

connectivity matrix of stock returns exhibiting long-memory is clustered based on the 

hierarchical algorithm in an attempt to classify ‘fractally’ similar market groups. 

 

Figure 1.3 Fractal connectivity matrices of select stock returns 

 

Figure 1.3 displays the fractal connectivity matrix, revealing long-run correlation 

structure among the developed stock markets of France (CAC40), Germany (DAX), U.S. 

(S&P500), Great Britain (FTSE100), Switzerland (SMI), and the Eurozone (STOXX50), 

and some select emerging markets of India (BSE30), Brazil (Brazil), Indonesia (JKSE), 

Pakistan (KSE100), China (SSE), and Malaysia (KLSE). The left panel of the above 

figure shows the fractal connectivity matrix whereas the right panel of the figure displays 

the hierarchical clustered version of the matrix. The color coded legend on the right axis 

of the figure on the left panel and below the bottom axis of the figure in the right panel, 

aids in categorizing the strength of long-range correlations. The corresponding 

abbreviated stock indices of both developed and emerging markets are displayed on the 

left and towards the top of the matrix. It is evident from the fractal connectivity matrix 

on the left panel that developed markets of Europe and the United States exhibit 

significant long-range correlation structures as indicated by larger number of elements in 

blue depicting positive correlations. However, a clearer picture of similar and differing 

fractal structures is evident from the clustered matrix. There are three clusters in the 

fractal connectivity matrix and they are depicted by three blue squares. It is evident from 

the market clusters that developed markets of SMI, SSE, CAC, S&P, and DAX exhibit 
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similar fractal structures. Moreover, the developed markets of United Kingdom 

(FTSE100) and the Eurozone (STOXX50) are clustered together revealing similar fractal 

structure among these markets. On the contrary, emerging markets of BSE, IBOV, KSE, 

KLSE, and JKSE revealing significant long-run correlation among them, are clustered 

together, thereby demonstrating different fractal structure as compared to developed 

markets. This supports our previous wavelet log-scale alignment analysis of long memory 

wherein developed stock market returns were mostly devoid of long range dependence 

whereas stock returns of emerging markets exhibited long memory. This is consistent 

with the view of M. Hull and McGroarty (2013) where market efficiency viewed in the 

lens of efficient market hypothesis (EMH), and thus long memory, corresponds to 

different stages of economic development. Contrary to the EMH lens of efficiency, where 

interpretation of information inherent in prices arises ideally due to simultaneous and 

uniform information arrival, it discards the phenomenon of heterogeneous information 

arrivals where investors may interpret information in different ways and at different 

times. This alternative way of deciphering information has its roots in Fractal market 

hypothesis (FMH) of Peters (1994).  

Figure 1.4 Fractal connectivity networks of select stock returns 

 

1.5.3 Complex networks of fractal connectivity 

The final analysis of similar or dissimilar fractal structures is carried out via network 

analysis by computing the adjacency matrix of fractal connectivity matrix and plotting 

the undirected network graphs. The nodes represent the markets and the edges are due to 

the long run correlation structure present in the fractal connectivity matrix. As evident 
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form the network plot on the left panel, and with the exception of KSE, markets are 

grouped together according to their fractal structure. The right panel of figure 1.4 depicts 

community formation based on similar fractal and long memory structures. Moreover, 

the node centrality of the developed network community shaded in lighter green is 

dominated by the developed market of Germany (DAX) with high degree distribution.  

1.6 Conclusion 

This study investigated the phenomenon of long memory among select global equity 

returns using novel methods from the wavelet domain. Some evidence of long-memory 

in equity returns of emerging markets of Malaysia, Taiwan, Pakistan, China and 

Indonesia are unearthed. However, the application of improved fractal estimators of Abry 

et al. (2003), aided by the log-scale diagram of wavelet based scaling estimates, detected 

significant long memory in the emerging markets of India, China and Indonesia. On the 

other hand, equity returns of developed markets from Europe and the U.S. did not exhibit 

long-range dependence, thus validating results from existing studies that reject long 

memory in developed markets. Moreover, we have established that markets differ 

according to their fractal structures and efficiency is dynamic in nature as reflected by 

stages of economic and market development, as opposed to the static nature of market 

efficiency espoused by the EMH where utility optimizing rational investors form the 

basis of efficient market theory. However, as demonstrated by both fractal connectivity 

analysis and complex networks of long-run correlations, markets exhibit varying levels 

of fractal structures and long range dependence. As economies gradually evolve towards 

developed state of market structure, the notion of efficiency should thus incorporate time-

varying, behavioral, and evolutionary aspect of market development as propounded in 

the adaptive market hypothesis.    
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