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Abstract

I study the identification of time preferences in dynamic discrete choice

models. Time preferences play a crucial role in these models, as they af-

fect inference and counterfactual analysis. Previous literature has shown that

observed choice probabilities do not identify the exponential discount factor

in general. Recent identification results rely on specific forms of exogenous

variation that impact transition probabilities but not instantaneous utilities.

Although such variation allows for set identification of the respective param-

eter, point identification is only achieved in limited cases. To circumvent

this shortcoming, I focus on models in which economic decision-makers might

be restricted in their choice sets. I show that time preferences can be iden-

tified provided that there is variation in the probability of being restricted

that does not affect utilities or transition probabilities. The derived exclusion

restrictions are easy to interpret and potentially fulfilled in many empirical

applications.
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1 Introduction

Dynamic discrete choice models are used to estimate the behaviour of economic

agents and analyse counterfactual policies in numerous fields.1 The discount factor

is crucial in these models, as it determines the reactions to expected future events.

In empirical applications, researchers are often forced to set the discount factor, as

it cannot be identified from observed probabilities without further restrictions (see

Magnac & Thesmar, 2002; Rust, 1994). Time preferences appear to be stable over

time (Meier & Sprenger, 2015) but vary substantially across contexts and popula-

tions (Frederick, Loewenstein, & O’Donoghue, 2002). Thus, setting the discount

factor to a predetermined value can lead to incorrect inference and misleading coun-

terfactual analysis. Recent literature (Abbring & Daljord, 2020b; Fang & Wang,

2015) on the identification of time preferences has focused on variation in transition

probabilities but is only able to point identify the discount factor in limited cases.2

This paper provides a new class of instruments – changes in probabilistic choice

restrictions – to point identify the discount factor. A choice restriction occurs when

economic agents are not able to choose from all potential alternatives. Examples of

such restrictions are common. In labor economics, individuals can be restricted in

their choices: When individuals are unemployed, they need to receive a job offer to

be able to choose a positive number of working hours. In industrial organizations,

choices might be restricted when mergers are subject to approval. In marketing, the

availability of products might be restricted when products are no longer sold or out

of stock. In environmental economics, the amount of emissions a firm can produce

in a given period might be restricted with uncertainty stemming from changes in

environmental regulations.

1Keane and Wolpin (2009) provide an overview of these fields. Recent examples include Blun-
dell, Costas-Dias, Meghir, and Shaw (2016) in labor economics, Miravete and Palacios-Huerta
(2014) in industrial organizations, De Groote and Verboven (2019) in environmental economics,
and Blevins, Khwaja, and Yang (2018) in marketing.

2Although Fang and Wang (2015) claim to generically identify various parameters related to
time preferences, Abbring and Daljord (2020a) show that their proposed exclusion restriction is
not sufficient for identification.
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I show that exogenous variation in the probability of being restricted in one’s

choice directly point identifies the discount factor of dynamic discrete choice mod-

els. Identification is achieved without requiring the normalization of one alterna-

tive’s utility. Although this is a standard approach in empirical applications, it

can lead to misleading counterfactual policy simulations in some cases (see, e.g.,

Kalouptsidi, Scott, & Souza-Rodrigues, 2019; Norets & Tang, 2014). Furthermore,

the identification approach does not require that models are stationary. In contrast

to Magnac and Thesmar (2002), my proposed exclusion restriction is formulated on

instantaneous utilities and does not rely on future value functions. This simplifies

the interpretation and makes it easier to find variables that satisfy the exclusion

restriction in empirical applications.

Exploiting variation in choice restrictions also overcomes the issue of set identifi-

cation of previous proposed exclusion restrictions (as in Abbring & Daljord, 2020b)

by directly point identifying the discount factor. The derived formulas for the expo-

nential discount factor are easy to interpret and align with economic intuition. For

finite horizon models, time preferences can also be identified in short panels and for

models in which the reachable part of the state space changes over time.

Dynamic discrete choice models that include probabilistic choice restrictions nest

the standard dynamic discrete choice models as discussed by Magnac and Thesmar

(2002) or Abbring and Daljord (2020b). Standard models limit the probabilities to

be restricted to zero in all cases. The framework presented here also permits the

probability of being restricted in the future to be either one or zero. Thus, settings

where choice sets vary non-stochastically depending on previous choices are nested.

The vast majority of dynamic discrete choice models can be easily adjusted to

include choice restrictions. One possibility of a minimal adjustment is the following:

In principle, choices are never restricted, and economic agents can always choose

from all alternatives. To identify the exponential discount factor in such settings, it

is sufficient that a state exists that provides the same utility and the same transition
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probabilities as another state. This state must then lead to a choice set that is

reduced by at least one alternative.

Consequently, it is easy to adjust the vast majority of dynamic discrete choice

models in such a way that the exclusion restriction is fulfilled. For instance, in the

classic bus-engine replacement example of Rust (1987), the following adjustments

lead to the identification of the exponential discount factor. Assume that one bus

engine is in stock. Once a bus engine is replaced, Harald Zurcher has to order a new

engine. A restriction is present if there are random strikes or other reasons that a

new bus engine cannot be delivered immediately. As a result, Harold Zurcher no

longer has the option to replace a bus engine in two periods in a row. This variation

would be sufficient to point identify the exponential discount factor in this model

since it neither affects the transition probabilities of the buses’ mileage nor Harold

Zurcher’s instantaneous utilities.

In most other contexts, it is also possible to find potential restrictions that permit

point identification of time preferences. Models in labor economics often include

choice restrictions in the form of job offers (see, for example, Adda, Dustmann, &

Stevens, 2017). When explaining home buying choices for different neighbourhoods

(see, for example Bayer, McMillan, Murphy, & Timmins, 2016), the availability of

homes in some neighbourhoods might be restricted. Exogenous variation in this

availability can be sufficient for the identification of households’ time preferences.

For De Groote and Verboven (2019), who study the adoption of solar photovoltaic

systems, the availability of specific systems might vary due to strikes or supplier

shortages. Such exogenous variation can then be exploited to identify discount

functions.

The literature on the identification of dynamic discrete choice models (e.g., Ab-

bring, 2010; Arcidiacono & Miller, 2020; Chen, 2017; Hu & Sasaki, 2018; Srisuma,

2015) has discussed various aspects of these models, with only a few papers provid-

ing conditions to identify time preferences. The identification of time preferences is
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pivotal for the identification of alternative-specific utilities. Magnac and Thesmar

(2002) demonstrate that it is not possible to identify utilities if the discount factor

is not known. Conversely, once the discount factor is identified and given the distri-

bution of preference shocks and the normalization of one utility, all other utilities

can be uniquely determined.3

Magnac and Thesmar (2002) are among the first to examine how the exponential

discount factor can be recovered from observed choices. Their derived exclusion

restriction requires two states that have different expected streams of utilities for

some choices but equal expected streams of utilities for at least one choice. The states

should also provide the same instantaneous utilities. The requirements on future

expected utility streams increase the difficulty of finding such states in empirical

applications.

Abbring and Daljord (2020b) extend the identification approach of Magnac and

Thesmar (2002). They develop an exclusion restriction on instantaneous utilities,

avoiding requirements on future utility streams. Their exclusion restriction requires

two states that have equal instantaneous utilities but different transition probabili-

ties. The identifying equation includes an infinite geometric sum in the exponential

discount factor. As a result, time preferences are only set identified. Excluding

discount factors that are close to one, the set consists of a finite number of discount

factors. Abbring and Daljord (2020b) discuss several examples that allow for a re-

duction in the number of potential solutions, for example, by relying on the concept

of finite dependence (see Arcidiacono & Miller, 2019).

Overall, variations in transition probabilities only lead to point identification

if at least one additional requirement is met. Abbring and Daljord (2020b) also

have to rely on the normalization of one alternative’s utility. The exclusion restric-

tion proposed in this paper overcomes these issues and directly point identifies the

exponential discount factor.

3This identification result carries over to the setting with choice restrictions and is discussed in
section 5.
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The remainder of the paper is structured as follows: Section 2 introduces the

general model. Sections 3 and 4 discuss identification in infinite and finite horizon

models, respectively. Section 5 provides sufficient conditions to identify instanta-

neous utilities once time preferences are identified. Section 6 concludes the paper.

2 Model

In each period t ∈ {0, . . . , T}, where T is either finite or infinite, each agent has

to choose an alternative from a finite set of alternatives. The set of alternatives is

denoted by D and contains K elements. With some probability, agents are forced

to choose an alternative from a subset of D, i.e., from a restricted choice set. The

restricted choice set that agents might face in a given period depends on the alter-

native d chosen in the previous period. Restricted choice sets are denoted by D̃ (d).
The probability that agents have to choose from D̃ (d) instead of D depends on d

and the state x ∈ X in the previous period, where X contains a finite number of J

elements. In particular, if the state is currently x and agents choose d, then in the

next period, they have to choose from D̃ (d) with probability π (d, x) and can choose

from D with probability 1− π (d, x). The probabilities π (d, x) are called restriction

probabilities.4 I assume that π (d, x) > 0 for at least one pair (d, x) ∈ D × X .
Choosing alternative d, given state x, provides agents with the instantaneous

utility u⋆ (d, x, ηd), where ηd denotes an alternative-specific preference shock. Pref-

erence shocks are assumed to be mean-zero type-1 extreme value distributed and

are assumed to be independent over all d ∈ D and all t ∈ {0, . . . , T}.5 It is as-

sumed that instantaneous utility is additively separable in the preference shock,

4Note that these restrictions are not the same as those discussed in McFadden (1978). The
probabilistic choice restrictions in McFadden (1978) are introduced to reduce the computational
burden for the researcher in problems with a vast number of alternatives. Restricted choice sets
should also not be interpreted as consideration sets, as for instance, in Shocker, Ben-Akiva, Boccara,
and Nedungadi (1991) or Goeree (2008). Consideration sets exclude alternatives that agents are
not aware of and thus do not consider. This paper assumes that agents are fully aware of potential
restrictions and can base their decisions on future probabilities to be restricted.

5The results extend to any other continuous distribution.
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i.e., u⋆ (d, x, ηd) = u (d, x) + ηd. The vector η = {η1, . . . , ηK} contains the preference

shocks related to all alternatives.

The probability of observing a certain state xt in period t depends on both the

choice dt−1 and the state xt−1 in period t − 1. In particular, state xt occurs with

the transition probability q (xt ∣dt−1, xt−1 ). It is assumed that transition probabil-

ities (and restriction probabilities) do not depend on preference shocks ηt. This

assumption is one variant of the conditional independence assumption (see Rust,

1987).

The order of events in each period t is the following. First, the choice set is

determined, and agents observe the state xt and preference shocks ηt. Second, agents

choose one alternative dt. Finally, agents collect instantaneous utility u⋆ (dt, xt, ηdt,t),
and the period ends.

In period t, agents maximize their total expected discounted stream of instanta-

neous utilities v⋆ (dt, xt, ηdt,t). The additive separability of u (dt, xt) and the condi-

tional independence assumption imply v⋆ (dt, xt, ηdt,t) = v (dt, xt) + ηdt,t, with

v (dt, xt) = u(dt, xt)
+ β ∑

xt+1

∈X

[ (1 − π (dt, xt))E [max
j∈D
{v (j, xt+1) + ηj,t+1}]

+ π (dt, xt)E [ max
j∈D̃(dt)

{v (j, xt+1) + ηj,t+1}] ]q (xt+1 ∣dt, xt ) ,
(1)

where β denotes the discount factor. Under the assumption made about the distri-

bution of the preference shocks, (1) can be expressed as

v (dt, xt) = u(dt, xt)
+ β ∑

xt+1

∈X

⎡⎢⎢⎢⎢⎣
(1 − π (dt, xt)) ln(∑

j∈D
exp (v (j, xt+1)))

+ π (dt, xt) ln⎛⎝ ∑
j∈D̃(dt)

exp (v (j, xt+1))⎞⎠
⎤⎥⎥⎥⎥⎦
q (xt+1 ∣dt, xt ) .

(2)
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Further discussion distinguishes between observed and genuine choice probabil-

ities. The observed choice probabilities describe the probability that agents choose

alternative dt given the current period’s state xt and the choice dt−1 and state xt−1

in period t − 1. They reflect a combination of preferences and possible choice re-

strictions. The observed choice probabilities are denoted by Pr (dt ∣xt, dt−1, xt−1 ).
Genuine choice probabilities describe the probability that agents choose alternative

dt from a specific choice set D̂ ∈ {D, D̃ (dt−1) ;dt−1 ∈ D}, given state xt. They exclu-

sively reflect preferences over the alternatives included in the respective choice set.

Genuine choice probabilities are denoted by GPr (dt ∣D̂, xt ).
I concentrate on the identification of the time preference parameter β in (2)

because it is essential to the identification of the model.6 Suppose that data are

available, such that all transition, restriction, and genuine choice probabilities can

be derived. Then, the model is point identified if and only if utilities can be uniquely

determined from these probabilities. As discussed in section 5, an adapted version

of Proposition 2 of Magnac and Thesmar (2002) is fulfilled: Given the distribution

of preference shocks and the normalization of one alternative’s utility, all other

utilities depend on the discount factor β. Thus, without knowing β, utilities cannot

be uniquely determined, and the model is not identified.

The presented model is closely related to the dynamic discrete choice model

discussed by Magnac and Thesmar (2002). The key difference between the two

frameworks is that Magnac and Thesmar (2002) limits all restriction probabilities

to zero. I highlight two potential paths to minimally adjust the standard model

to fit the discussed framework. One potential adjustment introduces a non-zero re-

striction probability for exactly one choice-state combination. The respective choice

set includes all but one alternative of D. Another potential adjustment makes an

additional alternative available after one choice-state combination. To do so, it is

assumed that all restriction probabilities are equal to one except for one choice-state

6Note that I focus on infinite-horizon models and finite-horizon models, for which the last period
cannot be used to identify instantaneous utilities.
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combination. All restricted choice sets exclude the same single alternative. Note

that in addition to these two paths, restriction probabilities can be limited to ei-

ther equal one or zero. Thus, the presented framework also allows for settings with

deterministic changes in the set of alternatives.

For ease of exposition, I drop the subscript t henceforth and denote variables for

period t + 1 with a prime. The following sections also assume that restriction and

genuine choice probabilities are known. Appendix A discusses the identification of

restriction probabilities when these cannot be recovered from other data sources.

Appendix B discusses the identification of genuine choice probabilities.

3 Infinite horizon

I assume that the data {GPr (d ∣D, x), q (⋅ ∣d, x), π (d, x); (d, x) ∈ D ×X} are known

for at least two consecutive periods. Note that the genuine choice probabilities

conditioned on choice set D identify the genuine choice probabilities conditioned on

any restricted choice set D̃ (⋅).7 I do not make any assumptions about stationarity.

Fix n′ ∈ D. Subtract the value function v (n′, x′) from both terms within the

square brackets of (2), and add it once to neutralize the subtraction. As a result,

the following can be derived:

v (d, x) = u (d, x) + β ∑
x′∈X
[ (1 − π (d, x))m (D, n′, x′)

+ π (d, x)m (D̃ (d) , n′, x′) + v (n′, x′) ]q (x′∣d, x) ,
(3)

where m (D̂, n′, x′) = ln (∑j∈D̂ exp (v (j, x′)) (exp (v (n′, x′)))−1) for a given choice set

D̂ ∈ {D, D̃ (d) ;d ∈ D}. Each m (⋅, ⋅, ⋅) can be directly recovered from a transformation

of the respective genuine choice probability

m (D̂, n′, x′) = − ln (GPr (n′ ∣D̂, x′ )) ,
7For details, see appendix B.

8



Identification of Time Preferences Ulrich C. Schneider

as long as n′ ∈ D̂ (see Arcidiacono & Miller, 2011). If n′ ∉ D̂, the assumption of

the independence of irrelevant alternatives can be exploited, and m (D̂, n′, x′) is

identified by

m (D̂, n′, x′) = ln(∑j∈D̂GPr (j ∣D, x′ )
GPr (n′ ∣D, x′ ) ) .

Let m (D̂, n′), q (d, x) and v (n′) denote vectors of size J × 1, for which the j-th

element is m (D̂, n′, xj), q (xj ∣d, x) and v (n′, xj), respectively. Using this notation,

(3) can be expressed as

v (d, x) = u (d, x) + β[(1 − π (d, x))q (d, x)⊺m (D, n′)
+ π (d, x)q (d, x)⊺m (D̃ (d) , n′) + q (d, x)⊺v (n′)], (4)

where the superscript ⊺ denotes the transpose.

Hotz and Miller (1993) show that for a given state x, the difference between

the value functions of two alternatives can be identified using a function of their

choice probabilities. For the presented model, the difference in the logarithms of

the genuine choice probabilities of two alternatives ℓ, r ∈ D determines the difference

between their value functions:

ln (GPr (ℓ ∣D, x)) − ln (GPr (r ∣D, x)) = v (ℓ, x) − v (r, x) . (5)

By combining (4) and (5), the following can be derived:

ln (GPr (ℓ ∣D, x)) − ln (GPr (r ∣D, x)) = u (ℓ, x) − u (r, x)
+ β[ (1 − π (ℓ, x))q (ℓ, x)⊺m (D, n′) + π (ℓ, x)q (ℓ, x)⊺m (D̃ (ℓ) , n′)

− (1 − π (r, x))q (r, x)⊺m (D, n′) − π (r, x)q (r, x)⊺m (D̃ (r) , n′)
+ (q (ℓ, x) − q (r, x))⊺v (n′) ].

(6)

Many elements in (6) are identified. The remaining unknown elements are β,

the difference in instantaneous utilities between the two alternatives ℓ and r, and
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the value functions of alternative n′. Based on this observation, I formulate the

following exclusion restriction:

Exclusion Restriction. There exist two different states xA, xB ∈ X and two differ-

ent alternatives ℓ, r ∈ D, such that

(1) u (ℓ, xA) = u (ℓ, xB) and u (r, xA) = u (r, xB);
(2) q (x ∣d, xA ) = q (x ∣d, xB ) for d ∈ {ℓ, r}, and x ∈ X ;
(3) π (ℓ, xA) < π (ℓ, xB).
The exclusion restriction is formulated for two states and two alternatives that

must fulfil three conditions. First, each alternative must provide the same instanta-

neous utility for both states. Second, for each alternative, the transition probabilities

must be equal for both states. Third, for at least one alternative, the restriction

probabilities must differ between the two states.

Assume that the exclusion restriction is fulfilled for states xA, xB ∈ X and alter-

natives ℓ, r ∈ D. Subtracting (6) using x = xB from the same equation using x = xA

results in

ln(GPr (ℓ ∣D, xA )
GPr (ℓ ∣D, xB )) − ln(

GPr (r ∣D, xA )
GPr (r ∣D, xB )) =

β[ (π (ℓ, xB) − π (ℓ, xA))q (ℓ, xA)⊺Θ (ℓ)
− (π (r, xB) − π (r, xA))q (r, xA)⊺Θ (r) ],

(7)

where Θ (d) = m (D, n′) −m (D̃ (d) , n′). Note that the j-th element of Θ (d) is
given by

ln(1 + ∑k∈D/D̃(d) exp (v (k, xj))
∑k∈D̃(d) exp (v (k, xj)) ) ,

and is independent of alternative n′. For the identification of the time preference

parameter β, the following rank condition is required.
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Rank Condition.

(π (ℓ, xB)−π (ℓ, xA))q (ℓ, xA)⊺Θ (ℓ)−(π (r, xB)−π (r, xA))q (r, xA)⊺Θ (r)≠0. (8)

Assuming that rank condition (8) is fulfilled, β is point identified by

β = ln (GPr(ℓ∣D,xA )
GPr(ℓ∣D,xB )) − ln (GPr(r∣D,xA )

GPr(r∣D,xB ))
(π (ℓ, xB)−π (ℓ, xA))q (ℓ, xA)⊺Θ (ℓ)−(π (r, xB)−π (r, xA))q (r, xA)⊺Θ (r) . (9)

If the ratios of the genuine choice probabilities of ℓ and r are identical for both states,

the numerator on the right-hand side of (9) equals zero. As a result, the discount

factor β also equals zero. Intuitively, if agents’ choices do not differ, although they

lead to different expected futures, they do not place any value on future utilities

when choosing an alternative. They are myopic. Note that the rank condition (8)

guarantees that the expected futures for states xA and xB differ for choices ℓ and r.

For a more detailed discussion of (9), two exhaustive cases are distinguished.

Case 1. The restriction probabilities after choice ℓ ∈ D differ, such that π (ℓ, xA) <
π (ℓ, xB). Furthermore, there exists at least one other alternative r ∈ D that fulfils

conditions (1) and (2) of the exclusion restriction, for which the restriction proba-

bilities are equal for states xA and xB, i.e., π (r, xA) = π (r, xB).
For case 1, rank condition (8) simplifies to

q (ℓ, xA)⊺Θ (ℓ) ≠ 0. (10)

The sum in (10) consists exclusively of terms larger than or equal to zero. The

j-th value in Θ (ℓ) only becomes zero if none of the alternatives excluded from D̃ (ℓ)
provides any value other than negative infinity for the respective state. Thus, the

rank condition is violated if and only if there is no real restriction. As a result, rank

condition (10) is always fulfilled for correctly specified models.

11
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In this case, (9) simplifies to8

β = ln (GPr (ℓ ∣D, xA )) − ln (GPr (ℓ ∣D, xB ))
(π (ℓ, xB) − π (ℓ, xA))q (ℓ, xA)⊺Θ (ℓ) , (11)

and has a clear economic interpretation.

First, if the genuine choice probabilities of choosing ℓ ∈ D are equal for both

states, the right-hand side of (11) is zero. As a result, β is also zero, and agents

are myopic. This result has an economic meaning, as the rank condition guarantees

that there is a utility loss when restricted, while the exclusion restriction guarantees

that the probability of being restricted differs between states xA and xB. Thus, if

economic agents make the same decisions in both states, they ignore future conse-

quences.

Second, because π (ℓ, xB) > π (ℓ, xA) and because the left-hand side of (10) is

positive, the denominator on the right-hand side of (11) must be positive. For a

positive value of β, the numerator must also be positive. That is fulfilled if there is a

higher chance of choosing ℓ for state xA than state xB. The economic interpretation

is the following: Holding everything else equal, agents should prefer an option A

to an option B if option A results in a lower chance of being restricted in the next

period. In contrast, if agents prefer to be restricted in future periods, the discount

factor is negative. Thus, a negative value of β is only possible if the economic model

is violated.

Third, the size of β depends on the relation of three elements: the difference

in genuine choice probabilities, the difference in the restriction probabilities, and

the additional expected value of being able to choose freely. A greater difference in

the genuine choice probabilities coincides with a greater value of β when holding the

other two elements constant. Intuitively, the larger the reaction to a given difference

in restriction probabilities and a given difference in the expected future values, the

8Note that because utilities and transition and restriction probabilities are the same for xA and
x
B after choosing r, the logarithm of the ratio of their genuine choice probabilities equals zero.
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more weight agents place on their future. In contrast, the larger the difference in

the restriction probabilities, ceteris paribus, the lower β is. Intuitively, the greater

the probability difference of being restricted has to be to cause a fixed difference in

behaviour, the lower the weight agents place on their expected futures. Similarly, the

larger the expected surplus of not being restricted, holding everything else constant,

the lower β is. Intuitively, the larger the surplus of being able to choose freely has to

be to cause a fixed difference in behaviour, the weaker the influence of the expected

future is on current decisions.

Finally, note that (11) does not restrict β to be larger than 0 or lower than 1. A

negative β violates the economic meaning of the model and is only possible if agents

prefer to be restricted. In contrast, because no assumption about stationarity is

imposed, a β value above one does not necessarily violate the economic model.

Case 2. The restriction probabilities after choice ℓ ∈ D differ, such that π (ℓ, xA) <
π (ℓ, xB). Furthermore, there exists no other alternative r ∈ D that fulfils conditions

(1) and (2) of the exclusion restriction, for which restriction probabilities are equal

for states xA and xB. Thus, π (r, xA) ≠ π (r, xB).
For the discussion of the second case, an exhaustive division into three further

cases is helpful.

Case 2.a. π (ℓ, xB) − π (ℓ, xA) = π (r, xB) − π (r, xA).
For case 2.a, rank condition (8) simplifies to

(π (ℓ, xB) − π (ℓ, xA)) (q (ℓ, xA)⊺Θ (ℓ) − q (r, xA)⊺Θ (r)) ≠ 0. (12)

Rank condition (12) is fulfilled if the weighted surplus of not being restricted

after choosing alternative ℓ differs from that after choosing alternative r. If the

exclusion restriction is fulfilled for additional alternatives besides ℓ and r, it is only

necessary that one pair of alternatives exists for which the expected surpluses of not

being restricted differ.

13
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For case 2.a, (12) represents the denominator on the right-hand side of (9). If

the expected surplus of not being restricted after choosing ℓ is larger than that

after choosing r, the denominator will be positive. Given that economic agents are

less likely to be restricted in state xA, both logarithms of (9) should be positive.

This is fulfilled as long as individuals do not prefer to be restricted in their choice.

Otherwise, it would be a violation of the economic model. Further, if economic

agents gain more by not being restricted after choosing ℓ instead of r, the first

logarithm of the numerator of (9) should be greater than the second logarithm. As

a result, β has to be greater than zero.

In contrast, if the expected surplus of not being restricted after choosing ℓ is

lower than that after choosing r, the denominator will be negative. Arguing along

the same lines as before, the numerator of (9) should be negative as long as agents

do not prefer to be restricted. As a result, β is positive.

The size of β depends on the interaction of three elements: the difference in

the logarithms of the ratio of the genuine choice probabilities, the difference in the

restriction probabilities, and the difference in the weighted expected surplus between

alternatives ℓ and r when not restricted. Similar arguments as for case 1 can be

made to discuss the size of β.

Case 2.b. π (r, xA) > π (r, xB).
In this case, the denominator on the right-hand side of (9) is positive. Conse-

quently, β is positive if and only if the numerator on the right-hand side of (9) is

also positive. As long as individuals prefer not being restricted to being restricted,

the first term in the numerator of (9) is positive and the second term is negative,

guaranteeing a positive β.

The size of β is driven by multiple factors, which can be divided according to

whether they depend either ℓ or r. For elements depending on ℓ, the discussion of

case 1 applies when holding all elements depending on r constant. The elements

depending on r enter with a negative sign in the numerator and with a positive
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sign in the denominator of (9). Because π (r, xA) > π (r, xB), the genuine choice

probability of choice-state combination (r, xA) should be smaller than the genuine

choice probability of state-choice combination (r, xB). This is fulfilled as long as

individuals do not prefer to be restricted. As a consequence, the logarithm of the

ratio of the two genuine choice probabilities in (9) should be negative. This allows

us to apply the same discussion as for case 1 for the elements depending on r when

holding elements depending on ℓ constant.

Case 2.c. π (r, xB) > π (r, xA) and π (ℓ, xB) − π (ℓ, xA) ≠ π (r, xB) − π (r, xA).
In this case, the sign of the denominator on the right-hand side of (9) is ambigu-

ous. The sign of β depends on the different value functions for choices not included

in the two restricted choice sets. It also depends on the transition probabilities and

the relation of the restriction probabilities. A detailed discussion of all possible cases

is not productive without knowing the signs of most of these elements. With more

information on the different signs, similar arguments as before can be made.

3.1 Discussion

Restriction probabilities can be interpreted as external factors that only affect

agents’ choice sets. Thus, the requirements of the exclusion restriction are po-

tentially fulfilled in many empirical contexts. For instance, in the context of labor

supply, the job market might be hit by a negative demand shock, and the likeli-

hood of receiving a job offer decreases. Although such a shock affects the restriction

probabilities (i.e., the job offer probabilities), it does not affect the instantaneous

utilities or the transition probabilities. The instantaneous utilities depend on agents’

leisure and consumption trade-offs and should be unaffected by most labor demand

shocks. Similarly, the probabilities of transitioning from state to state should not

be affected, as for example, agents’ human capital develops independently of labor
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demand shocks.9

In the context of firm entries into regulated markets, administrative variations

leading to different probabilities of the approval of mergers and acquisitions can lead

to the identification of time preferences. For identification, firms must time their

mergers due to administrative variations. Further, these variations are not allowed

to affect firms’ instantaneous utilities (or payoffs) and transition probabilities.

When estimating dynamic models of product demand, random shocks to the

supply of such products can identify the discount factor of consumers. For example,

if an exogenous shock affects the supply of one specific car brand, the probability

that certain car models are available changes. If consumers have the option to delay

the purchase of a car by one period until their preferred model becomes available

again, time preferences can be identified. Supply shocks should not affect consumers’

utilities from cars or their transition probabilities.

The exclusion restriction leads to point identification of the time preference pa-

rameter β as long as the rank condition is fulfilled. The rank condition is only

violated in rare cases: either alternatives that are excluded from restricted choice

sets are of no value for agents or there exist no two alternatives with different ex-

pected surpluses when choosing freely.

All identifying equations have a clear economic meaning. Nevertheless, the ex-

clusion restriction does not restrict β to be between zero and one. Negative values

are only possible if at least one model assumption is violated. Values above one are

possible without clear violations of the economic model, as no assumption about

stationarity is made.

9Note that the transition probabilities also determine the process of potential factors that only
affect restriction probabilities.
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4 Finite horizon

In finite-horizon models, the identification of β can potentially be achieved under

less restrictive assumptions, as the last period can be exploited for identification. If

the reachable part of the state space does not change over time, the genuine choice

probabilities in the last period can be used to identify all differences in instantaneous

utilities. Once the instantaneous utility of an arbitrary alternative is normalized, all

other instantaneous utilities are identified. Then, the discount factor can be point

identified using the genuine choice probabilities from the second-to-last period.

Relying on the exclusion restriction of the previous section, β can also be iden-

tified for models for which the data do not include the last period such as in short

panels. Furthermore, time preferences can be recovered for models in which the

reachable part of the state space changes over time. The discussion of the required

rank condition and the identifying equation carries over from the previous section,

as long as the current period t is part of the state space. This inclusion is necessary,

as all value functions are period specific and period t determines their distance to

the last period.

For the finite horizon model, the assumption of identical transition probabilities,

as stated in the exclusion restriction, can be relaxed. The non-stationary nature

allows for subsequent periods of different restriction probabilities as long as these do

not lead to different reachable state spaces. This allows for settings where different

groups of economic agents are differently restricted in their choices for a limited

number of periods.

In the labor context, this is the case when a randomly selected group of unem-

ployed individuals takes part in a program that supports job searchers in finding

jobs while another random group does not receive such support. The former group

should have greater job offer probabilities (i.e., lower restriction probabilities) than

the latter group.

To identify β in such settings, differences between the groups must be limited in
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time. Furthermore, the last period for which differences exist and the period after

that have to be observed. Time preferences can then be identified from these two

periods in the same fashion as in section 3.

In contrast, time preferences are not necessarily point identified if researchers

observe the data for two groups of economic agents that exclusively differ in their

restriction probabilities. To show this, let δ ∈ {A,B} denote a group indicator.

Restriction probabilities depend in this case not only on state-choice combinations

but also on the group indicator. I denote these by π (d, x, δ). Because of the different
restriction probabilities, value functions differ between the two groups. I denote

the vectors m (D̂, d) and v (d) by m (D̂, d, δ) and v (d, δ) for this demonstration,

where D̂ ∈ {D, D̃ (d) ;d ∈ D}. Similarly, I denote the genuine choice probabilities by

GPr (d ∣D̂, x, δ ). In this case, (6) can be written as

ln(GPr (ℓ ∣D, x, δ )
GPr (r ∣D, x, δ )) = u (ℓ, x) − u (r, x)
+ βq (ℓ, x)⊺[ (1 − π (ℓ, x, δ))m (D, n′, δ) + π (ℓ, x, δ)m (D̃ (ℓ) , n′, δ)

+ v (n′, δ) ]
− βq (r, x)⊺[ (1 − π (r, x, δ))m (D, n′, δ) + π (r, x, δ)m (D̃ (r) , n′, δ)

+ v (n′, δ) ].

(13)
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Taking the difference of (13) between the two groups A and B results in

ln(GPr (ℓ ∣D, x,A)
GPr (r ∣D, x,A)) − ln(

GPr (ℓ ∣D, x,B )
GPr (r ∣D, x,B )) =

βq (ℓ, x)⊺[ (1 − π (ℓ, x,A))m (D, n′,A)
+ π (ℓ, x,A)m (D̃ (ℓ) , n′,A) − (1 − π (ℓ, x,B))m (D, n′,B)
− π (ℓ, x,B)m (D̃ (ℓ) , n′,B) + v (n′,A) − v (n′,B) ]

− βq (r, x)⊺[ (1 − π (r, x,A))m (D, n′,A)
+ π (r, x,A)m (D̃ (r) , n′,A) − (1 − π (r, x,B))m (D, n′,B)
− π (r, x,B)m (D̃ (r) , n′,B) + v (n′,A) − v (n′,B) ].

(14)

Similar to the infinite horizon framework, all m (D̂, n′, δ) can be identified from

the data. However, as future restrictions might differ, future value functions also

differ. Hence, the value functions for choice n′ do not cancel out between the two

groups. Consequently, changes in the genuine choice probabilities cannot recover β

because they might reflect differences in future values. Only when the differences in

value functions between the two groups are known can β be uniquely determined in

cases in which individuals only differ in their restriction probabilities.

5 Identification of instantaneous utilities

Magnac and Thesmar (2002) show that in a stationary dynamic discrete choice

model with an infinite horizon and without choice restrictions, alternative specific

utilities are identified under the following conditions:

(1) The distribution of preference shocks η is known.

(2) The instantaneous utility of one alternative is normalized.

(3) The discount factor β is known.
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This result does not necessarily carry over when restriction probabilities are non-

zero. Theorem 1 states a sufficient condition for the identification of instantaneous

utilities for a stationary dynamic discrete choice model with an infinite horizon and

at least one strictly positive restriction probability.

Theorem 1. Given the data {GPr (d ∣D, x), q (⋅ ∣d, x), π (d, x); (d, x) ∈ D ×X}, all
instantaneous utilities can be recovered under the following conditions:

(1) The distribution of preference shocks η is known.

(2) The instantaneous utility of one alternative is normalized.

(3) The discount factor β is known.

(4) There exists an alternative d ∈ D, such that d ∈ D̃ (d) or/and the assumption

of independence of irrelevant alternatives is fulfilled.

Proof. Fix an arbitrary d̄ ∈ D. Let Π (d) be the diagonal matrix with i-th diag-

onal entry π (d, xi). Let Q (d) denote a matrix with the {i, j}-th element being

q (xj ∣d, xi ). Finally, let IJ denote an identity matrix of size J . With this notation,

(3) can be rewritten for the full state space as

v (d̄) = u (d̄) + β[ (IJ −Π (d̄))Q (d̄)m (D, d̄)
+Π (d̄)Q (d̄)m (D̃ (d̄) , d̄) +Q (d̄)v (d̄) ].

Minor manipulation results in

v (d̄) = [IJ − βQ (d̄)]−1u (d̄)
+ [IJ − βQ (d̄)]−1 β[ (IJ −Π (d̄))Q (d̄)m (D, d̄)

+Π (d̄)Q (d̄)m (D̃ (d̄) , d̄) ].
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Note that the j-th element of m (D̂, d) with D̂ ∈ {D, D̃ (d) ;d ∈ D} can be identi-

fied even if d ∉ D̃ (d) due to the assumption of irrelevant alternatives. With the

assumption that preference shocks are independently and identically distributed fol-

lowing a mean-zero type-I extreme value distribution, the j-th element of m (D̂, d)
is identified by10

m (D̂, d, xj) = ln(∑i∈D̂GPr (i ∣D, xj )
GPr (d ∣D, xj ) ) .

Given β and normalizing u (d̄) = 0 uniquely determines v (d̄). With v (d̄), all other
value functions are determined by a combination of the genuine choice probabili-

ties and v (d̄). For the assumption that η is the mean-zero type-I extreme value

distributed

v (d, x) = ln⎛⎝
GPr (d ∣D, x)
GPr (d̄ ∣D, x)

⎞
⎠ − v (d̄, x)

can be derived. Finally, utilities are uniquely determined by

u (d) = v (d) − β[ (IJ −Π (d))Q (d)m (D, d̄)
+Π (d)Q (d)m (D̃ (d) , d̄) +Q (d)v (d̄) ], ∀d ∈ DKd̄.

∎

6 Conclusion

This paper presents a new exclusion restriction to identify the exponential discount

factor in dynamic discrete choice models. It relies on differences in restriction prob-

abilities. Restriction probabilities describe the probability that agents are restricted

in their choice and cannot choose from all alternatives. The new exclusion restriction

requires two states that exclusively cause different restriction probabilities. These

states are not allowed to cause differences in instantaneous utilities or transition

10Note that if the assumption of the independence of irrelevant alternatives is not fulfilled, it is
sufficient that there exists an alternative d such that d ∈ D̃ (d).
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probabilities. With these conditions, the exponential discount factor is point iden-

tified.

Relative to that in Magnac and Thesmar (2002), this paper presents an exclusion

restriction that is easy to interpret. The exclusion restriction depends exclusively

on instantaneous utilities, transition rates, and restriction probabilities. In contrast

to Abbring and Daljord (2020b), the presented exclusion restriction leads directly to

point identification. As it is only necessary that agents are potentially restricted after

one state-choice combination, most models can be easily adapted to the presented

framework. I discuss two potential avenues for adaptations to models as discussed

in Magnac and Thesmar (2002) or Abbring and Daljord (2020b).

Restriction probabilities can be interpreted to be caused by external factors.

As such external factors might exclusively impact agents’ possibilities to choose

from all alternatives, the presented exclusion restriction might be fulfilled in many

applications. As a result, it might be easier to find variables satisfying the presented

exclusion restriction than those presented in Magnac and Thesmar (2002) or Abbring

and Daljord (2020b).

To point identify β, neither stationarity nor the normalization of the utility of one

alternative is necessary. In the simplest case, economic agents are only potentially

restricted in their choice set after a single state-choice combination. If the exclusion

restriction is fulfilled, a combination of observed choice probabilities leads to point

identification of the discount factor. Identification for other cases is achieved by the

use of genuine choice probabilities, which can be derived from the observed choice

probabilities in almost all possible cases. All derived identification equations are

economically intuitive.

Identification within an infinite- and a finite-horizon model is discussed. It is

shown that for finite-horizon models, time preferences can also be identified for

short panels. Due to the non-stationary nature of the finite-horizon model, point

identification is also possible if there exist two groups with different restriction prob-
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abilities over multiple periods. To identify β in such cases, it is sufficient that this

difference is limited in time.

Many empirical examples are provided for which the presented exclusion restric-

tion is fulfilled. In the labor market, an active labor market policy that temporarily

supports unemployed individuals in finding employment can be exploited for iden-

tification. Such a policy decreases the restriction probability to remain unemployed

by increasing job offer rates. If a comparable group of unemployed individuals is

found that does not receive such support, time preferences can be identified from

differences in the observed choice probabilities of the two groups.

Potential extensions include more than one restricted choice set per alternative.

Identification seems possible in these cases but complicates the recovery of restriction

and genuine choice probabilities. Future research might also derive conditions to

identify parameters of hyperbolic discounting.
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Appendix A: Restriction probabilities

In some cases, restriction probabilities are unknown. For instance, in the context

of labor supply, job offers are rarely observed. In such cases, the researcher has to

disentangle observed choices made due to restrictions and due to preferences. Under

certain circumstances, it is possible to recover the probability of being restricted.

The discussion is reduced to the following setting:

Restriction Probability Assumption 1. All restricted choice sets D̃ (d) with

d ∈ D are known. In particular, depending on the previous period’s choice d and

state x, the researcher knows the available alternatives of each restricted choice set

D̃ (d). Only the probability that forces agents to choose from D̃ (d) is unknown.

The following presents three different sets of additional assumptions; each alone

is sufficient for the identification of all restriction probabilities.

Restriction Probability Assumption Set 1. There exists an alternative d ∈ D
after which agents are not restricted in their choice set, such that π (d, x) = 0, ∀x ∈ X .

Let d ∈ D denote an alternative after which choices are not restricted in the sub-

sequent period. Let r ∈ D denote an alternative after which choices are potentially

restricted to the set D̃ (r) ⊂ D. Consider the following observed choice probabilities:

Pr (i′ ∉ D̃ (r) ∣d, x′, x) = GPr (i′ ∣D, x′ ) ,
Pr (i′ ∉ D̃ (r) ∣r, x′, x) = (1 − π (r, x))GPr (i′ ∣D, x′ ) .

Dividing the two equations and rearranging leads to

π (r, x) = 1 − Pr (i′ ∉ D̃ (r) ∣r, x′, x)
Pr (i′ ∉ D̃ (r) ∣d, x′, x) ,

identifying the restriction probability π (r, x). In this manner, and with the help of

the unrestricted choice set after choosing d, it is possible to recover all restriction

probabilities from the data.
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Restriction Probability Assumption Set 2. There exists an alternative d ∈ D,
the subsequent restricted choice set D̃ (d) of which includes only one choice s ∈ D.
The respective restriction probability π (d, x) is known for all states x ∈ X .

Let d ∈ D denote the choice related to a restricted choice set that includes only

one alternative s′ ∈ D̃ (d). The observed choice probability of a choice i′ ≠ s is

Pr (i′ ∉ D̃ (d)∣d, x′, x) = (1 − π (d, x))GPr (i′ ∣D, x′ ) .

Knowing π (d, x) makes it possible to recover GPr (j′ ∣D, x′ ) ∀j′ ∉ D̃ (d). Because
D̃ (d) is a singleton, it is also possible to recover GPr (s′ ∣D, x′ ) for choice s′ ∈ D̃ (d):

GPr (s′ ∣D, x′ ) = 1 − ∑
j′∉D̃(d)

GPr (j′ ∣D, x′ ) with s′ ∈ D̃ (d) .

With the help of the genuine choice probabilities, all other restriction probabil-

ities can be identified using the observed choice probabilities of an alternative not

included in the restricted choice set:

π (k, x) = 1 − Pr (i′ ∉ D̃ (k)∣k, x′, x)
GPr (i′ ∈ D∣D, x′) , ∀k ∉ D̃ (d) .

Restriction Probability Assumption Set 3. Each restricted choice set D̃ (d),
d ∈ D, excludes at least one choice j′ ∈ D that is also excluded in another restricted

choice set. Additionally, at least one restriction probability is known.

The observed choice probability of alternative k′ ∉ D̃ (d) after having selected d

in the previous period is

Pr (k′ ∣d, x′, x) = (1 − π (d, x))GPr (k′ ∣D, x′ ) .

As long as k′ is also excluded in another set D̃ (j) with j ≠ d, it is possible to divide
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the observed choice probabilities for the two choices j and d in the previous period:

Pr (k′ ∣d, x′, x)
Pr (k′ ∣j, x′, x) =

(1 − π (d, x))
(1 − π (j, x)) .

Since it is assumed that one restriction probability is known, it is possible to derive

the restriction probabilities for all choices d ∈ D.

Appendix B: Genuine Choice Probabilities

Lemma 1 states conditions sufficient to identify all genuine choice probabilities from

the observed choice and restriction probabilities.

Lemma 1. Given the data {Pr (d′ ∣d, x′, x) , π (d, x) ;d′, d ∈ D, x′, x ∈ X}, one of the

following conditions is sufficient to uniquely determine the genuine choice probabil-

ities GPr(d′ ∣D̃ (d) , x′ ), for all (d′, x′) ∈ D̃ (d) × X :
1. At least one restriction probability is zero for all states x ∈ X .
2. All alternatives, or all but one, are excluded at least once from one of the

restricted choice sets D̃ (d) with d ∈ D.
3. There exist two identical restricted choice sets (D̃ (l) = D̃ (r)) with different

restriction probabilities (π (l, x) ≠ π (r, x) for all x ∈ X ).
4. The restriction probabilities for alternatives, which are common among all

restricted choice sets, differ across these alternatives.

Proof. The observed choice probabilities have one of these two forms:

Pr (d′ ∣d) = (1 − π (d))GPr (d′ ∣D) if d′ ∉ D̃ (d) (A.15)

or

Pr (d′ ∣d) = (1 − π (d))GPr (d′ ∣D) + π (d)GPr (d′ ∣D̃ (i)) if d′ ∈ D̃ (d) , (A.16)
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where x′ and x are dropped to ease the exposition.

If a genuine choice probability of choosing d′ from the general set is identified, the

respective genuine choice probabilities of choosing d′ from any of the restricted choice

sets are uniquely determined by (A.16). Thus, to prove lemma 1, it is sufficient to

demonstrate the identification of the genuine choice probability when choosing from

the unrestricted choice set D.
Proof of condition 1: The observed choice probabilities after choosing an alterna-

tive without a subsequent restriction are equal to their respective genuine choice

probability of choosing from D.
Proof of condition 2: For an alternative that is at least once excluded from a re-

stricted choice set, there exists an observed choice probability that is takes the form

of (A.15). This directly identifies its genuine choice probability. If one alternative

(d′) is included in all restricted choice sets, its genuine choice probability can be

identified from the genuine choice probabilities of all the other alternatives

GPr (d′ ∣D) = 1 − ∑
l′∈D

GPr (l′ ∣D) .

Thus, for models in which all alternatives but one are at least once excluded from

a restricted choice set, all genuine choice probabilities are identified. Note that this

includes cases in which one restricted choice set is a singleton.

Proof of condition 3: Without the loss of generality, assume that D̃ (j) = D̃ (i) = D̃.
For alternatives included in D̃, the observed choice probabilities are

Pr (d′ ∣j ) = (1 − π (j))GPr (d′ ∣D) + π (j)GPr (d′ ∣D̃ )
Pr (d′ ∣i) = (1 − π (i))GPr (d′ ∣D) + π (i)GPr (d′ ∣D̃ ) .
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The two linear equations are independent as long as π (j) ≠ π (i). The genuine

choice probability of each alternative included in D̃ is identified by

GPr (d′ ∣D) = π (j)Pr (d′ ∣i) − π (i)Pr (d′ ∣j )
π (j) − π (i)

For each alternative not included in D̃, an equation in the form of (A.15) exists

that identifies the respective genuine choice probability.

Proof of condition 4: Denote the set of alternatives that are common among all

restricted choice sets by D̂ = {d̂1, . . . , d̂N̂}. Denote the set of alternatives that are

part of D̃ (d) but not common among all sets by Ď (d) = {ďd
1
, . . . , ďd

Ňd
}. The following

system of equations can be derived for each d ∈ D:

Pr (d̂1 ∈ D̂ ∣d) = (1 − π (d))GPr (d̂1 ∣D) + π (d)GPr (d̂1 ∣D̃ (d)) (A.17.1)

...

Pr (d̂N̂−1 ∈ D̂ ∣d) = (1 − π (d))GPr (d̂N̂−1 ∣D) + π (d)GPr (d̂N̂−1 ∣D̃ (d)) (A.17.N-1)

Pr (d̂N̂ ∈ D̂ ∣d) = (1 − π (d))
⎡⎢⎢⎢⎢⎣
1 − N̂−1∑

l=1
GPr (d̂l ∣D) − ∑

j∉D̂

GPr (j ∣D)
⎤⎥⎥⎥⎥⎦

+ π (d)
⎡⎢⎢⎢⎢⎣
1 − N̂−1∑

l=1
GPr (d̂l ∣D̃ (d)) − Ň i

∑
l=1

GPr (ďdl ∣D̃ (d))
⎤⎥⎥⎥⎥⎦
.

(A.18)

The system consists of N̂ independent equations. (A.17.1) – (A.17.N-1) feature

two unknowns each: GPr (d̂ ∣D) and GPr (d̂ ∣D̃ (d)). (A.18) does not include any

additional unknowns, as choices not included in D̃ (d) can be directly identified with

an equation similar to (A.15). In total, the system includes 2 (N̂ − 1) unknowns. An
additional system for a choice k ≠ d only adds N̂ − 1 unknowns because the genuine

choice probabilities choosing from D are already included in the system of choice

d. Furthermore, each additional system adds N̂ independent equations as long as

π (k) ≠ π (d). In total, there are (1 + J) (N̂ − 1) unknowns and JN̂ independent

equations, leading to (J −N + 1) more equations than unknowns. Thus, as long
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as the restriction probabilities differ for alternatives that are common among all

restricted choice sets, all genuine choice probabilities can be recovered.

∎
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