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Abstract

In some classes of macroeconomic models with financial frictions, an adverse financial shock suc-

cessfully explains a drop in GDP, but simultaneously induces a stock price boom. The latter theoretical

result is not consistent with data from actual financial crises. This study develops a simple macroe-

conomic model featuring a banking sector, financial frictions, and R&D-led endogenous growth to

examine the impacts of an adverse financial shock to banks on firms’ R&D investments and equity

prices. Both the analytical and numerical investigations show that a shock that hinders the banks’

financial intermediary function can be a key to generating both a prolonged recession and a drop in

the firms’ equity prices.
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1 Introduction

Before the 2008-2009 financial crisis, macroeconomic models with financial frictions were major workhorses

in business cycle studies. However, most of them focused only on the role of financial frictions in prop-

agating and amplifying shocks originating in firms’ productivity, households’ preferences, or government

policies. After the crisis, some studies shed light on the shocks on agents’ financial constraints itself as

a key influence on business cycles. Examples of such studies include those by Jermann and Quadrini

(2012), Kahn and Thomas (2013), Buera and Moll (2015), Shi (2015), Kiyotaki and Moore (2019), and

so on. Shocks to financial constraints are referred to as financial shocks, of which there are two main

classes: a credit crunch that affects agents’ borrowing capacity (Jermann and Quadrini, 2012; Kahn and

Thomas, 2013; Buera and Moll, 2015) and a liquidity shortage that affects agents’ ability to issue and

resell equity (Shi, 2015; Kiyotaki and Moore, 2019). These studies show that adverse financial shocks

successfully replicate the fall in GDP, aggregate consumption, investment, and employment.

Despite their successful explanation of realistic co-movements among major macroeconomic variables,

some authors criticize these models. In particular, Shi (2015) points out that an adverse financial shock

in such models, be it a credit crunch or a liquidity shortage, induces a stock price boom. Obviously,

this theoretical prediction is not consistent with observations during recessions; rather, the opposite is

true. The intuition behind this counterfactual prediction is straightforward. The common feature in these

models is that the agents’ net worth functions as collateral when they need the external funds. Then,

after the negative financial shock to the agents, whether it decreases their borrowing capacity or issuing

equity, the value of their net worth increases. As Shi (2015) notes, this problem is important and must

be addressed because in actual economies, a fall in equity prices is thought to be the prime transmission

channel of a financial shock to the aggregate economy. How can we resolve this problem? This study

presents a simple theory to explain both prolonged recessions and stock price declines.

Recently, Guerron-Quintana and Jinnai (2020) provided an elegant solution to this problem. They

examine the effects of the liquidity shock to investors in the modified model of Shi (2015) such that

capital accumulation is associated with a learning-by-doing externality. Their numerical analysis shows

that connecting the financial shock and endogenous growth can resolve the problem of the counterfactual

stock price movement. This study then accounts for the following two factors explicitly. First, the event

triggering the financial crisis is often a negative shock to the banking sector, like the bankruptcy of

Lehman Brothers. Second, long-term investments such as innovation expenditures decreased significantly

during this period (OEIO, 2012). Since even a short-term decline in these activities can have detrimental

consequences in the long run, it is important to explicitly incorporate R&D activities into the model.

Against this background, I embed the banking sector as in Gertler and Karadi (2015), Gertler and

Kiyotaki (2015), and Gertler et.al. (2020) into the quality-ladder growth model developed by Grossman

and Helpman (1991). Households make deposits, entrant firms issue equities to conduct R&D activities,

and banks intermediate financial funds between them. This study inherits the following two key features

of banks in these studies. First, although households can purchase equities directly, banks are more

efficient in doing so. Second, each bank has an incentive to divert its assets for personal use. Owing to
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this potential of moral hazard, the banks’ capacity to collect deposits is limited and they face an upper

bound of their leverage ratio. In the equilibrium, both households and banks purchase the equities owing

to this financial friction. Within this framework, I first analytically characterize the balanced growth

equilibrium in which all real variables continue to grow, led by quality-upgrading innovations. Then, I

consider an adverse financial shock as the event hindering the banks’ ability to intermediate funds and

examine its effects on R&D investments and equity prices. The results show that such a shock generates

both a prolonged downward shift in the real GDP and a sharp decline in equity prices. This result thus

claims that if a financial shock hits the financial intermediary’s ability to collect funds, then it can resolve

the problem of the counterfactual equity price response.

The mechanism generating this result is simple and explained as follows. After the shock occurs, banks

become less able to finance their equity investment by external funds. This induces less efficient allocation

in equity purchases because households must purchase the equities directly, but they are less efficient in

doing so. Then, demand for equities overall decreases and the equity price falls. In turn, the drop in

the equity price makes R&D activities less profitable for the entrant firms. Then, their R&D investment;

that is, their employment of labor for R&D activities drops. Although this decrease in investment is a

transitory phenomenon, it has a long-lasting negative effect on the level of real economic variables like

the real GDP. Note that this simultaneous drop in the quantities and equity prices never occurs when

we consider only a negative shock to the entrant firms’ R&D technology. In this case, innovation slows

down, but equity prices rise.

The persistent downward shift in the real GDP and the equity price drop are consistent with the

recent observation after the 2008-2009 global financial crisis. Although Guerron-Quintana and Jinnai

(2020) obtain similar results, the mechanism differs from this study in significant ways. In their model,

the liquidity shock makes investors more cash-strapped, and hence disturbs physical capital accumulation.

A learning-by-doing externality then amplifies and sustains this negative effect to generate a persistent

economic downturn. In addition, they consider the liquidity shock to investors as the financial shock,

whereas this study focuses on the credit crunch to the banks. In the sense that this study pursues business

cycle implications in an R&D-based endogenous growth model, this study is also related to the literature

linking business cycles to economic growth, such as studies by Comin and Gertler (2006), Kobayashi

and Shirai (2018), Bianchi et al. (2019), Guerron-Quintana and Jinnai (2019), and Ikeda and Kurozumi

(2019). These studies build on quantitative DSGE models and explore the impacts of several economic

shocks on the economy. On the other hand, the goal of this study is to develop a tractable macroeconomic

model and examine the relationships among financial shocks, R&D investments, and firms’ equity prices.

One strength of the model proposed here is its tractability, which allows us to easily characterize the

equilibrium and conduct the comparative statics. The tractability can provide insight into the inner

workings of the model when considering the effects of financial shocks.

The rest of this paper is organized as follows. Section 2 sets up the model. Section 3 analytically

characterizes the equilibrium without shocks and provides the comparative statics. Section 4 presents the

numerical results of a transitory financial shock to the banks. Section 5 concludes.
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2 Model

Time is discrete and extends from zero to infinity (t = 0, 1, 2, . . . ). The supply side is a discrete-time

version of a quality-ladder growth model developed by Grossman and Helpman (1991). The economy has

a single final good used for consumption. The final good is a composite of a continuum of differentiated

intermediate goods indexed by ω ∈ [0, 1]. Following the literature on the quality-ladder growth models,

I choose the expenditure for the final good as the numeraire; that is, I normalize the expenditure to

unity. There is one primary factor, labor, which is used for production of intermediate goods and R&D

activities. The households supply labor and earn wages. They save in the form of deposits at banks and

direct claims on equalities, but for the latter, they are less efficient in doing so relative to banks. The

banks specialize in making loans and thus intermediate funds between households and firms. The banks’

behavior is based on Gertler and Kiyotaki (2015).

2.1 Firms

Final good firms: The reduced form of the production function for this good is

Yt = Zt exp

{∫ 1

0
ln
[
(λ)Kt(ω)xt(ω)

]
dω

}
,

where Yt is the output of the final good, xt(ω) is the demand for variety ω, Kt(ω)(= 1, 2, . . .) represents

the highest quality of variety ω in period t, and λ > 1 represents the size of the quality improvement

achieved by one innovation. Without loss of generality, I assume the initial condition K0(ω) = 1 for all

ω. Then, Kt(ω)− 1 is the number of occurrences of quality-upgrading innovations for ω before period t.

The term Zt is the exogenous technology level, which captures the technological progress via factors

besides R&D activities. I assume that it grows at a constant rate of gZ > 0 and its initial value is

normalized to unity. Then, Zt = (1 + gZ)
t. Let pt(ω) denote the price of variety ω. The expenditure for

the final good is the numeraire: PtYt = 1, where Pt is the price of the final good. Profit maximization

yields the demand for variety ω:

xt(ω) = 1/pt(ω),

and the following zero profit condition:

Pt =
1

Zt
exp

{∫ 1

0
ln

[
pt(ω)

(λ)Kt(ω)

]
dω

}
. (1)

Intermediate goods firms: To produce xt(ω) units requires xt(ω) units of labor. The unit cost of

production is thus the wage rate, denoted by wt. Each variety has several potential suppliers who can

produce the intermediate good with a quality of less than Kt(ω). Thus, the leader firm charges the

following limit price, which is equal to the marginal cost of the firm with the second-highest quality:

∀ω ∈ [0, 1], pt(ω) = λwt. (2)
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Then, it sells xt(ω) = 1/(λwt) units of the good and earns the monopoly profit πt(ω) = π ≡ 1− 1/λ for

all ω ∈ [0, 1].

Equity price: Let qt denote the end-of-period equity price of the leader firm. Here, “end-of-period” has

two meanings. First, qt is ex-dividend ; that is, qt is evaluated after the dividend in period t has been

paid. Second, qt is evaluated after the next innovation did not occur.1 Let Ret+1 denote the one-period

gross rate of return from holding the equity from the end of period t to t + 1. Then, qt and R
e
t+1 must

satisfy

qt =
π + (1− It+1)qt+1

Ret+1

, (3)

where It+1 ∈ [0, 1] denotes the probability that an innovation by potential entrants succeeds in period

t + 1 and the current leader loses its market power. It is determined endogenously from the resource

constraint in this economy. As in the literature on quality-ladder growth, It is i.i.d. across varieties.

Then, from the law of large numbers, it is equal to the ex-post measure of varieties in which innovation

occurs.

R&D investment and firm entry: I next address the R&D activities of potential entrants. If each

entrant hires κIt units of labor in period t, then it can succeed in innovation with probability It, where

κ > 1 is the labor requirement to obtain 100% success in innovations. If the innovation succeeds, then

the entrant becomes the new leader firm for one variety from period t + 1. Since then, the new leader

now faces the idiosyncratic risk of the next innovation and other aggregate risks. The expected benefit

of innovation in period t is therefore given by It × Et
{
(Ret+1)

−1[π + (1− It+1)qt+1]
}
= Itqt, where Et(·)

is the expectation operator conditioned on the information available in period t. Then, the free entry

condition of R&D activities for a variety is

qt ≤ wtκ, (4)

the equality of which holds if entrants conduct R&D.

2.2 Households

There is a continuum of homogeneous households of measure one. Let Ct and Lt denote the representative

household’s consumption and labor supply, respectively. Moreover, let Sht ∈ [0, 1] be the measure of the

intermediate goods firms, the equities of which the representative household holds directly at the end of

1The results obtained in this study do not change if the stock price is defined at the beginning of a period. Let q̃t denote

the stock price evaluated at the beginning of period t. Then, q̃t and Re
t+1 must satisfy

q̃t = π + (1− It)
q̃t+1

Re
t+1

Because of q̃t+1/R
e
t+1 = qt, the above equation implies Re

t qt−1 = π+(1− It)qt, which is essentially the same as equation (3).

5



period t. His/her life-time utility function is given by

E0

{
∞∑

t=0

βt
[
lnCt + ζ ln(1− Lt)− Γ(Sht )

]}
, (5)

where β ∈ (0, 1) is the discount factor and ζ > 0 is the weight of the utility from leisure. In equation (5),

function Γ represents the disutility from the household’s direct equity holding. Following Gertler et.al.

(2020), I introduce this disutility function to simply capture the household’s lower efficiency in handling

investments compared to banks. In this study, I assume that Γ satisfies

Γ′(Sh) > 0,Γ′′(Sh) > 0 for Sh > 0,Γ′(0) ≥ 0.

Let Sht−1 and Dt−1 denote the measure of firms that the household holds directly and his/her deposits

at the end of period t − 1, respectively. Because of the diversified equity investments, the total values

of equity held by the household change from qt−1S
h
t−1 to qt(1 − It)S

h
t−1. The gross interest income from

holding equities is therefore given by π + qt(1 − It)S
h
t−1 = Retqt−1S

h
t−1. In addition, he/she also obtains

the gross interest income from deposits, RdtDt−1, where R
d
t is the gross interest rate of their deposits.

Therefore, the budget constraint in period t is given by

RdtDt−1 +Retqt−1S
h
t−1 + wtLt − T ht = PtCt +Dt + qtS

h
t , (6)

where T ht is the net transfer from the government in the form of taxes or subsidies depending on its sign.

The representative household chooses {Ct, Lt, S
h
t , Dt}

∞
t=0 to maximize (5) subject to (6). The condi-

tions for utility maximization are

ζ

1− Lt
=

wt
PtCt

,

1

PtCt
= βEt

(
1

Pt+1Ct+1
Rdt+1

)
,

Γ′(Sht )

qt
+

1

PtCt
= βEt

(
Ret+1

1

Pt+1Ct+1

)
.

Since the market equilibrium of the final good implies PtCt = PtYt(= 1), the conditions above reduce to

Lt = 1−
ζ

wt
, (7)

Et

(
Rdt+1

)
=

1

β
, (8)

Et

(
Ret+1 −Rdt+1

)
=

Γ′(Sht )

βqt
. (9)

2.3 Banks

Let Sbt denote the measure of the intermediate goods firms of which equities the banks purchase. Because

the total measure of intermediate goods firms is unity,

Sht + Sbt = 1.
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The aggregate net income of the banks in period t is therefore Retqt−1S
b
t−1 − RdtDt−1. With the i.i.d.

probability of 1 − δ ∈ (0, 1), a bank exits and upon exit the government collects its revenue. Since the

exit probability is i.i.d. across banks, the 1− δ share of this income is transferred to the government:

T bt = (1− δ)(Retqt−1S
b
t−1 −RdtDt−1),

where T bt is the transfer from the exiting banks to the government. As in Gertler and Kiyotaki (2015), I

assume the following inequality:

Assumption 1. δ < β.

Consider a bank that is not hit by the exit shock but survives in period t+1. Let nt denote this bank’s

income in period t. This bank finances equity purchases with this income and newly issued deposits:

nt + dt = qts
b
t , (10)

where dt is the newly issued deposits and sbt is the measure of firms that the bank purchases. Note that

nt corresponds to the bank’s net worth on the balance sheet (10). Then, nt+1 is determined by

nt+1 = Ret+1qts
b
t −Rdt+1dt. (11)

The bank’s objective function at the end of period t is Ṽt, where

Ṽt ≡ Et





∞∑

j=1

βj(1− δ)δj−1nt+j



 .

In the above equation, (1 − δ)δj−1 is the conditional probability of exit in period t + j, given that the

bank does not exit in period t.2 Then, given the bank’s net worth nt, I formulate its problem recursively

as

Vt(nt) = max
sbt ,dt

Ṽt

= max
sbt ,dt

Et {β [(1− δ)nt+1 + δVt+1(nt+1)]} ,

where Vt(nt) is the value function. The constraints are (10), (11), and the following incentive constraint:

Ṽt ≥ θtqts
b
t . (12)

This constraint comes from the potential moral hazard problem. After buying equities, the bank decides

whether to operate these assets. The bank has two options. One is holding the assets, receiving dividends,

and then meeting its deposit obligations in period t+ 1. The other is selling the assets secretly to obtain

the funds for personal use. To remain undetected, the bank can sell only up to the fraction θt of the

2As in the canonical DSGE literature, I first define the stochastic discount factor applied to nt+j as βj PtCt

Pt+jCt+j
, but it is

always equal to βj in this model.
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assets. Inequality (12) is the constraint that the bank has no incentive to divert; thus, the bank’s leverage

ratio is limited:
qts

b
t

nt
− 1 ≤

1

θt

Ṽt
nt

− 1.

Given the bank’s net worth nt, the larger θt is, the less the banks can leverage their investment by

additional funds from collecting deposits. In this constraint, θt is an exogenous random variable that I

call a financial shock. I assume that it follows

ln(θt+1/θ) = ρ ln(θt/θ) + εt+1,

where θ is the baseline value of θt, εt is an i.i.d. shock, and ρ ∈ (0, 1) is the parameter specifying the

persistence of shocks.

To solve the problem, I use the guess and verify method. I guess the value function Vt(nt) as a linear

function of nt: Vt(nt) = ψtnt, where ψt remains to be solved. Using equation (10), I rewrite equation (11)

as

nt+1 = Rdt+1nt + (Ret+1 −Rdt+1)qts
b
t .

I rewrite the Bellman equation as

ψtnt = Et

{
β(1− δ + δψt+1)max

sbt

nt+1

}

= Et

{
β(1− δ + δψt+1)max

sbt

[
Rdt+1nt +

(
Ret+1 −Rdt+1

)
qts

b
t

]}
,

subject to ψtnt ≥ θtqts
b
t . Then, I find that as long as Ret+1−R

d
t+1 > 0, the bank invests as much as it can:

qts
b
t =

ψtnt
θt

. (13)

Substituting this result into the Bellman equation,

ψt = Et

{
β(1− δ + δψt+1)

[
Rdt+1 +

(
Ret+1 −Rdt+1

) ψt
θt

]}

⇔

{
1−

β

θt
Et

[
(1− δ + δψt+1)

(
Ret+1 −Rdt+1

)]}
ψt = βEt(1− δ + δψt+1). (14)

Here, I assume

Assumption 2. θt > βEt
[
(1− δ + δψt+1)

(
Ret+1 −Rdt+1

)]
.

Note that the incentive constraint is

qts
b
t ≤

Et(1− δ + δψt+1)

θt − βEt
[
(1− δ + δψt+1)

(
Ret+1 −Rdt+1

)]nt.

As long as Assumption 2 is satisfied, the right-hand-side is positive, and it is therefore surely optimal for

the bank to make this constraint binding.
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Next, consider a bank that newly enters the market in period t. I assume that the mass of such banks

is 1 − δ. Let et denote its initial net worth, which is fully subsidized by the government. I assume that

et is equal to µ ∈ (0, 1)× 100% of the aggregate net worth in the previous period:

et = µNt−1,

where Nt is the aggregate net worth of banks. The government budget constraint is

(1− δ)(Retqt−1S
b
t−1 −RdtDt−1)︸ ︷︷ ︸

=T b
t

+T ht = (1− δ)µNt−1.

The net transfer to the household T ht is determined from this government budget constraint. The following

assumption is useful to obtain the uniqueness of the equilibrium:

Assumption 3. µ < β−δ
β(1−δ)(< 1).

This assumption means that the government’s subsidies to the new banks are not so large. The new

bank’s behavior is given by (10), (11), and (13), with nt replaced by et. Equation (14) is then implied for

the new bank as well. Since each bank’s choice sbt is linear with respect to its state variable nt, the banks’

variables are easily aggregated over all banks. The aggregate net worth of the banks Nt is the sum of the

incumbent banks’ net worth and the newly entrants’ net worth:

Nt = δ(Retqt−1S
b
t−1 −RdtDt−1) + (1− δ)µNt−1.

Then, Sbt must satisfy

qtS
b
t =

ψtNt

θt
. (15)

The leverage ratio of the banks in this economy is thus ψt/θt − 1.

Here, I summarize the timing of events during a period.

1. Aggregate financial shocks are realized. The households determine their labor supply, the final- and

intermediate goods firms produce the goods, and the intermediate goods firms pay dividends to the

equity owners.

2. The outcomes of R&D are realized. By the law of large numbers, the fraction It of the leader firms

are leapfrogged and the stock price of these firms becomes zero. Since the households and banks have

diversified equity investments, their total values of equity change from qt−1S
h(b)
t−1 to qt(1 − It)S

h(b)
t−1 .

Their gross interest income from holding equities is π+ qt(1− It)S
h(b)
t−1 = Retqt−1S

h(b)
t−1 . In this stage,

the households also obtain the gross interest income from their deposits, RdtDt−1.

3. Each bank exits in this stage with i.i.d. probability of 1 − δ ∈ (0, 1). Upon exit, the government

recovers the revenues of such banks, T bt . A mass 1 − δ of new banks enters the financial market

with their initial net worth fully subsidized by the government. The households pay or obtain the

transfer of T ht from the government.

4. The asset markets open. The households consume the final good and determine their portfolios,

qtS
h
t and Dt, respectively, and the banks buy the equities qtS

b
t .
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2.4 Market-clearing conditions

The market-clearing conditions close the model. The market-clearing condition for the final good is

Yt = Ct = 1/Pt. The labor market clears as

Lt =
1

λwt
+ κIt. (16)

The market-clearing condition of equities is Sht + Sbt = 1. Finally, the deposits Dt must satisfy

Dt +Nt = qtS
b
t . (17)

From these market-clearing conditions together with the agents’ behavior, the household’s budget con-

straint (6) is automatically satisfied from Walras’ law.

3 Equilibrium

In this section, I analytically characterize the equilibrium in the case of no aggregate risks by assuming

εt = 0 (that is, θt = θ) for all t. I drop the expectation operator Et(·). From equation (8), Rdt+1 = 1/β

for all t. Equation (9) then implies

Ret+1 =
1

β
+

Γ′(Sht )

βqt
. (18)

3.1 Equilibrium conditions

Substituting (18) into (3) and (14), the dynamics of qt and ψt are, respectively,

qt + Γ′(Sht ) = β [π + (1− It+1)qt+1] , (19)

ψt = (1− δ + δψt+1)

(
1 +

ψt
θ

Γ′(Sht )

qt

)
. (20)

The banks’ aggregate net worth in period t+ 1 is

Nt+1 = δ
(
Ret+1qtS

b
t −Rdt+1Dt

)
+ (1− δ)µNt.

Substituting equations (15), (17), and (18) into the above equation, the dynamics of the banks’ aggregate

net worth is

Nt+1 =

[
δ

β

(
1 +

ψt
θ

Γ′(Sht )

qt

)
+ (1− δ)µ

]
Nt. (21)

Note that Nt is a state variable and thus its initial value N0 is historically predetermined, whereas qt and

ψt are forward-looking variables, so their initial values of q0 and ψ0 are determined endogenously. The

dynamic system (19)–(21) includes Sht and It+1. From Sht + Sbt = 1 and equation (15), Sht is

Sht = 1−
ψtNt

θqt
. (22)
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I focus on the case of It > 0, which implies wt = qt/κ from (4). From the condition of the household’s

labor supply (7) and the labor market equilibrium (16),

It+1 =
1

κ
−

1 + λζ

λ

1

qt+1
. (23)

Thus, the equilibrium conditions in the deterministic economy are given by the dynamic system of (19)–

(23).

3.2 Balanced growth equilibrium

As in the endogenous growth literature, I define the balanced growth equilibrium as the equilibrium with

the variables in their real terms growing over time at the same rate. In this type of equilibrium for

this model, the endogenous variables (qt, ψt, Nt, It, S
h
t ) in (19)–(23) become stationary. I omit the time

subscript here.

Equation (21) with Nt = Nt+1 implies

1 +
ψ

θ

Γ′(Sh)

q
= B∗, (24)

where

B∗ ≡
β[1− (1− δ)µ]

δ
.

Note that B∗ depends only on the exogenous parameters and Assumption 3 ensures B∗ > 1. Substituting

this into (20) and imposing ψt = ψt+1 yields the stationary value of ψ:

ψ∗ =
(1− δ)B∗

1− δB∗
> 0.

Hereafter, a superscript asterisk over a variable represents its stationary value. Substituting the obtained

ψ∗ back into equation (24), I obtain the relationship between the equity price q and the households’ equity

purchases Sht :

q =
δψ∗

[β − δ − β(1− δ)µ] θ
Γ′(Sh), (25)

where the sign of the denominator is positive from Assumption 3. Since the disutility function of the

households’ direct equity purchases is strictly convex, this equation shows a positive relationship between

q and Sh. Equation (25) represents their relationship from the banks’ perspective. When Sh becomes

larger, households become more reluctant to hold equities directly unless their rate of return becomes

sufficiently higher. Indeed, Re−Rd = Γ′(Sh)/(βq) experiences upward pressure. This upward pressure in

turn has a positive impact on the banks’ aggregate net worth, and hence they want to purchase more of

these equities. In the stationary equilibrium where banks’ net worth is constant, such an increase in their

equity demand puts upward pressure on the equity price. As equation (24) shows, the upward pressure

on Sh is offset by a rise in the equity price such that Re −Rd remains constant.

The economy has the other relationship between q and Sh. By imposing qt = qt+1 in (19), substituting

(23) into the resulting equation, and using π = 1− 1/λ, one can find the following negative relationship
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between q and Sh:

q =
β(1 + ζ)− Γ′(Sh)

1− β(1− 1/κ)
, (26)

where the sign of the denominator is positive. Equation (26) indicates the relationship between q and

Sh from the households’ perspective. The intuition is straightforward. The increase in Sh makes the

households less willing to hold equities unless their rate of return becomes sufficiently higher. Therefore,

this unwillingness depresses the unit cost of the equity purchase q.

From (25) and (26), the stationary value of the equity price, denoted by q∗, is

q∗ =
β(1 + ζ)δψ∗

[1− β(1− 1/κ)]δψ∗ + [β − δ − β(1− δ)µ]θ
. (27)

Then, the households’ equity holdings Sh∗ are determined accordingly. With Γ′(0) adequately small, Sh∗

is positive. I define γ as γ ≡ Γ′(1). From (25) and (26), one can easily obtain

Sh∗ < 1 ⇔ γ >
q∗

δψ∗
[β − δ − β(1− δ)µ]θ.

As long as this inequality is satisfied, equity holdings are diversified between banks and households.

After obtaining q∗, the rate of innovation I∗ is determined as:

I∗ =
1

κ
−

1 + λζ

λq∗
,

which is positive if and only if 3

q∗ >
κ(1 + λζ)

λ
.

Then, all real variables, such as consumption Ct, real wage wt/Pt, real equity price qt/Pt, and so on, grow

at the same rate as 1/Pt. Using (1) and (2),

1/Pt =
(1 + gZ)

t

wt
(λ)

∫
1

0
(Kt(ω)−1)dω. (28)

Since the wage rate becomes constant and the law of large numbers implies
∫ 1
0 (Kt(ω)−Kt−1(ω))dω = I∗,

it follows that lnPt−1 − lnPt = ln(1 + gZ) + I∗ lnλ. Then, I obtain the balanced growth rate as

g∗ = gZ + I∗ lnλ,

where g∗ ≃ ln(1 + g∗) and gZ ≃ ln(1 + gZ) are used. Finally, we have to check that Assumption 2 is

satisfied in the obtained balanced growth equilibrium. In this non-stochastic economy, this assumption is

rewritten as

θ > (1− δ + δψt+1)
Γ′(Sht )

qt
.

Since Γ′(Sh∗)/q∗ = θ(B − 1)/ψ∗ holds from (24) and 1− δ + δψ∗ = ψ∗/B holds from (20), I rewrite the

inequality above as θ > θ(B − 1)/B, which is necessarily satisfied.

3 Since κ > 1, I∗ < 1 is guaranteed without any restrictions.
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(a) (b)

Figure 1: Comparative statics of the balanced growth equilibrium

Proposition 1. There exists a unique balanced growth equilibrium with a positive growth rate and diver-

sification of equity holdings if

κ(1 + λζ)

λ
< q∗ <

δψ∗γ

[β − δ − β(1− δ)µ]θ
.

Hereafter, I focus on the case in which q∗ satisfies this inequality.

3.3 Comparative statics

The model is tractable enough to conduct a comparative statics analysis of the balanced growth equilib-

rium, from which one can gain insight on inner workings of the model. In panels (a) and (b) of Figure 1,

the upward- and downward-sloping curves represent equations (25) and (26), respectively. Generally, a

larger θt means a decrease in the banks’ leverage ratio; that is, the banks’ borrowing capacity decreases.

Since θ does not affect ψ∗ in the balanced growth equilibrium here, the variation of θ directly corresponds

the difference in the banks’ leverage ratios. In the economy where θ is large, the banks cannot finance their

equity investment by external funds. As panel (a) of this figure shows, this leads households to purchase

more equities directly. Since the households are reluctant to do so because of their psychic utility costs,

the unit cost of equities must fall. Consequently, the equity price q∗ is low in the economy with a large

θ. This in turn makes the R&D activities less profitable for the potential entrants. Accordingly, the rate

of innovation in the balanced growth equilibrium I∗ also becomes low.

Proposition 2. In the balanced growth equilibrium, a larger θ results in both a lower growth rate and a

lower equity price.

Proof. See the Appendix.

Note that such a simultaneous decline never occurs when the R&D technology just changed. In the

economy where κ is large, it becomes more costly for a potential entrant to conduct R&D activities.

Then, through the entrants’ free entry condition, the benefit of R&D must be high. As panel (b) shows,

13



this induces upward shifts in the curve representing equation (26). Thus, in this case, the innovation rate

becomes low, but the equity price becomes high.

The banks’ total values are given by ψ∗N∗, where θ does not affect ψ∗. From (22), the banks’ total

net worth N∗ is

N∗ =
θq∗(1− Sh∗)

ψ∗
.

With an increase in θ, the term q∗(1− Sh∗) decreases simply because the banks’ asset holdings decrease.

Simultaneously, an increase in θ has the direct effect of increasing N∗. In the Appendix, the following

lemma is shown to hold.

Proposition 3. A larger θ leads to a lower net worth for the banks if and only if f(Sh∗) < Sh∗/Sb∗; that

is,
dN∗

dθ
⋛ 0 ⇔ f(Sh∗) ⋛ Sh∗/Sb∗,

where function f(Sh∗) is given by f(Sh∗) ≡ Sh∗Γ′′(Sh∗)/Γ′(Sh∗) > 0.

Proof. See the Appendix.

The term Sh∗/Sb∗ is the ratio of households’ to banks’ direct equity purchases. Function f(Sh∗)

represents the elasticity of the marginal disutility for the households’ direct equity holdings. For example,

if function Γ(Sh) is

Γ(Sh) = γ
(Sh)1+η

1 + η
, η > 0, (29)

then f(Sh) = η > 0 for all Sh.

4 Numerical analysis of transitory financial shocks

The comparative statics results show the long-run performance of the economies that have different

baseline θ values. In this section, I examine how a transitory shock to θt influences the economy.

4.1 Calibration

Hereafter, I specify the disutility function Γ as equation (29). There are 10 structural parameters in the

model. Table 1 reports the results of calibration. A period in the model corresponds to one quarter of a

year. I set the discount factor at β = 0.99, which is standard in the literature. I set the banks’ survival

probability at δ = 0.93, as in Gertler et.al. (2020). I set the degree of quality improvement at λ = 1.15.

From the analytical result in Proposition 3, I expect that different values of η will have different

impacts on the banks, as would a transitory change in θt. As in Table 1, I set Sh∗ = Sb∗ = 0.5 for

simplicity. Proposition 3 leads to the conjecture that whether or not η exceeds one is critical. Then, I

consider three cases: a low value (η = 0.8), an intermediate value (η = 1), and a large value (η = 1.2). In

the Appendix, it is shown that this variation in η induces only a variation in γ.

I set the other parameters such that some variables in the balanced growth equilibrium achieve their

target values. The Appendix provides the calibration details. I set the growth rate along the balanced
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Table 1: Parameters

Parameter Value Source/Target

β 0.99 Exogenously chosen

δ 0.93 Exogenously chosen

λ 1.15 Exogenously chosen

η (i)0.8, (ii)1, (iii)1.2 Exogenously chosen

γ (i)0.037, (ii)0.042, (iii)0.049 Sh∗ = 0.5

ζ 2.18 L∗ = 0.3

κ 1.38 κI∗/L∗ = 0.07

gZ 0.0028 g∗ = 1.021/4 − 1

µ 0.206 Re −Rd = 1.021/4 − 1

θ 0.302 q∗Sb∗/N∗ = 10

Table 2: Balanced growth rate

Variable Value Description

I∗ 0.015 Innovation rate

I∗ lnλ 0.0021 (≃ 0.85% per year) Growth rate by R&D

gZ 0.0028 (≃ 1.15% per year) Growth rate by other factors

growth path at g∗ = 1.021/4 − 1 ≃ 0.005. I set aggregate hours of work at L∗ = 0.3 and the employment

share of R&D activities at 7%. Thus, κI∗ = 0.021. I set the target value of Sh∗ at 0.5, and the spread

at Re − Rd = 1.021/4 − 1. Finally, I set the banks’ leverage at q∗Sb∗/N∗ = 10, as Gertler and Kiyotaki

(2015) and Gertler et.al. (2020) also use this value. Table 2 reports the decomposition of the balanced

growth rate.

4.2 Impulse responses

Suppose that the economy is on the balanced growth path in period 0. In period 1, θ1 unanticipatedly

increases by 50% relative to its baseline value θ. Then, the economy experiences no other shocks and θt

gradually recovers to its baseline according to ln(θt/θ) = ρ ln(θt−1/θ). Following the existing studies, I

set the persistence of financial shocks at ρ = 0.9. I replace θ with θt in the dynamic system (19)–(23) and

log-linearize this system around (q∗, ψ∗, N∗, Sh∗, I∗, θ). I then compute the impulse response functions

of these and other key variables. The Appendix provides the log-linear approximation of the dynamic

system.

Figure 2 illustrates the results of the transitory adverse financial shock. The horizontal axis is the

number of quarters. I plot the percentage deviations in levels of the variables from those without shocks.

The first panel shows the financial shock. The second to fifth panels display the impulse response functions

of the equity price qt, R&D investment It, and the banks’ value ψtNt, respectively. The directions of the

transitory changes are the same as the long-run changes obtained from the comparative statics. In

particular, as expected, the ranking between η and Sh∗/Sb∗ is critical to determine the response in the
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Figure 2: Impulse response functions (horizontal axis: quarter; vertical axis: percentage deviation from

the trends without shocks)

banks’ values.

In the second row, the four panels show the responses of major macroeconomic variables. In this

model, the real GDP in period t is

GDPt ≡
wtLt + π

Pt
,

where the numerator is the sum of wage income and income gain.4 Equation (28) provides the price of

the final good Pt. In this model, the term
∫ 1
0 (Kt(ω)− 1)dω is the average number of innovations before

period t. By the law of large numbers, it is given by
∑s−1

t=0 Is. Then, it follows that

1/Pt =
(1 + gZ)

t

wt
(λ)

∑s−1

t=0
Is .

This clearly shows that even though the contraction of R&D activities is transitory, its impact on the

real variables is cumulative, and hence their drops are persistent.

5 Conclusion

In some macroeconomic models with financial frictions, an adverse financial shock successfully explains

a drop in GDP, but it is often associated with a stock price boom. The latter prediction is at odds with

the observations in real recessions. This study develops a simple macroeconomic model featuring banks,

financial frictions, and firms’ R&D activities to tackle this problem. Both the analytical and numerical

investigations show that a shock hindering the banks’ financial intermediary function is a key to generate

both a prolonged recession and a drop in the firms’ equity prices.

4From the labor market equilibrium (16), the numerator is equivalent to 1 + qtIt; that is, the sum of value added from

intermediate goods production and R&D activities.
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The model in this study is highly stylized because the purpose here is to propose a clear-cut solution

to the problem. Therefore, developing a model more suitable for quantitative analysis and examining the

effects of the same shock would be a promising extension. Nonetheless, the results in this study provide

a benchmark. In addition, because of its analytical tractability, the model is open to extensions. Among

others, it would be interesting to introduce stock price bubbles and examine a self-fulfilling financial shock

after a bubble bursts. In this model, I follow the literature in that the financial shock is exogenous for

the sake of comparison. Then, it would be natural to examine the outcome if the shock is self-fulfilling.
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Appendix to “Financial Shocks to Banks, R&D Investment, and

Recessions”

Ryoji Ohdoi

Tokyo Institute of Technology

Appendix A Proof of Propositions 2 and 3

This section shows the comparative statics for the balanced growth equilibrium, which includes the proof

of Propositions 2 and 3. The variables q∗, Sh∗, I∗, and N∗ are determined from

q∗ =
δψ∗

β − δ − β(1− δ)µ

Γ′(Sh∗)

θ
,

q∗ =
β(1 + ζ)− Γ′(Sh∗)

1− β + β/κ
,

I∗ =
1

κ
−

1 + λζ

λq∗
,

N∗ =
θq∗(1− Sh∗)

ψ∗
.

Note that ψ∗ does not depend on θ or κ. From these equations,

dq∗

q∗
=
Sh∗Γ′′

Γ′

dSh∗

Sh∗
−
dθ

θ
, (30)

dq∗

q∗
= −a

Sh∗Γ′′

Γ′

dSh∗

Sh∗
+ b

dκ

κ
, (31)

dI∗

I∗
=

1 + λζ

λq∗I∗
dq∗

q∗
−

1

κI∗
dκ

κ
, (32)

dN∗

N∗
=
dq∗

q∗
−

Sh∗

1− Sh∗
dSh∗

Sh∗
+
dθ

θ
, (33)

where

a ≡
Γ′

β(1 + ζ)− Γ′
> 0,

b ≡
β/κ

1− β + β/κ
∈ (0, 1).

The value of a is positive as long as q∗ > 0. From (30) and (31),

dq∗

q∗
=

1

1 + a

(
−a

dθ

θ
+ b

dκ

κ

)
, (34)

dSh∗

Sh∗
=

1

1 + a

Γ′

Sh∗Γ′′

(
dθ

θ
+ b

dκ

κ

)
. (35)

Then,

dq∗/q∗

dθ/θ
< 0,

dq∗/q∗

dκ/κ
> 0,

dSh∗/Sh∗

dθ/θ
> 0,

dSh∗/Sh∗

dκ/κ
> 0.
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Substituting (34) into (32) and using the fact that 1+λζ
λq∗I∗ = 1

κI∗ − 1 > 0,

dI∗

I∗
=

1

1 + a

(
1

κI∗
− 1

)(
−a

dθ

θ
+ b

dκ

κ

)
−

1

κI∗
dκ

κ

=
−a

1 + a

(
1

κI∗
− 1

)
dθ

θ
−

1

1 + a

(
1 + a− b

κI∗
+ b

)
dκ

κ
,

which implies
dI∗/I∗

dθ/θ
< 0,

dI∗/I∗

dκ/κ
< 0.

Then, Proposition 2 holds.

Substituting (34) and (35) into (33) yields

dN∗

N∗
=

1

1 + a

(
1−

Γ′

Sh∗Γ′′

Sh∗

1− Sh∗

)(
dθ

θ
+ b

dκ

κ

)
.

Then,
dN∗/N∗

dθ/θ
⋛ 0 ⇔

Sh∗Γ′′

Γ′
⋛

Sh∗

1− Sh∗
,

which shows Proposition 3.

Appendix B Calibration details

The following parameters are chosen exogenously: β = 0.99, δ = 0.93, and λ = 1.15. Since the value

of η affects the comparative statics, I consider three cases: a low value (η = 0.8), an intermediate value

(η = 1), and a large value (η = 1.2). I set the aggregate hours of work in the balanced growth equilibrium

at L∗ = 0.3, and the employment share of R&D activities at 7%. Then,

L∗
R&D ≡ κI∗ = 0.07L∗ = 0.021.

The wage rate w∗ is given by w∗ = 1/[λ(L∗ − L∗
R&D)]. The value of ζ is given by

ζ = w∗(1− L∗).

I set the target value of Sh∗ at 0.5. I also assume that the spread is 2% per year: Re −Rd = 1.021/4 − 1.

Then, κ, γ, q∗, and I∗ are determined from

Re −Rd =
γ(Sh)η

βq∗
,

q∗ + γ(Sh)η = βπ + β(1− I∗)q∗,

q∗ = w∗κ,

L∗
R&D = κI∗.

Here, note that the variation of η induces only the variation of γ. From the last two equations,

q∗I∗ = w∗L∗
R&D︸ ︷︷ ︸

already found

.
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Table 3: Eigenvalues of matrix J

(i) 3.6542 0.9570 1.0214 0.9000

(ii) 3.6578 0.9538 1.0249 0.9000

(iii) 3.6614 0.9510 1.0281 0.9000

Substituting this into the second equation yields

(1− β)q∗ + γ(Sh)η = β(π − w∗L∗
R&D).

Then, q∗ and γ are determined from

(
β(Re −Rd) −(Sh)η

1− β (Sh)η

)(
q∗

γ

)
=

(
0

β(π − L∗
R&D)

)
.

This equation shows that η does not affect q∗. Accordingly, I∗ and κ are also independent of η.

I choose the balanced growth rate g∗ such that the growth rate is 2% per year: 1 + g∗ = 1.021/4. The

rate of exogenous technological progress gZ is determined from gZ = g∗ − I∗ lnλ. Following Gertler and

Kiyotaki (2015) and Gertler et.al. (2020), I set the banks’ leverage q∗Sb∗/N∗ at 10. Since q∗Sb∗ is already

known, this determines the value of N∗. Furthermore, it follows that

ψ∗/θ = 10.

In the balanced growth equilibrium, the following equations hold:

1 +
ψ∗

θ

Γ′(Sh∗)

q∗︸ ︷︷ ︸
already found

= B∗ =
β[1− (1− δ)µ]

δ
,

where the first equality comes from (24), and the second one comes from the definition of B∗. Then, µ is

determined. Finally, ψ∗ and θ are determined from

ψ∗ =
(1− δ)B∗

1− δB∗
,

and θ = ψ∗/10.

Appendix C Log-linear approximation

Let a hat over a variable indicate the log-deviation of the variable from its stationary value. For ex-

ample, q̂t = ln(qt/q
∗) ≃ (qt − q∗)/q∗. The log-linear approximation of the system (19)–(23) around
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(q∗, ψ∗, N∗, Sh∗, I∗) is

q∗q̂t + ηγ(Sh∗)ηŜht = β(1− I∗)q∗q̂t+1 − βq∗I∗Ît+1,

ψ̂t =
δψ∗

1− δ + δψ∗
ψ̂t+1 + B̂t,

B̂t =
B∗ − 1

B∗
(ψ̂t + ηŜht − q̂t − θ̂t),

N̂t+1 =
δ

β
BB̂t + N̂t,

Ŝht =
1− Sh∗

Sh∗
(q̂t − ψ̂t − N̂t + θ̂t),

Ît+1 =
1 + λζ

λq∗I∗
q̂t+1,

where Bt = 1 +
ψtΓ′(Sh

t )
θtqt

> 1. These equations provides the following autonomous dynamic system:




q̂t+1

ψ̂t+1

N̂t+1

θ̂t+1




=




q∗+X∗

βq∗(1−1/κ) − X∗

βq∗(1−1/κ) − X∗

βq∗(1−1/κ)
X∗

βq∗(1−1/κ)
H∗(1−ηα∗)

Ψ∗

1−H∗(1−ηα∗)
Ψ∗

H∗ηα∗

Ψ∗

H∗(1−ηα∗)
Ψ∗

−M∗(1− ηα∗) M∗(1− ηα∗) 1−M∗ηα∗ −M∗(1− ηα∗)

0 0 0 ρ




︸ ︷︷ ︸
≡J




q̂t

ψ̂t

N̂t

θ̂t



,

where

α∗ ≡ (1− Sh∗)/Sh∗,

X∗ ≡ γη(Sh∗)ηα∗,

H∗ ≡
B∗ − 1

B∗
,

M∗ ≡
δ(B∗ − 1)

β
,

Ψ∗ =
1− δ + δψ∗

δψ∗
.

Table 3 reports the eigenvalues of matrix J, where the italic numbers ((i), (ii),...) correspond to

the calibration scenario. This table shows that in all three scenarios, the dynamic system has two

eigenvalues with absolute values less than 1. Thus, the impulse response function of each variable is

uniquely determined in all three cases because the system has two state variables (Nt and θt) and two

jump variables (qt and ψt).
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