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Abstract 

This paper empirically provides support for fractional cointegration of high and low 

cryptocurrency price series, using particularly, Bitcoin, Ethereum, Litecoin and Ripple; 

synchronized at different high time frequencies. The difference of high and low price gives 

the price range, and the range-based estimator of volatility is more efficient than the return-

based estimator of realized volatility. A more general fractional cointegration technique 

applied is the Fractional Cointegrating Vector Autoregressive framework. The results show 

that high and low cryptocurrency prices are actually cointegrated in both stationary and non-

stationary levels; that is, the range of high-low price. It is therefore quite interesting to note 

that the fractional cointegration approach presents a lower measure of the persistence for the 

range compared to the fractional integration approach, and the results are insensitive to 

different time frequencies. The main finding in this work serves as an alternative volatility 

estimation method in cryptocurrency and other assets’ price modelling and forecasting.  

 

Keywords: Fractional cointegration; Cryptocurrency; Fractional integration; FCVAR; Price 

range 
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Financial analysts and traders are recently interested in the high, low and price range of intra-

day commodity prices. The price range series (high-low price difference) is a more efficient 

returns series, used in the estimation and analysis of equilibrium (stationary) and volatility 

(risk) than the close-close or close/open log-return series (Parkinson 1980; Cheung et al. 

2009; Yaya and Gil-Alana, 2018). Furthermore, extant analyses of realized volatility in asset 

prices; such as stocks, exchange rates and commodity prices; frequently use daily prices to 

obtain transformed series, which are subsequently used as proxy variables in measuring 

volatility. For the daily time frequency, log-transformed price differences are applicable but 

not sufficient whenever several prices are recorded at different intraday time periods, either 

minutely or hourly. For example, while opening and closing prices are linked with daily 

frequency series, the resulting transformed volatility series hides the intraday variability, 

thereby leading to loss of some important information (Haniff and Pok, 2010; Degiannakis 

and Floros, 2013; among others). Thus, different intraday high and low asset prices, are used 

as alternatives to close and open prices; such that the range (intraday high price minus 

intraday low price), an unbiased measure of realized volatility, could serve as a reference 

value for investors in bid and ask orders (Alizadeh, Brandt and Diebold, 2002; Barunik and 

Dvorakova, 2015; Xiong, Li and Bao, 2017; among others). 

 The concept of high and low prices was introduced by Cheung (2007), given the 

assumption that the underlying data generating trends in highs and lows are the same, and the 

plausibility of their differences converging over time, even when prices seem to move apart 

one from the other. Some researchers empirically showed the robustness of the range-based 

volatility estimator to microstructure noise (for example, the bid-ask bounce), and its 

preference over the traditional volatility estimator, based on closing/opening prices, since it 

overcomes the limitation of the latter (see Brandt and Diebold, 2006 and Shu and Zhang, 

2006). Daily highs and lows (used as stop-loss bandwidths) provide information relating to 
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liquidity and price discovery.  Caporin et al. (2013) opined that low prices correspond to bid 

quotes and high prices to ask quotes; though high/low prices are subjected to unexpected 

public announcements or other shocks. 

 The range can be expressed as the cointegrating relation between the daily high and 

low prices with fixed cointegrating vector (1, -1). Daily high and low prices are also useful in 

measuring price dispersion from the mean price, particularly, for different trading time 

frequencies. The dispersion shows the degree of uncertainty, that is, the risk associated with a 

particular asset (cryptocurrency, in this case). Parkinson (1980) showed the variance 

estimator that is based on close/open returns to be less efficient compared to the range-based 

volatility estimator, which is considered in this work. The range-based volatility estimator is 

statistically efficient and robust against microstructure noise, as it is less contaminated by 

measurement error, and explains even volatility of volatility other than autocorrelation of 

volatility, as other measurement indicators induce (Alizadeh et al., 2002).Thus, range-based 

method of analysis serves as alternative method to the traditional log-returns modelling of 

volatility in financial econometrics.  

 The contributions of this paper can be discussed in the following. First, several studies 

have investigated the long- and short-run dynamics of the high and low prices of stocks (see 

Cheung, 2007; Cheung et al., 2009; Cheung et al. 2010; Caporin et al., 2013; Barunik and 

Dvorakova, 2015; Maciel, 2018; Afzal and Sibbertsen, 2019; among others), exchange rate 

(He and Wan, 2009) and oil prices (see He et al., 2010; Yaya and Gil-Alana, 2018; among 

others). However, to our knowledge, no single study has been done to investigate the long-

run and short-run dynamics of the high and low prices of cryptocurrency.  

Second, this study was motivated by the work of Barunik and Dvorakova (2015), 

which conducted cointegration analyses on daily high and low stock prices, in some world 

stock market indices. Their results showed that the differences between high and low prices 
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(that is, ranges) exhibited long memory features and were found to be non-stationary, which 

contracts the belief that volatility series might be non-stationary. Yaya and Gil-Alana (2018); 

using selected commodity prices, such as crude oil, natural gas, gold and silver, that were 

available in daily, hourly and minutely frequencies; conducted fractional integration and 

fractional cointegration analyses. The authors found that the two price measurements were 

fractionally cointegrated, and the range series of highs and lows exhibited stationary and non-

stationary persistence, that changed substantially across time frequencies. Following Cheung 

(2007)’s suggestion of modelling the cointegration relationship with Vector Error Correction 

Mechanism (VECM), Cheung et al. (2009) and He and Wan (2009) empirically analysed the 

daily high and low stock prices.  

As a deviation from the stance in extant literature on long-term relationships among 

variables, which was usually considered along the I(0) or I(1) characteristics, Caporin et al. 

(2013) and Barunik and Dvorakova (2015) adopted Fractional Vector Error Correction 

Mechanism (FVECM), which is considered a more flexible approach that allows for 

fractional order of integration. Afzal and Sibbertsen (2019) showed the existence of long-run 

relationships between high and low stock prices in six Asian countries, using the fractional 

cointegration in a VECM framework. Their study revealed the consistent outperformance of 

FVECM over the heterogeneous Autoregressive (AR) model and Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) model. Following this recent development, the 

analysis in this study was derived from the latest method presented in Johansen and Nielsen 

(2012, 2014) that allows for multiple series in the cointegrating framework, in Vector 

Autoregressive (VAR) system. 

Against the above background, this work contributes to the empirical literature on 

cryptocurrency price modelling, investigating whether high and low prices at different time 

frequencies are cointegrated, using four notable currencies: the Bitcoin, Ethereum, Litecoin 
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and Ripple. The range that is the residual series from cointegration of high and low price 

series is found to be stationary and non-stationary. Thus, it deduced the possibility of 

obtaining non-stationary range-based volatility estimator, other than logged transformed 

returns series obtained from close/open asset prices. We find that the Fractional Cointegrated 

Vector Autoregressive (FCVAR) approach detected persistence of the range series often in 

stationary range than when fractional integration of the range series was obtained. Our results 

are insensitive to various time frequencies considered. 

 Following from the introductory part, the rest of the paper is thus structured: Section 2 

gives the overview of the econometric method, involving fractional cointegration framework, 

using a modified approach -the FCVAR modelling. Section 3 presents details on empirical 

analysis covering data description, as well as presentation and discussion of empirical results 

obtained, while the paper is concluded in Section 4. 

 

2. ECONOMETRIC APPROACH 

Here, we adopt the fractional cointegration framework to ascertain the plausibility of 

cointegration between the high and low prices of cryptocurrencies. As consistent with the 

cointegration framework and in a simple bivariate case; two series, 1t
x  and 2t

x  

(where 1,...,t T ) are cointegrated whenever the order of integration, d  for the individual 

series are the same (Engle and Granger, 1987), that is,  1 2,
t t

x x I d . Consequently, this 

implies that a linear combination, 1 2t t
x x , which exists between both series, is integrated 

of a smaller order, d b , where b > 0. This is a linear model with intercept,   and slope,   

with residual series, t
u . A major focus of this paper is when the parameters d  and b do not 

take on integer values only, that is, a deviation from the assumption, 1d b  ; a rather 

restrictive assumption that has usually been adopted in most empirical studies. Engle and 
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Granger (1987) proposed a two-step methodology. First, the order of integration of each of 

the series is tested, using the conventional Augmented Dickey-Fuller (ADF) test (Dickey and 

Fuller, 1979). Second, upon confirming that the series are  1I , the null of no unit root in the 

residuals of the cointegrating regression in equation (1) is tested. 

1 2t t t
x x u          (1) 

A non-rejection of the null of an  0I  process would imply that both series 1t
x  and 

2t
x are 

cointegrated. Alternatively, for any two series to be cointegrated, upon being individually 

integrated of order 1, their paired differences and/or log differences is expected to be 

integrated of order zero, i.e.,  0I . 

As a contrast to the rather restrictive assumption of integer-valued 

integration/cointegration parameters, the cointegrating framework in equation (1), as in extant 

studieshas been extended to include cases where the order of integration/cointegration could 

take on fractional values (see Cheung and Lai, 1993; Robinson and Yajima, 2002; Gil-Alana, 

2003; Robinson and Hualde, 2003; Robinson and Marinucci, 2003; Hualde and Robinson, 

2007; Gil-Alana and Hualde, 2009; among others).  Moving from the single equation 

framework, the concept of cointegration is further extended to the VAR framework, with 

integer-valued cointegration (the CVAR) (Johansen, 1995) and fractional cointegration 

(FCVAR) (Johansen and Nielsen, 2012; 2014) frameworks. Put differently, while the CVAR 

model framework assumes unity as the order of integration, the FCVAR model allows for 

fractional or real number valued order of integration among the series. The FCVAR model is 

equivalent to the CVAR model whenever the integration parameter, d  is equal to unity, and 

thus, the latter is said to be nested in the former.  

The FCVAR, and implicitly, the CVAR, model estimations, proceed in two steps. 

First, the univariate orders of integration;  
1tx

d and 
2 tx

d , for each series, 1t
x  and 2t

x , 
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respectively; are obtained using the log-periodogram-type estimator (GPH) of Geweke and 

Porter-Hudak (1983) and Robinson (1995a), and the Exact Local Whittle estimator (ELW) 

(Robinson, 1995b). Both GPH and ELW methods of estimating fractional unit root 

parameters are semi-parametric approaches (relying on time series frequency domain 

approach), which both use periodogram ordinates. The fractionally integrated series 1t
x , is 

mathematically expressed in (2) and expanded using the Binomial expansion in (3), 

1(1 - ) , 1,2, ,d

t t
L x u t T          (2) 

1 1 1 1 2 1 3

( 1) ( 2) ( 3)

2 6
t t t t t

d d d d d
x d x x x u  

  
        (3) 

where  Lis the backward shift operator, such that 1 1 1t t
Lx x  , and d is the fractional integrated 

order. 

Second, the CVAR and FCVAR models are estimated, premised on the satisfaction of 

the first step. Given that the FCVAR model structure draws from the conventional CVAR 

model, our discussion would commence from the CVAR model structure, which also 

provides the basis for its fractional variant, the FCVAR. Given a p dimensional  1I  

series, 1 , 1,2, ,
t

x t T , the CVAR model specification is given in equation 4 

'

1 1 1 1

1

k

t t i t i t

i

x x x  


       

'

1 1

1

k
i

t i t t

i

Lx L x 


            (4) 

The FCVAR model, which is subsequently derived by substituting 
b  and 1 b

b
L    for the 

difference operator,   and the lag operator, L , respectively, in equation (4); is given in 

equation (5):  
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'

1 1 1

1

k
b b i

t b t i b t t

i

x L x L x 


         (5) 

while applying the same to 1

d b

t t
x y

   , we obtain equation (6) 

'

1

k
d d b b i

t b t i b t t

i

y L y L y 



          (6) 

where 
d  denotes the fractional operator, b denotes the cointegrating factor and 

b
L  

represents the fractional lag operator;   and  , in this model are p r  matrices of long-run 

parameters, such that 0 r p   and r  represents the cointegrating rank; d b  (such that 

0b  ) is the degree of fractional cointegration, that is, the degree of the fractional integration 

order of the long run equilibrium, 
t

x  . The elements of 
t

x   give the cointegrating 

relationships in the system, where k  determines the number of long-run equilibria, i.e. the 

cointegration or co-fractional rank and 1, ,
k

     governs the short-run dynamics; t
  is a 

p vector of the error term, which is independently and identically distributed with mean 

and covariance 0and  , respectively.  

 The model in (6) is the restricted constant case (see Johansen and Nielsen, 2012), 

while the unrestricted constant term case is given in Dolatabadi et al. (2016) as 

 
1

k
d d b b i

t b t i b t t

i

y L y L y    



            (7) 

where   represents the restricted constant in this case (restricted to the form  ), that is, the 

mean level of the long run equilibria, and   is the unrestricted constant term. 

 In estimating the FCVAR model framework, we proceed in four basic steps. First, we 

empirically obtain the optimal lag length; second, we obtain the cointegration rank; third, 

using the results in the first and second steps, we test for fractional cointegration; and finally, 

we compare FCVAR and CVAR models, using the likelihood ratio (LR) test. The test 
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assumes 1d b   under the null hypothesis, such that a rejection of the null would imply 

preference of the FCVAR model over the conventional CVAR model; otherwise, the latter is 

preferred over the former. For a detailed description of the estimation procedure and Matlab 

codes, see Nielsen and Popiel (2018). 

3. EMPIRICAL ANALYSIS 

3.1 Nature of Data, Sources and Description 

The time series data used for the analysis are the high and low prices of four 

cryptocurrencies, obtained from ForexTime (FXTM) Global Ltd trading platform 

(www.forextime.com). These datasets were collected and analysed at the following time 

frequencies: 1 minute (M1), 5 minutes (M5), 15 minutes (M15), 30 minutes (M30), one hour 

(H1), four hours (H4), daily (D1), weekly (W) and monthly (MN). The sampled 

cryptocurrencies are: Bitcoin (BTCUSD), Ethereum (ETHUSD), Litecoin (LTCUSD) and 

Ripple (RPLUSD), which were all priced in US dollars. Those intraday prices were 

synchronized minutely (M1, M5, M15 and M30) and hourly (H1 and H4), with both start and 

stop dates/times given, while for daily (D1), weekly (W) and monthly (MN) synchronized 

prices, the mid-night time (00:00) are recorded as opening times. Table 1 presents the data 

description, sample start and stop dates, as well as the sample sizes. In all, the high-frequency 

datasets have very large samples, while monthly frequency datasets have the smallest sample 

sizes, particularly, the case of RPLUSD with the sample size of 22. 

PUT TABLE 1 AROUND HERE 

3.2 Empirical Results and discussion 

We first considered unit root testing of cryptocurrency prices, since in theory, it is expected 

that prices are non-stationary. We applied only ADF unit root test, with the three regression 

specifications: no intercept, constant only (C) and constant with the trend (C&T) for 
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robustness. Results, presented in Table 2, showed that except for Ethereum (H4) for high 

price (H) and low price (L) series, Litecoin (D1) for only high price (H), Ripple (WK) for 

high price (H) and Ripple (MN) for low price (L) that are detected by the unit root tests to be 

stationary, all other series, with different time frequencies are non-stationary. First 

differences of these series sternly rejected the hypothesis of a unit root in all, for both high 

and low price series implying that cryptocurrency prices are I(d = 1) series. By computing the 

range and carrying out unit root test on it, we found rejections of unit root hypotheses in the 

range except in the cases for Ethereum (D1, WK & MN). Range series may be non-stationary 

(Cheung, 2007; Barunik and Dvorakova, 2015 and Yaya and Gil-Alana, 2018) as in the case 

of Ethereum. Evidences of nonstationarity in Ethereum price series and stationarity in few 

cryptocurrencyprices are enough justification for alternative unit root tests that would be 

robust to aberrant observations, outliers and occasional jumps. 

PUT TABLE 2 AROUND HERE 

 The ADF unit root test plays between I(d=1)/I(d=0) hypotheses, which is too 

restrictive, as some ds might have been over or under differenced during the computation of 

the ADF unit root regression, leading to failure of the test to detect unit root correctly. This 

weakness was noted in Diebold and Rudebusch (1991) and Hassler and Wolters (1994) and 

since then, fractional alternatives to unit root testing are gaining popularities. Earlier 

discussed in the methodology are the two semi-parametric estimation approaches to fractional 

integration parameter (the ELW and GPH). These are presented for bandwidths of two 

periodogram ordinates, 0.5
T and 0.6

T (Tdenotes the sample size), for high, low and range 

prices. The results for ELW estimates are given in Table 3, while those of GPH estimates are 

given in Table 4. The essence of 0.5
T and 0.6

T  is to obtain two comparable estimates; 

although, other periodogram ordinates were considered, their results varied widely from those 
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reported in this paper. In Table 3, we have the results based on ELW estimates for 
H

d , 
L

d  

and 
R

d , as well as the standard error of 
R

d [that is,  . .
R

s e d ]. For the two ordinates, estimates 

of 
H

d and
L

d are non-stationary  1I  in most cases except in the case of Ripple (WK, MN), 

where these estimates are non-stationary but mean-reverting. Estimates of
R

d are all 

significant, with quite low standard errors. These estimates are found in both stationary 

 0 0.5d   and non-stationary  0.5 1
R

d   ranges. The fact that each 
R

d  estimate is 

smaller than any of 
H

d and 
L

d estimates implies cointegration of intraday high and low 

cryptocurrency prices. The persistence in price series of the four cryptocurrencies varies 

substantially across time series frequencies, with no regular pattern observed from high-

frequency to low-frequency series. The results of the fractional unit root, based on GPH 

method are given in Table 4, indicating similar results as with those presented in Table 3. 

Here, the range series are also found to be stationary for some time frequencies and non-

stationary for other time frequencies. In cases where these are significant, these values are 

less than 
H

d and L
d , implying possible cointegration of high and low cryptocurrency prices. 

PUT TABLE 3 AROUND HERE 

PUT TABLE 4 AROUND HERE 

 Range series, being a stationary series is expected to possess long memory, then we 

conducted Qu (2011) test of spurious long memory test on the range series. The test is based 

on Robinson (1995b) ELW estimation. In the testing framework, the null of stationary long 

memory for range series was tested against the alternative of range series having regime 

changes or smoothly varying trends. Results obtained are given in Table 5 across all 

cryptocurrencies and different time frequencies. For periodogram points T0.5, we found more 

rejections of null of long memory, that is, evidences of regime changing or smoothly varying 
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trends in the estimates of long memory, even though some of the estimates are quite above 

0.5. Based on periodogram points T0.6, fewer evidences of spurious long memory were 

detected. 

PUT TABLE 5 AROUND HERE 

We also carried out test of homogeneity of fractional orders on the paired series for 

cointegration, that is, testing the null, 0 :
H L

H d d . This test isgiven in Robinson and Yajima 

(2002), as a semi-parametric technique.1 In Table 6, the results are given for the two 

periodogram points 0.5
T and 0.6

T , and for each of these periodogram numbers, the test 

indicated significant evidence of equality of fractional orders at 5% level. 

PUT TABLE 6 AROUND HERE 

 The results of test of fractional cointegration by Johansen and Nielsen (2012) is 

tabulated in Table 7. This test is based on a rank test for unrestricted constant model. A grid-

search was first conducted for the optimal k  value for the cointegration rank test, using 

minimum information criteria, having set 4k   in each case. For each optimal k  value that 

was chosen, an appropriate rank is obtained from the cointegration rank test. In all the cases 

considered, the null hypotheses of rank zero were rejected, based on the Likelihood Ratio 

(LR) test statistics, while null hypotheses of rank 1 could not be further rejected against rank 

2, since LR tests are not available for paired series. The results of the cointegration rank test 

actually confirmed the presence of fractional cointegration between the paired series. Thus, 

only one cointegrating vector is included in the estimated FCVAR model. The values 

obtained for d  and b  in the cointegration rank test in Table 7 were used in the estimation of 

the FCVAR model. We considered two FCVAR model specifications: the unrestricted and 

restricted constant models. The unrestricted constant case results is presented in Table 8, 

                                                           
1 A more recent application is found in Yaya, Gil-Alana and Olubusoye (2017), Yaya and Gil-Alana (2018) and 

Caporale and Gil-Alana (2019). 
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while results for the restricted constant case is given in Table 9. In each result table, the third 

column presents estimates of d , that is, the joint fractional order of the bivariate series (high 

and low price series); the fourth column is the cointegrating factor b , while the fifth column 

shows the coefficients of long-run equilibria. The FCVAR model is estimated for d b , 

while for d b , the FCVAR model reduces to CVAR model (Johansen, 1995), such that the 

range order of integration is zero (   0I d b  ), which is not the case, since the results of 

ELW and GPH in Tables 3 and 4 imply the rejection of CVAR specifications, given that the 

range series are not  0I  series. In the unrestricted case in Table 8, the estimates of the 

cointegration vector reported in the fifth column are very close to the vector  1, 1, c , 

where “ c ” is the constant. This implies an imposition of a  1, 1  restriction for the 

cointegrating vector without a constant, which is the range. For the restricted case  1, 1 , 

presented in Table 9, the results are found not differing from those relating to the unrestricted 

constant case in Table 8. In each case in Tables 8 and 9, we observed quite strong 

cointegration, as estimates ofbare quite above 0.5 in almost all the cases, implying strong 

cointegration, while estimates of d  are around unity.2 In the case of Ripple (MN), 

cointegration was not found, as there was no convergence of the initial values of d  and b  

during estimation. Expectedly, the fractional integration results in the third and fourth tables, 

and cointegration rank in Table 7 have earlier signalled such possibility of no cointegration in 

the pair for Ripple (MN), possibly due to the small sample size. 

PUT TABLE 7 AROUND HERE 

PUT TABLE 8 AROUND HERE 

PUT TABLE 9 AROUND HERE 

                                                           

2 Weak cointegration is when 0 0.5b  , while 0.5 b d   indicates strong cointegration (Nielsen and 

Popiel, 2018). Johansen and Nielsen (2012) provides the asymptotic distributions of each case. 
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 So far, cointegration has been established based on the results of fractional integration 

techniques (ELW and GPH), with reports presented in Tables 3 and 4 for high, low and range 

prices. The fractional persistence estimates for price range are presented in Table 10 for ELW 

and GPH estimates. These are quite around the long memory range, above 0.5 in a number of 

cases. This same table also reports corresponding estimates of fractional cointegration 

order, ˆ ˆd b , reported in Table 8 for the unrestricted constant case and Table 9 for the 

restricted constant case. These estimates are quite lower than those reported by ELW and 

GPH estimators. 

PUT TABLE 10 AROUND HERE 

 Due to high frequency datasets used in this work, we investigated further the 

constancy of the cointegration relation between high and low cryptocurrency prices over time 

by testingthe cointegrating series (the range) for stationary three regime Self-Exciting 

Threshold Autoregression (SETAR). The results obtained, though not reported showed 

support for time varying cointegration for high and low cryptocurrency prices at all time 

frequencies except at monthly frequency where cointegration is constant. The time variation 

is actually expected due to highly volatile long time series involved. The FCVAR framework 

is built on constancy of cointegration as we applied it in this work.  

 

4. Concluding remarks 

This work contributes to the literature on modelling of cryptocurrency prices, having 

considered Bitcoin, Ethereum, Litecoin and Ripple at different high time frequencies. For 

each currency, high and low prices, and their difference - the range, were considered. The 

range is considered an efficient and robust estimator of volatility, and is the resulting 

equilibrium series in a cointegrating system. Also, the range-based volatility measurement 

relies on high/low price movements, rather than close/open price variations often applied in 



 

 

15 

 

financial time series modelling. Lastly, the persistence of ranges is allowed to fall into a non-

stationary range, unlike log-returns series that is stationary and unpredictable.These make the 

new approach appealing in financial econometrics. 

 Various time frequencies in minutes, hours, days, weeks and monthsare considered 

for each cryptocurrency price series. We find that the range-based volatility estimated with 

the FCVAR framework as an error correction mechanism is stationary and long-range 

dependent in most of the cases in the four cryptocurrencies, while based on fractional 

integration techniques, the range-based volatility is a mix of stationary and non-stationary 

series. These results are insensitive to different time frequencies. Though, our results showed 

evidences to support time varying cointegration in high frequency datasets, extension of 

FCVAR framework is yet to be develop to handle this extension. 

 The fact that range series are either stationary or non-stationary persistent allows the 

predictability of the variance to be embedded in a mean model of high and low asset 

cryptocurrency prices. One can easily obtain forecasts of future extreme prices, based on past 

values of cryptocurrency. The evidence contained in this paper is quite relevant and serves as 

a guide to traders, since many trading strategies employed are based on daily ranges.   

 

One of the economic implications of the foregoing findings is that traders, investors and 

policy analysts can forecast future extreme prices of the analysed crypto-currencies, using 

their past values to aid their decision making. Besides, cointegration among these crypto-

currencies may imply limited arbitrage opportunities for investors or traders across their 

markets. Also, participants should realise that, although efficiency of the markets seems 

unstable (as shown by unstable stationarity results) there is long-run relationship among the 

crypto-currencies analysed (as shown by robust cointegration results). Thus, hedge funds 

strategies involving portfolio mix with crypto-currencies should recognise their identified 

properties, especially their long-run behaviours and relationships. Portfolio allocation and 
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diversification strategies may not combine assets which reflect short-term behaviour with 

crypto-currencies which exhibit long-term behaviour and relationship. This is based on the 

idea that mis-pricing and over-hedging can occur in the absence of cointegration   

 

 

 

 

 

The data that support the findings of this study are openly available at ForexTime 

(FXTM) Global Ltd trading platform (www.forextime.com). 
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Table 1: Data Description and Sample 

Commodity Frequency 
Sample range Sample size 

T Start Date Stop Date 

Bitcoin 

[BTCUSD] 

1min (M1) 2018.08.18 - 05:03 2019.11.14 - 12:45 41,860 

5 mins (M5) 2018.10.17 - 08:30 2019.11.14 - 12.45 17,398 

15 mins (M15) 2018.09.28 - 11:45 2019.11.14 - 12:45 6,836 

30 mins (M30) 2018.08.31 - 00:30 2019.11.14 - 12:30 7,751 

1 hour (H1) 2018.04.17 - 04:00 2019.11.14 - 12:00 8,290 

4 hour (H4) 2017.05.24 - 20:00 2019.11.14 - 12:00 3,996 

Daily (D1) 2012.08.11 - 00:00 2019.11.14 - 00:00 2,415 

Weekly (W) 2010.07.11 - 00:00 2019.11.10 - 00:00 484 

Monthly (MN) 2010.07.01 - 00:00 2019.11.01 - 00:00 111 

Ethereum 

[ETHUSD] 

1min (M1) 2019.11.12 - 07:05 2019.11.14 - 12:47 2,048 

5 mins (M5) 2019.11.04 - 21:40 2019.11.14 - 12:50 2,049 

15 mins (M15) 2019.10.16 - 00:15 2019.11.14 - 12:45 2,048 

30 mins (M30) 2019.09.16 - 20:00 2019.11.14 - 12:30 2,048 

1 hour (H1) 2018.07.03 - 13:00 2019.11.14 - 12:00 6,940 

4 hour (H4) 2018.07.23 - 00:00 2019.11.14 - 12:00 2,048 

Daily (D1) 2016.05.02 - 00:00 2019.11.14 - 00:00 1,056 

Weekly (W) 2016.05.01 - 00:00 2019.11.10 - 00:00 183 

Monthly (MN) 2016.05.01 - 00:00 2019.11.01 - 00:00 43 

Litecoin 

[LTCUSD] 

1min (M1) 2019.11.12 - 22:03 2019.11.14 - 12:56 2,050 

5 mins (M5) 2019.11.05 - 07:45 2019.11.14 - 12:55 2,048 

15 mins (M15) 2019.10.16 - 03:15 2019.11.14 - 12:45 2,048 

30 mins (M30) 2019.09.16 - 19:30 2019.11.14 - 12:30 2,048 

1 hour (H1) 2018.07.03 - 14:00 2019.11.14 - 12:00 6,941 

4 hour (H4) 2018.07.23 - 00:00 2019.11.14 - 12:00 2,048 

Daily (D1) 2012.08.18 - 00:00 2019.11.14 - 00:00 2,409 

Weekly (W) 2011.10.23 - 00:00 2019.11.10 - 00:00 408 

Monthly (MN) 2011.10.01 - 00:00 2019.11.01 - 00:00 95 

Ripple 

[RPLUSD] 

1min (M1) 2019.11.12 - 23:05 2019.11.14 - 13:02 2,051 

5 mins (M5) 2019.11.08 - 18:40 2019.11.14 - 13:00 1,025 

15 mins (M15) 2019.10.15 - 01:45 2019.11.14 - 13:00 2,048 

30 mins (M30) 2019.09.13 - 01:30 2019.11.14 - 13:00 2,048 

1 hour (H1) 2018.06.27 - 20:00 2019.11.14 - 13:00 4,294 

4 hour (H4) 2018.02.08 - 04:00 2019.11.14 - 12:00 2,747 

Daily (D1) 2018.02.08 - 00:00 2019.11.14 - 00:00 459 

Weekly (W) 2018.02.04 - 00:00 2019.11.10 - 00:00 93 

Monthly (MN) 2018.02.01 - 00:00 2019.11.01 - 00:00 22 
Note: M1, M5, M15 and M30 denote intraday currency prices at every 1, 5, 15 and 30 minutes, respectively; H1 

and H4 indicate prices at every 1 and 4 hours, respectively; while D1, WK and MN represent daily, weekly and 

monthly currency prices, respectively. 
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Table 2: ADF test for level series, first differences and range of high and low cryptocurrency prices 

Crypto. Frequency 

High Price Series Low Price Series Range Price Series 

Level First Difference Level First Difference Level 

None C C & T None C C & T None C C & T None C C & T None C C & T 

Bitcoin 

M1 0.4404 -1.0340 -1.5137 -200.806 -200.806 -200.804 0.4337 -1.0428 -1.5266 -199.893 -199.893 -199.890 -11.262 -15.686 -15.827 

M5 0.1230 -0.7674 -2.3035 -130.155 -130.153 -130.160 0.1115 -0.7884 -2.3138 -131.937 -131.935 -131.942 -11.699 -16.704 -18.018 

M15 0.1168 -1.0677 -1.8292 -82.238 -82.234 -82.234 0.1318 -1.0446 -1.8108 -82.505 -82.501 -82.501 -7.353 -20.973 -21.771 

M30 -0.0448 -1.1758 -1.9178 -86.247 -86.243 -86.243 -0.0551 -1.2056 -1.9458 -88.206 -88.201 -88.202 -6.787 -13.742 -14.722 

H1 -0.4090 -1.5371 -1.7538 -89.514 -89.508 -89.507 -0.4264 -1.5999 -1.8172 -89.963 -89.958 -89.957 -3.666 -6.384 -6.492 

H4 -0.2624 -1.8858 -1.8317 -61.786 -61.783 -61.779 -0.3991 -2.1263 -2.1144 -63.548 -63.545 -63.539 -3.078 -4.299 -4.325 

D1 -0.9373 -1.5483 -2.8154 -10.974 -10.992 -11.002 -0.3633 -1.0051 -2.3211 -11.546 -11.576 -11.599 -2.714 -3.300 -3.872 

WK -0.8415 -1.3994 -2.6645 -8.788 -8.809 -8.822 -0.1779 -0.7828 -2.1589 -25.309 -25.322 -25.333 -3.193 -3.591 -4.822 

MN -1.5632 -2.1307 -3.5182 -7.556 -7.561 -7.552 0.4203 -0.2395 -1.7938 -9.004 -9.067 -9.140 -2.232 -2.640 -3.906 

Etherum 

M1 -0.1773 -2.1153 -2.0536 -27.638 -27.632 -27.634 -0.1617 -2.2547 -2.2471 -27.956 -27.950 -27.949 -4.864 -19.087 -19.085 

M5 -0.1515 -2.7491 -3.1786 -40.411 -40.401 -40.396 -0.1562 -2.7863 -3.1607 -43.819 -43.809 -43.801 -4.116 -17.691 -18.522 

M15 0.1410 -1.6407 -2.3250 -43.678 -43.668 -43.658 0.1239 -1.7441 -2.5064 -47.045 -47.034 -47.023 -3.672 -11.800 -11.863 

M30 -0.2729 -2.0222 -2.0034 -25.160 -25.154 -25.150 -0.2687 -2.1607 -2.1415 -44.123 -44.113 -44.104 -4.629 -14.756 -20.692 

H1 -2.2086 -2.7775 -2.3001 -60.332 -60.349 -60.376 -2.1601 -2.8052 -2.3602 -60.442 -60.457 -60.482 -3.702 -6.792 -7.031 

H4 -2.5609 -3.7181 -3.3568 -44.058 -44.088 -44.173 -2.4156 -3.6528 -3.3240 -45.534 -45.559 -45.636 -3.301 -8.360 -8.466 

D1 -1.6492 -2.4020 -2.4359 -6.437 -6.436 -6.446 -1.4918 -2.2331 -2.2546 -7.100 -7.099 -7.108 -2.102 -2.617 -2.600 

WK -1.1067 -1.7426 -1.6236 -13.090 -13.056 -13.051 -1.0544 -1.7706 -1.6590 -13.025 -12.993 -12.983 -1.967 -2.492 -2.449 

MN -1.3355 -2.1036 -1.9799 -4.560 -4.506 -4.511 -1.0800 -1.9086 -1.8078 -6.304 -6.236 -5.950 -1.704 -2.319 -2.212 

Litecoin 

M1 -1.3992 0.2680 -1.1886 -43.095 -43.128 -43.168 -1.2365 -0.0240 -1.4965 -46.186 -46.211 -46.241 -4.213 -12.677 -13.171 

M5 -0.5860 -1.8865 -3.2207 -41.944 -41.940 -41.944 -0.5560 -2.0709 -3.3116 -45.035 -45.030 -45.030 -3.555 -13.242 -13.781 

M15 0.2464 -1.3682 -1.9185 -42.806 -42.798 -42.789 0.2250 -1.4901 -2.1400 -45.220 -45.211 -45.201 -3.257 -12.612 -12.648 

M30 -0.8323 -1.9422 -1.7191 -40.936 -40.934 -40.945 -0.8148 -2.0500 -1.8448 -33.729 -33.729 -33.742 -4.741 -14.813 -20.268 

H1 -0.8335 -1.6201 -1.6457 -60.444 -60.441 -60.437 -0.8308 -1.6393 -1.6677 -64.442 -64.439 -64.435 -3.142 -5.817 -5.859 

H4 -0.8500 -1.4470 -1.6700 -44.939 -44.931 -44.921 -0.8577 -1.5295 -1.7795 -48.579 -48.569 -48.559 -4.216 -7.429 -7.675 

D1 -2.3642 -2.8718 -3.5909 -18.461 -18.459 -18.455 -1.6309 -2.1098 -2.7502 -12.853 -12.855 -12.852 -4.636 -5.112 -5.636 

WK -2.1155 -2.6127 -3.2678 -15.961 -15.944 -15.924 -1.5396 -2.0521 -2.7817 -6.652 -6.652 -6.644 -3.994 -4.437 -4.850 

MN -2.0353 -2.5068 -3.0508 -10.185 -10.134 -10.080 -0.9142 -1.4770 -2.2829 -8.774 -8.753 -8.708 -3.850 -4.303 -4.710 

Ripple 

M1 -0.9759 -0.2107 -1.4111 -46.333 -46.343 -46.386 -0.8479 -0.4871 -1.7126 -37.624 -37.631 -37.668 -3.457 -11.005 -14.274 

M5 -0.7856 -0.9328 -2.6645 -29.218 -29.222 -29.250 -0.6664 -1.4643 -3.1437 -25.711 -25.712 -25.748 -3.271 -11.682 -11.708 

M15 -0.7102 -1.6936 -1.9810 -33.686 -33.689 -33.690 -0.6397 -2.1380 -2.3876 -32.593 -32.592 -32.590 -3.755 -23.173 -23.343 

M30 -0.0252 -2.2800 -2.1519 -41.820 -41.811 -41.814 -0.0013 -2.1981 -2.0782 -24.848 -24.843 -24.852 -3.266 -11.384 -21.339 

H1 -1.0422 -2.3070 -2.9908 -13.739 -13.747 -13.745 -1.1291 -1.8021 -2.1935 -50.510 -50.512 -50.507 -5.222 -8.377 -9.667 

H4 -1.5127 -2.0884 -2.7384 -52.477 -52.478 -52.471 -1.5220 -2.0700 -2.6600 -51.444 -51.446 -51.439 -4.467 -10.062 -11.991 

D1 -1.5230 -2.1814 -2.9014 -22.084 -22.099 -22.098 -1.5366 -2.1357 -2.7393 -20.554 -20.557 -20.545 -4.183 -6.510 -7.712 

WK -2.3504 -3.1108 -3.3930 -11.770 -11.857 -11.929 -1.6600 -2.3116 -2.8196 -6.249 -6.318 -6.396 -2.438 -6.360 -8.105 

MN -2.4533 -2.6343 -2.7906 -4.682 -5.049 -5.370 -2.2290 -3.7541 -4.2256 -6.341 -6.303 -6.167 -1.503 -2.805 -4.269 
Note: The figures are t-statistics of the ADF test, with bold, denoting statistical significance at both 1% and 5% levels. “C” denotes constant, “T” denotes time trend in the unit root test regression model. M1, M5, M15 and M30 

denote intraday currency prices at every 1, 5, 15 and 30 minutes, respectively; H1 and H4 indicate prices at every 1 and 4 hours, respectively; while D1, WK and MN represent daily, weekly and monthly currency prices, 

respectively. 
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Table 3: Estimates of Exact Local Whittle (ELW) of fractional integration parameter d for high (dH), low prices (dL) and their differences, the 

range (dR) for two bandwidths m for the number of periodogram ordinates (m = T0.5 and m = T0.6) 

  Bandwidths ELWm = T
0.5

 ELWm = T
0.6 

Crypto. Series Frequency T T0.5 T0.6 dH dL dR s.e.(dR) dH dL dR s.e.(dR) 

Bitcoin M1 41860 204 593 1.029 1.029 0.380 0.035 1.009 1.008 0.421 0.021 

 M5 17398 131 350 1.005 1.004 0.458 0.044 1.008 1.008 0.422 0.027 

 M15 6836 82 199 1.002 1.003 0.438 0.055 1.009 1.010 0.365 0.035 

 M30 7751 88 215 0.983 0.981 0.539 0.053 0.997 0.998 0.381 0.034 

 H1 8290 91 224 1.028 1.025 0.786 0.052 1.024 1.021 0.669 0.033 

 H4 3996 63 144 1.044 1.005 0.669 0.063 1.033 1.004 0.553 0.042 

 D1 2415 49 107 0.947 0.976 0.642 0.071 0.916 0.917 0.853 0.048 

 WK 484 22 40 0.931 1.015 0.601 0.107 0.991 1.047 0.761 0.079 

 MN 111 10 16 0.709 0.707 0.586 0.158 0.815 0.899 0.586 0.125 

Ethereum M1 2,048 45 97 0.892 0.895 0.198 0.075 0.920 0.892 0.246 0.051 

 M5 2,049 45 97 1.019 1.019 0.630 0.075 1.008 1.009 0.519 0.051 

 M15 2,048 45 97 1.121 1.108 0.337 0.075 1.034 1.059 0.321 0.051 

 M30 2,048 45 97 1.121 1.124 0.258 0.075 1.056 1.002 0.314 0.051 

 H1 6,940 83 201 1.007 1.007 0.633 0.055 1.009 1.007 0.613 0.035 

 H4 2,048 45 97 0.934 0.938 0.471 0.075 1.023 1.023 0.527 0.051 

 D1 1,056 32 65 0.840 0.868 0.591 0.088 1.007 0.963 0.945 0.062 

 WK 183 13 22 0.848 0.922 0.636 0.139 1.007 0.883 0.947 0.107 

 MN 43 6 9 1.013 1.278 0.691 0.204 0.995 0.947 0.955 0.167 

Litecoin M1 2,050 45 97 1.016 1.017 0.625 0.075 1.010 1.010 0.535 0.051 

 M5 2,048 45 97 1.023 1.011 0.489 0.075 0.959 0.943 0.384 0.051 

 M15 2,048 45 97 1.137 1.112 0.350 0.075 1.069 1.099 0.328 0.051 

 M30 2,048 45 97 1.044 1.057 0.270 0.075 1.021 0.986 0.284 0.051 

 H1 6,941 83 201 0.983 0.983 0.562 0.055 0.999 0.996 0.590 0.035 

 H4 2,048 45 97 0.939 0.946 0.470 0.075 1.011 1.015 0.490 0.051 

 D1 2,409 49 106 0.890 0.941 0.589 0.071 0.746 0.756 0.580 0.049 

 WK 408 20 36 0.945 1.138 0.592 0.112 0.882 1.019 0.623 0.083 

 MN 95 9 15 0.760 0.832 0.537 0.167 0.888 1.225 0.552 0.129 

Ripple M1 2,051 45 97 1.016 1.016 0.664 0.075 1.009 1.009 0.603 0.051 

 M5 1,025 32 64 1.051 1.050 0.768 0.088 1.023 1.023 0.589 0.063 

 M15 2,048 45 97 0.900 0.886 0.235 0.075 0.929 0.934 0.227 0.051 

 M30 2,048 45 97 1.064 1.067 0.247 0.075 1.045 1.007 0.269 0.051 

 H1 4,294 65 151 1.040 1.045 0.586 0.062 0.959 0.970 0.439 0.041 

 H4 2,747 52 115 0.918 0.921 0.634 0.069 1.105 1.116 0.559 0.047 

 D1 459 21 39 0.745 0.754 0.447 0.109 0.912 0.929 0.436 0.080 

 WK 93 9 15 0.590 0.527 0.551 0.167 0.697 0.738 0.472 0.129 

 MN 22 4 6 0.411 0.814 0.064 0.250 0.619 0.634 0.327 0.204 

Note, s.e.(dR) is the standard error of dR. In bold, evidence of significant long-range dependency, that is 0<dR<1 with dR< min (dH, dL) for each result in the periodogram points T0.5 

and T0.6 for each corresponding series. 
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Table 4: Estimates of Geweke and Porter-Hudak (GPH) of fractional integration parameter d for high (dH), low prices (dL) and their 

differences, the range (dR) for two bandwidths m for the number of periodogram ordinates (m = T0.5 and m = T0.6) 
  Bandwidths GPHm = T

0.5
 GPHm = T

0.6 

Crypto. Series Frequency T T0.5 T0.6 dH dL dR s.e.(dR) dH dL dR s.e.(dR) 

Bitcoin M1 41,860 204 593 1.077 1.078 0.391 0.047 1.021 1.020 0.448 0.027 

 M5 17,398 131 350 1.040 1.040 0.463 0.060 1.059 1.058 0.395 0.035 

 M15 6,836 82 199 0.943 0.942 0.424 0.078 0.936 0.939 0.336 0.048 

 M30 7,751 88 215 0.988 0.988 0.509 0.075 1.008 1.006 0.374 0.046 

 H1 8,290 91 224 1.059 1.058 0.819 0.073 1.045 1.043 0.674 0.045 

 H4 3,996 63 144 0.978 0.939 0.770 0.090 1.012 0.983 0.531 0.057 

 D1 2,415 49 107 0.923 0.971 0.619 0.104 0.927 0.929 0.854 0.067 

 WK 484 22 40 0.905 1.016 0.602 0.170 0.970 1.022 0.747 0.118 

 MN 111 10 16 0.779 0.684 0.725 0.293 0.867 0.947 0.670 0.212 

Ethereum M1 2,048 45 97 0.847 0.867 0.140 0.110 0.972 0.940 0.188 0.071 

 M5 2,049 45 97 0.965 0.964 0.676 0.110 0.850 0.854 0.508 0.071 

 M15 2,048 45 97 1.130 1.135 0.273 0.110 1.030 1.080 0.275 0.071 

 M30 2,048 45 97 1.152 1.148 0.387 0.110 1.099 1.044 0.364 0.071 

 H1 6,940 83 201 0.928 0.925 0.579 0.077 0.987 0.988 0.611 0.048 

 H4 2,048 45 97 0.977 0.967 0.458 0.110 1.052 1.044 0.536 0.071 

 D1 1,056 32 65 0.896 0.921 0.638 0.135 1.032 0.983 0.976 0.089 

 WK 183 13 22 0.829 0.874 0.639 0.243 1.062 0.928 1.021 0.172 

 MN 43 6 9 1.079 1.603 0.743 0.440 1.072 1.026 1.169 0.325 

Litecoin M1 2,050 45 97 0.884 0.890 0.563 0.110 0.747 0.749 0.473 0.071 

 M5 2,048 45 97 1.071 1.064 0.541 0.110 0.945 0.938 0.431 0.071 

 M15 2,048 45 97 1.175 1.154 0.393 0.110 1.090 1.128 0.358 0.071 

 M30 2,048 45 97 1.140 1.130 0.399 0.110 1.102 1.052 0.337 0.071 

 H1 6,941 83 201 0.997 0.996 0.519 0.077 1.045 1.048 0.548 0.048 

 H4 2,048 45 97 1.046 1.054 0.452 0.110 1.064 1.088 0.441 0.071 

 D1 2,409 49 106 0.867 0.924 0.580 0.104 0.726 0.739 0.569 0.067 

 WK 408 20 36 0.887 1.064 0.573 0.181 0.844 0.983 0.611 0.126 

 MN 95 9 15 0.944 1.043 0.575 0.317 0.882 1.172 0.549 0.222 

Ripple M1 2,051 45 97 0.708 0.716 0.573 0.112 0.630 0.635 0.471 0.079 

 M5 1,025 32 64 0.990 0.983 0.569 0.142 0.772 0.778 0.470 0.091 

 M15 2,048 45 97 1.000 0.924 0.176 0.110 0.966 0.951 0.168 0.071 

 M30 2,048 45 97 1.161 1.138 0.364 0.110 1.106 1.049 0.309 0.071 

 H1 4,294 65 151 1.043 1.049 0.593 0.089 0.968 0.963 0.432 0.055 

 H4 2,747 52 115 0.887 0.885 0.694 0.101 1.087 1.081 0.602 0.064 

 D1 459 21 39 0.781 0.803 0.339 0.176 0.891 0.886 0.366 0.120 

 WK 93 9 15 0.623 0.572 0.616 0.317 0.814 0.927 0.566 0.223 

 MN 22 4 6 0.516 0.926 0.032 0.638 0.732 0.719 0.249 0.462 

Note, s.e.(dR) is the standard error of dR. In bold, evidence of significant long-range dependency, that is 0<dR<1 with dR< min (dH, dL) for each result in the periodogram points T0.5 

and T0.6 for each corresponding series. 
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Table 5: Test of Spurious Long memory in Range series  

In bold, significant of Wald statistic at 5% level. For details of critical values, see Qu (2011). 

 

 
 Bandwidths Qu test m = T

0.5 Qu test m = T
0.6 

Crypto. 
Series  

Frequency 
T T0.5 T0.6 dR1 dR2 

Bitcoin M1 41,860 204 593 0.6468 0.7306 

 M5 17,398 131 350 1.2948 1.1819 

 M15 6,836 82 199 1.6869 1.1145 

 M30 7,751 88 215 1.2679 2.2212 

 H1 8,290 91 224 0.9904 1.4940 
 H4 3,996 63 144 1.4782 1.8498 

 D1 2,415 49 107 0.9912 0.7856 

 WK 484 22 40 1.0160 0.5914 

 MN 111 10 16 1.2806 0.4582 

Ethereum M1 2,048 45 97 1.3407 0.4485 

 M5 2,049 45 97 1.0215 0.9492 

 M15 2,048 45 97 1.1305 0.5798 

 M30 2,048 45 97 2.2462 0.8292 

 H1 6,940 83 201 0.7792 0.6051 

 H4 2,048 45 97 1.1722 0.5077 

 D1 1,056 32 65 1.0463 2.2507 

 WK 183 13 22 1.0827 0.8120 

 MN 43 6 9 0.9226 0.2739 

Litecoin M1 2,050 45 97 1.4179 0.5377 

 M5 2,048 45 97 0.9809 0.7338 

 M15 2,048 45 97 1.3930 0.6219 

 M30 2,048 45 97 2.7464 1.4619 

 H1 6,941 83 201 0.8631 0.8436 

 H4 2,048 45 97 2.0003 0.7708 

 D1 2,409 49 106 1.0351 0.8869 

 WK 408 20 36 1.1162 0.7837 

 MN 95 9 15 1.2819 0.5462 

Ripple M1 2,051 45 97 1.3028 0.7674 

 M5 1,025 32 64 1.0996 0.5742 

 M15 2,048 45 97 1.2401 0.4482 

 M30 2,048 45 97 1.8243 0.8887 

 H1 4,294 65 151 1.7756 0.7276 

 H4 2,747 52 115 1.5909 1.3013 

 D1 459 21 39 1.2451 0.8942 

 WK 93 9 15 1.4123 0.7246 

 MN 22 4 6 0.6437 0.3003 
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Table 6: Test of Homogeneity of fractional integration orders 

In bold, evidence of equal orders of integration of the pair, high and low series, at the 5% level.The critical 

value of the test at this level of significance is 1.9599. “NC” implies computation error of the periodogram used 
in the estimation for those time points. 

  Bandwidths Test statistic 

Crypto. Series  

Frequency 

T T0.5 T0.6 m = T0.5 m = T0.6 

Bitcoin M1 41,860 205 593 NC NC 

 M5 17,398 132 350 0.4784 0.1473 

 M15 6,836 83 200 0.0253 0.0101 

 M30 7,751 88 216 0.0143 0.0891 

 H1 8,290 91 224 0.2147 0.2253 

 H4 3,996 63 145 0.8664 0.8801 

 D1 2,415 49 107 0.1752 0.1868 

 WK 484 22 41 0.6560 0.6849 

 MN 111 11 17 0.2168 0.5004 

Ethereum M1 2,048 45 97 0.0367 0.5021 

 M5 2,049 45 97 0.2170 0.2033 

 M15 2,048 45 97 0.1647 0.4483 

 M30 2,048 45 97 0.0736 0.9420 

 H1 6,940 83 202 0.0023 0.0655 

 H4 2,048 45 97 0.0796 0.0039 

 D1 1,056 32 65 0.4214 0.3740 

 WK 183 14 23 0.5227 0.7794 

 MN 43 7 10 0.6217 0.4845 

Litecoin M1 2,050 45 97 0.0115 0.0466 

 M5 2,048 45 97 0.1343 0.3781 

 M15 2,048 45 97 0.2416 0.5579 

 M30 2,048 45 97 0.1110 0.6203 

 H1 6,941 83 202 0.0670 0.4060 

 H4 2,048 45 97 0.1106 0.0890 

 D1 2,409 49 107 0.4759 0.7761 

 WK 408 20 37 1.2772 1.2915 

 MN 95 10 15 0.6858 1.6300 

Ripple M1 2,051 45 97 NC NC 

 M5 1,025 32 64 NC NC 

 M15 2,048 45 97 0.3383 0.0614 

 M30 2,048 45 97 0.1916 0.4522 

 H1 4,294 66 151 0.3963 0.2617 

 H4 2,747 52 116 0.1119 0.0724 

 D1 459 21 40 0.0418 0.1479 

 WK 93 10 15 0.1948 0.0018 

 MN 22 5 6 0.0130 0.1335 
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Table 7: Fractional Cointegration Rank test by Johansen and Nielsen (2012) based on 

Unrestricted constant model 
   r = 0 r = 1 r = 2 

Crypto. 
Series  

Frequency 

kmax 

(4) 
d b LR d b LR d b 

Bitcoin M1 4 0.800 0.169 63.661 1.026 0.710 0.213 1.027 0.709 

 M5 3 0.800 0.100 82.045 1.009 0.732 0.134 1.013 0.734 

 M15 2 0.800 0.100 96.358 1.003 0.777 0.072 1.004 0.778 

 M30 2 0.800 0.100 114.172 0.991 0.630 5.665 0.866 0.100 

 H1 0 0.852 0.500 3121.669 1.023 0.745 0.706 1.026 0.748 

 H4 4 0.816 0.100 16.176 1.038 0.682 0.988 1.065 0.734 

 D1 4 0.950 0.500 1032.090 1.168 0.768 17.773 1.200 0.797 

 WK 4 0.800 0.900 33.997 0.800 0.374 0.671 0.800 0.391 

 MN 0 0.955 0.5444 28.573 1.147 0.355 4.822 1.300 0.804 

Ethereum M1 0 0.845 0.500 577.170 1.000 0.691 0.003 1.000 0.690 

 M5 3 0.800 0.100 25.552 0.882 0.397 0.197 0.870 0.413 

 M15 0 0.844 0.500 652.748 1.002 0.743 0.001 1.003 0.743 

 M30 0 0.858 0.500 580.470 1.010 0.737 0.017 1.010 0.738 

 H1 0 0.845 0.500 2280.866 1.011 0.708 1.489 1.017 0.713 

 H4 0 0.824 0.500 876.696 1.018 0.611 2.482 1.039 0.636 

 D1 4 0.925 0.156 28.420 0.880 0.756 3.044 0.894 0.746 

 WK 1 0.800 0.704 47.722 0.800 0.798 4.201 0.800 0.753 

 MN 3 0.800 0.100 32.194 1.200 0.900 1.574 1.200 0.900 

Litecoin M1 0 0.839 0.500 683.469 1.000 0.660 0.006 1.000 0.661 

 M5 0 0.837 0.500 691.124 1.000 0.646 0.001 1.000 0.646 

 M15 0 0.844 0.500 640.221 1.004 0.695 0.024 1.004 0.695 

 M30 0 0.864 0.500 533.475 1.009 0.791 0.125 1.011 0.794 

 H1 0 0.852 0.500 2465.397 1.029 0.745 1.598 1.034 0.749 

 H4 0 0.847 0.500 935.619 1.047 0.692 1.988 1.059 0.703 

 D1 4 0.800 0.415 14.756 0.800 0.472 0.543 0.800 0.480 

 WK 4 0.800 0.365 19.006 0.970 0.697 0.502 0.927 0.726 

 MN 0 0.846 0.498 88.865 1.024 0.549 3.501 1.200 0.766 

Ripple M1 0 0.838 0.500 672.517 1.000 0.648 0.000 1.000 0.647 

 M5 0 0.841 0.500 312.015 0.999 0.657 0.000 0.999 0.657 

 M15 0 0.840 0.500 714.377 1.002 0.803 0.069 1.003 0.805 

 M30 0 0.857 0.500 569.725 1.005 0.796 0.077 1.005 0.796 

 H1 0 0.875 0.500 865.633 1.020 0.735 1.125 1.026 0.740 

 H4 0 0.878 0.500 973.424 1.051 0.717 2.038 1.064 0.734 

 D1 0 0.883 0.500 229.826 1.096 0.900 5.245 1.136 0.900 

 WK 0 0.800 0.481 55.939 1.070 0.900 4.344 1.200 0.900 

 MN 0 0.800 0.483 13.247 0.800 0.900 0.137 0.800 0.900 

Note, maximum k is set at 4 and this gives the order of the error correction mechanism in the FCVAR system. 

The LR is the Likelihood Ratio statistics, computed for rank r = 0 and 1. This is not available for rank 2 since 

we are not rejecting any more rank after rank 1 indicated in bold, with LR test statistics insignificant at 5% 

level. 
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Table 8: FCVAR estimation results (no restriction) 

Crypto. 
Series  

Frequency d̂  b̂  ̂  

Bitcoin M1 1.026 (0.015) 0.710 (0.021) [1, -1.001, 3.922] 

 M5 1.009 (0.020) 0.732 (0.027) [1, -1.001, -1.057] 

 M15 1.003 (0.023) 0.777 (0.034) [1, -1.003, 2.865] 

 M30 0.991 (0.032) 0.630 (0.067) [1, -1.005, 0.900] 

 H1 1.023 (0.009) 0.745 (0.017) [1, -1.012, 24.704] 

 H4 1.038 (0.045) 0.682 (0.087) [1, -1.055, 130.252] 

 D1 1.168 (0.017) 0.768 (0.031) [1, -1.124, 85.315] 

 WK 0.800 (0.165) 0.374 (0.093) [1, -0.993, -10.969] 

 MN 1.300 (0.001) 0.803 (0.215) [1, -1.783, 248.390] 

Ethereum M1 1.000 (0.017) 0.691 (0.045) [1, -0.990,-1.892] 

 M5 0.882 (0.079) 0.397 (0.068) [1, -0.997, -0.689] 

 M15 1.002 (0.017) 0.743 (0.036) [1, -1.008, 0.772] 

 M30 1.010 (0.017) 0.737 (0.037) [1, -1.001, -1.073] 

 H1 1.011 (0.010) 0.708 (0.019) [1, -1.009, -0.430] 

 H4 1.018 (0.018) 0.611 (0.039) [1, -1.021, -0.683] 

 D1 0.880 (0.104) 0.756 (0.087) [1, -1.113, 3.963] 

 WK 0.800 (0.124) 0.798 (0.113) [1, -1.307, 12.864] 

 MN 1.200 (0.213) 0.900 (0.179) [1, -1.799, 12.130] 

Litecoin M1 1.000 (0.017) 0.660 (0.038) [1, -0.998, -0.151] 

 M5 1.000 (0.017) 0.646 (0.039) [1, -0.993, -0.580] 

 M15 1.004 (0.017) 0.695 (0.038) [1, -1.015, 0.614] 

 M30 1.009 (0.017) 0.791 (0.036) [1, -1.012, 0.257] 

 H1 1.029 (0.010) 0.745 (0.019) [1, -1.018, 0.367] 

 H4 1.047 (0.018) 0.692 (0.039) [1, -1.036, 0.509] 

 D1 0.800 (0.334) 0.472 (0.217) [1, -1.092, 0.340] 

 WK 0.970 (0.164) 0.697 (0.099) [1, -1.267, 0.550] 

 MN 1.024 (0.086) 0.549 (0.169) [1, -1.908, 5.184] 

Ripple M1 1.000 (0.017) 0.648 (0.039) [1, -1.000, 0.000] 

 M5 0.999 (0.024) 0.657 (0.063) [1, -0.989, -0.004] 

 M15 1.002 (0.017) 0.803 (0.037) [1, -1.024, 0.005] 

 M30 1.005 (0.017) 0.796 (0.036) [1, -1.022, 0.004] 

 H1 1.020 (0.012) 0.735 (0.026) [1, -1.031, 0.006] 

 H4 1.051 (0.015) 0.717 (0.035) [1, -1.045, 0.004] 

 D1 1.096 (0.039) 0.900 (0.081) [1, -1.112, 0.010] 

 WK 1.070 (0.112) 0.900 (0.219) [1, -1.268, 0.016] 

 MN 0.800 (0.181) 0.900 (0.000) [1, -2.044, 0.157] 
In bold, evidence of no cointegration since b > d. In the third and fourth columns, standard errors of estimates 

are in parenthesis.  
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Table 9: FCVAR estimation results (With restriction) 

In bold, evidence of no cointegration since b > d.In the third and fourth columns, standard errors of estimates are 

in parenthesis. 

 

Crypto. Series  

Frequency 
d̂  b̂  ̂  

Bitcoin M1 1.024 (0.015) 0.710 (0.021) [1, -1.001] 

 M5 1.010 (0.020) 0.731 (0.027) [1, -1.001] 

 M15 1.003 (0.023) 0.777 (0.034) [1, -1.003] 

 M30 0.991 (0.032) 0.630 (0.067) [1, -1.004] 

 H1 1.023 (0.009) 0.740 (0.017) [1, -1.009] 

 H4 1.070 (0.053) 0.457 (0.128) [1, -1.050] 

 D1 1.168 (0.017) 0.760 (0.030) [1, -1.123] 

 WK 0.800 (0.165) 0.374 (0.094) [1, -0.995] 

 MN 1.300 (0.526) 0.685 (0.387) [1, -1.789] 

Ethereum M1 1.000 (0.017) 0.684 (0.044) [1, -1.001] 

 M5 0.876 (0.088) 0.406 (0.075) [1, -1.001] 

 M15 1.002 (0.017) 0.745 (0.036) [1, -1.003] 

 M30 1.009 (0.017) 0.736 (0.038) [1, -1.007] 

 H1 1.011 (0.010) 0.707 (0.019) [1, -1.010] 

 H4 1.017 (0.018) 0.610 (0.039) [1, -1.023] 

 D1 0.948 (0.089) 0.694 (0.083) [1, -1.108] 

 WK 0.813 (0.111) 0.748 (0.121) [1, -1.273] 

 MN 1.200 (0.208) 0.900 (0.222) [1, -1.774] 

Litecoin M1 1.000 (0.017) 0.658 (0.038) [1, -1.001] 

 M5 0.999 (0.017) 0.644 (0.039) [1, -1.003] 

 M15 1.003 (0.017) 0.699 (0.039) [1, -1.005] 

 M30 1.009 (0.017) 0.791 (0.036) [1, -1.008] 

 H1 1.029 (0.010) 0.741 (0.019) [1, -1.014] 

 H4 1.047 (0.018) 0.690 (0.039) [1, -1.031] 

 D1 0.800 (0.339) 0.471 (0.222) [1, -1.090] 

 WK 0.977 (0.169) 0.691 (0.102) [1, -1.262] 

 MN 1.022 (0.084) 0.506 (0.171) [1, -1.876] 

Ripple M1 1.000 (0.017) 0.647 (0.039) [1, -1.001] 

 M5 0.999 (0.024) 0.648 (0.064) [1, -1.002] 

 M15 1.002 (0.017) 0.805 (0.037) [1, -1.005] 

 M30 1.004 (0.017) 0.801 (0.036) [1, -1.008] 

 H1 1.017 (0.012) 0.736 (0.027) [1, -1.016] 

 H4 1.051 (0.015) 0.706 (0.034) [1, -1.040] 

 D1 1.103 (0.040) 0.891 (0.074) [1, -1.097] 

 WK 1.089 (0.114) 0.900 (0.198) [1, -1.239] 

 MN 0.800 (0.215) 0.900 (0.684) [1, -1.625] 
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Table 10: Comparison of integration orders of range 

Note “NR” denotes a model without restrictions on the cointegrating vector, and “R” denotes a model with 
restrictions. 

  ELW GPH FCVAR 

Crypto. Series  

Frequency 

m=T0.5 m=T0.6 m=T0.5 m=T0.6 NR R 

Bitcoin M1 0.380 0.421 0.391 0.448 0.316 0.314 

 M5 0.458 0.422 0.463 0.395 0.277 0.279 

 M15 0.438 0.365 0.424 0.336 0.226 0.226 

 M30 0.539 0.381 0.509 0.374 0.361 0.361 

 H1 0.786 0.669 0.819 0.674 0.278 0.283 

 H4 0.669 0.553 0.770 0.531 0.356 0.613 

 D1 0.642 0.853 0.619 0.854 0.400 0.408 

 WK 0.601 0.761 0.602 0.747 0.426 0.426 

 MN 0.586 0.586 0.725 0.670 0.497 0.615 

Ethereum M1 0.198 0.246 0.140 0.188 0.309 0.316 

 M5 0.630 0.519 0.676 0.508 0.485 0.470 

 M15 0.337 0.321 0.273 0.275 0.259 0.257 

 M30 0.258 0.314 0.387 0.364 0.273 0.273 

 H1 0.633 0.613 0.579 0.611 0.303 0.304 

 H4 0.471 0.527 0.458 0.536 0.407 0.407 

 D1 0.591 0.945 0.638 0.976 0.124 0.254 

 WK 0.636 0.947 0.639 1.021 0.002 0.065 

 MN 0.691 0.955 0.743 1.169 0.300 0.300 
Litecoin M1 0.625 0.535 0.563 0.473 0.340 0.342 

 M5 0.489 0.384 0.541 0.431 0.354 0.355 

 M15 0.350 0.328 0.393 0.358 0.309 0.304 

 M30 0.270 0.284 0.399 0.337 0.218 0.218 

 H1 0.562 0.590 0.519 0.548 0.284 0.288 

 H4 0.470 0.490 0.452 0.441 0.355 0.357 

 D1 0.589 0.580 0.580 0.569 0.328 0.329 

 WK 0.592 0.623 0.573 0.611 0.273 0.286 

 MN 0.537 0.552 0.575 0.549 0.475 0.516 
Ripple M1 0.664 0.603 0.573 0.471 0.352 0.353 

 M5 0.768 0.589 0.569 0.470 0.342 0.351 

 M15 0.235 0.227 0.176 0.168 0.199 0.197 

 M30 0.247 0.269 0.364 0.309 0.209 0.203 

 H1 0.586 0.439 0.593 0.432 0.285 0.281 

 H4 0.634 0.559 0.694 0.602 0.334 0.345 

 D1 0.447 0.436 0.339 0.366 0.196 0.212 

 WK 0.551 0.472 0.616 0.566 0.170 0.189 

 MN 0.064 0.327 0.032 0.249 -0.100 -0.100 


