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Abstract 

 

  In the present paper, the inverted-U shape relationship between growth and 

inequality found in Chen(2003), is reexamined.  We decompose productivity growth 

into efficiency improvement, capital accumulation and technological progress and then 

ascertain their determinants by employing a fixed effects and dynamic panel models.  

In particular, this paper focuses on the question of how economic inequality affects 

capital accumulation and efficiency improvement.  Key findings are that inequality 

enhances efficiency improvement as well as capital accumulation and then undermines 

them as inequality widens.  However, other factors such as human capital, openness, 

and government consumption have different effects on them.   
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I. Introduction 

 

Since the seminal work of Kuzmets (1955) asserting that inequality first rises 

and later falls as an economy develops, and that this is schematized as an inverted-U 

relationship between inequality and the level of per capita product, it has been widely 

and generally acknowledged that a country‟s level of economic inequality can been 

viewed as an outcome of its economic performance1.  In recent years there has been 

increasing interest in the opposite causality, the question of how inequality affects 

economic growth.  There seems, however, to be little agreement regarding the influence 

of inequality upon economic growth.  Some research has found inequality to have 

negative effects on growth (e.g., Alesina and Perotti, 1996; Mo, 2000; Perotti, 1996; 

Persson and Tabellini, 1994; Sukiassyan, 2007).  By contrast, positive effects have also 

been observed (e.g., Forbes, 2000; Li and Zou, 1998).  An explanation for such 

discordance is that the negative relationship is found for less developed countries 

whereas a positive one is found for developed ones (Barro, 2000)2.  An alternative 

explication is that growth rates first rise and then decline with an initial inequality 

(Chen, 2003).  However, Chen (2003) does not control for unobservable fixed effects and 

the endogeneity problem that are expected to cause the estimation bias3.  Therefore, 

we attempt to reexamine the finding which Chen (2003) provides by controlling for fixed 

effects and endogeneity.  

If inequality has a critical effect on economic growth it would be cogent to ask 

what the channels are through which inequality affects growth.  For instance, Mo 

(2000) investigated plausible channels such as human capital and political stability 

when the impact of income inequality on the growth rate is considered.   A classical 

analysis of Kaldor (1956) argued that income distribution has a critical effect on capital 

accumulation, through which economic growth is affected.  Besides capital 

accumulation, technology progress and its diffusion appears to make a contribution to 

economic growth (Segerstrom 1991, Yamamura et al., 2005).  Accordingly, economic 

growth is considered to be attributed to several channels such as efficiency 

improvement, technological progress, and capital accumulation (Kumar and Russell, 

                                                   
1 Recent empirical study has provided evidence that while during the 1970s and 1980s 
the growth process was not accompanied by increases in inequality, during the 1990s a 
positive correlation between growth and inequality appeared (Lopez 2006).  
2 Banerjee and Duflo(2003) presents inconclusive results. 
3 Chen (2003) refers to a remaining issue as, “ documenting evidence using a panel is an 
avenue for further research.”  
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2002).  The main aim of this paper is to examine the determinants, putting especial 

focus on economic inequality, of efficiency improvement and capital accumulation. 

  Existing literature (Yamamura and Shin 2007a, 2007b, 2007c, Zheng et al., 

1998; 2003) has used data envelopment analysis to construct the production frontier 

and decompose labor-productivity growth into the three components of efficiency 

improvement, capital accumulation, and technological progress to more closely 

investigate economic growth.  Additionally, through regression analysis they examined 

how various key independent variables have an effect on these components.  Applying 

the above approach, we attempt to decompose inequality effects on growth after 

controlling for unobservable fixed effects and endogeneity. 

 The main findings of our estimation support the assertion of Chen (2003) and 

provide further evidence that: inequality enhances efficiency improvement as well as 

capital accumulation and then undermines them as inequality widens.  However, other 

factors such as human capital, openness, and government consumption have different 

effects on efficiency improvement and capital accumulation, respectively.  The 

organization of this paper is as follows:  Section II briefly explains the strategy of the 

method used in the present paper and describes data sources.  Regression functions 

are then presented.  Section III discusses the results of the estimations.  The final 

section offers concluding observations. 

 

 

2. Methodorogy   

 

1. Data 

 

Definitions and the descriptive statistics used in this paper are presented in Table 

1.  Our data source for economic inequality measured by income inequality, Gini 

Coefficient, is collected from Deininger and Squire (1996)4.  To estimate efficiency 

                                                   
4 Gini coefficient is available from the World Bank HP 
(http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/0,,content
MDK:20699070~pagePK:64214825~piPK:64214943~theSitePK:469382,00.html).  This 
data is widely used in previous works (e.g., Banerjee and Duflo 2003, Barro 2000, 
Forbes 2000, Li and Zou 1998).  Recently, new indicators for inequality ((Duclos et al. 
2004, Esteban et al. 2007) and ethnic composition (Montalvo and Reynal-Querol 2005) 
have been developed.  However, the cross country panel data, which is called for the 
present paper, have not been constructed before.   

http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/0,,contentMDK:20699070~pagePK:64214825~piPK:64214943~theSitePK:469382,00.html
http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/0,,contentMDK:20699070~pagePK:64214825~piPK:64214943~theSitePK:469382,00.html
http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/0,,contentMDK:20699070~pagePK:64214825~piPK:64214943~theSitePK:469382,00.html
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improvement, capital accumulation, and technological progress by data envelopment 

analysis (abbreviated hereafter as DEA analysis), output, capital and labor data are 

required5.  These data can be obtained from the Penn World Table from 1965 to 19906.  

Following Yamamura and Shin (2007a), we construct a panel dataset from 1965 to 

1990
7
.  As explained later, using this dataset, we conduct a simple regression model in 

which the dependent variables are the percentage change between t and t+1 years in 

output per worker, technology change, efficiency index, and the capital accumulation 

index.   

Average years of school attainment, considered as human capital, are found in 

Easterly and Levine (1997)8.  Trade as a share of GDP that is a proxy for openness, 

government consumption as a share of GDP, and investment as a share of GDP are 

collected from Dollar (2002)9.  The ethnic fractionalization score is obtained from 

Matthew (1997)10.  EM-DAT provides data of the number of natural disasters11. 

The data of these variables are unavailable for several years; therefore additional 

data were generated by interpolation based on an assumption of constant changing 

rates to construct the panel data12.   

 

2. Method 

 

                                                   
5 The great advantage of DEA is that the frontier function requires no specification of 
functional form or distributional assumptions.  DEA is widely used to evaluate the 
efficiencies of countries (e.g. Kumar and Russell (2002), Kruger (2003)) and industries 
(e.g. Zheng et al., 1998; 2003).   

However, it should be noted that there are well known limitations to using this 
method.  For more information concerning limitations, see “A Data Envelopment 
Analysis (DEA) Home Page”(www.emp.pdx.edu/dea/homedea.html). We appreciate a 
referee introducing us to this web site. 
6 The data are available from the Penn World Table HP : 
http://pwt.econ.upenn.edu/php_site/pwt61_form.php   
7 Yamamura and Shin (2007a) preclude an implosion of the frontier over time.   

8 The data are available from the World Bank HP : 
http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/0,,content
MDK:20700002~pagePK:64214825~piPK:64214943~theSitePK:469382,00.html 
9 These data are available from the World Bank HP : 
http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/0,,content
MDK:20699374~pagePK:64214825~piPK:64214943~theSitePK:469382,00.html 
10 The data are available at http://www.wooster.edu/polisci/mkrain/ethfrac.html 
11 The data are available at http://www.em-dat.net/ 
12 It must be noted these data might suffer from measurement errors when 
interpolation is conducted. 

http://www.emp.pdx.edu/dea/homedea.html
http://www.wooster.edu/polisci/mkrain/ethfrac.html
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We estimate the extent of efficiency improvement, capital accumulation and 

technological progress by data envelopment analysis (DEA) and tripartite 

decomposition using country level panel data from 1965 to 1990.  First, we estimate 

the production frontier by DEA.  Two production frontiers derived from DEA can be 

decomposed into three components - efficiency improvement, capital accumulation and 

technological progress.  This approach has an advantage over the growth accounting 

approach, in that we can further decompose total factor productivity growth, thereby 

obtaining more detailed information.  Second, we take these variables as dependent 

variables and estimate their determinants by controlling unobservable individual and 

time effects through fixed effects and dynamic panel models.13  This method allows us 

to assess how and to what extent inequality and additional crucial factors have effects 

on productivity growth through efficiency improvement and capital accumulation.  

That is, to examine whether and to what degree various factors determine productivity 

growth affect efficiency improvement and capital accumulation.    

 

2..2 DEA  

 

We introduce the methodologies used to analyze the productivity and decomposition. 

DEA is a nonparametric method to construct a production frontier and associated 

productive efficiency indexes for the whole data set.  The approach to obtaining the 

production function is to envelop all scattered data on the dimension of input and 

output factors in the convex cone, and then the upper boundary of this set represents 

the production frontier as the best practice.  This method has advantages over other 

methods as it requires no specification of functional forms, except that it needs to 

assume returns to scale of technology. In this case, we assume constant-returns-to-scale 

technology with three variables: capital stock  K  and labor  L  as aggregate inputs 

and output  Y  as the aggregate output. To express this production function in two 

dimensions, we modify (a linear homogeneous) production process in which output per 

labor  LYy   can be produced by capital per worker  LKk  .  Thus, we let 

 i

t

i

t yk , , t =1,…,T , i =1,…, I , represent T  observations on these two variables for 

each of I  countries. 

                                                   
13 Some prior researches used the panel data to employ fixed effects model (Banerjee 
and Duflo 1996, Forbes 2000, Li and Zou 1998) and dynamic panel model (Banerjee and 
Duflo 1996, Forbes 2000, Skiassyan 2007). 
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We briefly describe the concept of the DEA method in Figure 1 without specific 

mathematical explanation. In this yk,  space of scalar input and output, there are 20 

scattered points of  i

t

i

t yk ,  that represent observations in a given period for some 

hypothetical economy. The best-practice production frontier can be constituted by 

enveloping upper boundaries of these observations given the level of inputs (6 points in 

this case) to make a convex cone.  Thus, this production frontier represents the 

maximum feasible outputs given inputs.  Let  tt ky  denote the maximum output that 

we can produce with capital stock tk  in period t . 

Now, we utilize the output-based efficiency indexes that can be obtained from 

measuring the distance between the observed output level and the level on the frontier 

given an input level. Such an index for i  countries at time t  is defined by 

    ti

t

i

t

i

t

i

t Sykyke   ,|min,
                    (2-1) 

where tS  indicates the CRS production set.  For example, the output-based efficiency 

level of one observation  tt yke ,  at point B in Figure 1 is the ratio of actual output ty  

to the production frontier level  tt ky , that is,    ttttt kyyyke , =BC/AC.  It is less 

than or equal to 1 and takes the value of 1 if and only if the observation is on the 

production frontier.  The greater the value of the efficiency index, the more it is 

efficient and the nearer to the production frontier.  This index indicates the relative 

efficiency to the best practice of points at a given period.  It also has advantages of 

measuring productivity shortfall and catch-up relative to the best-practice frontier. 

 

                           < FIGURE 1 > 

 

If each of the production frontiers is constructed for any two years, we can then 

decompose productivity growth between two periods into three components. The 

tripartite decomposition method is conceptually described between two period 

technologies in Figure 2.  We consider the two periods as the base period a  and the 

current period b . 

 

                         < FIGURE 2 > 
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ay  and ak  represent output and capital stock per capita, respectively, in period 

a .   aa ky  is the potential output in period a .  Let us define the value of the 

efficiency indexes in period a  as  aaaa kyye  .  

The ratio of per capita outputs in periods a  and b  is calculated by definition 

as 

 
 
 aaa

bbb

a

b

kye

kye

y

y




 .                         (2-2) 

An equivalent way of writing the right hand side of (2-2) is  
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where   stands for efficiency change,   is technological change and and   is the 

capital accumulation change, between two periods.  Output changes for the two 

periods can be decomposed in efficiency, technological and capital accumulation 

changes.  The efficiency change is the change in the distance from the frontier.  The 

technological change is the shift in the frontier.  The capital accumulation change is the 

movement along the frontier.   

We diagrammatically explain the decomposition identity (2-3) in Figure 2.  The 

points B and G represent feasible input-output combinations in period a  and b , 

respectively.  Multiplying the top and bottom by  ba ky  or  ab ky , we obtain 

AC

EF

EF

EH

AB/AC

EG/EH

AB

EG
                      (2-4) 

or  

AD

EH

AC

AD

AB/AC

EG/EH

AB

EG
 ,                    (2-5) 

respectively.  The geometric average of (2-4) and (2-5) is 

2

1

2

1
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.            (2-6) 

Let 
AB/AC

EG/EH
E , 

2

1

T 





 

AC

AD

EF

EH
 and 

2

1

K 





 

AD

EH

AC

EF
, then (2-6) is the same 
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with (2-3). 

 

We now switch attention to Figure 1 that simply illustrates the DEA.  The 

technology frontier is depicted by connecting the most efficient point, when the vertical 

and horizontal axes stand for output over labor and capital over labor, respectively. 

Technological progress is considered as the shift of the productivity frontier that solely 

results from the level of the efficiency on the frontier.  To put it another way, apart from 

the most efficient country, no other country not affects technological progress since 

technological progress is externally determined for them. Hence the estimation results 

seem to encounter difficulty in interpreting when technological progress is taken as a 

dependent variable.  This is why the estimation results of technological progress are 

not paid much attention and not interpreted, although they are reported in Table A1 

and A2 of the APPENDIX. 

 

3. Specification of the Regression Function   

  

   We now formulate a regression function which take the labor-productivity 

growth( changes of the output per worker), the efficiency change and capital 

accumulation as the dependent variables.   

To estimate the relationship between labor-productivity growth and inequality 

we use the following standard equation: 

 

GRi,t-to =  1 LGDPit0 + 2GINIit0 + 3 GINI2it0 + 4 HCit0 + 5OPENit0 + 6 GOVit0 + 

7 INVS it0  + 8 EHETE it0  + 9 DISA it0  + ti   +uit ,  

 

εt , iti u,  represent the following unobservable effects: the t„s year-specific effects 

and the i „s prefecture-specific effects, and the error term, respectively.  t0 is the lagged 

year of the t„s year. i  includes a time-invariant feature, which is controlled for in the 

fixed effects model. The structure of the data set used in this study is a panel. We 

employed the fixed effects model to reduce the omitted variable bias caused by time 

invariant features of countries (Banerjee and Duflo, 2003; Forbes, 2000; Li and Zou, 

1998).  Development stages are considered to be covered in εt, and I incorporated in 

each year‟s dummy variables to restrain the time-specific effects (Forbes, 2000; Li and 
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Zou, 1998).  The stage of development seems to be correlated with growth and 

inequality at the same time, causing the spurious correlation problem.  Inclusion of 

year dummies is thought to alleviate this problem.  As well as year dummies, some 

explanatory variables such as proxies for human capital and openness appear to control 

for possible sources of spurious correlation since they stand for the stage of 

development14.  To address potential endogenous problems with lagged independent 

variables, we also carry out the dynamic panel estimation developed by Arellano-bond 

(Baltagi, 2005), since dynamic panel models allow past realizations of a dependent 

variable to affect its current level.  Lagged GRi,t-to replaces LGDPit0 as independent 

variables when a dynamic model is employed.   

As argued by Kuznets (1955), economic inequality is likely to be under the 

influence of economic growth.  If this is the case, the coefficients of GINI and GINI2 

would suffer from an endogeneity bias.  With a view to alleviating this problem, we 

employ the fixed effects 2sls model and its results are presented in columns (3) and (6) 

of Tables 2, 3, 4, and Table A1.  The instruments used are year dummies and cross 

products of an 80s dummy and legal origin dummies such as English common law and 

French commercial code dummies.  The 80s dummy takes 1 if years are from 1980 to 

1989, otherwise it takes 0.  The legal origin dummies are obtained from La Porta et al. 

(1999).  When the dynamic panel estimation is conducted, GINI and GINI2 are also 

treated as endogenous explanatory variables, and we use the level of these for two 

periods or more as additional instruments (Arellano, 2003). 

Independent variables are explained in the sections that follow. 

 

3.1. Gini coefficient   

 

LGDP stands for the output per worker, GINI and GINI2 represent the Gini 

coefficient of per capita income and its square, respectively; GINI and GINI2 are 

incorporated into the function as above to capture the income inequality effects in the 

base year t0 after controlling for the initial output level and various control variables 

                                                   
14 Previous research include the variables used in this paper and additionally control 
for various factors concerning institutional and economic conditions ( Barro, 2000; 
Banerjee and Duflo, 2003; Forbes, 2000; Perotti, 1996; Persson and Tabellini, 1994 ).    
 Institutional and geographical features can be controlled by fixed effects estimation.  
Further, sample size seriously decreases if additional variables are incorporated.  This 
is why we use only the important variables that are frequently used in the relevant 
literature.     
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mentioned later.  In conjecture based upon a political economy argument, the 

redistribution of resources from the rich to the poor is less likely to be called for in the 

case where income is equally distributed.  If this is the case, economic growth 

accompanied with income inequality is induced since the incentive for skilled workers to 

work harder and for entrepreneurs to generate innovation is strengthened.  As a 

consequence, in the subsequent stage, income inequality leads to a system where the 

majority vote to favor redistribution through explicit transfer payments, public 

expenditure programs, and regulatory policy.  The incentive to work and invest is thus 

weakened, resulting in economic growth being hampered.  What is more, assuming 

that the conditions are under an imperfection of credit market, investors are limited in 

their access to credit, leading to lower investment and then a reduction of economic 

growth.  As discussed above, an inverted-U relationship between income inequality 

and economic growth emerges via various channels.  When the incentive to work 

diminishes, efficiency deteriorates even if the country possesses high technology. The 

inverted-U relationship holds presumably due to the degree of the incentive for workers 

when efficiency improvement is examined.  On the other hand, when the incentive to 

invest is reduced, capital formation is impeded, the inverted-U relationship holds 

probably thanks to the degree of the incentive to invest when capital accumulation is 

assessed15.  According to Chen (2003), the coefficients of GINI and GINI2 take positive 

and the negative signs, respectively. As well, the absolute value of GINI is smaller than 

that of GINI2 if an inverted-U relationship holds in each estimation.  

 

3.2. Additional Control variables.   

 

HC denoting schooling years is taken as an indicator of human capital, which has 

frequently been used as an explanatory variable in previous research.  Higher 

education is likely to promote economic growth through various plausible channels.  

For instance, more educated people are apt to generate technological progress and 

facilitate the learning of new technology from others.  Nevertheless, the relationship 

between capital accumulation and HC seems to be ambiguous.  Hence, HC is predicted 

to take a positive sign when productivity growth and efficiency improvement are 

examined.     

                                                   
15 Although proxy for investment is included in the estimation function, incentive to 
invest appears to have a critical effect upon capital accumulation if the proxy fails to 
fully capture the impact of investment. 
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A country‟s import and export share of GDP represented as OPEN is incorporated 

in the function since trade is among the key factors determining growth (Frankel and 

Aten, 2002).  The technological knowledge and the various materials used for products 

are more inclined to flow into a country from abroad when that country is more open to 

foreign ones; thereby smoothing efficiency improvement and capital accumulation. 

Openness also seems to serve as a proxy for the degree of competition, leading to the 

acceleration of efficiency improvement.  Accordingly, the sign of OPEN is expect to be 

positive, in particular when efficiency improvement is assessed. 

As regards GOV standing for a government‟s share of GDP, the relative presence 

of the government will be inversely related with productivity growth through 

deterioration of efficiency, in large part due to an inefficient distribution of resources.  

On the other hand, the government is more inclined to enhance public investment to 

give a lift to the economy with the object of gaining wider support among the people.  

As a result, the larger the presence of the government becomes, the higher the degree of 

capital accumulation becomes.  Hence, signs of GOV are predicted to be negative in 

estimations of efficiency improvement but be positive in those of capital accumulation.   

     INVS standing for the investment share of GDP would, as a matter of course, 

enhance capital accumulation so that its sign is thought to be positive in estimations of 

capital accumulation, whereas it is uncertain in those of efficiency improvement. 

     To include how ethnic heterogeneity influences on growth, the function includes 

ethnic fractionalization represented as EHETE.  It is increasingly acknowledged that 

ethnic heterogeneity reduces the incentives for collective action (Alesina and La Ferrara 

2000) and hampers economic growth (Montalvo and Reynal-Querol. 2005).  This is 

likely to have an influence on efficiency improvement and capital accumulation as 

follows.  Capital accumulation is not promoted as a consequence of the lack of collective 

action calling for the provision of local public goods.  On the other hand, intuitively 

worker homogeneity is required for the smooth transmission of knowledge.  Ethnic 

fractionalization thus hampers knowledge spillover, resulting in deteriorating efficiency.  

This leads us to expect EHETE to take a negative sign in each of the estimations. 

     There has been recent research on the impact of natural disasters on economic 

growth (Skidmore and Toya 2002).  To include this effect, DISA, standing for the 

number of natural disasters, is included.  It seems obvious that disasters cause 

damage to physical capital, thereby impeding capital accumulation.  On the other hand, 

Skidmore and Toya (2002) asserted that disasters provide an impetus to adopt new 

technologies, resulting in economic growth.  If so, DISA is though to be positive when 



12 
 

efficiency improvement and economic growth is examined.   

Further reports have pointed out the importance of other variables such as 

institutional characteristics (Tabellini 2005).  This paper controls for them through a 

fixed effects model that capture these time invariant features.  

 

 

3. Estimation Reusults 

                       

1. Results of Fixed Effects Estimation 

 

     The estimation results of the fixed effects model with year dummies for 

productivity growth, efficiency improvement, and capital accumulation are reported in 

Tables 2, 3 and 4, respectively.  In columns (2), (4), (6), and (8) in each of the tables, the 

results of the fixed effects 2sls model are presented.  

 In columns (1), (2), (5), and (6) in each table, results are presented when the 

square term of the gini coefficient GINI2 is not included in the functions.  From them, 

we can obtain results in respect to the linear effect of inequality on growth.  From 

columns (5) to (8), a lagged dependent variable is incorporated instead of the initial 

levels of per capita product, efficiency, and per capita capital, in Tables 2, 3, and 4, 

respectively.  Also, the estimation results of technology progress are proposed in Tables 

A1 and A2 (Appendix) for reference.  

       We now discuss Table2.  Before we examine the inverted-U shape, the linear 

effect of inequality is more precisely investigated.  GINI yields negative signs in 

columns (1) and (5), while it yields positive signs in columns (2) and (6).  These results 

are not, with exception of column (1), statistically significant.  We interpret this result 

that an effect of inequality depends on whether its endogeneity is controlled for.  

Looking at the results when GINI2 is incorporated reveals that GINI and GINI2 

produce statically significant positive and negative signs, respectively.  As well, the 

magnitude of GINI is smaller than that of GINI2.  These results are consistent with 

the findings of Chen (2002) that the relationship between inequality and growth 

demonstrates an inverted-U shape.  Furthermore, compared with the results of the 

fixed effects estimation, their absolute values are larger when fixed effects 2sls 

estimation is conducted.  Mitigation of endogeneity is thus thought to cause the 

U-inverted association to be more pronounced.  With respect to the effects of human 
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capital and openness, HC and OPEN, respectively, generally take, with the exception of 

columns (2) and (4), positive signs, being almost statistically significant at the 1 % level, 

which is in line with our expectation.  The signs of GOV, INVS, EHETE and DISA are 

varied according to the specifications.  Although from this we cannot derive a 

particular conjecture, the effects arising from efficiency improvement and capital 

accumulation seem to neutralize each other, assuming that the effect of efficiency 

improvement is opposed to that of capital accumulation. 

      Table 3 provides similar results to those of Table 2 as regards GINI and GINI2.  

These tell us that the linear effects of inequality on efficiency are indecisive and 

ambiguous, with inequality first improving efficiency and then reducing it.  What is 

more, GINI is smaller than GINI2.  These results are consonant with the argument 

put forward in the previous section.  As expected, HC and OPEN almost, with some 

exceptions, take significant positive signs, suggesting that human capital and openness 

promote and accelerate efficiency improvement.  GOV, INVS, and ETHE generally 

produce negative signs, despite being statistically insignificant.  This seems to be 

compatible with our expectation, as previously noted.   We found it interesting that the 

sign of DISA becomes positive despite not having statistical significance.  This 

suggests, as argued by Skidmore and Toya (2002), that disasters provide a catalyst to 

ameliorate efficiency through the adaptation of new technologies. 

      We now turn to consider Table 4 detailing the capital accumulation. We found 

coefficient of GINI to consistently take a negative sign when a linear specification is 

estimated, while the results of GINI andGINI2, when included in the same function, 

share similarities when examining efficiency improvement. This implies that the 

negative effect stemming from inequality outweighs the positive effect from it, even 

though both effects exists as earlier expected and illustrate the inverted-U shape 

relation ship between inequality and capital accumulation.  HC and OPEN yield 

negative signs; therefore, they fail to enhance capital accumulation.  Signs of GOV 

varied depending on the specification; therefore, the effect of the government share 

remains unclear.  INVS generally yields a positive sign and therefore investment 

instigates capital accumulation, which is congruous with that intuition and 

expectations.  We are intrigued by the results concerning ethnic fractionalization and 

natural disasters; EHETE and DISA almost produced significant negative signs.  The 

results for EHETE lead us to conjecture that ethnic fractionalization reduces incentives 

to take collective action, thereby causing the free rider problem, resulting in a scarcity 

of local public goods.  On the other hand, occurrences of natural disasters cause 
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damage to various types of infrastructure, resulting in impediments to capital 

accumulation.   

 

2. Results of Dynamic Panel Estimations 

     Tables 5, 6, and 7 report the results of the dynamic panel model with year 

dummies for productivity growth, efficiency improvement, and capital accumulation, 

respectively.    In columns (2) and (4), we incorporate both the first and second lagged 

variables.  A test for the hypothesis that there is no second-order serial correlation for 

the disturbance of the first-differenced equation is important because the consistency of 

the estimator relies on there being no second-order serial correlation.   

     We begin by discussing the results presented in Table 5.  The test for the second 

order serial correlation does not reject the null hypothesis that there is no second order 

serial correlation in columns (2) and (4).  Accordingly, careful attention needs to be 

paid to the results of (2) and (4).   We see that the signs of GINI are negative and 

statistically significant in column (2), implying that inequality hampers productivity 

growth.  What is more, GINI and GINI2 take significant positive and negative signs, 

respectively, and GINI is smaller than GINI2, which is equivalent to the results in Table 

2.  These results make evident the argument of Chen (2002) that there is an 

inverted-U shape relationship between inequality and growth.  Taking then results for 

GINI and GINI2 together, the negative effects of inequality outweigh the positive ones, 

so that inequality has a negative impact on productivity growth.  Both HC and OPEN 

produce results that human capital and openness have positive effects on productivity 

growth, which is equivalent to those of Table 2. Consistent with our expectation, 

EHETE takes negative signs, despite being statistically insignificant.  Despite the 

statistical insignificance, the positive sign of DISA is thought to reflect that its positive 

effect on efficiency improvement through an increasing impetus to adopt new 

technology dominated its negative effect on capital accumulation via the damage to 

physical capital, as discussed earlier.  As a whole, the results in Table 5 reinforced 

those in Table 2. 

     In Table 6, the estimation results in columns (2) and (4) pass the second order 

correlation test.  Hence, it should be noted that the results in columns (1) and (3) suffer 

from estimation bias.  The results of GINI and GINI2 are equivalent to those in Table 3, 

implying that there is an inverted-U shape relationship between inequality and 

efficiency improvement. The negative signs of GINI in columns (1) and (2) reflect that 
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the negative impact of inequality exceeds any positive influence.  We found the signs of 

EHETE and DISA to be negative and positive, respectively, which is consistent with the 

prediction.  Nevertheless their lack of statistical significance persists under different 

specifications, not only in Table 6 but also in Table 3.  Our interpretation is that the 

insignificance of EHETE seems to suffer from measurement error, while that of DISA 

may reflect that the number of disasters fails to reflect the extent to which disasters 

caused damage.  

     Only columns (1) and (3) of Table 7 pass the second order correlation test.  

Accordingly, we mainly discuss the results in columns (1) and (3) rather than those in 

columns (2) and (4).  The estimation results for GINI and GINI2 are equivalent to 

those in Table 4, and therefore are robust to alternative specifications and estimation 

methods.  In short, the U-shaped association between inequality and capital 

accumulation is shown to be valid.  Consistent with our anticipation, COV and INVS 

take significant positive signs.  We found the sign of EHETE to be negative, implying 

that a reduction of the incentive to take the collective action required for achieving 

public good stems from ethnic fractionalization, which is in line with previous reports 

(Alesina, et.al., 1999; Alesina and La Ferrara, 2000).     

We have so far examined the determinants of productivity growth, efficiency 

improvement and capital accumulation.  The combined results presented above 

strongly supported an inverted U-relationship between inequality and productivity 

growth. This arises not only from efficiency improvement but also from capital 

accumulation.  Furthermore, it is noteworthy that some control variables have an 

effect on efficiency improvement and capital accumulation; even if they seemingly fail to 

affect productivity growth because their effects from different channels neutralize each 

other. 

 

 4. Concluding Remarks 

   

While an increasing number of researchers have shown interest in whether 

inequality is really harmful for economic growth, the results so far reported vary and 

there seems little agreement about the effect.  Therefore, the question of how 

inequality affects economic growth remains open.  In the present paper, an inverted-U 

shape relationship, as put forward by Chen (2003), between growth and inequality has 

been reexamined in more detail.   
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Earlier reports have scarcely analyzed plausible channels through which 

economic inequality has effects on growth, although a number of works have tried to 

explore the relationship between inequality and growth.  In an attempt to shed light on 

this, we first decomposed productivity growth into efficiency improvement, capital 

accumulation and technological progress. Second we proceeded to ascertain their 

determinants by employing fixed effects and dynamic panel models.  Particularly, in 

this paper the main emphasis fell on the question of how economic inequality affects 

capital accumulation and efficiency improvement.  Our main findings, which are 

invariant to alternative specifications and estimation methods, are as follows. 

 (1) Inequality enhances efficiency improvement as well as capital accumulation 

and then undermines them as inequality widens.  Consequently, an inverted-U shape 

relationship between inequality and growth holds, in agreement with Chen (2003).   

(2) Human capital and openness promote efficiency improvement, while 

investment and government consumption enhances capital accumulation.  Ethnic 

fractionalization hampers both.   

   Findings as above make evident the inverted-U relationship between inequality 

and not only capital accumulation but also efficiency improvement, and that additional 

determinant factors lead to different outcomes for efficiency improvement and capital 

accumulation.  The findings suggest that the factors are seemingly unrelated with 

productivity growth, since effects through the efficiency improvement channel and those 

from capital accumulation neutralize each other.  For instance, a factor such as 

openness is positively associated with efficiency improvement, but inversely with 

capital accumulation.  Necessarily, attention should also be paid to whether factors 

have effects on these channels even when they do not have a significant effect on 

productivity growth.    

 A limitation of the present paper is that it is limited to an empirical analysis and 

the estimation results seem to suffer from the omission of relevant variables.  Hence, it 

will be worthwhile to use the theoretical model to explore why this is the case; 

investigating whether a newly developed income inequality index such as a polarization 

index (Duclos et al. 2004, Esteban et al. 2007), affects efficiency improvement and 

capital accumulation. As well, how other socio-economic factors are related to them 

needs to be examined.  These are the major issues remaining to be addressed in our 

future studies. 
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Fig.1. Data Envelopment Analysis Method 
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                  Fig.2.  Illustration of Tripartite Decomposition 
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Table 1 

Descriptive Statistics 

Variables Definition Sources Mean S.D 
GR 
 

Growth rate of output per worker Penn & world table 0.98 5.24 

EFCH Efficiency improvement rate Author‟s calculation using 
data of Penn & world table 

0.01*10-2 4.88*10-2 

KLCH Capital deepening rate Author‟s calculation using 
data of Penn & world table 

1.24*10-2 2.04*10-2 

TNCH Technological progress rate Author‟s calculation using 
data of Penn & world table 

0.76*10-2 1.53*10-2 

GINI 
 

Gini coefficients of per capita income World Bank HP 0.39 0.08 

HC 
 

Log of 1 + average years of school attainment Easterly and Levine (1997) 1.75 0.43 

OPEN 
 

Trade as a share of GDP Dollar (2002) 0.38 0.37 

GOV 
 

Government consumption as a share of GDP Dollar (2002) 0.20 0.08 

INVS 
 

Investment as a share of GDP Dollar (2002) 0.20 0.08 

EHETE 
 

Ethnic Fractionalization Score Matthew (1997) 0.36 0.28 

DISA Number of natural disasters EM-DAT : the International 
Disaster Database 

1.33 2.26 

Notes:  a Per Millions    

 b In Yens 

c In Million Yens 

d In Yens per liter 
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Table 2 

Growth and Inequality (Fixed Effects Model) 

 (1)GR 
  FE 

(2)GR 
   FE2sls 

(3) GR 
  FE 

(4)GR 
  FE2sls 

(5)GR 
  FE 

(6)GR 
   FE2sls 

(7) GR 
  FE 

(8)GR 
  FE2sls 

LGDP -3.19 
(-1.51) 

-5.45** 
(-2.54) 

-5.62** 
(-2.70) 

-12.5** 
(-4.16) 

    

GR_1 
 

    0.13** 
(2.75) 

0.20** 
(4.10) 

0.06 
(1.24) 

-0.01 
(-0.90) 

GINI -20.3* 
(-1.79) 

1.62 
(0.07) 

275.6** 
(5.33) 

1000.0** 
(4.60) 

-16.5 
(-1.45) 

8.29 
(0.34) 

230.0** 
(4.34) 

857.6** 
(2.75) 

GINI2   -375.6** 
(-5.85) 

-1389.7** 
(-4.14) 

  -316.0** 
(-4.75) 

-1200** 
(-2.73) 

HC 17.2** 
(2.98) 

-4.31 
(-0.92) 

19.5** 
(3.50) 

18.6** 
(2.47) 

15.2** 
(2.64) 

-5.87 
(-1.29) 

17.8** 
(3.16) 

9.50 
(1.23) 

OPEN 4.84 
(1.59) 

-0.91 
(-0.34) 

10.4** 
(3.34) 

22.1** 
(3.72) 

4.32 
(1.43) 

-1.53 
(-0.59) 

8.84** 
(2.86) 

15.3** 
(2.23) 

GOV 56.8* 
(1.96) 

-0.52 
(-0.02) 

26.5 
(0.94) 

-128.9** 
(-3.18) 

52.9* 
(1.84) 

-1.52 
(-0.06) 

32.1 
(1.13) 

-124.8** 
(-2.35) 

INVS 14.4 
(0.93) 

7.15 
(0.42) 

-1.74 
(-0.11) 

-75.2** 
(-2.77) 

10.7 
(0.69) 

3.23 
(0.20) 

-3.38 
(-0.22) 

-75.8* 
(-2.19) 

EHETE -22.0 
(-0.48) 

12.0 
(0.26) 

-8.82 
(-0.20) 

65.2 
(1.14) 

-38.8 
(-0.90) 

-18.0 
(-0.41) 

-45.6 
(-1.08) 

-21.5 
(-0.42) 

DISA 0.15 
(1.11) 

-0.003 
(-0.03) 

0.06 
(0.51) 

-0.23 
(-1.32) 

0.14 
(1.06) 

-0.005 
(-0.04) 

0.07 
(0.57) 

-0.25 
(-1.37) 

Year dummy Yes No Yes No Yes No Yes No 
Sample 
Groups 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

Notes: Numbers in parentheses are t-statistics. * and ** indicate significance at 5 and 1 per cent levels respectively (one-sided tests).  

In each estimates, year dummies are included, but not reported to save the space. We employ the fixed effects 2sls model and its 

results are presented in columns (3) and (6).  The instruments used are year dummies and cross products of 80s dummy and legal 

origin dummies such as English common law dummy and French commercial code dummy.   
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Table 3 

Efficiency Improvement and Inequality (Fixed Effects Model) 

 (1)EFCH 
   FE 

(2)EFCH 
   FE2sls 

(3) EFCH 
  FE 

(4)EFCH 
   FE2sls 

(5)EFCH 
   FE 

(6)EFCH 
   FE2sls 

(7) EFCH 
  FE 

(8)EFCH 
   FE2sls 

ELEV -0.08** 
(-3.87) 

-0.06** 
(-2.78) 

-0.12** 
(-5.57) 

-0.24** 
(-4.41) 

    

EFCH_1 
 

    0.14** 
(3.01) 

0.19** 
(3.91) 

0.10* 
(2.21) 

0.01 
(0.14) 

GINI -0.22* 
(-2.05) 

0.36 
(1.50) 

2.53** 
(4.90) 

10.2** 
(3.81) 

-0.14 
(-1.27) 

032 
(1.40) 

1.40** 
(2.73) 

6.20** 
(2.51) 

GINI2   -3.53** 
(-5.45) 

-13.8** 
(-3.73) 

  -1.99** 
(-3.07) 

-8.21** 
(-2.39) 

HC 0.16** 
(2.92) 

-0.03 
(-0.77) 

0.18** 
(3.44) 

0.15* 
(2.05) 

0.13** 
(2.38) 

-0.02 
(-0.52) 

0.15** 
(2.68) 

0.09 
(1.36) 

OPEN 0.09** 
(3.09) 

0.04* 
(1.82) 

0.13** 
(4.69) 

0.25** 
(4.01) 

0.08** 
(2.81) 

0.04* 
(1.74) 

0.11** 
(3.67) 

0.17** 
(2.88) 

GOV 0.12 
(0.46) 

-0.09 
(-0.38) 

-0.13 
(-0.48) 

-1.45** 
(-3.15) 

0.10 
(0.38) 

-0.05 
(-0.25) 

-0.04 
(-0.16) 

-0.90 
(-2.09) 

INVS 0.04 
(0.32) 

0.05 
(0.35) 

-0.06 
(0.43) 

-0.62** 
(-2.35) 

-0.05 
(-0.38) 

-0.01 
(-0.09) 

-0.15 
(-1.01) 

-0.56 
(-1.96) 

EHETE -0.15 
(-0.36) 

-0.16 
(-0.38) 

-0.15 
(-0.39) 

0.02 
(0.05) 

-0.14 
(-0.34) 

-0.10 
(-0.23) 

-0.18 
(-0.44) 

-0.15 
(-0.33) 

DISA 0.001 
(1.24) 

0.004 
(0.35) 

0.0009 
(0.73) 

-0.001 
(-1.06) 

0.001 
(0.98) 

0.0004 
(0.34) 

0.0009 
(0.67) 

-0.001 
(-0.66) 

Year dummy Yes No Yes No Yes No Yes No 
Sample 
Groups 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

Notes: Numbers in parentheses are t-statistics. * and ** indicate significance at 5 and 1 per cent levels respectively (one-sided tests).  

In each estimates, year dummies are included, but not reported to save the space. We employ the fixed effects 2sls model and its results 

are presented in columns (3) and (6).  The instruments used are year dummies and cross products of 80s dummy and legal origin 

dummies such as English common law dummy and French commercial code dummy.  
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Table 4 

Capital Deepening and inequality (Fixed Effects Model)  

 (1)KLCH 
   FE 

(2)KLCH 
  FE2sls 

(3) KLCH 
   FE 

(4)KLCH 
  FE2sls 

(1)KLCH 
   FE 

(2)KLCH 
  FE2sls 

(3) KLCH 
   FE 

(4)KLCH 
  FE2sls 

KLEV 0.02** 
(3.88) 

0.01** 
(2.51) 

0.02** 
(4.74) 

0.04** 
(3.09) 

    

KLCH_1 
 

    0.72** 
(21.3) 

0.73** 
(22.0) 

0.71** 
(20.7) 

0.66** 
(13.5) 

GINI -0.03 
(-1.11) 

-0.31** 
(-4.89) 

0.55** 
(4.51) 

2.51** 
(2.39) 

-0.01 
(-0.99) 

-0.09* 
(-2.27) 

0.19* 
(2.19) 

0.77* 
(2.10) 

GINI2   -0.74** 
(-4.86) 

-4.02** 
(-2.71) 

  -0.26** 
(-2.46) 

-1.25** 
(-2.38) 

HC -0.008 
(-0.62) 

-0.04** 
(-3.45) 

-0.008 
(-0.60) 

-0.02 
(-1.20) 

0.01 
(1.53) 

-0.004 
(-0.61) 

0.01* 
(1.68) 

0.01 
(1.06) 

OPEN -0.02** 
(-3.45) 

-0.05** 
(-6.58) 

-0.01* 
(-2.26) 

-0.005 
(-0.24) 

-0.003 
(-0.66) 

-0.01** 
(-2.39) 

0.0001 
(0.03) 

0.005 
(0.62) 

GOV 0.39** 
(5.70) 

-0.001 
(-0.02) 

0.34** 
(5.07) 

-0.42* 
(-2.28) 

0.12** 
(2.53) 

-0.002 
(-0.07) 

0.10* 
(2.20) 

-0.12* 
(-1.82) 

INVS 0.18** 
(4.79) 

0.06 
(1.54) 

0.15** 
(4.11) 

-0.28 
(-1.53) 

0.05 
(2.04) 

0.01 
(0.42) 

0.04 
(1.60) 

-0.06 
(-1.48) 

EHETE -0.32** 
(-2.87) 

-0.09 
(-0.78) 

-0.36** 
(-3.32) 

-0.28 
(-1.36) 

-0.16* 
(-2.25) 

-0.11 
(-1.50) 

-0.16* 
(-2.30) 

-0.0005* 
(-1.81) 

DISA -0.0004 
(-1.49) 

-0.001** 
(-2.93) 

-0.0006* 
(-2.03) 

-0.001** 
(-2.96) 

0.0002 
(0.11) 

-0.0002 
(-1.04) 

-0.00004 
(-0.20) 

-0.05 
(-0.92) 

Year dummy Yes No Yes No Yes No Yes No 
Sample 
Groups 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

Notes: Numbers in parentheses are t-statistics. * and ** indicate significance at 5 and 1 per cent levels respectively (one-sided tests).  

In each estimates, year dummies are included, but not reported to save the space.  We employ the fixed effects 2sls model and its 

results are presented in columns (3) and (6).  The instruments used are year dummies and cross products of 80s dummy and legal 

origin dummies such as English common law dummy and French commercial code dummy.  
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      Table 5 

Growth and Inequality (Dynamic Panel Model) 

 (1) GR 
    

(2) GR 
    

(3) GR 
    

(4) GR 
    

GR_1 0.12** 
(2.70) 

0.13** 
(2.84) 

0.06 
(1.27) 

0.06 
(1.37) 

GR_2  -0.06 
(-1.42) 

 -0.13** 
(-2.80) 

GINI -17.3 
(-1.54) 

-18.8* 
(-1.66) 

230.1** 
(4.43) 

266.7** 
(4.97) 

GINI2   
 

-316.0** 
(-4.85) 

-366.6** 
(-5.42) 

HC 18.1** 
(3.06) 

18.7** 
(3.14) 

17.8** 
(3.23) 

19.3** 
(3.48) 

OPEN 5.17* 
(1.72) 

5.08* 
(1.69) 

8.84** 
(2.93) 

9.36* 
(3.09) 

GOV 53.0* 
(1.86) 

56.3* 
(1.93) 

32.1 
(1.16) 

35.1 
(1.26) 

INVS 7.76 
(0.51) 

8.69 
(0.56) 

-3.38 
(-0.23) 

-3.78 
(-0.25) 

EHETE -37.3 
(-0.88) 

-37.7 
(-0.88) 

-45.6 
(-1.11) 

-47.3 
(-1.15) 

DISA 0.14 
(1.04) 

0.15 
(1.09) 

0.07 
(0.59) 

0.08 
(0.62) 

Year dummy Yes Yes Yes Yes 
Serial correlation 
 First order (P-value) 
 Second order 
(P-value) 

 
0.00 
0.02 

 
0.00 
0.12 

 
0.00 
0.00 

 
0.00 
0.73 

Sample 
Groups 

435 
28 

435 
28 

435 
28 

435 
28 

Notes: Numbers in parentheses are t-statistics. * and ** indicate significance at 5 and 1 

per cent levels respectively (one-sided tests).  In each estimates, year dummies are 

included, but not reported to save the space. 
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       Table 6 

Efficiency Improvement and Inequality (Dynamic Panel Model) 

 

 (1) EFCH 
    

(2) EFCH 
    

(3) EFCH 
    

(4) EFCH 
    

EFCH _1 0.13** 
(2.99) 

0.15** 
(3.21) 

0.10* 
(2.26) 

0.11** 
(2.46) 

EFCH _2  -0.09* 
(-2.05) 

 -0.13** 
(-2.79) 

GINI -0.14 
(-1.30) 

-0.17 
(-1.53) 

1.41** 
(2.79) 

1.70** 
(3.27) 

GINI2   -1.99** 
(-3.14) 

-2.40** 
(-3.68) 

HC 0.16** 
(2.74) 

0.17** 
(2.93) 

0.15** 
(2.74) 

0.17** 
(3.05) 

OPEN 0.08** 
(3.20) 

0.09** 
(3.13) 

0.11** 
(3.76) 

0.12** 
(4.07) 

GOV 0.10 
(0.38) 

0.12 
(0.43) 

-0.04 
(-0.16) 

-0.05 
(-0.20) 

INVS -0.06 
(-0.44) 

-0.06 
(-0.44) 

-0.15 
(-1.03) 

-0.17 
(-1.16) 

EHETE -0.14 
(-0.35) 

-0.19 
(-0.46) 

-0.18 
(-0.45) 

-0.25 
(-0.61) 

DISA 0.001 
(0.95) 

0.001 
(1.08) 

0.0009 
(0.68) 

0.001 
(0.81) 

Year dummy Yes Yes Yes Yes 
Serial correlation 
 First order 
(P-value) 
 Second order 
(P-value) 

 
0.00 
0.02 

 
0.00 
0.48 

 
0.00 
0.01 

 
0.00 
0.96 

Sample 
Groups 

435 
28 

435 
28 

435 
28 

435 
28 

Notes: Numbers in parentheses are t-statistics. * and ** indicate significance at 5 and 1 

per cent levels respectively (one-sided tests).  In each estimates, year dummies are 

included, but not reported to save the space. 
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         Table 7 

Capital Deepening and Inequality (Dynamic Panel Model) 

 (1) KLCH 
    

(2) KLCH 
    

(3) KLCH 
    

(4) KLCH 
    

KLCH_1 0.72** 
(22.1) 

0.76** 
(16.4) 

0.71** 
(21.7) 

0.74** 
(16.9) 

KLCH_2    -0.05 
(-1.15) 

GINI -0.01 
(-1.03) 

-0.05 
(-1.25) 

0.19* 
(2.29) 

0.19* 
(2.23) 

GINI2   -0.26** 
(-2.57) 

-0.26** 
(-2.49) 

HC 0.01 
(1.30) 

0.01 
(1.13) 

0.01* 
(1.75) 

0.01 
(1.60) 

OPEN -0.003 
(-0.79) 

-0.004 
(-0.86) 

0.001 
(0.04) 

-0.002 
(-0.04) 

GOV 0.12** 
(2.62) 

0.13** 
(2.66) 

0.10* 
(2.30) 

0.11** 
(2.35) 

INVS 0.05* 
(2.16) 

0.05* 
(2.18) 

0.04* 
(1.67) 

0.04* 
(1.71) 

EHETE -0.16** 
(-2.32) 

-0.15* 
(-2.17) 

-0.16** 
(-2.41) 

-0.16* 
(-2.27) 

DISA 0.0003 
(0.15) 

0.0001 
(0.07) 

-0.0004 
(-0.21) 

-0.0006 
(-0.27) 

Year dummy Yes Yes Yes Yes 
Serial correlation 
 First order (P-value) 
 Second order (P-value) 

 
0.00 
0.13 

 
0.00 
0.01 

 
0.00 
0.13 

 
0.00 
0.01 

Sample 
Groups 

435 
28 

435 
28 

435 
28 

435 
28 

Notes: Numbers in parentheses are t-statistics. * and ** indicate significance at 5 and 1 

per cent levels respectively (one-sided tests).  In each estimates, year dummies are 

included, but not reported to save the space. 
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                               APPENDIX 

 Table A 1 

Technological Progress and Inequality (Fixed Effects Model) 

 (1) 
TNCH 
    FE 

(2) 
TNCH 
FE2sls 

(3) 
TNCH 
FE 

(4) 
TNCH 
FE2sls 

(5) 
TNCH 
FE 

(6) 
TNCH 
FE2sls 

(7) 
TNCH 
 FE 

(8) 
TNCH 
FE2sls 

TNLEV -0.009 
(-0.94) 

-0.02* 
(-2.18) 

-0.004 
(-0.44) 

     

TNCH_1 
 

   -0.02 
(-0.08) 

0.12** 
(2.63) 

0.06 
(1.27) 

0.11** 
(2.37) 

0.01 
(0.23) 

GINI 0.01 
(0.65) 

0.04 
(0.73) 

0.31** 
(2.47) 

0.06 
(0.07) 

0.009 
(0.36) 

-0.01 
(-0.27) 

0.29* 
(2.29) 

1.34** 
(2.53) 

GINI2   -0.37** 
(-2.39) 

-0.01 
(-0.01) 

  -0.35* 
(-2.27) 

-1.92** 
(-2.58) 

HC 0.0001 
(0.01) 

-0.008 
(-0.73) 

0.002 
(0.16) 

-0.008 
(-0.61) 

0.001 
(0.12) 

-0.01 
(-1.25) 

0.003 
(0.25) 

0.01 
(0.74) 

OPEN -0.03** 
(-4.06) 

-0.02** 
(-3.71) 

-0.02** 
(-3.34) 

-0.02* 
(-1.97) 

-0.02** 
(-3.63) 

-0.03** 
(-4.25) 

-0.02** 
(-2.93) 

-0.004 
(-0.31) 

GOV 0.10 
(1.50) 

0.09 
(1.44) 

0.08 
(1.15) 

0.09 
(0.54) 

0.10 
(1.44) 

0.04 
(0.71) 

0.07 
(1.06) 

-0.14 
(-1.43) 

INVS 0.03 
(0.90) 

0.01 
(0.37) 

0.01 
(0.50) 

0.01 
(0.15) 

0.03 
(0.92) 

0.002 
(0.07) 

0.01 
(0.47) 

-0.12* 
(-1.81) 

EHETE 0.0009 
(0.01) 

0.09 
(0.73) 

-0.03 
(-0.28) 

0.09 
(0.49) 

-0.06 
(-0.66) 

-0.04 
(-0.38) 

-0.07 
(-0.70) 

-0.02 
(-0.22) 

DISA 0.0006* 
(1.81) 

0.0004 
(1.20) 

0.0005 
(1.58) 

0.0004 
(0.94) 

0.0005 
(1.76) 

0.0003 
(1.05) 

0.0005 
(1.53) 

0.00004 
(0.11) 

Year 
dummy 

Yes No Yes No Yes No Yes No 

Sample 
Groups 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

466 
31 

Notes: Numbers in parentheses are t-statistics. * and ** indicate significance at 5 and 1 

per cent levels respectively (one-sided tests).  In each estimates, year dummies are 

included, but not reported to save the space. We employ the fixed effects 2sls model and 

its results are presented in columns (3) and (6).  The instruments used are year 

dummies and cross products of 80s dummy and legal origin dummies such as English 

common law dummy and French commercial code dummy.   

 



Table A2 

Technological Progress and Inequality (Dynamic Panel Model) 

 (1) TNCH 
    

(2) TNCH 
    

(3) TNCH 
    

(4) TNCH 
    

TNCH_1 0.12** 
(2.70) 

0.10* 
(2.17) 

0.11** 
(2.45) 

0.09* 
(1.93) 

TNCH_2  0.17** 
(3.72) 

 0.16** 
(3.58) 

GINI 0.01 
(0.41) 

0.002 
(0.08) 

0.29** 
(2.37) 

0.24* 
(1.99) 

GINI2   
 

-0.35** 
(-2.35) 

-0.31* 
(-2.02) 

HC 0.0003 
(0.03) 

0.004 
(0.30) 

0.003 
(0.26) 

0.006 
(0.49) 

OPEN -0.02** 
(-3.78) 

-0.02** 
(-2.89) 

-0.02** 
(-3.03) 

-0.01* 
(-2.29) 

GOV 0.10 
(1.49) 

0.09 
(1.36) 

0.07 
(1.10) 

0.07 
(1.02) 

INVS 0.03 
(0.97) 

0.03 
(0.81) 

0.01 
(0.49) 

0.01 
(0.40) 

EHETE -0.07 
(-0.70) 

-0.12 
(-1.23) 

-0.07 
(-0.72) 

-0.12 
(-1.23) 

DISA 0.0005* 
(1.82) 

0.0006* 
(1.82) 

0.0005 
(1.58) 

0.0005 
(1.61) 

Year dummy Yes Yes Yes Yes 
Serial correlation 
First order (P-value) 

  Second order (P-value) 

 
0.00 
0.00 

 
0.00 
0.00 

 
0.00 
0.00 

 
0.00 
0.00 

Sample 
Groups 

435 
28 

435 
28 

435 
28 

435 
28 

Notes: Numbers in parentheses are t-statistics. * and ** indicate significance at 5 and 1 

per cent levels respectively (one-sided tests).  In each estimates, year dummies are 

included, but not reported to save the space. 

 

 

 

 

 

 

 

 

 

 

 


